
Gaussian Processes for
Data Scarcity Challenges

Sheffield

The
University
Of

Fariba Yousefi

Department of Computer Science
University of Sheffield

This dissertation is submitted for the degree of
Doctor of Philosophy

March 2021

I would like to dedicate this thesis to my loving family.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Fariba Yousefi
March 2021

Acknowledgements

I would like to thank my supervisors Dr. Mauricio A. Álvarez and Prof. Neil Lawrence
for their invaluable guidance, support and patience during my studies. Neil provided an
environment which felt like family in the early days of my PhD and I was lucky to meet
many great researchers within his group and external visitors. Mauricio taught me how to
be a better researcher and has always being a good friend to me. I feel privileged to have
worked under his supervision for the last few years of my PhD.

I would like to thank Dr. Carl Henrik Ek for his invaluable advice, guidance and close
collaborations in my first years of PhD.

I would like to thank Dr. Zhenwen Dai who thought me so much about Gaussian processes
and who was always there to discuss ideas and mathematical details.

I would like to thank all my friends and colleagues for inspiring discussions over lunch.
It has been a pleasure to get to know them. I would like to especially thank to those friends
who helped in proofreading different sections of this thesis and discussions during my PhD;
Ricardo Andrade, Andreas Damianou, Mike Smith, Alan Saul, Federico Tomasi, Zhenwen
Dai, Javier Gonzalez, Max Zwiessele, James Hensman, Alessandra Tosi, Arif Rahman, Mike
Croucher, Luisa Cutillo, Andrew Killer, Juan Jose Giraldo, Pablo Moreno Muñoz, Senee
Kitimoon and Chunchao Ma.

I would like to thank the Department of Computer Science and Control Point Ltd for their
scholarship and financial support during my PhD. Especially I would like to thank Prof. Guy
Brown, Prof. Eleni Vasilaki, Prof. Jon Barker, Joanne Suter, Gillian Callaghan, Sarah Brown,
Caroline Wyer and Karen Barker for their endless support at the department. Especially I
would like to thank Eric Bridgstock (who is sadly no longer with us), Steve Hamshow, Nick
Mark, Rob Eavis and Andrew Killer for their support and useful discussions.

I would like to thank my family for sending their love from miles away, especially my
mother for her unconditional love and support.

Finally I would like to thank my partner, Morrie, for his love, support, patience and
yummy dinners during my studies.

Abstract

This thesis focuses on Gaussian process models specifically designed for scarce data problems.
Data scarcity or lack of data can be a weak spot for many machine learning algorithms.
Nevertheless, both are commonly found in a diverse set of applications such as medicine,
quality assurance, and remote sensing. Supervised classification algorithms can require large
amounts of labeled data, and fulfilling this requirement is not straightforward.

In medicine, breast cancer datasets typically have few cancerous cells and many healthy
cells due to the overall relative scarcity of cancerous cells versus non-cancerous ones. The
lack of cancerous cells causes the dataset to be imbalanced, which makes it difficult for
learning algorithms to learn the differences between cancerous and healthy cells. A similar
imbalance exists in the quality assurance industry, in which the ratio of faulty to non-faulty
cases is very low. In sensor networks, and in particular those which measure air pollution
across cities, combining sensors of different qualities can help fill gaps in what is often a
very data scarce landscape.

In data scarce scenarios, we present a probabilistic latent variable model that can cope
with imbalanced data. By incorporating label information, we develop a kernel that can
capture shared and private characteristics of data separately. On the other hand, in cases
where no labels are available, an active learning based technique is proposed, based on a
Gaussian process classifier with an oracle in the loop to annotate only the data about which
the algorithm is uncertain. Finally, when disparate data types with different granularity levels
are available, a transfer learning based approach is proposed. We show that jointly modeling
data with various granularity helps improve prediction of rare data.

The developed methods are demonstrated in experiments with real and synthetic data.
The results presented in this thesis show that the developed methods improve prediction for
scarce data problems with various granularities.

Table of contents

List of figures xv

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Outline of the thesis . 8
1.2 Publications and software . 8

2 Background 11
2.1 Imbalanced data overview . 11

2.1.1 The imbalanced data problem in binary classification tasks 12
2.1.2 Methods for addressing imbalanced learning 13

2.1.2.1 Data level methods . 13
2.1.2.2 Algorithm level methods 14

2.1.3 Assessment metrics . 14
2.2 Gaussian process overview . 16

2.2.1 Gaussian process regression . 17
2.2.2 Covariance functions . 20
2.2.3 Gaussian process classification . 22
2.2.4 Approximations . 24

2.2.4.1 Laplace approximation 25
2.2.4.2 Variational approximation 26

2.2.5 Latent variable models (LVM) . 28
2.2.5.1 Dual probabilistic principle component analysis 29
2.2.5.2 Gaussian process latent variable model (GPLVM) 30

2.2.6 Sparse Gaussian process . 31
2.2.6.1 Variational sparse Gaussian process 33

xii Table of contents

2.3 Conclusion . 36

3 Learning imbalanced data using structure consolidation latent variable model 37
3.1 Bayesian Gaussian process latent variable model 38
3.2 Structure consolidation latent variable model 44
3.3 Experiments . 46
3.4 Conclusion . 51

4 Gaussian processes using active learning for scarce data problems 53
4.1 Active learning . 54
4.2 Gaussian process classification . 57
4.3 Convolutional neural networks (CNN) . 58
4.4 Active learning workflow . 59
4.5 Experiments . 61
4.6 Conclusion . 66

5 Multi-task learning for aggregated data 67
5.1 Multi-task Gaussian process . 69

5.1.1 Multi-task learning for aggregated data at different scales 69
5.1.2 Multi-task learning setting . 71
5.1.3 Stochastic variational inference 74

5.2 Related work . 77
5.3 Experiments . 78
5.4 Conclusion . 85

6 Conclusion and future work 87
6.1 Thesis summary . 87
6.2 Future directions . 88

References 91

Appendix A 101
A.1 Gaussian identities . 101

A.1.1 Conditional and marginal distributions of partitioned Gaussians . . 101
A.1.2 Conditional and marginal distributions of Gaussians 102

A.2 Matrix identities . 102

Table of contents xiii

Appendix B 105
B.1 Calculating the ψ statistics . 105
B.2 Discriminative Gaussian process latent variable model (DGPLVM) 106
B.3 Laplace Approximation . 107

Appendix C 111
C.1 Change of support using Gaussian processes 111
C.2 Gauss-Hermite quadrature . 119
C.3 Derivatives w.r.t variational parameters . 120
C.4 Derivatives w.r.t. hyper-parameters . 122
C.5 Likelihoods . 124

List of figures

1.1 Data roadmap of the thesis. In this figure SMOTE is short for Synthetic
Minority Oversampling TEchnique. SCLVM is abbreviation for Structured
Consolidation Latent Variable Model and AMTGP is short for Aggregated
Multi-task Gaussian Process. 2

1.2 Samples of the breast cancer dataset patches. The first two rows correspond
to the positively labeled image patches, and the last two rows correspond to
the negatively labeled image patches. 4

1.3 Samples of the water and gas pipe images. 5
1.4 Upper plot: a (biased) OPC low-accuracy high-frequency measurement of

PM2.5 air pollution. Lower plot: the high-precision low-frequency data. . . 7

2.1 Illustration of synthetic 2-dimensional binary, imbalanced data. The imbal-
anced ratio is 1:10. 13

2.2 (a) Samples from the GP prior. (b) Samples from the GP posterior after
observing some data points. 19

2.3 Graphical model representation for Gaussian process regression. Squares
represent observed data and circles refer to unknown (latent) functions.
Horizontal bars represent fully connected nodes [Rasmussen and Williams,
2006a]. 20

2.4 (a) RBF kernel with σ2
rb f = 0.2 and ℓ= 0.2. (b) RBF kernel with σ2

rb f = 0.2
and ℓ = 0.8. (c) RBF kernel with σ2

rb f = 0.8 and ℓ = 0.2. (d) RBF kernel
with σ2

rb f = 0.8 and ℓ= 0.8. 21
2.5 Binary Gaussian process classification graphical model. Squares represent

observed data and circles refer to unknown (latent) functions. The labels yi

are binary variables and predictions p∗ are probabilities in the range of the
interval [0,1] [Nickisch and Rasmussen, 2008]. 24

2.6 Graphical model for GPLVM [Lawrence, 2005]. 30

xvi List of figures

3.1 Graphical representation of SCLVM. y represents observed data, f represents
latent function, Xp is the latent input for the private space, Xs is the latent
input for the shared space, and C refers to the class information. 46

3.2 Mitotic figures in Hematoxylin and Eosin(H&E) stained breast cancer. . . . 47
3.3 Examples of different phases and variations of pre-processed 70×70 mitosis. 48
3.4 (a) Covariance matrix for private space. (b) Covariance matrix for shared

space. (c) Covariance matrix for the whole kernel. In these figures the color
blue represents no correlation and the color red represents a high correlation
between data points. The matrix for the private space is a block diagonal
matrix between two classes and can capture private characteristics for each
category. The matrix for the shared space captures common structures
between categories. The whole kernel is the sum of private and shared
covariances. 49

3.5 The visualization of the training data in learned latent spaces. The first figure
shows the positive and negative data in two of the shared dimensions. The
second and third figures show two of the private dimensions for the negative
and positive data respectively. The fourth figure shows the learned latent
space from BGPLVM. 49

3.6 (a) Some examples in the data sets. (b) Samples generated from the trained
SCLVM. In both figures, the first two rows correspond to positive labeled
image patches and the last two rows correspond to negative labeled image
patches. The black points represent cell nuclei. Generated samples capture
some characteristics of the corresponding training data. For example, some
of them have more than one nuclei. 50

4.1 Some examples of different styles of clamp in water and gas pipe images. (a)
Ring clamps. (b) Metal pinch clamps. (c) Plastic pinch clamps. (d) No clamp. 55

4.2 An illustration of the high-level diagram of the model, taken from "cloud.
google.com/tpu/docs/inception-v3-advanced". 59

4.3 The active learning workflow. 60
4.4 The workflow of the whole process. 62
4.5 Examples of the user interface of the software developed using Python for

the labeling process. The dump button is for saving the labeled images. . . 63

"cloud.google.com/tpu/docs/inception-v3-advanced"
"cloud.google.com/tpu/docs/inception-v3-advanced"

List of figures xvii

4.6 Sample of predicted image patches. The big image is cut into small patches
(299×299) with 50% stride. The patches are represented by green boxes.
The parts of the image that are smaller than 299× 299 are skipped. The
numbers in the middle of the green boxes represent the prediction for that
specific patch. The patches that have prediction closer to 100% are classified
as clamps and the ones closer to 0% are classified as non-clamps. 65

5.1 Counts for the Poisson likelihoods and predictions using the single-task vs
multi-task models. Predictions are shown only for the first task (the one
with support of υ1 = 1). The blue bars are the original one-unit support data,
the green bars are the predicted training count data and the red bars are the
predicted test results in the gap [130,180]. We did not include the two-unit
support data (the second task) for clarity in the visualisation. The multi-task
figure (b) is illustrated again in figure (c) for better visualisation with the
green bars removed. 80

5.2 SMSE plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right
panel) aggregated data. The Figure shows the performance in terms of the
number of training instances used for the data sampled at a higher resolution.
The test set always contains 1000 instances. We plot the mean and standard
deviation for five repetitions of the experiment with different sets of training
and test data. 81

5.3 SNLP plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right
panel) aggregated data. 82

5.4 SMSE and SNLP plots for the fertility dataset for 5×5 (left panel) and 2×2
(right panel) aggregated data for different baselines, MTGPA , Independent
GP (IND), DGP and ICM. 82

5.5 SNLP plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right
panel) aggregated data for four outputs (two fertility rates). All outputs
are considered as Gaussian (MTGPA) and all outputs are considered as
heteroscedastic Gaussian (HetGPA). 83

xviii List of figures

5.6 Upper plot: a (biased) OPC low-accuracy high-frequency measurement of
PM2.5 air pollution. Lower plot: the high-precision low-frequency training
data (black rectangles), the test data from the same instrument (red), and
the posterior prediction for this output variable, making predictions over the
same 15-minute periods as the test data (blue, with pale blue indicating 95%
confidence intervals). The ticks in the bottom of the lower plot indicate the
position of the inducing inputs. We have also deliberately cut the higher
peaks of the samples in the upper plot that can go as high as 500 µg/m3, to
visualise the samples in other parts of the plot better. 84

List of tables

2.1 Confusion matrix for binary classification problem. 15

3.1 Classification performance. The mean and standard deviation from ten test
sets are shown. 51

4.1 Results based on Precision, Recall and F1-score, with mean and standard
deviation from four test sets. 65

Nomenclature

Gaussian process

R Real space

O Order

p Dimension of the input space

f Latent mapping function

q Dimension of the latent space

N Number of data points per output

D Number of outputs

M Number of inducing points

X Input data or latent data, X = {xn}N
n=1

Q Number of latent functions

Y Observed output data

Z Inducing inputs, Z = {zm}M
m=1

ε Noise model

σ2 Gaussian likelihood variance

θK Hyper-parameters of kernel

θL Parameters of likelihood

υ Support that refers to area or volume

xxii Nomenclature

uq(z) q-th latent function evaluated at z

kq(z,z′) Covariance function for the Gaussian process of uq(z)

fd(υ) d-th output evaluated at support υ

δα,β Kronecker delta between α and β

k fd , fd′ (υ ,υ
′) Cross-covariance between outputs fd(υ) and f ′d(υ

′)

k fd ,uq(υ ,z′) Cross-covariance between output fd(υ) and latent uq(z′)

u Inducing points

uq uq(z) evaluated at Z, uq = [uq(z1),uq(z2), ...,uq(zM)]⊤

I Identity matrix

K f f Kernel function for f , evaluated k(x,x) with x ∈ X

K f u Kernel function for f and u, evaluated k(x,z) with x ∈ X and z ∈ Z

Abbreviations

erf Error function

AMTGP Aggregated multi-task Gaussian process

ARD Automatic relevance determination

AUC Area under curve

BGPLVM Bayesian Gaussian process latent variable model

DPPCA Dual probablistic principle component analysis

ELBO Evidence lower bound

EM Expectation maximization

FN False negative

FP False positive

FPR False positive rate

GP Gaussian process

Nomenclature xxiii

GPLVM Gaussian process latent variable model

i.i.d. Independent and identically distributed

KL Kullback-Leibler

LMC Linear model of coregionalization

MAP Maximum a posteriori

PCA Principle component analysis

PPCA Probablistic principle component analysis

RBF Radial basis function, also called exponentiated quadratic (EQ)

ROC Receiver operating characteristic

SCLVM Structured consolidation latent variable model

SMOTE Synthetic minority oversampling technique

SMSE Standardized mean squared error

SNLP Standardized negative log probability density

SVI Stochastic variational inference

TN True negative

TP True positive

TPR True positive rate or sensitivity

Operators

⟨.⟩ Expected value

tr(.) Trace of a matrix

E[.] Expected value

Chapter 1

Introduction

"All models are wrong; some are useful."

