
7

A Script-Based Approach for Teaching and
Assessing Android Application Development

PAOLO MODESTI, Department of Computing and Games, Teesside University, UK

Mobile applications are extremely popular with many higher education institutions offering
courses to prepare new developers sought by the software industry. However, teaching and
assessing mobile application development poses specific challenges due to the complexity
of real-world programming languages and environments. In this work, we present a script-
based approach for teaching and assessing Android application development which addresses
shortcomings of existing tools that impact negatively on the learning experience. Our
evaluation, that covers pedagogical and technical aspects, provides possible evidence that the
scripts have been beneficial in helping students to work more efficiently and achieve better
results. Additionally, the scripts have been effective in streamlining the grading process and
keeping the tutorial material up to date with the evolution of the Android platform.

CCS Concepts: • Software and its engineering → Software development methods; Command
and control languages; • Human-centered computing → Smartphones.

Additional Key Words and Phrases: Android, mobile application development, teaching and

assessment, semi-automatic grading, command-line scripting

ACM Reference Format:
Paolo Modesti. 2021. A Script-Based Approach for Teaching and Assessing Android Applic-
ation Development . ACM Trans. Comput. Educ. 21, 1, Article 7 (January 2021), 30 pages.
https://doi.org/10.1145/3427593

1 INTRODUCTION

Mobile applications are extremely popular and developers in this sector are highly
requested by the software industry. In order to provide students with the know-
ledge and skills required to become proficient mobile developers, higher education
institutions have introduced specialized courses in their curricula.
However, instructors face specific challenges, not only because the design and

implementation of mobile applications is a complex task [21, 53], but also because
real-world development tools can make the learning curve steeper. Despite that,
since exposure to real-world tools used by the industry is a key learning objective in

Author’s address: Paolo Modesti, p.modesti@tees.ac.uk, Department of Computing and Games,
Teesside University, Middlesbrough, UK, TS1 3BX.

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1946-6226/2021/1-ART7 $15.00
https://doi.org/10.1145/3427593

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/395865031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3427593
https://doi.org/10.1145/3427593

7:2 Paolo Modesti

this subject area [44], the choice of languages and tools in academic courses is often
driven more by the employability needs than by the pedagogical ones.
In the mobile domain, Google’s Android is the most popular operating system (OS)

with a market share of 86% [30]. According to Google, there are currently more than
2.5 billion monthly active Android devices [2]. Moreover, Android Studio [5], made by
Google and powered by IntelliJ, is the official Integrated Development Environment
(IDE) for Android application development. For this reason, Android Studio has
been adopted in many courses, including the “Android Mobile Development” course
that the author has delivered at the University of Sunderland (UK) in the period
2016-18. This is a predominantly programming oriented module where students learn
how to design and develop native mobile applications, focusing on Java programming
for the Android platform.

Contribution. In this work, we present a script-based approach for teaching and
assessing Android application development which addresses technical shortcoming of
existing tools which impact negatively on the learning experience. A set of command-
line scripts1, written by the author to complement the Android Studio IDE, was
developed with the aim to help students to perform in a simpler and faster manner
the typical tasks carried out in a software development session (e.g. clean, build,
run, test), manage Android projects, configure the development environment and
the virtual/physical devices where these applications run. Devised initially to solve
a practical problem (the slow performance of Android Studio), these scripts have
been further developed and have become an integral part of the teaching strategy
employed in the course.
The evaluation is aimed at understanding if these scripts, also intended as sup-

porting technologies for learning and assessment, have been beneficial in helping
students to work more efficiently and produce a higher quality work (i.e. achieving
better grades w.r.t. the learning objectives and the assignment requirements). Along
with the reflection on the teaching practice, this evaluation is based on:

• data collected from students by means of a questionnaire;
• data analysis of the course assessment;
• analysis of software artefacts submitted by students.

The students’ feedback and the results of the evaluation show that the scripts have
been useful to work with Android projects more efficiently, and there is possible
evidence that students who used the scripts generally performed better than those
who did not.
Additionally, an extended set of scripts was also designed to support the marking

process, allowing the marker to streamline the activities, saving a considerable
amount of time otherwise spent to perform mundane operations, preliminary to the
marking itself. The scripts can also be used to automatically upgrade to new versions
of Android and validate the demonstration apps and exercises used in lectures and

1Available at https://paolo.science/android/

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

https://paolo.science/android/

A Script-Based Approach for Teaching Android Application Development 7:3

tutorials. In fact, the dynamic nature of this application domain requires frequent
changes to adapt the teaching material to the evolution of the Android platform.

Outline of the paper. In §2, we discuss challenges, approaches, and tools for teaching
Android application development. In §3, we focus on the issues related to the practical
delivery and present our scripts-based approach. §4 covers the evaluation of the
developer’s scripts and in §5 the evaluation of the admin script’s, including the
marking process. We conclude in §6, summarising the results and discussing future
research directions.

2 TEACHING ANDROID APPLICATION DEVELOPMENT

Given the wide popularity of mobile devices, universities have added to their curricula
a significant number of courses on native mobile development. Higher education in-
structors teaching in computer science courses [20, 28, 32, 44, 50, 61] have highlighted
the following challenges:

• the fairly sophisticated skills required to develop native mobile applications
and the steep learning curve;

• the difficulties to separate teaching principles from the technical details of the
platform;

• the fast rate at which mobile platforms are changing;
• the overall complexity (and some shortcoming) of the developments tools.

However, there are also opportunities such as:

• the effectiveness of mobile platforms in teaching programming;
• the great variety of concepts and techniques that can be taught;
• the valuable experience, also in terms of employability, of working with real-
world systems;

• the possibilities to engage students.

2.1 Learning Programming

In general, learning programming is considered to be difficult. Edsger Dijkstra in a
seminal paper with the striking but realistic title “On the cruelty of really teaching
computing science” [15] argued that programming is a “radical novelty” in which
the process, typical of many learning systems, of transforming the “novel into the
familiar” no longer works.
Jenkins [33] believes that a crucial reason for this is that programming is a skill

and not a body of knowledge and there is a general consensus [6, 33, 54, 57] on the
fact that deep learning [43] is crucial for software developers.
Ben-Ari [6] indicates that, for some aspects, programming is also a “pattern

matching” process, an activity which can be associated with surface learning. In fact,
programmers can apply known solutions to common problems to solve a new one.
Surface learning can be useful to remember syntactical details but deep learning is
necessary to develop a real competence in writing programs. According to Jenkins
[33], the crucial point is that the two learning styles must be applied at the same

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:4 Paolo Modesti

time. In practical terms, teachers of programming courses face several pedagogic
and technical choices:

• teaching style: principle vs tutorial-based, need to adapt to students learning
with different styles and paces [51, 54];

• programming language: teaching a language used in the industry or a language
suitable for its pedagogical features [1, 41, 54];

• tools used in the practical sessions (compilers, debuggers, IDEs, etc.) [24, 41, 52];
• assessment and grading strategy [46].

We consider the first three issues in this section, and we cover the last one in §4 and
§5.

2.2 Programming for Android

Although this article focuses on Android, most observations will also apply to iOS and
other modern mobile platforms. In general, according to several authors [21, 44, 53],
designing and implementing mobile applications is a complex task because the
developer has to master a wide range of tools [25, 27]:

• programming languages (e.g. Java, Kotlin, C++, Objective-C, Swift);
• operating systems (e.g. Android, iOS);
• development tools (e.g. Android Studio, Eclipse, XCode).

Developing applications for Android requires a substantial programming background
[32] which includes proficiency in Object-Oriented Programming (OOP), event driven
programming and Android architecture (e.g. activity life-cycle of an application, app
components).

2.2.1 Learning Challenges. Matos and Grasser [44] believe that the complexities in
developing mobile applications are of an order of magnitude more challenging than a
desktop application. Riley [53] considers the learning curve steep enough to keep most
students away from learning Android development on their own. He also underlines
the amount of time instructors must spend in dealing with specific technical issues
of the Android platform. According to Burd et al. [9], this is unavoidable, because in
this domain it is difficult to separate the theoretical principles from the realities of the
computing environment. However, Sprinkle [56] recommends teaching mainly general
topics, and believes that students must learn on their own, from the documentation,
the API of the platform focusing only on the topics relevant to their tasks.

2.2.2 Android as a Platform for Teaching Programming. Despite these challenges,
Android is considered to be an effective platform for teaching Java programming
as it offers the opportunity to learn a wide range of computer science concepts and
techniques [44, 53]. Students engagement can be strong, as they value the first-hand
experience with real systems and the professional skills that can be gained [9, 20, 44].
These skills can support their employability and, interestingly, because of their
assignment efforts, students may be able to produce useful apps that are potentially
marketable. In this regard, choosing Android over iOS, reduces the entry barrier for
the distribution through the official app store [36].