George Box

Machine learning is a subfield of artificial intelligence that focuses on the mathemat-
ical extraction of useful information from data. The rise of machine learning has been
made possible through increased availability of data and computation power. Machine
learning is also very dependent on the models being used. One of the ways to observe a
machine learning process is through the relationship between data, model and inference:
data+model=prediction.

Data scarcity — Although data is growing at an exponential rate, and large amounts
of storage are available, this has not solved the data scarcity issues that arise in machine
learning problems. Several real-life applications, in fields such as medicine, ecology, finance,
and social media often suffer from data scarcity. For example, in medicine, diagnosing a rare
disease or detecting cancerous cells when most of the cells in a body are healthy might be the
main goal. In the rare disease case, acquiring data is very difficult since it only affects a small
percentage of the population. In the cancer detection case, most tumors turn out to be benign,
and only a small percentage of patients have malignant tumors. Furthermore, depending
on the stage of the disease, cancer patients usually have more healthy cells than cancerous
cells. Data scarcity, or lack of data, is one of the main bottlenecks for learning algorithms. In
scarce data problems, the amount of data acquired is very small compared to what is needed.

Imbalanced data — Generally speaking, in the context of classification, any dataset with
a different number of samples between classes is considered ’imbalanced’. Data scarcity
often gives rise to such imbalanced (also known as skewed) problems. In skewed problems,
the most interesting class is usually under-represented, which means that we do not have
enough data for that class. Most available methods expect a balanced number of samples.

2 Introduction

Data

Balanced Scarse/
Imbalanced

Data level
methods

Algorithm
level

methods

SCLVM Active
learning AMTGPUnder-

sampling
Over-

sampling SMOTE

Fig. 1.1 Data roadmap of the thesis. In this figure SMOTE is short for Synthetic Minority
Oversampling TEchnique. SCLVM is abbreviation for Structured Consolidation Latent
Variable Model and AMTGP is short for Aggregated Multi-task Gaussian Process.

When using an imbalanced dataset, the result is often that minority samples are ignored and
that the minority set performs poorly, which are often the most interesting to the user.

Figure 1.1 illustrates the data roadmap in this thesis to tackle the scarce/imbalanced data
problem. Structured Consolidation Latent Variable Model (SCLVM), Active learning and
Aggregated Multi-task Gaussian Process (AMTGP) will be explained in more details in the
following chapters.

Data annotation — Most machine learning algorithms require large amounts of data, as
well as their labels, in cases of supervised learning. In some cases the data at hand does not
contain any labels; in this case, the data needs to be annotated by an oracle (human expert).
Annotation is the process of labeling data by humans for machine learning algorithms.
Annotation also helps these algorithms to identify patterns in data and understand which
parts of the data humans are interested in. This helps models to recognize similar patterns
in the future to predict results. Most algorithms depend on data labels to perform better.
However, annotating data can be a tedious, time-consuming and hence expensive job. There
are also different levels or granularity of annotation [Chen et al., 2018]. For example, in
image classification problems, labels can be low-level or high-level (also known as fine-
grained or coarse-grained, respectively). Low-level labels are those where the image has

3

pixel level labeling (also called image segmentation). For example, segmenting an area of
interest is considered low-level annotation. High-level labels, on the other hand, are those
where images have global labels per the whole image. In the medical domain, these are
often called patient-level labels. For example, prostate cancer images can have labels that
indicate whether a patient has cancer or not. However, such a label does not provide any
information about which part of the image displays cancerous cells. This can happen when
carefully labeling the data is not possible, or very expensive: it is usually very expensive
for pathologists to carefully label cancerous cells. This distinction is not only relevant to
medical images; related issues are common in other image datasets as well. In the popular
ImageNet [Russakovsky et al., 2015] dataset, classes such as ’cat’ or ’dog’ might be of
interest. However, there are no labels for the exact locations of those objects in the images in
question and there might be other items in the background. Instead, there are only high-level
labels which state there is a cat or a dog in the whole image, and this might confuse the
learning algorithm. In contrast to ImageNet, in real-world problems, data collection and
labeling can be difficult because they require specialized equipment and experts to collect
and label the data.

Case study 1: histopathology images — As mentioned earlier, in the medical domain
data scarcity is a big issue. This thesis will examine some challenges associated with
histopathology images, and in particular breast cancer data. Breast cancer is one of the most
common cancers among American women in recent years. It is estimated that about 1 in
38 women (2.6%) will die because of breast cancer in the United States [Society, 2020]. In
these domains, negatively labeled data is often easy to obtain — e.g. healthy cells. Positive
labels, on the other hand, can be difficult to acquire. Correct diagnosis is very important for
early intervention. Mitosis detection is a stage in tumor assessment that involves determining
whether individual cells are in the process of dividing to reproduce. Automatic mitosis (cell
division) detection could aid pathologists in their work, and also could alleviate the tedious
and time consuming process of manual mitosis counting. Pathologists sometimes need to
repeat this counting process for different areas or sections that are borderline cases of cancer
versus non-cancer diagnosis [Veta et al., 2015]. Cell divisions within a tumor can give an
indication of the rate of growth of that tumor [Snell, 2013]. Figure 1.2 has a few different
samples of mitosis image patches. This figure shows the difficulties of labelling data in the
medical domain for non-experts. These images will look the same to non-specialists, which
suggests that this type of data can only be annotated by trained experts. The Assessment of
Mitosis Detection Algorithms 2013 (AMIDA13) dataset is publicly available [Veta et al.,
2015]. This dataset has been annotated by pathologists. It does not have low-level labels,
and each mitosis area is not segmented; instead, it has high-level labels. Similar to other

4 Introduction

Fig. 1.2 Samples of the breast cancer dataset patches. The first two rows correspond to the
positively labeled image patches, and the last two rows correspond to the negatively labeled
image patches.

medical datasets, this dataset also suffers from data scarcity issues. It contains around 146000
negative cells but only 550 positive cells. Lack of positive data (cancerous cells) causes
the dataset to be imbalanced and makes it difficult for a learning algorithm to learn the
differences between cancerous cells and healthy ones.

Case study 2: electrofusion industry — Data scarcity affects many other real-world
applications of machine learning as well, such as quality control and fault detection prob-
lems. In particular, this work will look in more detail at the data scarcity problem in the
electrofusion industry. The electrofusion industry has a growing problem of polyethylene
pipeline failure, and this not only costs millions of pounds but also gives a bad reputation to
the polyethylene pipe industry. It has been proven that over 99% of joint failures are caused
by poor practices before the welding process.1 ControlPoint is a quality assurance company
based in Chesterfield, UK2 that remotely identifies faults, environmental factors, and poor
installations in water and gas pipes. One important factor in proper installations of water
and gas pipes is to have a clamp in place. It is essential that clamps are used when making
electrofusion joints to ensure that the pipe and joint are correctly aligned and stabilized during
the fusion process, which permanently welds pieces of pipe together to form a homogeneous
joint. In the absence of clamps, there is a risk that pipes may be misaligned within the joint,
with the possibility of gaps occurring, and therefore a potential source of weakness, resulting

1controlpoint.co.uk/about/ (last accessed 20.07.2020).
2controlpoint.co.uk/ (last accessed 20.07.2020)

controlpoint.co.uk/about/
controlpoint.co.uk/

5

in a higher risk of failure and leakage. Uncontrolled movement of the joint during welding
may also occur in the absence of clamps, which is likely to result in a loss of intimate contact
of the welded areas, and therefore result in a poorer weld. A few samples of these images are
presented in Figure 1.3. These images come in a variety of colors, sizes, angles and lighting
conditions. This dataset has high-level labeling — in other words, image-level labeling and
clamps are not segmented. In this dataset, 99% of images contain a clamp, which makes
detecting non-clamp images very difficult, due to data scarcity issues.

Fig. 1.3 Samples of the water and gas pipe images.

To ensure the quality of these joints, human experts check these images manually and
score them based on how well the workers in the trenches used the guidelines for the joints.
This process is very tiresome, since there are thousands of images coming in every day,
and automating it would help the experts only be required to focus on the fewer cases that
are on the borderline and which the algorithm is uncertain about. Automatically detecting
non-clamps is very important because of the issues mentioned above, such as the possibility
of leakages. So in this problem we have high-level labels and data scarcity issues, and as
mentioned before, data scarcity in this case results in an imbalanced problem between clamp
and non-clamp classes.

Case study 3: sensor networks — Data scarcity also affects the fields of ecology, epi-
demiology, remote sensing and demography. To give some examples, in sensor networks,
correlated variables are measured at different resolutions, intervals or scales. In the near
future, air pollution monitoring across cities and regions could be carried out using a combi-
nation of a few high-quality (high-cost) low time-resolution sensors and several low-quality

6 Introduction

(low-cost) high time-resolution sensors. Since high-quality sensors can be very expensive,
most developing countries, such as Uganda, cannot afford to use them. Instead, low-quality
sensors are widely used. In this thesis we investigate air pollution dataset from two fine
particulate matter (PM) sensors that are co-located in Kampala, Uganda. These sensors have
a diameter of less than 2.5 micrometer (PM2.5). Particulate air pollution can be measured
accurately with high temporal precision by using a β attenuation (BAM) sensor or similar.
Unfortunately these are often quite expensive. Instead, one can combine the measurements
from a low-cost optical particle counter (OPC) which gives good temporal resolution but
is often badly biased — these are scaled to either be too large, e.g. due to humidity, or too
small, e.g. due to dust contamination on the OPC sensor — with the results of a Cascade
Impactors (CIs), which are a cheaper method for assessing the mass of particulate species,
but which require the weighing of filters post-sampling. This allows for longer periods over
which the measurements are integrated (e.g. 6 or 24 hours). In Figure 1.4, the upper plot
refers to a cheap air pollution sensor with low-accuracy and high-resolution data, which is
noisy and gives data for every 5 minute period. The lower plot refers to an expensive sensor
with high-accuracy and low-resolution data, which would give data every 15 minutes.

This problem goes beyond single-task settings where only one task can be modeled at
a time. In single-task learning, potential correlations among tasks are ignored, and it is
assumed that the tasks are independent of each other [Alvarez et al., 2012]. If the problem
at hand contains different tasks including, but not limited to, different intervals of data or
different qualities of sensors, modeling these tasks jointly can be beneficial. This is called
multi-task learning, and in this setting one can exploit the interaction between different tasks
to improve individual predictions and also cope with data scarcity [Alvarez et al., 2012;
Journel and Huijbregts, 1978]. For example, in the case of air pollution sensors, we have a
few high-quality data and many more low-quality data, and using prior information between
tasks can improve the prediction of high-quality and / or rare data.

Most of the current state of the art deep learning algorithms have a serious limitation: they
cannot handle cases in which there is limited data. Deep learning methods are data-hungry
and typically need a huge amount of data (millions or even billions of training examples) to
be able to be trained effectively [Marcus, 2018]. Here we are more interested in methods that
are data efficient and can handle cases where data is scarce.

Gaussian processes — Bayesian non-parametrics are a useful and efficient framework
for modeling complex data. Bayesian non-parametrics combine large parameter spaces
with probability density estimation over those parameter spaces [Hjort et al., 2010]. In
non-parametric models, the size of the parameters can grow with the size of dataset, and so
the information that parameters can capture grows with the growing size of data. This makes

7

0

20

40

60

80

PM
2.

5
(b

ia
s)

 /
gm

3
Colocated low-cost sensor

75 80 85 90 95
Time / hour

0

5

10

15

20

PM
2.

5
/

gm
3

Reference sensor data and prediction
prediction
true
training data

Fig. 1.4 Upper plot: a (biased) OPC low-accuracy high-frequency measurement of PM2.5 air
pollution. Lower plot: the high-precision low-frequency data.

non-parametric models very flexible [Ghahramani, 2013]. Non-parametric models can be
viewed as having infinitely many parameters, and their complexity grows with the number of
data itself.

Gaussian processes are among the most frequently used non-parametric models when it
comes to uncertainty quantification and probabilistic modeling. A GP allows for a principled
way of handling the uncertainty of unknown functions. There are many different ways
to learn functions, and probabilistic inference is a neat way of doing it. By combining
prior knowledge about the function and information provided by observations, an inference
is possible over all possible functions. A GP is defined by its two moments: mean and
covariance function. GPs are simple to understand, easy to analyze, and interpretable (by
allowing uncertainty quantification), which is vital in many real-world applications. This
thesis attempts to tackle a number of challenges that arise from data scarcity and lack of
labeled data using advances in Gaussian processes. To perform probabilistic inference, the
prior information is used to express one’s belief in the form of a prior distribution. Then the
posterior distribution encodes the uncertainty in our predictions.

8 Introduction

1.1 Outline of the thesis

• Chapter 2 contains a brief introduction to the imbalanced data problem and Gaussian
processes. Gaussian process regression and classification is explained. Approximation
techniques are discussed. Also, latent variable models are introduced, and the Gaussian
process latent variable model is discussed. Finally, the sparse Gaussian process is
explained.

• Chapter 3 is concerned with latent variable models for dimensionality reduction. It
introduces the Structure Consolidation Latent Variable Model (SCLVM), where the
input is latent to the model. This model, based on Yousefi et al. [2016], extends the
Gaussian Process Latent Variable Model (GPLVM) by structuring the latent space to
handle the imbalanced data problem due to data scarcity.

• Chapter 4 is about real applications of scarce data where an expert/oracle is needed.
In this approach, the model decides which data would be the most informative to be
labeled. By using Gaussian processes, the model’s uncertainty is measured. Based on
the potential informativeness of the new data point, the oracle/user is asked to annotate
the data. This model is based on Yousefi et al. [2018].

• Chapter 5 is concerned with aggregated multi-task learning. A novel multi-task learning
model based on Gaussian processes is developed to jointly learn the variables that
are aggregated at different input scales. This model represents each task as a linear
combination of the realizations of latent processes that are integrated at different scales
per task, and usually the task with high-resolution samples has data scarcity issues.
This work is based on Yousefi et al. [2019].

• Chapter 6 summarizes the contributions of the thesis and discusses ideas for future
work.

1.2 Publications and software

This thesis is built on the work from the following publications:

(i) Fariba Yousefi, Zhenwen Dai, Carl Henrik Ek, Neil Lawrence (2016): Unsupervised
Learning with Imbalanced Data via Structure Consolidation Latent Variable Model,
International Conference on Learning Representations (ICLR) workshop track.

1.2 Publications and software 9

(ii) Fariba Yousefi, Mauricio A Álvarez, Neil Lawrence, Carl Henrik Ek (2018): Active
Learning Using Gaussian Processes for Imbalanced Datasets, Neural Information
Processing Systems (NeurIPS) workshop on Bayesian NonParametrics (BNP).

(iii) Fariba Yousefi, Michael Thomas Smith, Mauricio A Álvarez (2019): Multi-task Learn-
ing for Aggregated Data using Gaussian Processes, Advances in Neural Information
Processing Systems (NeurIPS).

The softwares developed for the methods described in Chapters 3, 4 and 5 are publicly
available under https://github.com/SheffieldML/GPy/ and https://github.com/frb-yousefi/
aggregated-multitask-gp repositories.

Note: Part of my PhD was funded by ControlPoint. I had a chance to work with them.
Some part of the work aligned with Chapter 4 for detecting clamps and is not included in
this Thesis because of confidentiality reasons.
I also had a chance to collaborate with Zurich hospital on the problem of unsupervised
prostate cancer detection. Current cancer diagnoses often involve manual visual inspection
of biopsy by pathologists. Such manual inspection is very time consuming and limits the
throughput of diagnoses in hospitals. Cancer diagnosis has different stages and in this work
we focus on one of the indicators for detecting prostate cancer. In prostate cancer, PTEN
(Phosphatase and Tensin homolog) gene is responsible for providing instructions for making
protein that is found in almost all tissues in the body. The loss of PTEN gene has a relation
with tumor progression. PTEN loss is used as an indicator for diagnosing prostate cancer. In
this work, we aimed at automatically detecting PTEN loss from CISH (Chromogenic In Situ
Hybridization) images. These images contain black and red stain, the black stain indicates
the existence of PTEN gene in individual cells, while the red stain indicates the existence
of a reference gene. This work was not compatible with the theme of this thesis and is not
included.

https://github.com/SheffieldML/GPy/
https://github.com/frb-yousefi/aggregated-multitask-gp
https://github.com/frb-yousefi/aggregated-multitask-gp

Chapter 2

Background

Looking at some real-world applications has shown that data can come in very large quan-
tities and yet the user can be interested in specific parts of the data that are usually under-
represented. We are interested in solving data scarcity issues and the imbalanced data problem
by taking into account the uncertainty involved. Scarce data problem and imbalanced data
problem are very closely related. There are various strategies to cope with scarce data, such
as data augmentation, semi-supervised learning, active learning, multi-task learning and
transfer learning. We will introduce some of these concepts in the following chapters. In this
chapter in Section 2.1, we define the imbalanced data problem, and explain the current state
of the art. In section 2.2 we introduce Gaussian processes for regression, classification, and
latent variable models.

2.1 Imbalanced data overview

Advanced development in science and technology together with large storage have enabled
the growth of data at an exponential rate. This has empowered people working in different
fields to learn from data, arriving at results which can have a great impact for day to day
life. For example, using maps to find real-time traffic information and calculate the fastest
routes to our destinations, finding the most relevant web search results, and fraud detection to
distinguish between legitimate and fraudulent bank transactions, are just a few examples that
could be mentioned [Elliott, 2019]. However, there can be situations where data is scarce,
due to the nature of the problem, or for external reasons.

Imbalanced data has received more attention in recent years [He and Garcia, 2009].
Generally speaking, in a classification case, any dataset containing unequal quantity of
samples between classes is considered imbalanced. The primary cause of imbalanced data
problem is the lack of data in one of the classes in case of classification. The imbalanced

12 Background

learning problem is challenging, and one of the major issues is that most algorithms expect a
balanced number of samples between classes; in cases of imbalanced data they will ignore the
classes which are poorly represented. A broad overview of the state of the art on imbalanced
data is provided in the following sections.

2.1.1 The imbalanced data problem in binary classification tasks

In classification tasks, imbalanced classes can have different imbalanced ratios. These
imbalanced ratios can vary and can range from 1:4 up to 1:100 [He and Garcia, 2009].
However, there can also be an extreme imbalance between classes, and the imbalanced ratios
can vary from 1:1000 to 1:10000 [He and Garcia, 2009; Krawczyk, 2016].

Imbalanced datasets affect various domains in the real world, such as detection of
fraudulent telephone calls [Fawcett and Provost, 1996], fraudulent credit card transactions
[Chan and Stolfo, 1998], oil spills in satellite radar images [Kubat et al., 1998], as well as
text classification [Zheng et al., 2004] and many others.
A comprehensive overview of imbalanced datasets is available at He and Garcia [2009].
The imbalanced data problem is challenging for most algorithms because the negative class
tends to dominate the objective function and the resulting model performs poorly. In the
imbalanced domain we seek to have a high accuracy for the minority class without losing
much accuracy of the majority class.

An imbalanced dataset can be divided into different categories, such as intrinsic or
extrinsic. In the intrinsic case, the imbalance is the result of the nature of the data itself.
In the extrinsic case, the imbalance is due to external reasons such as time and storage
constraints, and not because of the nature of the data itself. For example, interruptions during
a period of capturing continuous data from a balanced set might result in an imbalanced set
[He and Garcia, 2009].

In this thesis, we are focusing on intrinsic imbalanced data problem and will address
imbalanced data problem issues in Chapters 3 and 4. We present an example of a synthetically-
generated imbalanced dataset in Figure 2.1 using the Scikit-learn imbalanced toolkit [Lemaître
et al., 2017]. In Figure 2.1 (a) two classes illustrate the imbalanced data problem. The purple
data refer to the majority class and the yellow data refer to the minority class. This dataset
has an imbalanced ratio of 1:10, meaning that for every ten samples in the majority class
there is only one sample in the minority class. In Figure 2.1 (b), a histogram representation
of the data is shown. We can see the data distribution and hence the overlapping samples
between two classes. In the real world, in most cases data between classes do overlap, and
this may create further complexities to borderline cases for the learning process.

2.1 Imbalanced data overview 13

2 1 0 1 2 3 4
Dimension 1

1

0

1

2

3

Di
m

en
sio

n
2

Class 1
Class 2

(a) Scatter plot of the data

0 1 2 3 4 5 6 7
Dimension 1

0

25

50

75

100

125

150

175

200

Co
un

t

Class 1
Class 2

(b) Histogram representation of the data

Fig. 2.1 Illustration of synthetic 2-dimensional binary, imbalanced data. The imbalanced
ratio is 1:10.

2.1.2 Methods for addressing imbalanced learning

There are two approaches to addressing imbalanced datasets: data level methods and algo-
rithm level methods [He and Ma, 2013]. The aim of data level methods is to balance the
datasets by removing or adding data, and changing the class distribution so that standard
classifiers can work. Algorithm level methods aim to apply a classifier that can handle the
imbalance algorithmically without changing the data distribution. Data level and algorithm
level methods can be combined.

2.1.2.1 Data level methods

Having a balanced dataset can produce better classification results, which motivates the use
of sampling methods to balance the dataset. There are different methods for sampling such as
random oversampling [Estabrooks et al., 2004; He and Ma, 2013] and random undersampling
[Drummond et al., 2003; He and Ma, 2013].

Random undersampling randomly ignores samples from the majority class. In contrast,
random oversampling inflates the minority class by randomly duplicating a certain quantity
of samples from it [Drummond et al., 2003; Estabrooks et al., 2004; He and Ma, 2013].
These two methods are not equivalent and each has its disadvantages. For example, when
undersampling we might miss some important information relating to the majority class,
while in oversampling we might see overfitting when duplicates of the same data are created.

Other data level techniques include synthetic data generation approaches. Synthetic
Minority Oversampling TEchnique (SMOTE) is one famous and advanced sampling method
for creating synthetic datasets [Chawla et al., 2002]. In applying this technique, the dataset

14 Background

is augmented and synthetic data is generated by using a sample and its k-nearest neighbor.
However, in SMOTE the nearest neighbors are selected randomly. There are also variations of
SMOTE that can generate data in more effective ways to overcome this limitation. Adaptive
sampling techniques such as borderline-SMOTE [Han et al., 2005] generates data using
samples from the minority class that are closer to its borderline with the majority class.
However, by augmenting the data in this way we are increasing the size of the dataset, as
well as computational complexity.

There are other techniques, such as hybrid methods, that combine both under- and
over-sampling methods [Batista et al., 2004]. However, these combinations can be very
complicated, since instead of optimizing a single under (over) sampling method, one has to
optimize a combination of both. Data level methods have proven to be less effective than
algorithm level classifiers [Cieslak et al., 2012]. We will have an overview of algorithm level
classifiers in the next section.

2.1.2.2 Algorithm level methods

Commonly used approaches for algorithm level methods are cost sensitive methods. Cost
sensitive methods aim to calculate the ’cost’ of the misclassified samples [Elkan, 2001;
He and Ma, 2013; Ting, 2002]. These methods have different weight matrices or costs for
misclassifying samples of a particular class, and involve cost sensitive decision trees [Elkan,
2001; He and Ma, 2013; Maloof, 2003] and cost sensitive neural networks [He and Ma, 2013;
Kukar et al., 1998; Zhou and Liu, 2006].

There are other methods such as one class classification [Chawla et al., 2004]; kernel
based methods such as cost sensitive Support Vector Machines (SVM) [Fumera and Roli,
2002; Platt, 1998], and active learning [Abe, 2003; Ertekin et al., 2007a,b; Provost, 2000].
We will discuss active learning in more detail in Chapter 4. Ensemble methods are also
popular since multiple weak classifiers can outperform a single strong classifier’s performance
[Domingos, 1999; Fan et al., 1999; Sun et al., 2007]. Algorithm level methods can also be
combined with data level methods to improve performance [He and Garcia, 2009].

2.1.3 Assessment metrics

Assessment metrics help to evaluate how well an algorithm works for a given dataset.
However, for imbalanced classes, assessment metrics need to be more carefully considered
than in the balanced case, where it is often sufficient to consider accuracy alone. Accuracy
is the sum of correctly detected samples in different classes divided by the total number of
data, and is defined in Equation (2.1). Testing for accuracy is one of the most frequently used

2.1 Imbalanced data overview 15

True class
Positive Negative

Positive TP FP
Predicted class

Negative FN TN
Table 2.1 Confusion matrix for binary classification problem.

techniques in classification. However, for imbalanced data it can be deceiving in situations
where our class of interest is the minority class.

Accuracy =
TP+TN

Total number of data
, (2.1)

where True Positive (TP) is the number of positive examples that are correctly classified as
positive. True Negative (TN) is the number of negative examples that are classified correctly
as negative. For example, if we have 90% of the majority class and only 10% of the minority
class, the naive approach would be to classify the entire data as belonging to the majority
class, achieving a high accuracy of 90%. This might seems a great result for the majority
class. However, this does not provide any information regarding the minority class — this is
especially a problem when this is the more interesting and relevant class to the user and none
of it is detected [He and Garcia, 2009], with everything misclassified as the majority class.
So alternative techniques are needed for measuring the performance of the minority class.

For binary classification, a confusion matrix represents the result of correctly and incor-
rectly identifying each class. In Table 2.1, False Positives (FP) are also called type I error
and False Negatives (FN) are also called type II error. The columns are true class and the
rows are predicted class. In a confusion matrix, FP is the number of negative examples that
are classified incorrectly as belonging to the positive class and FN is the number of positive
examples that are classified incorrectly as belonging to the negative class.

In the case of imbalanced data sets, metrics such as precision, recall, F-measure, Receiver
Operating Characteristic (ROC), and area under the ROC curve (AUC) are considered.
Precision is defined as the number of true positives divided by the number of true positives
plus false positives. Recall, which is also called True Positive Rate (TPR) or Sensitivity,
is defined as the number of true positives divided by the number of true positives plus
false negatives. Precision measures how many predicted positive data are actually positive,
whereas recall calculates how many positive data are correctly predicted as positive. Precision
and recall have an inverse relationship. Improving recall without losing much precision is
the goal of imbalanced learning. F-measure combines precision and recall, and the output is
a single measure that reflects the result of classification in the presence of the minority class

16 Background

[Chawla, 2009; He and Garcia, 2009; He and Ma, 2013; Provost and Fawcett, 2001].
The expressions for Precision, Recall, False Positive Rate (FPR) and F-measure are as
follows:

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

, FPR =
FP

TN+FP

Fβ = (1+β
2)× Precision×Recall

β 2 ×Precision+Recall
,

where β corresponds to the relative importance of precision vs recall; it is usually set to one
[Chawla, 2009].

2.2 Gaussian process overview

In this section we will provide an overview of Gaussian Process (GP) models that will be
used in the following chapters in combination with the imbalanced data. A Gaussian process
can be defined as a distribution over functions. Formally it is defined as [Rasmussen and
Williams, 2006a]:

Definition 1. "A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution."

There are numerous problems such as regression, classification, and dimensionality
reduction that can be solved using GPs. In a GP there exists a mapping function called f
which is unknown (latent), and the aim is to learn the distribution over it. Using Bayes’ rule
the posterior can be calculated that finds the function which best fits the data. Gaussian
processes are non-parametric, which means they do not rely on a fixed number of parameters.