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:5

2.3 Android Development Tools

The Android Software Development Kit (SDK) is a set of tools used to develop
applications for the Android platform. It includes software libraries, debuggers,
profilers, device emulators, the API documentation, and code samples. At every new
release of the Android OS, an updated version of the SDK is also made available. In
little more than a decade, Google has released 11 major revisions of the OS and 30
different levels of the API. Since 2015, Google has developed Android Studio which
has become the official IDE for Android development, superseding Eclipse.

2.3.1 IDE Adoption. Fuchs et al. [23] argue that adopting IDEs and tools for teaching
software development is a challenge for educators. The adoption of complex IDEs
like Android Studio and Eclipse allows students to work with tools used in the
industry but makes the learning curve steeper. From the instructor’s point of view,
this requires more supervision as professional IDEs are very complex. On the one
hand, there are so many options that the learner can be overwhelmed and find it
difficult to focus on specific learning objectives. On the other hand, the exposure to
real-world tools is a learning priority for this kind of subject, as employers require
knowledge of specific development tools and programming languages.
However, the richness of functionalities in such tools comes at a price of the

required hardware resources. Therefore, their performance may be sluggish even on
mid-range machines (for example in university labs), and students may experience
difficulties on their own machines as well. This can be a source of frustration when
building, testing, and debugging applications. Additionally, apps are often tested on
virtual devices and this can make the overall process slower, taking time and energy
that should be used for the programming task [32].

2.3.2 Platform Evolution. The pace at which the Android landscape evolves to
support new services, sensors, and devices (phones, tablets, smart watches, smart
TVs, etc.) is another significant issue. This poses a challenge to instructors because
teaching material and labs activities must be kept up to date to adapt to the
evolution of the platform [53]. The API changes are too fast for developers and this
has implications on the quality of the code (e.g. software defects, security issues)
[47]. It may also affect the compatibility of the code across different API levels [29].
This can be a source of confusion for students, as books and online resources they
consult can be outdated. These problems also affect the stability of the IDE and
other development tools. For example, 11 major and 17 minor releases of Android
Studio were made available in four years, from April 2016 (2.0.0) to April 2020
(3.6.3). Worryingly, even a major release like the 2.3.0 was overtly presented as
“primarily a bug fix and stability release” in the official release notes [5].

3 SCRIPT-BASED APPROACH

Since Android Studio is the de facto IDE for native Android development, it was
the natural choice for our course. Unfortunately, we experienced the same issues
described in §2.3.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:6 Paolo Modesti

3.1 Practical Issues

Despite the lab machines meeting the recommended hardware specifications, the
students’ experience with this Android Studio under Windows was quite frustrating.
Activities like cleaning and building a project, based on the Gradle build system [26],
were slow and time consuming. The sluggishness of Android Studio/Gradle in the
labs (where users do not have admin rights) was a significant grievance for students
when they began the course. They also faced the same issues on their own PCs.
This was not a confined problem because the course was due to be delivered

by local tutors in the next semester as part of a transnational education (TNE)
programme, in a developing country like Botswana where the availability of adequate
hardware resources is scarcer than in our campus.

3.1.1 CLI and Alternative Options. Since the Android SDK includes command-line
tools, a possible alternative is trying to use them. A significant number of actions,
including running Gradle, can be performed faster with the Command Line Interface
(CLI) than with the Android Studio’s Graphical User Interface (GUI). This can be
explained by the fact that, along with the resources used by the IDE itself, there is
no overhead of interaction between Android Studio and the underlining tools (e.g.
Gradle, Android Debug Bridge).
It should be noted that, despite the advantages of the CLI (simplicity, speed and

performance) most users tend to prefer GUIs for their ease, interactivity and greater
control [58]. In our case, it also turned out (see §4, Table 1) that the large majority
of the students (78%) were not aware of the possibility to build Android applications
from the command line.
In order to allow students to work more efficiently, we decided to develop a set

of scripts to support the trainees in many activities, such as building, cleaning and
running projects, and the configuration of the environment (§3.3.1). We could have
just directed the students to the documentation on how to run the command-line
tools available in the Android SDK, but it would have added further complexity to
the material already taught. Therefore, the scripts allowed the students to focus on
learning the core Android design and programming techniques for their projects.
Moreover, coding scripts is also a good engineering practice, as the scripts allow
running commands without the need to type long lists of parameters, combine
sequences of commands and use constructs like selection and iteration to define
workflows. Moreover, as the source code of the scripts was made available, students
were offered the opportunity to study, adapt and improve them.
In principle, many of the environment configuration issues could have been handled

by supplying students with a VM pre-configured with the IDE and supporting tools.
However, this solution would have required even more powerful hardware than
available at the time and, in general, it would have added further slowness due
to virtualisation. Moreover, we need to consider compatibility/stability issues due
to the nested virtualisation (i.e. running the Android VM within the virtualised
environment). For example, nested virtualisation, limited to the most recent hardware,
has been supported by the popular free and open source virtualisation software

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:7

Virtual Box only since version 6.1, released in December 2019. Unfortunately, in our
experience such support is not very stable yet, leading to occasional machine freeze
or corruption.

3.1.2 Cross-Machine Issues. Another specific challenge is that, in order to run and
test an app, it is necessary to build it on the developer machine and then load it on a
physical or a virtual device, like the Android Virtual Device (AVD) emulator. While
this is not a major issue in the production environment, where the configuration
of the tools is under the developer’s control, in educational settings applications
often run on systems on which the instructor has little or no control. Typically, the
instructor prepares examples which are made available to be studied, edited, run
and tested during the practical session in the labs, where the instructor is still in
control of the environment. But the examples must also run on students’ machines,
where such control no longer exists.
In Android Studio, building an app developed on another system implies importing

the source code in the IDE. This may also require a certain amount of refactoring
depending on the version of the Android SDK and API level of the source and target
platform. Given the variety of configurations, the import function of the IDE is
critical and far from being faultless. Cleaning and building a project, even a fairly
simple one, can take several minutes. Additionally, projects will not compile if the
required versions of tools/libraries are not present in the system. This is critical
in labs where students do not have admin rights, and cannot freely install new
components or versions of the SDK. Therefore, when exercises and assignments are
submitted, if students do not align with the expected configuration, the tutor will
be likely to face the same problem.
Halper [28] remarks that “the logistics of having to import all the code and run the

apps with sample data is very time-consuming”. The variety of possible configurations
has also been identified as a critical issue. The same author also stresses that even
“the rather mundane issue of student project submission and testing can be a major
headache for a course instructor”. For example, Madeja and Porubän [42] report that
most Android projects submitted by students needed some manual intervention.
To avoid this burden, students are often asked to demonstrate their apps to

the instructor. We think that this is not ideal as it limits the possibility to fully
evaluate different aspects of the work, making the assessment partial at best. It is
also frustrating because traditional programming assignments can be assessed in
batch mode using scripts that can automatically run and test programs [31].

3.2 Areas of Intervention

To addresses these problems, we considered developing a set of scripts designed with
the following objectives:

• speed up operations related to the development process (e.g. clean, build, run
on AVD);

• minimize the risk of incompatibility when converting or moving a project to
other systems or platform versions;

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:8 Paolo Modesti

• allow to check the alignment of the development environment or a project w.r.t.
a specific (“target”) configuration;

• facilitate the submission of exercises and assignment work.

It should be noted that, according to the taxonomy identified by Pascarella et al.
[49], these objectives cover significant aspects of three (out of nine) self-reported
activities areas for Android developers. Additionally, from the tutor’s point of view,
we considered how to:

• minimize the resources required to demonstrate apps during lectures/tutorials;
• control the configuration of the teaching material and automate the migration
to new versions of the API/SDK/IDE;

• make the testing and marking process more efficient.

The last issue is crucial as a lot of time is usually spent by tutors to test and
mark the students’ work, especially when cohort numbers are large. The idea is
that, provided that the students submit projects passing a compliance test (e.g.
project configuration and sanity checks), the marker can setup an environment that
allows to clean and build all students submissions in one batch. Running in a batch
mode, instead the using the IDE, has the advantage of not requiring the marker’s
interaction, saving time and effort. At any time, the marker can inspect the logs
and see the progress, checking if any project fails to be compiled. If a compile error
occurs at this stage, the marker has the option to contact the student and ask them
to fix/discuss the issue and/or use this information as part of the overall assessment.
Although most of the core marking must still be done manually (the marker needs

to run each project individually, and grade it according to a marking scheme), a
significant amount of time can be saved with the procedure described in §3.3.2,
avoiding a large number of tedious repetitive manual interactions with the interface
of the IDE. Such procedure automatically installs and runs the app in the AVD, runs
the unit tests on the Java Virtual Machine (JVM) and the instrumented tests on
the AVD, displays the output of the tests, opens with an editor the relevant source
code files that the marker needs to inspect.