In the following sections, we will have a more formal introduction to GPs. In these
sections, latent outputs are f = { fn}N

n=1 and fn ∈ {−∞,+∞}, where N is the size of dataset.
The targets in the regression task are real and denoted as y = {yn}N

n=1 and yn ∈ R. Targets
in classification are binary, and denoted as y = {yn}N

n=1 and yn ∈ {0,1}. The training
and test inputs for both regression and classification tasks are X = {xn}N

n=1,xn ∈ Rp and
X∗ = {xn}N∗

n=1,xn∗ ∈ Rp respectively, and p is the dimensionality of the inputs. In Section
2.2.1, we define Gaussian process regression; in Section 2.2.3, we introduce Gaussian
process classification; in Section 2.2.5.2, we review Gaussian process latent variable models
(GPLVM), and in Section 2.2.6, we introduce sparse GP.

2.2 Gaussian process overview 17

2.2.1 Gaussian process regression

Gaussian processes are popular in machine learning partially because they have properties
that make computations tractable and easy. For example, the conjugate property means that
we can calculate the posterior tractably using the Bayesian framework. A Gaussian process
is defined with its mean function, µ(xxx) and covariance function, k(xxx,xxx′′′), with x ∈ Rp and
x′ ∈ Rp,

f ∼ GP(µ(xxx), k(xxx,xxx′′′)) (2.2)

µ(xxx) = E[f (xxx)]

k(xxx,xxx′′′) = E[(f (xxx)−µ(xxx))(f (xxx′′′)−µ(xxx′′′))].

While modeling, we often select the GP’s mean in Equation (2.2) as µ(xxx) = 0. The
covariance function can be selected from a variety of functions that hold a series of specific
properties, for example being positive semi-definite. The covariance function defines the
similarity or relation between data points and is evaluated on a finite set of inputs. More
information regarding covariance functions is given in the Section 2.2.2.

In the equations below, X ∈ RN×p, y ∈ RN×1, f ∈ RN×1 and X∗ ∈ RN∗×p. N and N∗

are the respective numbers of the training and test points. f is the mapping function that
maps input data to observed values. In real life applications, it is typically assumed that only
noisy measurements, y = [y1,y2, . . . ,yN]

⊤, are observed, rather than the true observations,
f = f (x) = [f (x1), f (x2), . . . , f (xN)]

⊤. The joint distribution of the training noisy outputs, y,
which are assumed to be independent and identically distributed (i.i.d.) corruptions of latent
function f by a zero mean Gaussian noise and σ2 variance, is defined as:

y = f+ εεε, εεε ∼N(000,σ2I). (2.3)

We assume this noise follows i.i.d Gaussian distribution. The GP prior is defined as:

p(f|X) =N(f|000,K f f) (2.4)

= (2π)−
N
2 |K f f |−

1
2 exp(−1

2
f⊤K−1

f f f). (2.5)

K f f ∈ RN×N is a covariance matrix, evaluated between all pairs of training data. GP
prior encodes information about how probable each of the infinity many possible functions

18 Background

are, before observing any data. The log of the prior is:

log p(f|X) =−1
2

f⊤K−1
f f f− 1

2
log |K f f |−

N
2

log2π. (2.6)

So, keeping in mind that y is the noisy version of f, the likelihood function — that is, the
probability of the observations given the parameters — is as follows:

p(y|f) =N(y|f,σ2I). (2.7)

Marginal likelihood is defined by integrating out the latent function f and the log marginal
likelihood is correspondingly defined as follows:

log p(y|X,θ) = log
∫

N(y|f,σ2I)N(f|000,K f f)df

=−1
2

y⊤(K f f +σ
2I)−1y− 1

2
log |K f f +σ

2I|− N
2

log2π, (2.8)

where θ denotes hyper-parameters, for example parameters of the kernel function. The first
term in the Equation (2.8) that involves targets y promotes a good fit to the data; the second
term, containing the determinant, is independent of the targets and penalizes complex models.
The third term is a normalization constant. The posterior distribution of f is defined as:

p(f|X,y) =
p(y|f) p(f|X)

p(y|X)
(2.9)

∝ N(y|f,σ2I)N(f|000,K f f).

Calculating the marginal likelihood in most cases is not tractable. In GP regression since
our likelihood and prior are both Gaussian, given the conjugacy property, calculating the
posterior is tractable. Samples from the GP prior and the GP posterior are illustrated in
Figure 2.2.

The joint distribution of the training noise-free outputs (latent function) f and the test
noise-free outputs (latent function) f∗, by assuming GP prior has zero-mean, is:

p
([f

f∗

]∣∣∣∣∣X,X∗
)
=N

([
f
f∗

]∣∣∣∣∣000,
[

K f f K f∗

K∗ f K∗∗

])
. (2.10)

Here, K∗∗ is the covariance between the test inputs, X∗, K∗ f is the cross covariance between
the test and train inputs, and K f∗ is the covariance between the train and test inputs, which is
the transpose of K∗ f .

2.2 Gaussian process overview 19

1.5 1.0 0.5 0.0 0.5 1.0 1.5
4

3

2

1

0

1

2

3

4
GP prior mean

GP prior samples

(a)

1.0 0.5 0.0 0.5 1.0
5

4

3

2

1

0

1

2

3

4

Mean
Data

(b)

Fig. 2.2 (a) Samples from the GP prior. (b) Samples from the GP posterior after observing
some data points.

Conditioning the joint Gaussian prior distribution to the latent function gives [Rasmussen
and Williams, 2006a]:

p(f∗|f,X,X∗) =N(f∗|K∗ f K−1
f f f, K∗∗−K∗ f K−1

f f K f∗). (2.11)

The joint distribution of the training noisy outputs, y, and the test noise-free outputs (latent
function) f∗, assuming GP prior has zero-mean, is:

p
([y

f∗

]∣∣∣∣∣X,X∗
)
=N

([
y
f∗

]∣∣∣∣∣000,
[

K f f +σ2I K f∗

K∗ f K∗∗

])
. (2.12)

The prediction using noisy observations is:

p(f∗|y,X,X∗) =N(f∗|µµµ∗,K∗) (2.13)

µµµ∗ = K∗ f (K f f +σ
2I)−1y

K∗ = K∗∗−K∗ f (K f f +σ
2I)−1K f∗ ,

where µµµ∗ is the mean and K∗ is the covariance of the predictive distribution. The graphical
model representation of GP regression is illustrated in Figure 2.3. Latent functions f are fully
connected to each other since they are sampled from the same GP. Labels yn are conditionally
independent from the other nodes given latent function fn.

20 Background

y1 y2 yn

f2 fn f*

x2 xn x*

...f1

y*

x1

Observations

GP	latent	function	f

Inputs	

Predictions	

Fig. 2.3 Graphical model representation for Gaussian process regression. Squares represent
observed data and circles refer to unknown (latent) functions. Horizontal bars represent fully
connected nodes [Rasmussen and Williams, 2006a].

2.2.2 Covariance functions

A Covariance function (also called a kernel) plays an important role in Gaussian process
modeling. It encapsulates the prior information we may have about the nature of the data.
A kernel should be a positive semi-definite function over all the possible input pairs (x,x′).
This means the eigenvalues of the covariance matrix should be non-negative. Kernels can be
seen as a similarity measurement. The inputs that are closer to each other in the feature space
are expected to have high correlation within the covariance function, and they are believed to
have similar behavior in the output space. In contrast, those that are far from each other have
very little correlation or no correlation at all.

The covariance function maps pair of inputs x and x′ to the real value k(x,x′) function.
There can be many different kernels, such as linear, exponentiated quadratic (EQ) — also
known as Radial Basis Function (RBF) — polynomial, periodic, and Matérn class of kernels.
Each of those kernels can have different attributes. For example, RBF has infinitely many
derivatives and is appropriate for modeling smooth functions. Each kernel has some parame-
ters which are called hyper-parameters. For instance, the RBF kernel is a popular choice
within the literature and it has two hyper-parameters: length-scale (ℓ) and variance (σ2).
The length-scale defines how fast the output changes with changes in the input space. An
RBF kernel is a stationary kernel: that is, it can be expressed as a function of the difference
between its inputs.1 As mentioned in the Section 2.2, x,x′ ∈ Rp and p is the dimensionality
of the inputs x and x′.

kRBF(x,x′) = σ
2
rb f exp

(
− 1

2ℓ2

P

∑
j=1

(x j − x′j)
2
)
. (2.14)

1transcendent-ai-labs.github.io/DynaML/core/core_kernel_stat, (last accessed 20.07.2020).

transcendent-ai-labs.github.io/DynaML/core/core_kernel_stat

2.2 Gaussian process overview 21

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.0

0.5

0.0

0.5

1.0

1.5

(b)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
3

2

1

0

1

2

3

(c)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(d)

Fig. 2.4 (a) RBF kernel with σ2
rb f = 0.2 and ℓ = 0.2. (b) RBF kernel with σ2

rb f = 0.2 and
ℓ= 0.8. (c) RBF kernel with σ2

rb f = 0.8 and ℓ= 0.2. (d) RBF kernel with σ2
rb f = 0.8 and

ℓ= 0.8.

22 Background

An illustration of the correlation of covariance function with its hyper-parameters is rep-
resented in Figure 2.4. In this figure, the variance is represented as σ2

rb f . Figure 2.4 (a)
and (c) have the same length-scale but different variance. Figure 2.4 (a) and (b) have the
same variance but different length-scale. As can be seen in these figures, with a smaller
length-scale the function changes much faster, while with a larger length-scale, the function
becomes flat and it seems like outputs are highly correlated. Kernels can also be combined
in many different ways, for example by addition or multiplication of the kernels. Combin-
ing the kernels may help to solve more sophisticated problems and to model complicated
datasets. More information regarding different kernels and their combinations can be found
at Duvenaud [2014]. In this thesis, we will use the RBF kernel as a general case, unless
otherwise stated.

2.2.3 Gaussian process classification

As discussed in Section 2.2.1, in regression problems the target values are continuous. If
our target values are discrete, it is called a classification problem. Classification problems
can be categorized as either binary or multi-class. An example of a multi-class classification
problem is hand-written digit recognition, where each of the hand-written digits needs to be
classified as belonging to one of the classes 0,1, ...,9. An example of a binary classification
could be the recognition of "dog" versus "cat" in images. For example, the classes will
be +1 for the "dog" class and 0 for the "cat" class. In Gaussian process classification,
unlike Gaussian process regression, the likelihood function is no longer Gaussian, and the
conjugate property does not apply, so the posterior cannot be calculated analytically, although
it can be approximated. To achieve this, there are a variety of approximation techniques
such as: Laplace approximation [Barber and Williams, 1997], Expectation Propagation
(EP)[Minka, 2001], variational approximations [Gibbs and MacKay, 2000; Jaakkola and
Jordan, 1996; Opper and Archambeau, 2009; Seeger, 2000] and Markov Chain Monte Carlo
(MCMC) sampling [Neal, 1997]. Approximation techniques differ in how the density of the
non-Gaussian posterior is approximated. A comparison of different methods with binary
likelihood is available in Kuss and Rasmussen [2005]; Nickisch and Rasmussen [2008].
These approximation techniques with their respective likelihood functions pose trade-offs
between computational complexity, simplicity and accuracy [Saul, 2016].

In binary classification the latent function f takes the values in the interval (−∞,+∞), but
since the target values are binary {0,1}, we need a so-called ’squashing’ function to shrink
the range of latent values to (0,1). Two commonly used squashing functions are the logistic
from the sigmoid family, and the cumulative Gaussian (probit) [Rasmussen and Williams,

2.2 Gaussian process overview 23

2006a]. The squash function we use is defined as a logistic function, and the Bernoulli
likelihood conditions the data on the squashed function values.

The prior is the same as explained in the regression case:

p(f|X,θ) =N(f|000, K f f). (2.15)

The logistic function has the symmetry property 1− f (x) = f (−x) and is defined as:

σlogit(f (x)) =
1

1+ exp(− f (x))
. (2.16)

By using Equation (2.16), the class membership function for each case is defined as:

p(y = 1|x) = σ(f (x)) (2.17)

p(y =−1|x) = 1− p(y = 1|x) = 1−σ(f (x)) = σ(−(f (x))) (2.18)

Combining the two cases above, based on the symmetry property, will result in:

p(y|x) = σ(y f (x)) = σ(y f). (2.19)

The likelihood, which is the probability of the observations given the parameters, is factorized
over the cases in the training set because of the conditional independence assumption.

p(y|f) =
N

∏
n=1

p(yn| fn) =
N

∏
n=1

σ(yn fn). (2.20)

Using Bayes’ rule, the posterior distribution is computed as:

p(f|X,y,θ) =
p(f|X,θ) ∏

N
n=1 p(yn| fn)∫

p(f|X,θ) ∏
N
n=1 p(yn| fn) d f

=
N(f|000, K)

p(y|X,θ)

N

∏
n=1

σ(yn fn). (2.21)

The non-Gaussian likelihood makes this calculation intractable and approximation is needed
to be able to calculate the posterior. The predictions at x∗ are:

p(f∗|X,y,x∗,θ) =
∫

p(f∗|f,X,x∗,θ) p(f|X,y,θ) df, (2.22)

24 Background

y1 y2 yn

f2 fn f*

x2 xn x*

...f1

p*

x1

Class	labels	yi	 	{0,1}

GP	latent	function	f

Data	points	xi	

Predictions	p*	 	[0,1]

Sigmoid

Fig. 2.5 Binary Gaussian process classification graphical model. Squares represent observed
data and circles refer to unknown (latent) functions. The labels yi are binary variables and
predictions p∗ are probabilities in the range of the interval [0,1] [Nickisch and Rasmussen,
2008].

where the prediction is factorized into the product of the conditional prior and posterior.
The predictive class probability is:

p(y∗ = 1|X,y,x∗,θ) =
∫

p(f∗|X,y,x∗,θ) σ(f∗) d f∗. (2.23)

The integral in Equation (2.21) is intractable so we will look into approximation methods.
Figure 2.5 represents a graphical model for GP classification. As presented in the figure,
latent functions f are fully connected to each other since they are sampled from the same GP.
Labels yn and latent functions fn are connected through the sigmoid function. Labels yn are
conditionally independent from the other nodes, given latent function fn.

For further details on GP classification please refer to Bishop et al. [2006]; Nickisch and
Rasmussen [2008]; Rasmussen and Williams [2006a].

2.2.4 Approximations

As mentioned in Section 2.2.3, an approximation is needed when the calculation of the poste-
rior is no longer analytically tractable, for example due to the non-Gaussian likelihood. There
are various approximation techniques, and they vary with respect to how they approximate a
non-Gaussian distribution with a Gaussian distribution. In the following sections, we will
describe Laplace and variational approximations. Laplace approximation will be used in
chapter 4 and variational approximation will be used in Chapter 3 and Chapter 5.

2.2 Gaussian process overview 25

2.2.4.1 Laplace approximation

Due to the non-Gaussian likelihood in classification case, the posterior is no longer tractable
and should be approximated. The likelihood function will therefore be squashed through a
logistic function.

The latent functions (f) should initially be in the range (−∞,+∞). However, since the
target values are now binary (for example {0,1}), the squash function will shrink the range
of the latent values to (0,1). We call the new function πn ∈ [0,1], and πn is the same as
σlogit(f (x)) in Equation (2.16):

πn =
1

1+ exp(− f (xn))
. (2.24)

The probability for the Bernoulli likelihood for binary observations yn ∈ {0,1} is defined as:

p(yn|πn) = Π
N
n=1π

yn
n (1−πn)

1−yn. (2.25)

Laplace approximation is based on Laplace’s method, which fits the mean at the peak of the
posterior and matches the curvature there. In Laplace approximation, we need to calculate the
mean and covariance for the posterior. To approximate the posterior, we first need to find the
modal point of the true log posterior using Newton’s method and then use the second-order
Taylor expansion around the modal value to calculate the curvature. We obtain a Gaussian
approximation with mean equal to the modal point and curvature which is the negative
inverse Hessian of log p(f|X,y) [Rasmussen and Williams, 2006a; Saul, 2016].
The Gaussian process prior is defined as:

p(f|X) = (2π)−
N
2
∣∣K f f

∣∣− 1
2 exp(−1

2
f⊤K−1

f f f). (2.26)

The posterior is defined as:

p(f|X,y) ∝ p(y|f)p(f|X). (2.27)

Gaussian process posterior is approximated with mean (f̂) and covariance (A) and is defined
as:

p(f|X,y)≈ q(f|X,y) = N(f|f̂,A−1) (2.28)

∝ exp(−1
2
((f− f̂)⊤A(f− f̂))),

26 Background

where q refers to approximation, f̂ = argmaxf p(f|X,y), and A is equal to the Hessian of
the negative log posterior at the point f̂. In other words, A=−δ 2 log(f|X,y)

δ f2 [Rasmussen and
Williams, 2006a]. For calculating f̂ and A the log posterior is defined as:

log(f|X,y) ∝ log(y|f,X)+ log(f|X) (2.29)

= log(y|f,X)− N
2

log(2π)− 1
2

log(K f f)−
1
2

f⊤K−1
f f f.

If we take the first and the second derivative of Equation (2.29) with respect to f we get:

δ log(f|y,X)

δ f
=

δ log(y|f,X)

δ f
−K−1

f f f, (2.30)

δ 2 log(f|y,X)

δ f2 =
δ 2 log(y|f,X)

δ f2 −K−1
f f (2.31)

=−W−K−1
f f , (2.32)

W is diagonal matrix because of the independence assumption over the cases. To find the
maximum or the modal point,

δ log(f|y,X)

δ f
= 0, (2.33)

and the equation for f̂ is:

f̂ = K f f

(
δ log(y|f̂,X)

δ f̂

)
. (2.34)

Since ∇ log(y|f̂) is a non-linear function of f̂, we cannot solve it directly — we need to solve
it using Newton’s method, which is iterative; more details are provided in Appendix B.3.
∇ is a derivative operator. By calculating the maximum f̂, the Laplace approximation can
be calculated with mean equal to f̂ and covariance matrix equal to A. So the mean and the
covariance of the approximate posterior is:

q(f|X,y) =N(f̂,(W+K−1
f f)

−1). (2.35)

2.2.4.2 Variational approximation

Variational inference aims to approximate difficult to compute probability densities, and is
used to approximate posterior density for Bayesian models [Blei et al., 2017]. Variational
inference is much faster than MCMC [Gelfand and Smith, 1990; Hastings, 1970; Neal,

2.2 Gaussian process overview 27

1997] and can scale up to larger datasets. Unlike MCMC, which uses sampling, variational
inference uses optimization to minimize the KL divergence [Kullback and Leibler, 1951]
between the approximate posterior and the exact posterior. So variational inference turns the
inference problem into an optimization problem, and approximates the posterior with the
result of the optimization parameters [Blei et al., 2017]. The KL-divergence between the two
distributions q(f) and p(f|y), assuming f is latent and y is observed, is defined as:

KL(q(f)∥p(f|y)) =
∫

q(f) log
q(f)

p(f|y)
df (2.36)

p(f|y) = p(y|f) p(f)
p(y)

KL(q(f)∥p(f|y)) =
∫

q(f) log
q(f)

p(y, f)
df+ log p(y) (2.37)

=
∫

q(f) log
q(f)
p(f)

df−
∫

q(f) log p(y|f)df+ log p(y)

= KL(q(f)∥p(f))−
∫

q(f) log p(y|f)df+ log p(y).

By re-arranging the equation above, we obtain the marginal log likelihood:

log p(y) = KL(q(f)∥p(f|y))−KL(q(f)∥p(f))+
∫

q(f) log p(y|f)df. (2.38)

We assume q(f) has a Gaussian distribution. The KL-divergence is asymmetric, which
means KL(q∥p) ̸= KL(p∥q) and KL(q∥p)≥ 0 [Blei et al., 2017]. In practice, since the true
posterior is not tractable, we cannot solve the KL-divergence above — KL(q(f)∥p(f|y)). So
we optimize an alternative objective called Evidence Lower Bound (ELBO). By removing
the above KL, we get the bound that is larger or equal to the rest of the equation. Maximizing
the ELBO is equivalent to minimizing the KL-divergence. Using the fact that KL-divergence
is non-negative, the ELBO (L) becomes:

log p(y)≥
∫

q(f) log p(y|f)df−KL(q(f)∥p(f)) = L. (2.39)

The first term in the equation above is the expected value of the likelihood under q(f), and
this equation encourages the parameters that best describe the latent function f that explain
the observed data y. The second term encourages densities that are close to the prior, so the
bound keeps the balance between the likelihood and the prior [Blei et al., 2017]. It is also
possible to achieve the same bound using Jensen’s inequality [Jordan et al., 1999] — this is
explained in more detail in Section 2.2.6.1.

28 Background

2.2.5 Latent variable models (LVM)

In this section, we discuss latent variable models. In latent variable models we could
imagine inputs as actually unobserved, and that only outputs are observed. Latent variable
models assume a mapping exists between a set of latent variables and a set of observed
variables. There are various models that make this assumption, such as Principle Component
Analysis (PCA), Probabilistic Principle Component Analysis (PPCA), Gaussian Process
Latent Variable Model (GPLVM), and Factor analysis (FA). GPLVM is an instance of LVMs
for unsupervised learning in general. Different latent variable methods do the mapping
differently, and we will explain a few of them in the following sections. PCA [Jolliffe,
1986], is a well-known method of dimensionality reduction. PCA finds a lower dimensional
representation of the data in the direction where the variance is maximized, and projects the
data linearly in the direction of the eigenvectors corresponding to the highest eigenvalues.
The probabilistic version of this method is called PPCA [Tipping and Bishop, 1999b]. PPCA
assumes the relationship between observed and latent variables with the added noise,

yn = Wxn + εn,

where W ∈ Rp×q is a matrix that maps between the latent space X = [x1,x2, ...,xn]
⊤ where

X ∈ RN×q and the output space Y = [y1,y2, ...,yn]
⊤, where Y ∈ RN×p, linearly, and x ∈ Rq

and y ∈ Rp. The dimensionalities for X and Y are different from the ones mentioned in the
regression and classification cases in Sections 2.2.1 and 2.2.3.
In the regression and classification cases input X and output y are both observed, however in
the latent variable models Y is observed and is our input, and X is our latent variable that is
not observed. The noise, εn ∈ Rp×1, is taken from an independent Gaussian with zero mean
and covariance σ2I,

εn ∼N(εn|0,σ2I).

The likelihood on which we condition the data on the latent point, parameters, and other
hyper-parameters is as follows,

p(yn|xn,W,εn) =
N

∏
n=1

N(yn|Wxn, σ
2I).

The marginal likelihood is defined by specifying prior distribution over latent variables and
integrating them out. For PPCA, we assume our latent variables are i.i.d. with zero mean and

2.2 Gaussian process overview 29

unit variance,

p(X) =
N

∏
n=1

N(xn|000, I).

The marginal likelihood can be calculated analytically and is defined as below,

p(Y|W,ε) =
N

∏
n=1

∫
N(yn|Wxn,σ

2I)N(xn|000,I) dxn =
N

∏
n=1

N(yn|000, WW⊤+σ
2I).

We can find parameters W through the maximization of the marginal likelihood. Tipping and
Bishop [1999b] showed that finding the maximum likelihood solution is equivalent to finding
eigenvalue problem which makes the solution analytically tractable and computationally
efficient.

2.2.5.1 Dual probabilistic principle component analysis

The standard approach for latent variable models is to marginalize out the latent input and
optimize the parameters. An alternative approach is to marginalize out the parameters and to
optimize the latent inputs. This approach is known as Dual PPCA (DPPCA) by Lawrence
[2005]. If we optimize our latent inputs and marginalize out the parameters, we need to put
the prior on the parameters W:

p(W) =
N

∏
n=1

N(wn|000,I).

Now we need to marginalize out the parameters:

p(Y|X,ε) =
N

∏
n=1

∫
N(yn|Wxn, σ

2I)N(wn|000, I)dwn

=
N

∏
n=1

N(yn|000, XX⊤+σ
2I).

This is the same as PPCA except that instead of finding the optimal values for W, we need to
find optimal locations of latent points, X, in the same way as PPCA by Tipping and Bishop
[1999b].

30 Background

yn

fn
N

� X

Fig. 2.6 Graphical model for GPLVM [Lawrence, 2005].

2.2.5.2 Gaussian process latent variable model (GPLVM)

The Gaussian Process Latent Variable Model (GPLVM) [Lawrence, 2005] is the non-linear
version of dual PPCA. Lawrence [2005] recognized that the kernel trick [Schölkopf and
Smola, 2002] can be applied to the inner product of X inside the model,

K̂ = XX⊤+σ
2I

= K+σ
2I,

where kernel K in the equation above, can be replaced by any valid linear or non-linear
kernel.

The likelihood function for the GPLVM model is a product of p independent Gaussian
processes, each associated with different dimensions of the data. So, we can rewrite the
likelihood function as:

p(Y|X) =
p

∏
j=1

∫
p(y j|f j)p(f j|X)df

=
p

∏
j=1

N(y j|000,K f f +σ
2I), (2.40)

which is calculated using Equations (2.4) and (2.7).
The graphical model representation for the GPLVM is illustrated in Figure 2.6. Because of
the non-linear kernel, the maximum likelihood solution to find the locations of latent inputs
X through an eigenvalue problem is not possible. To find the optimal positions, the marginal
likelihood should be maximized with respect to X and all the hyper-parameters. In GPLVM,
we calculate the maximum likelihood estimate of X and, in case of having a prior on X, we

2.2 Gaussian process overview 31

can measure the maximum a posteriori (MAP),

XMAP = p(Y|X)p(X). (2.41)

We will describe a fully Bayesian version of GPLVM in Section 3.1.

2.2.6 Sparse Gaussian process

As mentioned in Chapter 1, Gaussian processes are among one of the most used distributions.
They have a principled way of handling uncertainty by integrating what you had previously
thought with what you have learned. However, the computational complexity O(N3), where
N is the size of training data, is a burden, and makes for intractablility for larger size datasets.
There are various works in the literature attempting to tackle this issue for GP regression.
The most popular approach in the literature to overcome computational complexity falls
under the category of sparse approximations. Changing the computational complexity from
O(N3) to O(NM2) is the aim in most of the literature. M is the number of inducing variables
and is selected by a user.