3.3 Technical Solution: Command-line Scripts

The technical solution we propose consists of two subsets of command-line scripts, one
intended for the developer (student) and the other one for the admin (tutor). These
scripts are batch files for Windows, as this was the OS available in the university labs.
In principle, these scripts can be adapted and ported to other platforms including
Linux and MacOS.
It should be noted that, from the developer’s point of view, these scripts should

not be seen as an alternative to Android Studio, but rather as complementary tools
to simplify and make specific procedures more efficient. Therefore, when appropriate,
the scripts can be used in parallel with Android Studio, just running them from the
CLI, rather than using the equivalent functions available through the IDE menus.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:9

Developing Android applications purely from the CLI, without Android Studio,
would imply losing access to interactive GUI functions that allow automatic refact-
oring of code and resource identifiers. For example, the R.java file is automatically
created and updated by Android Studio at any change made in the XML resource
files. Furthermore, while in the past the Android SDK allowed to create a project
and a bare-bone application, from the command line (android create project),
this option has been removed since Android SDK tools version 26.

3.3.1 Developer’s scripts. This subset of scripts is aimed at facilitating and making
the management of Android projects more efficient along with the configuration of
the development and runtime environment.
Given <p>, the path of the folder containing an Android project, the following

commands apply to a single Android project:

• clean_single <p> – Clean the project
• build_single <p> – Build the project
• run_single <p> – Build and run the project on a device, start the emulator if
necessary

• run_single_apk <f> – Run an Android package file (APK) on a device, where
<f> is the filename

• zip_single <p> – Clean and zip the project (useful to submit, send or move
a project to another machine)

• test_single <p> – Run the tests defined in the project
• setSDK_single <p> – Reset the SDK path in the project, useful when a project
is moved to another system

The commands clean, build, zip, setSDK perform the same tasks as above but
they process all the projects in a folder. Other commands are available to configure,
and control the environment:

• config – Define parameters used by the scripts (called by other scripts)
• config_X.Y.Z – Define parameters for a specific version of Android Stu-
dio/SDK, where X.Y.Z is the version number (e.g 2.3.3) of Android Studio

• setenvSDK – Set the system environment variables for the Android SDK
(ANDROID_HOME, ANDROID_SDK_HOME, GRADLE_HOME)

• emulator_start – Start the AVD emulator if a physical device is not connected
to the developer’s machine

• emulator_wait – Wait the emulator to be up and running (called by other
scripts, not invoked directly)

• packages – List folders and package names of projects already built
• projects <p> – List folders containing Android projects in path <p>

• findSDK – Find the SDK location (checking a list of possible folders)
• chkSDK – Check the current configuration; the optional parameter <v> prints
the list of all installed and available packages

• list_devices – List all attached devices (virtual and physical)
• kill_device <device> – Kill an attached device

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:10 Paolo Modesti

clean build run submit?

zip submission

edit

begin

yes

no

Fig. 1. Developer’s workflow

Provided that the environment is configured correctly (config, setenvSDK, chkSDK),
a typical session of a student’s work (Figure 1), along with the code editing, will
consist of cleaning (clean_single), building (build_single) and running a project
(run_single). If the project needs to be submitted (or moved to another machine), a
compressed archive can be prepared with the zip_single command, which includes
the cleaning process.

3.3.2 Admin’s scripts. This subset of scripts is aimed at supporting and facilitating
the tutor in the preparation of demo applications, exercises and the marking process.
Given <p>, the path of the folder containing an Android project, the following

commands apply to a single project:

• refactor_single <p> – Refactor a single project (reorganise files inside a
project folder to make them suitable to be used by the scripts)

• mark_single <p> – Mark a single project (build, install, run, test, uninstall,
display the student’s report and source code)

Given <f>, the path of the folder containing Android projects, the following com-
mands apply to all projects inside <f>:

• refactor <f> – Refactor projects, preparing them for marking
• migrate <f> – Align projects to a specified “target” configuration (e.g. API
level, build tools version)

• prepare <f> – Refactor + migrate + clean
• sanity <f> – Run sanity checks on projects (check for presence/location of
files/folders specified by the tutor within the projects, e.g. build folder)

Provided that the environment is configured correctly, a typical session of the
tutor/marker (Figure 2) consists in collecting the students’ submissions in a folder
<f>. Then the projects need to be prepared for marking (refactor <f>, sanity
<f>, migrate <f>, clean <f>, build <f>) and graded individually (mark_single
<p> for each <p> in <f>). The details of the marking procedure are presented in §5.

It should be noted, that there is no need to use Android Studio in this phase, but
the only requirement is having the Android SDK installed.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:11

begin/download

refactor

sanity
checks

sanity
checked?

migrate

clean

build

mark

more to
mark?

end

sanity
checks log

clean log

build log

tests log

yes

no

yes

no

Fig. 2. Admin’s workflow (for details about marking/test log see Figure 4)

4 EVALUATION OF THE DEVELOPER’S SCRIPTS

The evaluation is aimed at understanding the impact of these scripts, in particular
if they have been useful to help the students to work more efficiently, learning more
effectively and achieving a higher standard of work. Along with the reflection of the
teaching practice, this evaluation is based on:

• data collected from students by means of a questionnaire (§4.2);
• data analysis of the course assessment and analysis of software artefacts sub-
mitted by students (§4.4).

We collected the evaluation data in two consecutive academic years, with two different
cohorts of students.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:12 Paolo Modesti

The evaluation methodology is inspired by the first three levels of the Kirkpatrick
model [35] for assessing training programs. Chatzigeorgiou et al. [11] used this
approach to evaluate an entire Android development course, but here we mostly
focus on the tools used in the training sessions.
Firstly, we consider the “reaction” of the students, i.e. how they used and assessed

the scripts. We also collected information about their prior knowledge of the topic.
Secondly, we look at the “learning” aspect, i.e. how much has been learned. For
this level, we consider a summative assessment to evaluate the extent by which the
learning outcomes have been achieved, in terms of students’ performance. Therefore,
we examined the data from the module results. Thirdly, we considered the“behaviour”
to understand what changes occurred in the learner attitude and interest for Android
development and tools. For practical reasons, data for the “reaction” and “behaviour”
levels have been collected with a single questionnaire.

4.1 Assessment Strategy

Students were asked to develop a native Android application and the requirements
specification played a crucial role in the assessment strategy. On the one hand, in
agreement with Burd et al. [9], we wanted to give students a concrete experience
with real system development and help them to appreciate the immediate applicab-
ility of what they have learned. On the other hand, to make clear the connection
between requirements and tests [56], requirements were made explicit and detailed.
Therefore, tests were also part of the submission, which included, along with the
source code, a short report documenting the design rationale and a self-evaluation of
the application. The assignment brief also outlined quality criteria that were relevant
for the assessment of the work.
In an anonymous post-course evaluation survey (n=39), 95% of the students agreed

(26%) or strongly agree (69%) that the assignment was relevant to the learning
objectives. Moreover, the assignment was pre- and post-moderated by an external
examiner, as part of the standard academic quality assurance process. Marks were
also post-moderated.
In general, our quality criteria are inspired by the software quality models proposed

by Boehm et al. [7] and McCall [45]. In our context, we assume that the quality
of a student’s work is proportional to the overall grade achieved, as a reflection of
the ability to correctly fulfil assignment objectives, expressed in terms of software
requirements. In practice, each set of requirements/features had a maximum score
and each set was marked using the following criteria (borrowed from [3] for what
concerns the programming style, and [22] which specifically defines a software quality
model for mobile applications):

• completeness and effectiveness of the solution w.r.t. the requirements;
• correctness and accuracy w.r.t. the requirements;
• code structure and efficiency;
• UI: appropriate layout, consistency and usage of components;
• coverage and effectiveness of testing;

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:13

1 2 3 4 5
0

5

10

15

20

25

30

35
36

13

4 5

0

#
p
ar
ti
ci
p
an

ts

Fig. 3. Before taking this module, what was your knowledge of Android development?
(1=very low,5=very high) – n=58, [=1.67, 𝜎=0.93

• clarity and effectiveness of the documentation, including code comments.

4.2 Students’ Feedback

In order to investigate how these scripts influenced the learning experience, a
quantitative research approach [13] based on survey methodology was adopted. The
online survey was designed using the LimeSurvey open-source software [40] and
consisted of 7 questions including 6 quantitative and 1 qualitative (open-ended)
questions. Participants were recruited sending individual email invitations to the
141 (81+60) undergraduate students enrolled in the “Android Mobile Development”
module for two consecutive academic years (2016-17 and 2017-18). Each time, the
survey was distributed five months after the completion of the module to reduce
the chances of amplifying positive results. The questionnaire was designed to make
possible linking the responses to the data extracted from the analysis of software
artefacts previously submitted by the participants as part of the assignment task
for this module. Answer were kept confidential, and data presented in this paper is
published in an anonymised and aggregated form. All data has been collected and
processed according with the research ethics policy of the institution. We received
58 (36+22) complete responses (response rate: 41.13%), while 11 (6+5) students
just opened the questionnaire without filling it in.

4.2.1 Questionnaire. First of all, students were asked about their general knowledge
of Android application development before the start of the module – a 5-point Likert
scale, ranging from very low (1) to very high (5). Then a question specifically asked
about the awareness of the possibility to build Android apps using the command-line
tools. They were also asked if, during or after the module completion, they had ever
used the scripts. If the answer was affirmative, they were offered the possibility to
indicate for which activity/task they found the scripts useful choosing within a list
of options (multiple answers allowed) with the option to further add activities/tasks
proposed by the respondent. Next, the students were asked if they think they may

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:14 Paolo Modesti

Question
%
yes

%
no

1
Before taking this module, did you know that
Android apps could be built from the command line?

22.41 77.59

2
During or after this module, have you ever used the
CMD scripts?

74.14 25.86

3
Do you think you might develop Android apps in
the future?

81.03 18.97

4
In this case, do you think you might use the CMD
scripts?

75.56 24.44

Table 1. Selected survey questions (n=58)

Option (multiple options allowed)
%

selected

1
understand that Android apps can be built/cleaned/run
from the command line

76.74

2 prepare the submission of my application for the assignment 72.09
3 build my project faster than with Android Studio 48.84
4 clean my project faster than with Android Studio 65.12
5 load faster my app on the emulator 44.19
6 check if my project was building or not 58.14

7
detect compiling errors more clearly than with Android
Studio

27.91

8
check compliance of the environment configuration w.r.t the
assignment requirements

32.59

Table 2. Question: “Could you please say if you found them useful to ... ?”

develop Android apps in the future, and if their answer was affirmative, they were
asked if they would consider using the scripts. Finally, an open-ended question
allowed the respondents to provide further comments and suggestions.

4.2.2 Results. The large majority of participants declared to have a very low (62.07%)
or low (22.41%) prior knowledge of Android Development (Figure 3): only 22.41%
of them knew that Android apps could be built from the command line (Table 1).
We appreciate that it would have been better to formally collect answers to these
questions at the beginning of the teaching term, but for practical reasons this was
not possible at that point. However, it should be noted that these two questions
were mainly asked to understand the demographics of the participants.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:15

In terms of “reaction”, 74.14% declared that they used the proposed scripts. The
fact that not all participants used the scripts can be explained by a series of factors
(inferred from the open-ended question): first of all, the scripts were presented as a
(positive) alternative but the choice of using them was entirely left to the individual
student. Additionally, there are users that in general do not feel comfortable with
command-line tools, and they naturally prefer programs, like Android Studio, with
a GUI neglecting CLI tools [59]. Finally, since the scripts were available only for
Windows, the platform of the university labs, some students, using a different OS at
home, were less interested in using them.
Overall (among those who used the scripts, multiple responses were allowed), the

participants found the scripts useful (Table 2) to understand that Android apps can
be built/cleaned/ran from the command line (76.74%), to prepare the submission of
the application for the assignment (72.09%), to check if the project was building
or not (58.14%), to clean (65.12%) and build (48.84%) the project faster than with
Android Studio. The last figure may be apparently lower than expected compared
with the “clean” option, because, in terms of speed, the difference in favour of CLI
is remarkable (see Table 3). However, cleaning the project before submission was
one of the requirements of the assignment (because it reduces considerably the size
of the project), hence “clean” attracted more interest. Detecting compiling errors
(27.91%) and checking the configuration of the environment (32.59%) attracted less
interest.
More insights were offered by the last question (open-ended) where participants

could detail their opinion. Overall, they gave a significant positive feedback. Some
examples:

• “It was a great experience using the cmd (CLI scripts) because it give me the
edge that I did not have, especially using cmd in order to compile, run or build
an app because with cmd things were faster and easy than the Android Studio.”

• “Easier, faster and more convenient way to run specific tasks that would
otherwise be a bit inconvenient to run from A.Studio’s convoluted menu.”

• “They were good for building and cleaning the solutions and provided a quicker
way of doing this.”

• “Easy to use with just single line command. Less time consuming when cleaning
and building a project.”

• “They helped a lot with some of the more tedious tasks of needing to clean up
regularly and saved time which was helpful.”

However, some students confirmed their preference for GUI over CLI:

• “I think they are very useful however, I personally feel more comfortable using
the UI to perform virtually any command it will allow me to perform.”

Regarding the impact on the “behaviour”, 81.03% of the survey participants think
that in the future they might develop Android apps, and, among them, 75.56% think
that they might use the scripts again. This is clearly an achievement as the initial
knowledge of Android development was generally low.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:16 Paolo Modesti

Activity
Interactive or
Batch mode

[time (mm:ss)

Android
Studio

Scripts
Android
Studio

Scripts Diff Gain %

open* + build I B 00:47 00:27 00:20 41.55
clean I B 00:11 00:08 00:03 21.12

(re)build I B 00:16 00:06 00:10 62.50
test I B 00:35 00:23 00:12 33.96
run I B 00:26 00:15 00:11 43.03

clean + zip I B 00:30 00:10 00:20 64.44

Total time 02:46 01:31 01:15 44.98
*applies only to Android Studio

Average Project Size (MB) 56.02 1.29 54.72 97.68

Table 3. Comparison of activities per single project: Android Studio vs scripts

In conclusion, most participants used the scripts and found them useful to develop
Android applications but there are still some barriers to a complete adoption. As a
reason for not using the scripts, participants essentially mentioned the unavailability
for MacOS (6.90% of the overall respondents), and their preference for GUIs in
any situation (1.72%). Some participants (3.45%) stated that they understand the
benefits, but they did not use the scripts as they have their prior workflow already
in place having developed for Android in the past.

4.3 Performance analysis

We carried out a performance evaluation regarding the usage of the scripts, from
the students’ point of view. In particular, we compared different activities (Table
3) completed with Android Studio and with the scripts. The machine used was
a Windows 10 laptop, with 16GB RAM and Intel Core i7 4700HQ @ 2.40GHz
processor, Android Studio 2.3.3, Android SDK API 23, Gradle 4.1, AVD Nexus
5 API23. Overall, we observed that the scripts run faster with significant gains
obtained in all the tasks. It should be noted that a clean+zip function does not exist
in Android Studio, so we considered cleaning a project and zipping by hand versus
running the zip_single script. Interestingly, after closure, a non-trivial project can
use around 40-50 times more space in Android Studio than a project zipped with
the scripts. This has a significant impact when students need to submit their files
or transfer their projects from one machine to another. In terms of resources, the
scripts tend to perform similarly even if the RAM is halved from 16GB to 8GB,
while Android Studio performance noticeably degrades as the amount of volatile
memory is reduced, as it was the case of the machines used in the university labs.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:17

4.4 Assessment Data Analysis

Another objective of the evaluation is to investigate if the scripts had a “learning”
impact on the student performance. In other words, has the use of the scripts allowed
the students to produce a qualitatively better work, according to the criteria defined
in §4.1?
In order to answer this question, our approach is to partition the students in two

groups (those who have used the scripts or those who have not) and see how they
compare in terms of module results. Would their grades be similar or different?
First of all, it should be noted that this is a quasi-experiment rather than a

true experiment, as we were working in a real education environment and the
students using the scripts were a self-selecting group. Our analysis involves data
from the assignment, in particular the grading of the applications submitted by
all students, including those who have not participated to the questionnaire. This
has the advantage of not only having more data for our analysis, but also of being
more precise, as we are able to tell who used the scripts for the preparation of the
assignment (artefact), rather than relying on participants declaring having used the
scripts at one point in the past (questionnaire).
To distinguish the two groups, we considered the following criterion: if the source

code contains at least one of the two folders (/build and /app/build) or the file
local.properties the student has not used the scripts. The two build folders are
created when a project is built, and removed when the project is cleaned with the
script clean_single or prepared for submission with zip_single. However, the
students who have only used Android Studio but not the scripts to prepare their
submission, will have these folders included in the submitted compressed file (unless
manually deleted) because of the automatic build feature of the IDE. Moreover,
the script zip_single also removes the local.properties file. This is because
the file stores the location of the local Android SDK. When moving a project to
another machine, the file needs to be updated and, in Android Studio, this prompts
a warning message and recreates the file silently. local.properties is not removed
by the Android Studio clean process, therefore, its absence is extremely unlikely if
the scripts have not been used for the preparation of the submission.
Table 4 shows the number of valid submissions (136 out of 141 enrolled) during

the first session for each cohort (2017 and 2018) and the aggregate data for different
groups (mark range: 0–100, pass threshold = 40). The demographics of the students
was the following:

• Sex : male 91.2% – female 8.8%
• Age: 20-24 90.4% – 25-29 8.1% – 30 and over 1.5%
• Domicile: UK 76.5% – EU 12.5% – International 11.0%
• Degree Course: Computer Science 49.3% – Computing 28.7% – Games Software
Development 10.3% – Computer Systems Engineering 8.1% – Other or not
known: 3.6%