Quiñonero-Candela and Rasmussen [2005] have a comprehensive review on sparse ap-
proximation techniques. Most of the approximation techniques use low-rank approximation,
where M ≪ N and the computational complexity can change from O(N3) to O(NM2) by
introducing inducing inputs (or auxiliary variables) [Csató and Opper, 2002; Herbrich et al.,
2003; Seeger et al., 2003; Snelson and Ghahramani, 2006a; Titsias, 2009a]. The inducing
variables Z ∈ RM×q and their corresponding outputs, that are called inducing points u, live
in the same space as X and f, respectively. While the original covariance was N ×N matrix,
the new covariance is much smaller, and it is an M×M matrix. There are different strategies
for selecting the inducing inputs: inducing inputs are typically chosen from the subset of
data [Quiñonero-Candela and Rasmussen, 2005] or optimized [Hensman et al., 2013; Titsias,
2009a]. The joint Gaussian distribution is defined as:

p(f,u|X,Z) =N

([
f
u

]∣∣∣∣∣000,
[

K f f K f u

Ku f Kuu

])
, (2.42)

where K f u is a covariance function between inputs X and inducing variables Z. Kuu is
constructed by evaluating the covariance function on the inducing inputs. The prior for the
inducing points is defined as:

p(u|Z) =N(u|000, Kuu). (2.43)

32 Background

The conditional distribution of p(f|u) is defined as:

p(f|u,X,Z) =N(f|K f uK−1
uu u,K f f −K f uK−1

uu Ku f︸ ︷︷ ︸
K̃

). (2.44)

By using the Gaussian identity in Appendix A.1 and Equations (2.43), and (2.44), the
conditional distribution can be written as:

p(f|X) =
∫

p(f|u,X) p(u|Z) du (2.45)

=N(K f uK−1
uu 000, K f f −�������

K f uK−1
uu Kuf +�������K f uK−1

uu Ku f)

=N(f|000, K f f),

where we can drop the conditioning on Z because of conditional independence. By inte-
grating out u, this equation is the same as Gaussian process prior in the regression model
in Section 2.2.1. Since, in its current form, adding inducing variables u does not solve the
computational complexity issue O(N3), sparse methods apply approximation, q(f|u,X), to
the true conditional p(f|u,X) in Equation (2.44). This is done by replacing K̃ in Equation
(2.44) with a different covariance matrix Q̃, where Q̃ does not require an inversion of O(N3),
but instead O(NM2), where Q̃ ̸= K̃.

q(f|u,X) =N(f|K f uK−1
uu u,Q̃) (2.46)

By using the Gaussian identity in Appendix A.1, we can write the approximate conditional
distribution as:

q(f|X) =
∫

q(f|u,X) p(u|Z) du (2.47)

=N(f|000, Q̃+Q f f),

where Q f f = K f uK−1
uu Ku f . A few famous approximation techniques that have made sug-

gestions on how Q̃ should be approximated are deterministic training conditional (DTC) by
Csató and Opper [2002]; Seeger et al. [2003], fully independent training conditional (FITC)
by Snelson and Ghahramani [2006b], and the variational sparse GP by Titsias [2009a]. In the
above literature, they use the sparse approximation technique by replacing the full covariance
matrix with a low-rank form. In DTC approximation [Csató and Opper, 2002; Seeger et al.,
2003], they assume Q̃ = 000. In FITC approximation [Snelson and Ghahramani, 2006b], they
replace Q̃’s diagonal with the exact K f f ’s diagonal. A comprehensive overview of sparse

2.2 Gaussian process overview 33

GPs and a unified view of variational sparse GP is available by Damianou [2015]. The
literature mentioned above is for sparse GPs in the regression cases.

Titsias and Lawrence [2010] extended variational sparse GP for regression [Titsias,
2009a] to the latent variable models. We are interested in the variational approach and we
will explain it in more detail in the following section.

2.2.6.1 Variational sparse Gaussian process

In variational sparse GP [Titsias, 2009a], the aim is to minimize the Kullback-Leibler (KL)
divergence between the true posterior and the approximate posterior. This is the standard way
of computing variational inference. In contrast, in Titsias [2009a] the bound on the true log
marginal likelihood is maximized. The main difference between this method and other sparse
approximate techniques is that the inducing inputs here are defined as variational parameters.
The inducing inputs are selected by minimizing the KL divergence between variational GP
and exact posterior. This is the same as maximizing the variational lower bound with respect
to the exact posterior and approximate posterior [Titsias, 2009a]. The GP prior is augmented
by introducing inducing points and the new GP prior is:

p(f,u) = p(f|u)p(u). (2.48)

The augmented true posterior is defined as:

p(f,u|y) = p(f|u)p(u|y). (2.49)

The marginal likelihood is defined as:∫
p(y|f)p(f|u)p(u)dfdu. (2.50)

The approximation to the exact marginal likelihood is introduced as q(f,u) and is defined as:

q(f,u) = p(f|u)q(u), (2.51)

where q(u) is a variational distribution over u. In the standard variational inference, the KL
divergence is minimized, which is equal to maximizing the bound on the true log marginal

34 Background

likelihood. By applying Jensen’s inequality the bound is defined as:

log p(y|X) = log
∫ ∫

p(y|f)p(f|u)p(u)dfdu (2.52)

= log
∫ ∫

q(f,u)
p(y|f)p(f|u)p(u)

q(f,u)
dfdu

≥
∫ ∫

p(f|u)q(u) log
p(y|f)p(f|u)p(u)

p(f|u)q(u)
dfdu

=
∫ ∫

p(f|u)q(u) log
p(y|f)����p(f|u) p(u)

����p(f|u)q(u)
dfdu

=
∫ ∫

p(f|u)q(u) log
p(y|f) p(u)

q(u)
dfdu

=
∫

q(u)
[∫

p(f|u) log p(y|f)df+ log
p(u)
q(u)

]
du

=
∫

q(u)
[∫

p(f|u) log p(y|f)df
]
du+

∫
q(u)

[
log

p(u)
q(u)

]
du

=
∫

q(u)
[∫

p(f|u) log p(y|f)df︸ ︷︷ ︸
L̃

]
du−KL(q(u)∥p(u)),

where log(y|u) in Equation (2.52) is defined as:

L̃= log(y|u) = ⟨log p(y|f)⟩p(f|u) (2.53)

= ⟨log N(y|f,σ2I)⟩

= log [N(y|K f uK−1
uu u,σ2I)]− 1

2σ2 tr
(
K f f −K f uK−1

uu Ku f
)
.

Please note that ⟨.⟩ refers to an expectation calculation. We can factorize the likelihood due
to the conditional independence, so the bound in Equation (2.52) becomes:

log p(y|X)≥
∫

q(u)
[N

∑
i=1

∫
p(fi|u) log p(yi| fi)d fi

]
du−KL(q(u)∥p(u)) (2.54)

If we take a derivative of this bound w.r.t. the variational distribution q(u), we can find the
optimal q(u), which turns out to be a Gaussian distribution with mean and covariance as

2.2 Gaussian process overview 35

below:

q(u) =N(u|µµµ,S) (2.55)

µµµ = σ
−2Kuu(Kuu +σ

−2Ku f K f u)
−1Ku f y,

S = Kuu(Kuu +σ
−2Ku f K f u)

−1Kuu

By computing the integral in Equation (2.52), the final bound becomes:

L= log [N(y|000,σ2I+K f uK−1
uu Ku f)]−

1
2σ2 tr

(
K f f −K f uK−1

uu Ku f
)
. (2.56)

This bound is coupled between data and it requires all the data at once and not in batches.
Very detailed derivations can be found in Damianou [2015]; Titsias [2009b]. Here the trace
term is a regularization term and this is the main difference between Titsias [2009a] and the
other methods mentioned earlier.

Stochastic variational inference In order to apply GPs to larger datasets, combining the
idea of inducing variables with advances in variational inference [Hoffman et al., 2013] helps
to develop a practical algorithm for applying GPs using Stochastic Variational Inference
(SVI). In the variational inference in Titsias [2009a], we integrate out inducing points u.
However, when applying SVI to GPs we need to maintain the inducing variables. In the
context of SVI, the variables u will perform the role of the global variables that are needed to
apply SVI to GPs. Hensman et al. [2013] points out that, in the lower bound L̃, it is possible
to factorize the bound w.r.t. the number of data points and dimensionality. This is useful for
very big data, since mini-batches can be used. We will go on to use SVI in Chapter 5. For
SVI, we re-write Equation (2.52)

log p(y|X)≥
∫

q(u)
[N

∑
i=1

∫
p(fi|u) log p(yi| fi)d fi︸ ︷︷ ︸

L̃

+ log
p(u)
q(u)

]
du (2.57)

=
∫

q(u)
[
L̃+ log

p(u)
q(u)

]
du (2.58)

= ⟨L̃+ log p(u)− logq(u)⟩q(u) (2.59)

= ⟨L̃⟩q(u)−KL(q(u)∥p(u)) (2.60)

The L above is factorized as a sum of N terms and each of the terms corresponding to one
input/output pair (xi,yi), and mini-batches of data can be used to evaluate the bound.

36 Background

Prediction The approximate predictive distribution for the sparse Gaussian process [Quinonero-
Candela et al., 2007; Saul, 2016] is calculated by using the approximate posterior q(u),

p(f∗|y) =
∫

p(f∗|f)p(f|u,y)p(u|Z,y)df du (2.61)

≃
∫

p(f∗|f)p(f|u)q(u)df du (2.62)

=
∫

N(f∗|K f∗uK−1
uu u,K f∗ f∗ −K f∗uK−1

uu Ku f∗)q(u)du (2.63)

=N(f∗|K f∗uK−1
uu µµµ,K f∗ f∗ −K f∗u(K−1

uu −K−1
uu SK−1

uu)Ku f∗), (2.64)

where µµµ and S are the mean and covariance of the approximate posterior q(u), and is
calculated in Equation (2.55).

2.3 Conclusion

In this Chapter, we introduced the imbalanced data problem and reviewed the basics of the
Gaussian process framework. Related work regarding the binary imbalanced data problem
was discussed and assessment metrics were introduced to properly assess the performance
of the imbalanced data. We introduced Gaussian process, such as GP for regression, GP
for classification, and latent variable models such as GPLVM. The standard form of GP
is not suitable for non-Gaussian likelihood and also does not scale well with the size of
the data. For example, in GP classification, the posterior can not be computed analytically
and approximation techniques are needed. We will consider these base models as tools
to overcome challenges that arise from data scarcity issues, lack of labeled data, and the
imbalanced data problem in the following chapters.

Chapter 3

Learning imbalanced data using
structure consolidation latent variable
model

In many medical applications (e.g. histopathology), negatively labeled data is extremely
easy to obtain (e.g. healthy cells). Positive labels, on the other hand, can be harder to
acquire (e.g. particular disease morphologies). The insufficiency of positive data (cancerous
cells) raises data scarcity issues that result in an imbalanced data problem. These massively
imbalanced problems are challenging for most algorithms because the negative class tends to
dominate the objective function and the resulting model performs poorly. As discussed in
Chapter 2, there are different ways of dealing with imbalanced data. In practice, the most
common approach is often to throw away much of the negative data and re-balance the data
set. However, as we mentioned in Chapter 2, this has its own disadvantages, and we might
lose a lot of useful information by discarding some of the negative class.

In this chapter1, we work with a breast cancer dataset. Cancer diagnosis is a challenging
and important task in modern healthcare. Breast cancer is the most common type of cancer
in the UK with 1 in 8 women diagnosed with breast cancer during their lifetime [Key et al.,
2001]. Accurate diagnosis is important for early intervention and to provide patients with
appropriate treatment.

Mitosis is the process of cell division, and this cell division within a tumor gives indica-
tions of the rate of growth of the tumor [Snell, 2013]. Automatic mitosis detection can aid
pathologists in their work, and could also alleviate the tediousness of manual mitosis counting.

1This chapter is based on "Unsupervised Learning with Imbalanced Data via Structure Consolidation Latent
Variable Model", which was published through the International Conference on Learning Representations
(ICLR) workshop track, 2016 - a paper where I appear as a first author.

38 Learning imbalanced data using structure consolidation latent variable model

It usually takes between 5-10 minutes for a pathologist to perform mitosis counting, and this
process sometimes needs to be repeated in different areas or sections for the borderline cases
[Veta et al., 2015]. Detecting mitosis is one of the most challenging tasks since there are no
separate cells with plain backgrounds; instead, there is a diversity of shapes and textures.

We tackle this problem with latent variable models, leveraging their generative capabil-
ities. Latent variable models have attracted a lot of attention as they have the potential to
serve as an underpinning technology for a range of challenges such as generative modeling,
missing data imputation, and coping with multiple data modalities. Latent variable models,
like GPLVM, introduced in Chapter 2, can also be applied to a wider range of data sets,
because they do not rely on having carefully labeled data available.

In chapter 2, we introduced the imbalanced data problem and also Gaussian processes. As
mentioned in Section 2.2.5.2, the GPLVM is an unsupervised, probabilistic dimensionality
reduction technique. However, GPLVM uses a maximum likelihood solution to find the
optimal positions for the latent inputs X. The maximum likelihood approach seeks to find a
single point estimate of X rather than a density estimation. On the other hand, in Bayesian
methods, rather than finding a MAP solution we wish to integrate out all possible settings
for the latent inputs and compute the marginal likelihood. For this reason we will introduce
Bayesian Gaussian Process Latent Variable Models (Bayesian-GPLVM) in Section 3.1.

We build latent variable models using Bayesian-GPLVM methodology that can simultane-
ously accommodate a large number of negative examples while sharing their characteristics
appropriately with the positive class. This allows the model to characterize the manner in
which the positive and negative classes are differently characterized through preserved (or
private) latent spaces that are separately learned for each class. The resulting model does not
suffer from the standard challenges faced in this domain. For example, the model does not
focus only on the majority class (negative examples) and does not ignore the minority class
(positive examples). We call this method Structure Consolidation Latent Variable Model
(SCLVM), and it is introduced in Section 3.2.

3.1 Bayesian Gaussian process latent variable model

A GPLVM [Lawrence, 2005] is defined as a mapping from the latent space to the observation
space. As mentioned in Section 2.2.5.2, in a GPLVM model, the aim is maximizing a
posteriori (MAP) estimates of latent variables X and jointly maximizing the kernel hyper-
parameters. In a Bayesian Gaussian Process Latent Variable Model (Bayesian-GPLVM),
we get a density estimation, rather than a point estimation, of X. Titsias and Lawrence
[2010] uses a variational approach for approximating the posterior and marginalizes the

3.1 Bayesian Gaussian process latent variable model 39

latent variables X. Similar to Section 2.2.6.1, they optimize the lower bound on the marginal
likelihood w.r.t. the hyper-parameters. In the equations below, Y is observed data and
Y ∈RN×p, where N is the size of the observed data and p is the dimensionality of the data. X
is latent data and X ∈ RN×q, q is the dimensionality of the latent variables and it is assumed
q ≪ p. The likelihood can be factorised w.r.t. the dimensions, since GPs are taken to be
independent across features:

p(Y|X) =
p

∏
j=1

p(y j|X), (3.1)

where y j represents the jth column of Y. Since X is a latent variable, we assume a prior
density given by the normal distribution over data points xn:

p(X) =
N

∏
n=1

N(xn|0,I). (3.2)

We wish to compute the log marginal likelihood which is defined as:

p(Y) =
∫

p(Y|X)p(X)dX. (3.3)

We cannot calculate the marginal likelihood, since the integral above is intractable [Titsias
and Lawrence, 2010]. Instead, we use approximate variational inference. The aim is to
approximate the true posterior p(X|Y) with the approximate posterior q(X) over the latent
variables. The assumption is that q(X) is also a Gaussian with mean µ and covariance S:

q(X) =
N

∏
n=1

N(x|µn,Sn), (3.4)

where µn and Sn are the variational parameters, and Sn is assumed to be a diagonal matrix
for simplicity [Titsias and Lawrence, 2010].

The Bayesian-GPLVM by Titsias and Lawrence [2010] addresses the intractability prob-
lem in Equation (3.3) by introducing a variational lower bound on the marginal likelihood,
using the sparse GP framework that was introduced in Section 2.2.6.1. Refer to Damianou
[2015] for a detailed derivation. By applying Jensen’s inequality on the marginal likelihood
p(Y):

40 Learning imbalanced data using structure consolidation latent variable model

log p(Y)≥ L (3.5)

=
∫

q(X) log
p(Y|X)p(X)

q(X)
dX

=
∫

q(X)
[

log p(Y|X)+ log
p(X)

q(X)

]
dX

=
∫

q(X) log p(Y|X)dX+
∫

q(X) log
p(X)

q(X)
dX︸ ︷︷ ︸

-KL

=
∫

q(X) log p(Y|X)dX︸ ︷︷ ︸
L̃(q)

−KL(q(X)∥ p(X))

= L̃(q)−KL(q(X)∥ p(X)) ,

where L refers to the variational lower bound. The KL term is calculated analytically since
both distributions are Gaussians. Calculating the first part of the equation is analytically
intractable [Titsias and Lawrence, 2010]. Titsias and Lawrence [2010] proposed an approach
for Bayesian-GPLVM similar to the variational sparse GP method [Titsias, 2009a] that is
described in Section 2.2.6.1. The first part of the bound is difficult to estimate (because of
the term p(y j|X)) but we can factorise it w.r.t. the features mentioned in Equation (3.1):

L̃(q) =
p

∑
j=1

∫
q(X) log p(y j|X)dX (3.6)

=
p

∑
j=1

L̃ j(q).

By introducing the concept of inducing inputs defined in Section 2.2.6.1, and by using
Equation (3.1), p(y j|X) can be written as:

p(y j|X) = p(y j|f j)p(f j|X,u j,Z)p(u j|Z),

where we have prior probabilities defined as

p(u j|Z) =N(u j|000, Kuu) (3.7)

p(f j|u j,X,Z) =N(f j|K f uK−1
uu u j,K f f −K f uK−1

uu Ku f), (3.8)

3.1 Bayesian Gaussian process latent variable model 41

where U ∈ RM×p, Z ∈ RM×q and vectors u j, f j correspond to the jth dimension of the data.
We assume that y j is a noise corrupted version of f j given the independence assumption
across features. The likelihood p(y j|f j) is then defined as:

p(y j|f j) =N(y j|f j,σ
2I). (3.9)

The marginal likelihood and the prior probabilities are defined in the Background chapter in
Equations (2.52), (2.43), and (2.44), respectively.

We can approximate the true posterior with a sparse variational distribution [Titsias,
2009a]. The true posterior is defined as:

p(f j,u j|y j,X) = p(f j|u j,y j,X) p(u j|y j,X). (3.10)

The sparse variational distribution takes the form:

q(f j,u j) = p(f j|u j,X) q(u j), (3.11)

where q(u j) is a variational distribution over the inducing points.
Thus the lower bound appears as:

log p(y j|X)≥
∫

q(u j) log
[p(u j)N(y j|K f uK−1

uu u j, σ2I)
q(u j)

]
du j (3.12)

− 1
2σ2 tr

(
K f f −K f uK−1

uu Ku f
)
,

where we used the Equation (2.53) to calculate ⟨log p(y|f)⟩p(f|u).
For the Bayesian-GPLVM, we need to marginalize out X as well, so by combining Equations
(3.6) and (3.12) we get:

L̃ j(q) =
∫

q(X)

[∫
q(u j) log

[p(u j)N(y j|K f uK−1
uu u j, σ2I)

q(u j)

]
du j (3.13)

− 1
2σ2 tr

(
K f f −K f uK−1

uu Ku f
)]

dX.

42 Learning imbalanced data using structure consolidation latent variable model

Since q(u j) is independent from the random variable X, swapping the integration between
u j and X, and performing the integral on X first, we will have:

L̃ j(q) =
∫

q(u j)

[∫
q(X) log

[p(u j)N(y j|K f uK−1
uu u j, σ2I)

q(u j)

]
du j (3.14)

− 1
2σ2 tr

(
K f f −K f uK−1

uu Ku f
)]

dX

=
∫

q(u j)
[
⟨logN(y j|K f uK−1

uu u j, σ
2I)⟩q(X)+ log

p(u j)

q(u j)

]
du j

− 1
2σ2 tr

(
⟨K f f ⟩q(X)

)
+

1
2σ2 tr

(
K−1

uu ⟨Ku f K f u⟩q(X)

)
.

In the equation above, ’tr’ denotes trace of matrix and ’⟨.⟩q(X)’ denotes expectation under the
distribution q(X). It is now possible to maximize the lower bound w.r.t. the distribution q(u):

L̃ j(q) =
∫

q(u j) log
e⟨logN(y j|K f uK−1

uu u j,σ
2I)⟩q(X) p(u j)

q(u j)
du j (3.15)

− 1
2σ2 tr

(
⟨K f f ⟩q(X)

)
+

1
2σ2 tr

(
K−1

uu ⟨Ku f K f u⟩q(X)

)
.

This expression is a KL-like quantity and it will reach its optimal value when q(u j) is set to
be proportional to the numerator inside the logarithm of the above equation [Damianou et al.,
2014]:

q(u j) ∝ e⟨logN(y j|K f uK−1
uu u j,σ

2I)⟩q(X) p(u j),

or
logq(u j) ∝ ⟨logN(y j|K f uK−1

uu u j,σ
2I)⟩q(X)+ log p(u j).

3.1 Bayesian Gaussian process latent variable model 43

Now, by reversing Jensen’s inequality and moving the log outside of the integral in Equation
(3.15), the bound will be:

L̃ j(q) = log
∫

q(u j)
e⟨logN(y j|K f uK−1

uu u,σ2I)⟩q(X) p(u j)

q(u j)
du j (3.16)

− 1
2σ2 tr

(
⟨K f f ⟩q(X)

)
+

1
2σ2 tr

(
K−1

uu ⟨Ku f K f u⟩q(X)

)
= log

∫
�
��q(u j)

e⟨logN(y j|K f uK−1
uu u j,σ

2I)⟩q(X) p(u j)

���q(u j)
du j (3.17)

− 1
2σ2 tr

(
⟨K f f ⟩q(X)

)
+

1
2σ2 tr

(
K−1

uu ⟨Ku f K f u⟩q(X)

)

= log
∫

e⟨logN(y j|K f uK−1
uu u j,σ

2I)⟩q(X) p(u j)du j

− 1
2σ2 tr

(
⟨K f f ⟩q(X)

)
+

1
2σ2 tr

(
K−1

uu ⟨Ku f K f u⟩q(X)

)
.

This equation can be calculated in closed form since it is a Gaussian distribution [Titsias and
Lawrence, 2010] and we need to compute the below statistics ψ0,Ψ1,Ψ2. These equations
are referred to as Ψ statistics.

ψ0 = tr
(
⟨K f f ⟩q(X)

)
(3.18)

Ψ1 = ⟨K f u⟩q(X) (3.19)

Ψ2 = ⟨Ku f K f u⟩q(X) (3.20)

These statistics are analytically tractable for certain kernels, such as the RBF kernel and
linear kernel [Damianou et al., 2014]. For the RBF kernel, it can be shown that the closed
form of the lower bound on L̃ is defined as:

L̃ j(q) = log

[
σ−N |Kuu|

1
2

2π
N
2 |σ2Ψ2 +Kuu|

1
2

e−
1
2 y⊤j Wy j

]
− ψ0

2σ2 +
1

2σ2 tr
(
K−1

uu Ψ2
)
, (3.21)

where W = σ−2I−σ−4Ψ1(σ
−2Ψ2 +Kuu)

−1Ψ⊤
1 and instead of the inverse of K f f matrix,

we will compute the inverse of Kuu, which is much cheaper. More details on calculation
of Ψ statistics is available in Appendix B.1. In the next section we will build up on the
Bayesian-GPLVM and describe our novel method called Structure Consolidation Latent
Variable Model.

44 Learning imbalanced data using structure consolidation latent variable model

3.2 Structure consolidation latent variable model

Our probabilistic latent variable model, which we call Structure Consolidation Latent Variable
Model (SCLVM), divides its latent space into a shared space of all of the categories in question
and a private space for each category [Damianou et al., 2012]. The shared space captures the
common regularities among categories (e.g. positive and negative classes), while the private
space is dedicated to modeling the variance specific to individual categories. Because the
modeling of the private space is category specific, there is no domination of the characteristics
of the private space by the larger category. Thus the data in each category can be modeled
appropriately while the common regularities are still exploited.

We implement the idea of a shared and private space in the framework of Bayesian Gaus-
sian Process Latent Variable Models [Titsias and Lawrence, 2010] by deriving a particular
covariance function (kernel) that enables such a separation. We exploit closed form varia-
tional lower bounds of the log marginal likelihood of the proposed model, which provides an
efficient approximation inference method.

The performance of our model is to be evaluated with a real image dataset, in which the
positive and negative data are extremely imbalanced. We show that our model can still learn
from imbalanced data and perform well in both generative and discriminative tasks. We will
explain the SCLVM model in detail below.

We assume that the dataset is represented as a set of fixed length vectors collected in
a matrix Y ∈ ℜN×p. Additionally, a label of category is associated with each data point,
c = (c(1), . . . ,c(N)),c(n) ∈ {1, . . . ,C}, where C indicates the number of categories in the
dataset. Our aim is to build a probabilistic model p(Y) that is robust when the numbers of
data in different categories are highly imbalanced.

We assume that the data Y is associated with a set of latent representations X ∈ ℜN×q,
where q is the dimensionality of the latent space. The latent representations are related to the
observed data through an unknown mapping function f , which follows a prior distribution
that is defined as a Gaussian process,

y = f (x)+ ε, f ∼ GP(0,k), (3.22)

where ε ∼ N(0,σ2) denotes the observation noise and k is the kernel function. Given the
observed data Y, we wish to compute the marginal likelihood of the data using approximate
variational inference. The aim is to approximate the true posterior distribution with a varia-
tional distribution q(X) over the latent variables. In our model, we separate the latent space
into a shared space with the dimensionality qs and a private space with the dimensionality
qp. Therefore, a latent representation can be denoted as X = [x⊤s ,x⊤p]⊤,xs ∈ ℜqs,xp ∈ ℜqp ,

3.2 Structure consolidation latent variable model 45

where xs and xp are the latent representations in the shared and private spaces, respectively.
Using this separated latent representation, we define the kernel function in our model as

k((x,cx),(x′,cx′)) = ks(xs,x′s)+ kp((xp,cx),(x′p,cx′)), (3.23)

where ks is the kernel function for the shared space and kp is the kernel function for the
private space. The shared kernel can be any kernel function built on a vector space from the
literature. However, the private kernel is defined as taking the following form:

kp((xp,cx),(x′p,cx′)) =

k′(xp,x′p), cx = cx′,

0, cx ̸= cx′,
(3.24)

where k′ is the kernel function chosen to calculate the covariance and cx is the label
of category for the data point x. We give a unit Gaussian prior distribution to the latent
representations X ∼ ∏

N
n=1N(xn|0,I). The log marginal likelihood for the proposed model

can be derived as log p(Y|c) = log
∫

p(Y|X,c)p(X)dX.
There is no analytical solution for this marginal likelihood. We apply variational inference

and derive a closed form lower bound of the log marginal likelihood, by following a sparse
Gaussian process approximation [Titsias and Lawrence, 2010], which is explained in more
detail in Section 3.1:

log p(Y)≥
p

∑
j=1

F̃j(q)−KL(q(X)∥p(X)), (3.25)

where,

F̃j(q) = log
[|Kuu|

1
2

(2πσ2)
N
2 |σ2Ψ2 +Kuu|

1
2

e−
1
2 y⊤j Wy j

]
− ψ0

2σ2 +
1

2σ2 Tr(K−1
uu Ψ2), (3.26)

where W = 1
σ2 I− 1

σ4 Ψ1(
1

σ2 Ψ2 +Kuu)
−1Ψ⊤

1 , and ψ0, Ψ1, Ψ2 are the expectation of co-
variance matrices w.r.t. the variational posterior q(X). These equations are described in
Section 3.1 and Appendix B.1 in more details. In our model, these expectations are derived

46 Learning imbalanced data using structure consolidation latent variable model

yn

fn
N

Xp Xs

C

Fig. 3.1 Graphical representation of SCLVM. y represents observed data, f represents latent
function, Xp is the latent input for the private space, Xs is the latent input for the shared space,
and C refers to the class information.

as:

ψ0 =
N

∑
n=1

〈
ks(x

(n)
s ,x(n)s)

〉
q(x(n)s)

+
〈

kp((x
(n)
p ,c(n)x),(x(n)p ,c(n)x))

〉
q(x(n)p)

(3.27)

(Ψ1)nm =
〈

ks(x
(n)
s ,z(m)

s)
〉

q(x(n)s)
+
〈

kp((x
(n)
p ,c(n)x),(z(m)

p ,c(m)
z))

〉
q(x(n)p)

(3.28)

(Ψ2)mm′ =
N

∑
n=1

〈
ks(x

(n)
s ,z(m)

s)ks(x
(n)
s ,z(m

′)
s)

〉
q(x(n)s)

+
〈

kp((x
(n)
p ,c(n)x),(z(m)

p ,c(m)
z))kp((x

(n)
p ,c(n)x),(z(m

′)
p ,c(m

′)
z))

〉
q(x(n)p)

+
〈

ks(x
(n)
s ,z(m)

s)
〉

q(x(n)s)

〈
kp((x

(n)
p ,c(n)x),(z(m

′)
p ,c(m

′)
z))

〉
q(x(n)p)

+
〈

kp((x
(n)
p ,c(n)x),(z(m)

p ,c(m)
z))

〉
q(x(n)p)

〈
ks(x

(n)
s ,z(m

′)
s)

〉
q(x(n)s)

, (3.29)

where cz are the variational parameters known as inducing labels. The graphical representa-
tion of the model is illustrated in Figure 3.1.