We denote with 𝑛 the number of students, [the mean grade, 𝜎 the standard
deviation and Δ the difference between the means. It should be noted that all survey

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:18 Paolo Modesti

Group Cohort 𝑛 [𝜎

All Submissions
1+2

136 63.36 22.21
Passed 120 68.51 18.10

Survey participants 58 71.52 21.11

All Submissions
1

78 65.01 20.37
Passed 71 68.79 17.09

Survey participants 36 73.75 19.27

All Submissions
2

58 61.14 24.48
Passed 49 68.01 19.64

Survey participants 22 67.86 23.83

Table 4. Grades of students enrolled in the course (2 cohorts) (max grade=100)

Used scripts Cohort 𝑛 [𝜎
Wilcoxon

Mann-Whitney test
Yes

1+2
72 72.39 18.57 W=3437.5

No 64 53.20 21.69 p=7.71e-07
𝛥 19.19

Yes
1

43 73.70 18.21 W=1166.5
No 35 54.34 17.81 p=3.214e-05

𝛥 19.36
Yes

2
29 70.45 19.26 W=608

No 29 51.83 25.87 p=0.00361
𝛥 18.62

Table 5. Grades data analysis for different groups of participants/students

participants have submitted in the first session and their average mark ([) is higher
than the overall group.
Since the distribution of these groups is not normal (as all the other ones considered

here) we used the non-parametric two-tailed Wilcoxon/Mann-Whitney test to accept
or reject the null hypothesis 𝐻0: the two groups do not differ with respect to the
considered criterion (Table 5). In this case, 𝐻0 is rejected (p-value < 0.05) and
therefore there is a statistical difference between the two groups. The one that
according to our criterion has used the scripts has achieved on average (Δ=19.19)
more marks than the other one. The same analysis repeated on the two cohorts
individually gives similar results.
However, at this stage, since the groups considered are self-selected, we cannot

exclude that the more technically savvy students might have been more prone to

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:19

take advantage of the scripts, or, in general, other factors like motivation might have
influenced the choice of using the scripts or not.
Therefore, considering other data available, we computed the two-tailed Fisher

Exact Probability test (confidence interval 95%), a statistical significance test used
in the analysis of contingency tables, for the following null hypothesis: relative
proportions of one variable (having used the scripts or not) are independent of
the second variable. We considered “prior knowledge of Android development” (p-
value= 0.2207) and “prior knowledge that Android apps could be built from the
command line” (p-value= 0.1912). We also considered an issue like motivation, e.g.
students who think they “might develop Android apps in the future” (p-value=
0.7294). Interestingly, we also considered the overall performance of the students in
the degree course according to the British degree classification – (1st) 70 to 100, (2:1)
60 to 69, (2:2) 50 to 59, (3rd) 40 to 49 – (p-value= 0.4899). In all cases, we could not
reject the null hypothesis (since p-value > 0.05). Therefore, we can conclude that
it is highly unlikely that the factors considered (in particular that high-performing
students may have been more inclined to use the scripts than the entire cohort) may
be statistically correlated with the choice of using the scripts.

4.5 Interpretation of results

The results presented can be interpreted in light with the existing literature. A
first question is whether the command-line tools can be beneficial for learning
programming. Several empirical and quantitative analysis studies [12, 17, 18] answer
positively to this question. Chen and Marx [12] have reported the benefits of using
the command-line interface tools in Java programming courses before introducing
GUI-based IDEs and they decided to reverse, in the first weeks of their introductory
programming course, from Eclipse to command-line tools.
According to Dillon et al. [16] this enables learners to develop better mental models

for programming because of the limited range of operations and the fact that users
cannot skip steps in the workflow. In fact, CLI tools for programmers allow not
only to the learn the language syntax and problem solving skills, but also (and this
relevant in our case) help students to get a clear understanding of programming
procedures like compilation, execution, and editing [12, 17].
Chen and Marx [12] report that this also increases the level of confidence in the

usage of the IDEs when they are introduced. It should be noted that the transition
from command line to IDE is rather easy, but the other way around could be more
challenging [18]. The danger is that students initially exposed only to IDEs may
get the impression that clicking a button makes their applications magically work.
For example, we observed that students using exclusively Android Studio could get
confused, failing to understand precisely the point of failure in a sequence of actions
(e.g. clean/build/run) interpreting the sequence as an atomic (one click) action; in
the worst case they were even unsure if an error has occurred.
Kuusinen [37] considered, in the context of software development, flow experience,

a the state of concentration in which the individual is fully absorbed by an activity.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:20 Paolo Modesti

We think our scripts can contribute to the satisfaction of the three conditions essential
to achieve a flow state [14]:

• involvement in an activity with a clear set of goals and progress: each script
performs a clear set of tasks in a well defined workflow;

• tasks must have clear and immediate feedback: e.g. the scripts output clearly
any anomaly condition;

• confidence in one’s ability to complete a task based on a good balance between
challenges and perceived skills: our questionnaire data show that users found
the scripts useful to complete the tasks, adequate to their skill level.

Another crucial aspect is that in the Android environment the code is executed
not on the developer machine but on a virtual or external device. This can create
some confusion in novice Android developers. Therefore, as highlighted by Dillon
et al. [18], even though IDEs can lower the learning curve for operations, they can
potentially limit or mislead the mental representation of programming procedures.
Some of cited studies [12, 17] consider mostly novice programmers but, in our

case, students were relatively more experienced as they took this module in their
third and final year of an undergraduate computing degree. They are rather new-
comer programmers [55] as they are new to the programming environment and the
complexity of Android Studio can be overwhelming.
As discussed, enabling students to work with professional tools is one of our

learning objectives and Android Studio being the industry de-facto standard for
Android development, makes the usage of this IDE almost unavoidable.
Therefore, since our scripts are not a replacement for the IDE, but rather comple-

mentary tools to carry out programming procedures more simply and more efficiently,
we found appropriate to introduce the scripts along with the IDE. As these scripts
require students to follow well-defined workflows, they help to better understand and
more precisely control the most crucial programming procedures performed during
the development cycle. Moreover, it should be considered that such procedures can
also be more time consuming if done with the IDE given the complexity of the
environment and hardware limitations (see §3.1 and §5). For examples, we noted that
the Gradle build process under Android Studio can become slow and unresponsive,
in particular when the RAM available is 8GB or less. In contrast, this is much less
likely to happen if the build process is performed from the CLI, where it is also
clearer to understand whether the process is progressing or not.

5 EVALUATION OF THE ADMIN’S SCRIPTS

We discuss now how the scripts can be useful from the tutor’s point of view to
streamline the marking process and keep the teaching material up-to-date, adapting
to the frequent changes of the Android platform.

5.1 Marking Procedure

As discussed in §2, the submission process and the assessment of mobile apps can
be challenging. In our case, a student’s submission consisted of an Android project

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:21

begin

AVD
started?

start emulator

run tests on JVM

install app
on AVD

run tests on AVD

run Monkey test

manual marking

uninstall app
from AVD

clean

end

JVM tests log

AVD tests log

Monkey test log

no

yes

Fig. 4. Marking workflow (script mark_single)

(source code files and resources) and a report submitted online inside a compressed
file. The typical work of a tutor/marker begins (Figure 2) by downloading the
students’ submissions files from the online repository to a local folder.
A possible issue is that some students do not properly follow the instructions

for submission (e.g. configuration of the “target” platform). Therefore, the marker
has to make some sanity checks and perform refactoring operations which, if done
manually on a large group like the one we considered here (n = 136), may require
hours of tedious and repetitive work. The scripts refactor allows the fixing of issues
regarding the project folder structure, while the script migrate helps to align the
project to the “target” configuration.
Moreover, before running, all projects need to be cleaned and built, as meta-data

and temporary files from other systems can interfere with the correct compilation of
the application. With Android Studio, given the interactive nature of the GUI, this

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:22 Paolo Modesti

Activity
Interactive or
Batch mode

[time (mm:ss)

Android
Studio

Scripts
Android
Studio

Scripts Diff Gain %

refactor I B 00:25 00:10 00:15 60.00
migrate I B 01:41 00:07 01:34 93.07

clean+build I B 00:29 00:23 00:06 20.69
test I I** 00:35 00:23 00:12 33.96

mark* I I 01:26 00:14 01:12 83.72

Interactive time 04:36 00:37 03:55 87.17
Batch time 00:00 00:40 – –
Total time 04:36 01:17 03:19 72.10
* excluding test ** can also run in batch mode

Table 6. Comparison of activities per single project: Android Studio vs scripts (Marking)

will also take further time as the marker needs to import each project and wait for
the completion of the operation.
Instead, no marker’s interaction is needed if this is done in batch mode (scripts

clean and build). It should be noted, that if the results of the batch processing
are logged, the marker is able, at any time, to see the progress of the operations.
It also possible to check, for any submission, if the building process fails. This
kind of information can be used as a component of the marking as it indicates
properties of the submission. For example, the build process also run a Lint-like tool,
which performs static checks on the source code and can provide hints for potential
structural problems in the code that could impact on the reliability and quality of
the application. This also relates with the software quality criteria discussed for the
assignment design (§4.1).
Afterwards, the marker needs to run each project individually, and grade it

according to the marking criteria. A further time efficiency gain can be achieved,
using a procedure (script mark_single, Figure 4) allowing to automatically install
and run the app in the AVD, run the tests on the JVM and AVD, display the output
of the tests, open with an editor the relevant files of the source code that the marker
needs to inspect.
Automatising this process, can save further time, avoiding a large number of

tedious repetitive manual interactions with the GUI of the IDE, and the scripts
were indeed useful to shift precious time during the marking process from mundane
operations to the actual marking.

5.2 Performance Analysis

In order to test this claim, we ran an experiment on a Windows 10 laptop, with
16GB RAM and Intel Core i7 4700HQ @ 2.40GHz processor, Android Studio 2.3.3,

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:23

Android SDK API 23, Gradle 4.1, AVD Nexus 5 API23. We compared the marking
process for a sample of projects (Table 6), and found that, the automatic procedure
allows to save 72% of the time. In particular, the interactive time can be reduced
by 87%. In practice, the marker can just run the batch part, collect the output at
any time and then start the interactive part of the marking. In this case, using the
script is still advantageous as 83% of the time spent in trivial operations (opening,
running, closing, etc.) can be saved.
On average, the time saved for each project is more than 3 minutes. Although

the exact figure may vary according with the different versions of the tools (for
example, we noticed that the clean+build time was much higher in Android Studio
2.1.3/Gradle 2.14.1 then in Android Studio 2.3.3/Gradle 4.1), we believe that there
is a strong indication that the scripts can save a considerable amount of time to the
marker (e.g., more than 7.5 hours, for 136 submissions) along with a lot of repetitive
work. In general, the scripts help to standardise the marking process, avoiding errors
and shortcomings typical of interactive procedures. The external marker who used
this procedure for the TNE instances of this module at Botswana Accountancy
College in Gaborone and Francistown, agreed on the beneficial impact in terms of
efficiency and quality of the process.

5.3 Keeping Tutorial Material Up To Date

As mentioned, the Android landscape is very dynamic with frequent changes to the
API. Approximately, every year a major new version of the OS is released along
with two or three new levels of the API. The speed of change has been identified
[9, 53, 56] as a crucial challenge for instructors because it requires revising the
teaching material to keep the course up to date.
In particular, due to the complexity of the technology, demonstration apps and

exercises not only require a consistent amount of time to be prepared but also need
to be periodically updated to adapt the changes of the platform: new versions of the
API, build tools, Android Virtual Devices, IDE, etc. On itself, the migration is in
general complex and error-prone [38], and the update process can also be tedious
and time consuming because the teaching material for an entire course can comprise
many dozens of apps and each app needs to be validated (built and run) against the
new “target” configuration, to ensure that no issues arise during lectures or tutorials.
To that purpose, the admin’s scripts can be very useful to automatically migrate

and validate an entire library of applications from one version of the API/SDK to
another one (migrate script). This can be done with a procedure similar to the one
depicted in Figure 2. In order to support a new version, the tutor needs to create a new
configuration file, specifying parameters like versions of the SDK (min|compile|target),
build tools, Gradle and major libraries like the com.android.support and
com.google.android.gms:play-services.
Although the procedure in not bulletproof, as there is no guarantee that purely

syntactic changes in Android projects (e.g. manifest file and source code) are sufficient
for the application to compile and run successfully, in practice, our experience with
this process has been positive as we have never faced any critical issue.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:24 Paolo Modesti

In fact, usually, obsolete API classes and methods are not suddenly removed from
the Android libraries but are rather labelled as “deprecated” for a period of time
which usually comprised the release of at least a few new revisions of the API before
being phased-out (the so-called deprecate-replace-remove cycle [39]). This allows time
for developers to smoothly migrate to a new version and, in the interim, tutors can
still use the previous version of an application (migrated to the new configuration)
in their classes.

6 CONCLUSION

In this work, we presented a script-based approach for native Android application
development that complements existing tools (e.g. Android Studio, Android SDK).
The evaluation considered the students’ feedback, the data analysis of the module
outcome, software artefacts and the application of the scripts during the marking
process. In all these areas, the evaluation suggests that the scripts had a positive
impact both from the student and instructor’s point of view.
As these scripts complement Android Studio, students are still exposed to real-

world tools used in the industry, and some former students working as professional
app developers reported they were still using the scripts. Another positive aspect
is that these scripts facilitate the delivery of courses in situations where access to
powerful hardware resources can be limited, like in developing countries.
Although the usage of CLI scripts for software development is not new, such

approach was not previously considered for Android. To the best of our knowledge,
this is the first attempt to integrate CLI scripts in an Android development pedagogy.
The acceptance of CLI scripts among students was mostly positive, and evidence
suggests the using the scripts may have contributed to improve the student perform-
ance in this specific module, regardless of their overall performance in the full degree
course.

Recommendations. Based on our experience, the choice of the Android development
tools is a critical aspect for the success of a teaching strategy. One challenge is how
to help students to develop a clear conceptual workflow. This is addressed by the
scripts allowing for a simple and systematic way to handle the complexity of Android
project configuration and management. Another issue is how to provide a practical
mechanism to distribute and submit Android projects. The size of a simple project
could be 50-60 MB, but with the zip_single script (cleaning and zipping a project,
an operation which does not exist in Android Studio) it is possible to shrink the size
to just 1 MB saving space and reducing time for upload/download. Moreover, the
same script solves issues related with moving a project from one machine to another
(e.g. hard-coded absolute paths).

Tutors should carefully consider the amount of freedom to grant students in using
different versions of tools/API as this can impact negatively in different phases
of the development and marking process. In fact, incompatibilities may break the
application. For that reason, in our approach, we identified each year a reference
configuration (indicatively, a recent stable version of Android Studio and an API level

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

A Script-Based Approach for Teaching Android Application Development 7:25

that allows to cover at least 95% of currently active devices), and provided students
not only with the instructions to set the environment up but also a script (chkSDK)
to check whether their configuration complies with the reference one. Our experience
suggests that having a standard configuration not only proved to be of utmost
importance in dealing with large cohorts of students, but also encouraged students to
develop a greater control of the development environment, an important professional
skill for every developer. Additionally, the script for checking the compliance of the
configuration was also very useful to set up labs where courses were franchised.

Future research directions. Further research should consider several directions. An
important one would be to investigate if other complex development environments
could benefit from a script-based approach. An obvious candidate would be the native
mobile application development for iOS, but it could also be worth studying other
types of app development paradigms [48]. Additional research may also consider
analysing tool log/usage files (e.g. command-line and IDE) in order to understand
more precisely the behaviour of developers, their progress, difficulties and the
construction of mental models [23]. Moreover, such studies should also include
professional developers rather than just students, because of their different degree of
expertise and motivation.
In this paper, we also presented our work towards the automation of the marking

process. Although relevant information can be gathered from log files (as we indeed
filtered them with grep-like commands), most of the “meaningful” marking was still
done manually, running the application, inspecting the logs and checking if the
requirements were fulfilled, according to the marking criteria.
From the tutor’s perspective, the scripts also allow for a more efficient management

of the teaching material and configuration migration. Therefore, the scripts can offer
tutors a practical solution in their delivery of Android development courses.
A significant step would be moving further towards the automatic grading of

Android assignments. There is a considerable number of tools that have been
developed for the automated assignment grading and feedback, reviewed and classified
by various review papers [10, 31, 34]. In particular, Wilcox [60] identified a set of
testing strategies for automated grading.
A limited number of tools have been proposed for the automated grading of

Android assignments. RoboLIFT [4] is a library that is meant to facilitate the
testing of Android applications to a level adequate to students. It integrates with
Web-CAT [19] a platform for automated grading. The approach of RoboLIFT is
based on Test-Driven Development (TDD) that requires to write tests in advance
and then implements the code that make them pass. This is different from the
conventional approach where code is written first and then tested. Unfortunately,
RoboLIFT has some limitations, notably it works with applications with just a single
Android activity. Therefore, this does not make it suitable for most apps which
are usually composed of multiple activities. Madeja and Porubän [42] considered
the most common student mistakes and designed a system to detect them through
testing. They defined milestones and identified a set of tests expected to pass at

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

7:26 Paolo Modesti

that stage. However, in order to allow tests to run successfully on student code, they
had to impose restrictions to the UI (including on identifiers names), and when they
did not put any further restriction in the last phase of development, not to limit
the creativity of student, this greatly reduced the success rate. Bruzual et al. [8]
presented a system for automated assessment of Android exercises carried out by
running exercise-specific unit tests on the APK file, relieving the tutor from the
need to compile the student’s submission. However, while this approach seems to
scale well, ignoring the source code can limit the possibility to offer more insightful
feedback to students.
Although any automated grading system for Android is likely to quickly become

obsolete due to the frequent changes to the Android development environment,
in our case, a first step could be to further automatise the analysis of the logs
produced during the marking procedure (§5) extracting and processing automatically
information relevant for the assessment, and provide a core set of test cases along
with the assignment specification. Moreover, it should be possible to run tools
that compute quality parameters on the source code that can be included in the
assessment score.

ACKNOWLEDGMENTS

Part of this work was done while the author was working at the University of
Sunderland. The author wishes to thank Sophie Cormack, James Fairbairn, Sharon
McDonald and the anonymous reviewers for their constructive feedback.

REFERENCES

[1] Seiko Akayama, Birgit Demuth, Timothy C Lethbridge, Marion Scholz, Perdita Stevens, and
Dave R Stikkolorum. 2013. Tool Use in Software Modelling Education.. In EduSymp@ MoDELS.

[2] Abrar Al-Heeti. 2019. Android is on over 2.5 billion active devices. https://www.cnet.com/
news/android-is-on-over-2-5-billion-active-devices//. Online; accessed 04 December 2019.

[3] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting students in
C++ programming courses with automatic program style assessment. Journal of Information
Technology Education: Research 3 (2004), 245–262.

[4] Anthony Allevato and Stephen H. Edwards. 2012. RoboLIFT: Engaging CS2 Students with
Testable, Automatically Evaluated Android Applications. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina, USA) (SIGCSE
’12). ACM, New York, NY, USA, 547–552. https://doi.org/10.1145/2157136.2157293

[5] Android Studio. 2020. Android Studio Release Notes. https://developer.android.com/studio/
releases/. Online; accessed 19 June 2019.

[6] Mordechai Ben-Ari. 2001. Constructivism in Computer Science Education. Journal of Computers
in Mathematics and Science Teaching 20, 1 (2001), 45–74.

[7] Barry W Boehm, John R Brown, and Mlity Lipow. 1976. Quantitative evaluation of software
quality. In Proceedings of the 2nd international conference on Software engineering. IEEE
Computer Society Press, 592–605.

[8] Daniel Bruzual, Maria L. Montoya Freire, and Mario Di Francesco. 2020. Automated Assessment
of Android Exercises with Cloud-native Technologies. In Proceedings of the 2020 ACM Confer-
ence on Innovation and Technology in Computer Science Education, ITiCSE 2020, Trondheim,
Norway, June 15-19, 2020, Michail N. Giannakos, Guttorm Sindre, Andrew Luxton-Reilly, and
Monica Divitini (Eds.). ACM, 40–46. https://doi.org/10.1145/3341525.3387430

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

https://www.cnet.com/news/android-is-on-over-2-5-billion-active-devices//
https://www.cnet.com/news/android-is-on-over-2-5-billion-active-devices//
https://doi.org/10.1145/2157136.2157293
https://developer.android.com/studio/releases/
https://developer.android.com/studio/releases/
https://doi.org/10.1145/3341525.3387430

A Script-Based Approach for Teaching Android Application Development 7:27

[9] Barry Burd, João Paulo Barros, Chris Johnson, Stan Kurkovsky, Arnold Rosenbloom, and
Nikolai Tillman. 2012. Educating for mobile computing: addressing the new challenges. In
Proceedings of the final reports on Innovation and technology in computer science education
2012 working groups. ACM, 51–63.

[10] Julio C. Caiza and José Maŕıa del Álamo Ramiro. 2013. Programming assignments automatic
grading: review of tools and implementations. In 7th International Technology, Education and
Development Conference (INTED2013). 5691–5700. http://oa.upm.es/25765/

[11] Alexander Chatzigeorgiou, Tryfon L Theodorou, George E Violettas, and Stelios Xinogalos.
2016. Blending an Android development course with software engineering concepts. Education
and Information Technologies 21, 6 (2016), 1847–1875.

[12] Zhixiong Chen and Delia Marx. 2005. Experiences with Eclipse IDE in Programming Courses.
J. Comput. Sci. Coll. 21, 2 (Dec. 2005), 104–112. http://dl.acm.org/citation.cfm?id=1089053.
1089068

[13] John W Creswell. 2013. Research design: Qualitative, quantitative, and mixed methods ap-
proaches. Sage publications.

[14] M. Csikszentmihalyi, S. Abuhamdeh, and J. Nakamura. 2005. Handbook of competence and
motivation. New York: Guilford Press, Chapter ”Flow”, 598–698.

[15] Edsger W Dijkstra. 1989. On the cruelty of really teaching computing science. Commun. ACM
32, 12 (1989), 1398–1404.

[16] Edward Dillon, Monica Anderson, and Marcus Brown. 2012. Comparing mental models of
novice programmers when using visual and command line environments. In Proceedings of the
50th Annual Southeast Regional Conference. ACM, 142–147.

[17] Edward Dillon, Monica Anderson-Herzog, and Marcus Brown. 2012. Studying the novice’s
perception of visual vs. Command line programming tools in CS1. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, Vol. 56. SAGE Publications Sage CA: Los
Angeles, CA, 605–609.

[18] Edward Dillon, Monica Anderson-Herzog, and Marcus Brown. 2014. Teaching students to pro-
gram using visual environments: Impetus for a faulty mental model? Journal of Computational
Science Education 5, 1 (2014), 1–2.

[19] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Automatically Grading
Programming Assignments. SIGCSE Bull. 40, 3 (June 2008), 328–328. https://doi.org/10.
1145/1597849.1384371

[20] César Fernández, Maŕıa Asunción Vicente, M Mar Galotto, Miguel Martinez-Rach, and Ale-
jandro Pomares. 2017. Improving student engagement on programming using app development
with Android devices. Computer Applications in Engineering Education 25, 5 (2017), 659–668.

[21] Rita Francese, Carmine Gravino, Michele Risi, Giuseppe Scanniello, and Genoveffa Tortora. 2015.
Using Project-Based-Learning in a mobile application development course - An experience
report. Journal of Visual Languages & Computing 31, Part B (2015), 196–205. https:
//doi.org/10.1016/j.jvlc.2015.10.019

[22] Dominik Franke, Stefan Kowalewski, and Carsten Weise. 2012. A mobile software quality model.
In Quality Software (QSIC), 2012 12th International Conference on. IEEE, 154–157.

[23] Markus Fuchs, Markus Heckner, Felix Raab, and Christian Wolff. 2014. Monitoring students’
mobile app coding behavior data analysis based on IDE and browser interaction logs. In Global
Engineering Education Conference (EDUCON), 2014 IEEE. IEEE, 892–899.

[24] Mercedes Gómez-Albarrán. 2005. The Teaching and Learning of Programming: A Survey of
Supporting Software Tools. Comput. J. 48, 2 (2005), 130. https://doi.org/10.1093/comjnl/
bxh080

[25] Mark H. Goadrich and Michael P. Rogers. 2011. Smart Smartphone Development: IOS
Versus Android. In Proceedings of the 42Nd ACM Technical Symposium on Computer Science
Education (Dallas, TX, USA) (SIGCSE ’11). ACM, New York, NY, USA, 607–612. https:
//doi.org/10.1145/1953163.1953330

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

http://oa.upm.es/25765/
http://dl.acm.org/citation.cfm?id=1089053.1089068
http://dl.acm.org/citation.cfm?id=1089053.1089068
https://doi.org/10.1145/1597849.1384371
https://doi.org/10.1145/1597849.1384371
https://doi.org/10.1016/j.jvlc.2015.10.019
https://doi.org/10.1016/j.jvlc.2015.10.019
https://doi.org/10.1093/comjnl/bxh080
https://doi.org/10.1093/comjnl/bxh080
https://doi.org/10.1145/1953163.1953330
https://doi.org/10.1145/1953163.1953330

7:28 Paolo Modesti

[26] Gradle. 2020. Gradle Build Tool. https://gradle.org. Online; accessed 19 June 2020.
[27] Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muhammad Younas. 2014. Mobile

application platform heterogeneity: Android vs Windows Phone vs iOS vs Firefox OS. In
Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International
Conference on. IEEE, 635–641.

[28] Michael Halper. 2014. Using Android As a Platform for Programming in the IT Curriculum.
In Proceedings of the 15th Annual Conference on Information Technology Education (Atlanta,
Georgia, USA) (SIGITE ’14). ACM, New York, NY, USA, 127–132. https://doi.org/10.1145/
2656450.2656461

[29] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. 2018. Under-
standing and detecting evolution-induced compatibility issues in Android apps. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM,
167–177.

[30] IDC. 2020. Smartphone Market Share – Updated: 02 Apr 2020. https://www.idc.com/promo/
smartphone-market-share/os. Online; accessed 19 June 2020.

[31] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review of Recent
Systems for Automatic Assessment of Programming Assignments. In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’10). ACM, New York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[32] Ivaylo Ilinkin. 2014. Opportunities for Android Projects in a CS1 Course. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia, USA)
(SIGCSE ’14). ACM, New York, NY, USA, 615–620. https://doi.org/10.1145/2538862.2538983

[33] Tony Jenkins. 2002. On the difficulty of learning to program. In Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, Vol. 4. 53–58.

[34] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a Systematic Review of
Automated Feedback Generation for Programming Exercises. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education (Arequipa, Peru)
(ITiCSE ’16). ACM, New York, NY, USA, 41–46. https://doi.org/10.1145/2899415.2899422

[35] Donald L Kirkpatrick and JD Kirkpatrick. 2006. The four levels: an overview. Berret-Koehler
Publishers San Francisco, Calif, USA. 26–35 pages.

[36] Stefan Koch and Markus Kerschbaum. 2014. Joining a smartphone ecosystem: Application
developers’ motivations and decision criteria. Information and Software Technology 56, 11
(2014), 1423–1435.

[37] Kati Kuusinen. 2016. Are software developers just users of development tools? Assessing
developer experience of a graphical user interface designer. In Human-Centered and Error-
Resilient Systems Development. Springer, 215–233.

[38] Maxime Lamothe and Weiyi Shang. 2018. Exploring the use of automated API migrating
techniques in practice: an experience report on Android. In Proceedings of the 15th International
Conference on Mining Software Repositories. 503–514.

[39] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018. Character-
ising deprecated android apis. In Proceedings of the 15th International Conference on Mining
Software Repositories. ACM, 254–264.

[40] LimeSurvey Team. 2020. LimeSurvey: an open source survey tool. http://www.limesurvey.org.
Online; accessed 19 June 2020.

[41] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Amruth N Kumar,
Linda Ott, James Paterson, Michael James Scott, Judy Sheard, Claudia Szabo, et al. 2018.
Introductory programming: a systematic literature review. In Proceedings Companion of the
23rd Annual ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 55–106.

[42] Matej Madeja and Jaroslav Porubän. 2018. Automated testing environment and assessment of
assignments for Android MOOC. Open Computer Science 8, 1 (2018), 80–92.

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

https://gradle.org
https://doi.org/10.1145/2656450.2656461
https://doi.org/10.1145/2656450.2656461
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2538862.2538983
https://doi.org/10.1145/2899415.2899422
http://www.limesurvey.org

A Script-Based Approach for Teaching Android Application Development 7:29

[43] Ference Marton and Roger Säljö. 1976. On qualitative differences in learning: Outcome and
process. British journal of educational psychology 46, 1 (1976), 4–11.

[44] Victor Matos and Rebecca Grasser. 2010. Building applications for the Android OS mobile
platform: a primer and course materials. Journal of Computing Sciences in Colleges 26, 1
(2010), 23–29.

[45] J McCall. 1977. Factors in Software Quality: Preliminary Handbook on Software Quality for
an Acquisiton Manager, volume 1-3. General Electric, November 130 (1977).

[46] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-
David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. A
Multi-national, Multi-institutional Study of Assessment of Programming Skills of First-year CS
Students. SIGCSE Bull. 33, 4 (Dec. 2001), 125–180. https://doi.org/10.1145/572139.572181

[47] T. McDonnell, B. Ray, and M. Kim. 2013. An Empirical Study of API Stability and Adoption
in the Android Ecosystem. In Proc. IEEE Int. Conf. Software Maintenance. 70–79. https:
//doi.org/10.1109/ICSM.2013.18

[48] Robin Nunkesser. 2018. Beyond web/native/hybrid: a new taxonomy for mobile app development.
In Proceedings of the 5th International Conference on Mobile Software Engineering and Systems,
MOBILESoft@ICSE 2018, Gothenburg, Sweden, May 27 - 28, 2018, Christine Julien, Grace A.
Lewis, and Itai Segall (Eds.). ACM, 214–218. https://doi.org/10.1145/3197231.3197260

[49] Luca Pascarella, Franz-Xaver Geiger, Fabio Palomba, Dario Di Nucci, Ivano Malavolta, and
Alberto Bacchelli. 2018. Self-reported activities of Android developers. In Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems, MOBILESoft@ICSE
2018, Gothenburg, Sweden, May 27 - 28, 2018, Christine Julien, Grace A. Lewis, and Itai Segall
(Eds.). ACM, 144–155. https://doi.org/10.1145/3197231.3197251

[50] Evan W Patton, Michael Tissenbaum, and Farzeen Harunani. 2019. MIT App Inventor:
Objectives, Design, and Development. In Computational Thinking Education. Springer, 31–49.

[51] Roy D Pea and D Midian Kurland. 1984. On the cognitive effects of learning computer
programming. New ideas in psychology 2, 2 (1984), 137–168.

[52] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen,
Marie Devlin, and James Paterson. 2007. A Survey of Literature on the Teaching of Introductory
Programming. InWorking Group Reports on ITiCSE on Innovation and Technology in Computer
Science Education (Dundee, Scotland) (ITiCSE-WGR ’07). ACM, New York, NY, USA, 204–223.
https://doi.org/10.1145/1345443.1345441

[53] Derek Riley. 2012. Using mobile phone programming to teach Java and advanced programming
to computer scientists. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education. ACM, 541–546.

[54] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and teaching program-
ming: A review and discussion. Computer science education 13, 2 (2003), 137–172.

[55] Susan Elliott Sim and Richard C Holt. 1998. The ramp-up problem in software projects: A
case study of how software immigrants naturalize. In Proceedings of the 20th international
conference on Software engineering. IEEE, 361–370.

[56] Jonathan Sprinkle. 2011. Teaching Students to Learn to Learn Mobile Phone Programming. In
Proceedings of the Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE!
2011, AOOPES’11, NEAT’11, & VMIL’11 (Portland, Oregon, USA) (SPLASH ’11 Workshops).
ACM, New York, NY, USA, 261–266. https://doi.org/10.1145/2095050.2095094

[57] Neena Thota and Richard Whitfield. 2010. Holistic approach to learning and teaching intro-
ductory object-oriented programming. Computer Science Education 20, 2 (2010), 103–127.

[58] Phillip Treweek. 1996. Comparing interfaces: should we assume that ease of use influences users’
preference?. In Computer-Human Interaction, 1996. Proceedings., Sixth Australian Conference
on. IEEE, 159–160.

[59] Antony Unwin and Heike Hofmann. 1999. GUI and Command-line - Conflict or Synergy?
In Proceedings of the 31st Symposium on the Interface: models, predictions, and computing,

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

https://doi.org/10.1145/572139.572181
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1145/3197231.3197260
https://doi.org/10.1145/3197231.3197251
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/2095050.2095094

7:30 Paolo Modesti

Schaumburg, Illinois, June 9 - 12, 1999, Kenneth Berk and Mohsen Pourahmadi (Eds.). Interface
Foundation of North America, 246–253.

[60] Chris Wilcox. 2016. Testing strategies for the automated grading of student programs. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education. ACM,
437–442.

[61] Xiaohong Yuan, K. Williams, S. McCrickard, C. Hardnett, L. H. Lineberry, K. Bryant, Jinsheng
Xu, A. Esterline, Anyi Liu, S. Mohanarajah, and R. Rutledge. 2016. Teaching mobile computing
and mobile security. In Proc. IEEE Frontiers in Education Conf. (FIE). 1–6. https://doi.org/
10.1109/FIE.2016.7757365

ACM Trans. Comput. Educ., Vol. 21, No. 1, Article 7. Publication date: January 2021.

https://doi.org/10.1109/FIE.2016.7757365
https://doi.org/10.1109/FIE.2016.7757365

	Abstract
	1 Introduction
	2 Teaching Android Application Development
	2.1 Learning Programming
	2.2 Programming for Android
	2.2.1 Learning Challenges
	2.2.2 Android as a Platform for Teaching Programming

	2.3 Android Development Tools
	2.3.1 IDE Adoption
	2.3.2 Platform Evolution

	3 Script-Based Approach
	3.1 Practical Issues
	3.1.1 CLI and Alternative Options
	3.1.2 Cross-Machine Issues

	3.2 Areas of Intervention
	3.3 Technical Solution: Command-line Scripts
	3.3.1 Developer's scripts
	3.3.2 Admin's scripts

	4 Evaluation of the Developer's Scripts
	4.1 Assessment Strategy
	4.2 Students' Feedback
	4.2.1 Questionnaire
	4.2.2 Results

	4.3 Performance analysis
	4.4 Assessment Data Analysis
	4.5 Interpretation of results

	5 Evaluation of the Admin's Scripts
	5.1 Marking Procedure
	5.2 Performance Analysis
	5.3 Keeping Tutorial Material Up To Date

	6 Conclusion
	Acknowledgments
	References