3.3 Experiments

Mitosis detection is a stage in tumor assessment that involves determining whether individual
cells are in mitosis (dividing to reproduce). These cells are rare. We used the pre-processed

3.3 Experiments 47

data from the assessment of mitosis detection algorithm (AMIDA) 2013 challenge by Snell
[2013]. The original dataset is publicly available. The AMIDA dataset was released by
the University Medical Center Utrecht. Some samples of original images are illustrated in
Figure 3.2. These are breast biopsy tissue slices, and are stained to have better visibility.
The standard staining process uses hematoxylin and eosin stains. The hematoxylin dyes the
nuclei a dark purple color and the eosin dyes other structures a pink color [Veta et al., 2015].
Detecting mitosis is very challenging because the resulting images display a variety of shapes
and textures. This dataset included low and high grade tumors. Two annotators labeled
mitotic centroids in images and in case of disagreement, two additional experts labeled those
images. The main goal of the AMIDA challenge was to find a mitosis detection method that
can be automatic or semi-automatic.
We use the training set from the challenge, which consists of tissue images from 12 patients
with various grades of disease, annotated by human experts. We used the pre-processed tissue

Fig. 3.2 Mitotic figures in Hematoxylin and Eosin(H&E) stained breast cancer.

images with the algorithm by Snell [2013] and focused on the generated candidate image
patches. The pre-processing included histogram matching, detection of candidate locations,
grey-scale conversion, and patch extraction. Histogram matching is the manipulation of
pixels within an input image so that its histogram can match the histogram of a reference
image. It is a way of normalizing an image and it is especially used when differences in
conditions of image making, such as lighting, must be taken into account. The images are
RGB images and have three channels, and histogram matching is applied to each channel.
The source image is referred to each patient’s images and target distribution is defined
as the mean histogram from the whole training set. Histogram matching is performed by
replacing the intensity values of source pixels with their corresponding values of the target
histogram [Snell, 2013]. The annotations included only the centroid of the mitotic figure.

48 Learning imbalanced data using structure consolidation latent variable model

Fig. 3.3 Examples of different phases and variations of pre-processed 70×70 mitosis.

An approximations of 10 pixels radius around ground-truth marked locations by annotators
(centroids) are assumed as candidate locations, since they are likely to be within the nucleus
[Snell, 2013]. The 70×70 squares around each candidate location are used as patches. A few
samples are illustrated in Figure 3.3. These patches are turned to grey-scale. Some grey-scale
samples are illustrated in Figure 3.6a. For a detailed explanation regarding pre-processing,
refer to Snell [2013]. The resulting image set contains 146,562 grey-scale image patches,
which we further resized to reduce the dimensionality to 30× 30 pixels. Of the 146,562
patches, manual annotation only identified 550 patches as positive (mitosis). We randomly
take 80% of the positive images and 5,000 negative images as training data. This gives
in total 5,440 images. Some examples of the training data are shown in Figure 3.6a. We
applied SCLVM to this dataset and used an exponentiated quadratic kernel for both the
shared and private space. The covariance matrices for the private space, public space, and
the whole kernel (sum of private and public spaces) are illustrated in Figure 3.4. We set the
dimensionality of both shared and private space to 5. Based on our experiments, increasing
dimensions above 5 did not have much effect on the final score. We used 100 inducing points
and allocated 50 inducing inputs to each class.

Both the latent representations and kernel parameters are optimized until convergence.
The resulting latent space is visualized in Figure 3.5. The positive and negative images
present similar structures in the shared space, which demonstrates the discovered common
regularities, while their corresponding private spaces are significantly different from each
other. To demonstrate the ability of SCLVM in balancing the modeling capabilities between

3.3 Experiments 49

(a) (b) (c)

Fig. 3.4 (a) Covariance matrix for private space. (b) Covariance matrix for shared space.
(c) Covariance matrix for the whole kernel. In these figures the color blue represents no
correlation and the color red represents a high correlation between data points. The matrix
for the private space is a block diagonal matrix between two classes and can capture private
characteristics for each category. The matrix for the shared space captures common structures
between categories. The whole kernel is the sum of private and shared covariances.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

4
shared space

neg

pos

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

4
private space for negative

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
private space for positive

3 2 1 0 1 2 3
4

3

2

1

0

1

2

3
latent space from BGPLVM

neg

pos

Fig. 3.5 The visualization of the training data in learned latent spaces. The first figure shows
the positive and negative data in two of the shared dimensions. The second and third figures
show two of the private dimensions for the negative and positive data respectively. The fourth
figure shows the learned latent space from BGPLVM.

imbalanced categories, we draw samples from the learned latent space of SCLVM for both
positive and negative categories (see Figure 3.6b). The generated samples from positive and
negative categories are clearly different from each other, and they capture some characteristics
of their own categories. We further evaluate the learned latent space by performing classifica-
tion on a test set (the remaining positive examples, plus some randomly sampled negative
examples, giving a total of 1000 images). We compare SCLVM with BGPLVM [Titsias and
Lawrence, 2010] and Discriminative GPLVM2 (DGPLVM) [Urtasun and Darrell, 2007] with
ten test sets. DGPLVM uses an informative prior that encourages the latent position of the
data points of the same class to be close to each other, and the ones from different classes
to be far from each other. More information regarding DGPLVM is available in Appendix

2Due to its complexity O(N3), we only use 1000 images for training (440 positive and 560 negative).

50 Learning imbalanced data using structure consolidation latent variable model

(a) (b)

Fig. 3.6 (a) Some examples in the data sets. (b) Samples generated from the trained SCLVM.
In both figures, the first two rows correspond to positive labeled image patches and the last
two rows correspond to negative labeled image patches. The black points represent cell
nuclei. Generated samples capture some characteristics of the corresponding training data.
For example, some of them have more than one nuclei.

B.2. We apply a weighted Support Vector Machine (SVM) with an exponentiated quadratic
kernel on the latent space from the BGPLVM and DGPLVM. The weighted SVM uses the
values of labels to automatically adjust weights inversely proportional to class frequencies.
We tuned hyper-parameters using grid search for SVM on a held out set from the training
data. We optimized until the objective function converges. The results are shown in Table
3.1. Note that BGPLVM requires an additional classification model to be learned. This does
not provide probabilities over the classes other than in the ad-hoc manner that an SVM will.
Similarly, DGPLVM does learn a space that reflects the class information, but it does not
provide means to get the posterior over the classes. Our model is the only one of the three
that learns the classification jointly with the model, and provides a principled way of getting
probabilities over the classes.
Based on the results in Table 3.1, BGPLVM and DGPLVM perform better on recall, however
our model has better precision and overall F1 score. In imbalanced problems, the goal is to
improve recall without losing precision. However, improving precision results in a cost to
recall, since increasing the true positives for the minority class results in increasing false
positives and so reduced precision [He and Ma, 2013]. It is often better to calculate an

3.4 Conclusion 51

F1-score that weights precision and recall equally [He and Ma, 2013], and SCLVM has a
better balance between precision and recall so has better F1-score in total.

Table 3.1 Classification performance. The mean and standard deviation from ten test sets are
shown.

SCLVM BGPLVM (SVM) DGPLVM (SVM)
precision 0.426±0.024 0.306±0.013 0.242±0.008

recall 0.555±0.007 0.827±0.000 1.000±0.000
F1-score 0.482±0.015 0.447±0.014 0.390±0.011

3.4 Conclusion

Learning imbalanced data is challenging because, when given imbalanced data, the current
model is often dominated by the major category and ignores the categories with small
amounts of data. We presented a probabilistic latent variable model that can cope with
imbalanced data. We developed a kernel that separates the latent space into a shared space
and a private space. One latent space is shared across all the data, while another latent space
is used to model each category. Labels are used to encourage a specific structure of the
latent space. An efficient variational inference method is proposed by deriving a closed form
lower bound of marginal likelihood. The performance of our model is demonstrated with an
imbalanced medical image dataset.

Chapter 4

Gaussian processes using active learning
for scarce data problems

Classification is a supervised task and uses labeled training data to create a model that aims
to classify unseen examples. Here, we restrict our attention to data from the image domain.
Such image datasets are often considered to be big data, very high dimensional and noisy.

In this chapter1 we introduce a general workflow for problems where we have a lack
of labeled data. We apply this framework to a real-life and challenging problem in the
electrofusion industry for detecting clamp versus non-clamp classes for water and gas pipes.
As mentioned in Chapter 1, the electrofusion industry has a growing problem of polyethlylene
pipeline failure. It has been shown that 99% of joint failures were caused by poor practices
before the welding process. We have worked closely with ControlPoint, a quality assurance
company based in England which remotely identifies faults and poor installations in water
and gas pipelines. Usage of clamps is one of the important factors in distinguishing a good
installation from a poor one. Clamps are used to correctly align and stabilize pipes and joints
during the fusion process. In the absence of a clamp, there can be a risk of misalignment of
pipes within the joint. This can cause gaps inside the joint and potential leakages. To ensure
the quality of joints, human experts check thousands of images daily and manually label and
score them based on the guidelines of good joint installation.

Labeling images is a tedious job and some datasets can be very expensive to label. In
most cases, we have lots of data with no labels, and even if we have labels they are high-level
rather than low-level labels. An image has a low-level label when it has pixel level labeling —
the process of applying these labels is also called image segmentation. On the other hand,

1This chapter is based on "Active Learning Using Gaussian Processes for Imbalanced Datasets", which was
presented at the Neural Information Processing Systems (NeurIPS) workshop track on Bayesian NonParametrics
(BNP), 2018 - a paper where I appear as a first author.

54 Gaussian processes using active learning for scarce data problems

images with high-level labels do not have a pixel level label, but rather a global label. For
example, in the water and gas joints’ case, carefully labeling images is not possible due to
the high volume of images created daily, and instead we have a global label for the clamp vs
non-clamp class.

The dataset is from a quality control company based in Chesterfield.2 A few samples
of clamp images are presented in Figure 4.1. There are various clamp types that are used
within the industry. These images come in a variety of colours, sizes, angles and lighting.
The dataset has high-level labeling and does not provide any pixel-level information about
clamps.

We have so far considered GP models which address the imbalanced data problem. Here
we take this one step further and consider a GP-based method which allows active label
acquisition, referred to as ’active learning. This technique serves as a complement to the
discussion in Chapter 3. In the case of clamp classification, the data of interest is scarce,
since 99% of images show a clamp, and since there is no low-level annotation, one possible
solution would be to apply active learning. In handling large amounts of imbalanced data
with high-level labels, our goal will be to label less data to get the low-level labels and select
data in a sensible manner. In this approach, the model decides which data would be the most
informative, and asks a human expert/oracle to label the new data. Furthermore, we will
combine active learning with GP based algorithms to build more sophisticated models in
order to handle imbalanced and expensive to label datasets.

In active learning techniques, the process starts with a small set of data and proceeds by
actively adding data from the pool of unlabeled data, labeling them and adding them to the
training set. This process usually continues until the preferred stopping criteria is met. In
Section 4.1, we provide a review of the literature surrounding active learning.

4.1 Active learning

Active learning improves machine learning systems by asking good questions [Settles, 2012].
The key idea behind active learning is that a model can perform well with less training
data when it is allowed to choose the data from which it will learn [Settles, 2012]. This is
motivated by many real-world applications where annotating labels is difficult, expensive, or
time consuming.

The choice of new data points to be labeled is dependent on an acquisition function
and the informativeness of the data points. There are various strategies for choosing the
acquisition function. Acquisition functions include uncertainty sampling [Lewis and Catlett,

2https://www.controlpoint.co.uk/

https://www.controlpoint.co.uk/

4.1 Active learning 55

(a)

(b)

(c) (d)

Fig. 4.1 Some examples of different styles of clamp in water and gas pipe images. (a) Ring
clamps. (b) Metal pinch clamps. (c) Plastic pinch clamps. (d) No clamp.

1994; Settles, 2012], query by committee [Iglesias et al., 2011; Seung et al., 1992], expected
error or variance minimization [Roy and McCallum, 2001], information theory [Houlsby
et al., 2011; Lawrence et al., 2003; MacKay, 1992], and decision theory [Kapoor et al., 2007].

Uncertainty sampling [Lewis and Catlett, 1994; Settles, 2012] is one of the most common,
simple, and computationally efficient active learning techniques [Konyushkova et al., 2017].

56 Gaussian processes using active learning for scarce data problems

The basic idea behind this technique is that the instances that the model is confident about
can be ignored, while the attention is focused instead on the instances that the model finds the
most confusing [Settles, 2012]. This can be a distance from a boundary for non-probabilistic
methods such as SVM’s margin [Tong and Koller, 2001], or in the case of probabilistic binary
classifiers, the instances that are close to the decision boundary are the most confusing or the
least confident.

Active learning has proven a useful method for handling a huge amount of data by actively
choosing the next instance that the current classifier is the most uncertain about and labeling
those in particular [Ertekin et al., 2007a,b; Provost, 2000]. One common method of making
queries in active learning is ’pool-based’ sampling. In the pool-based [Lewis and Gale, 1994]
uncertainty sampling technique, the basic idea is to have a pool of unlabeled data, a set of
initial labeled instances, and a learner. In this setting, the classifier has access to the pool of
unlabeled data from which to choose the next sample.

For uncertainty sampling, besides the ’least confident’ technique that queries the instance
whose predicted output it is least confident in, entropy based uncertainty sampling is also
very common. Entropy is a way to measure a variable’s average information content. Entropy
is more appropriate if our objective is to minimize the log-loss, while the least confident
method is more appropriate if we aim to reduce classification error, because such a model
can select instances that are more helpful to assign them to different classes [Settles, 2012].

Active learning also has similarities with semi-supervised learning [Zhu and Goldberg,
2009]. Both techniques aim to make the most of unlabeled data. A very basic semi-
supervised learning technique is self-training [Yarowsky, 1995]. Similarly to the active
learning approach, the learner is initially trained with a small labeled set. It then classifies
the unlabeled data to re-train itself. This is usually an iterative approach, where the most
confident unlabeled instances with their predicted labels are added to the training set. In
a sense, then, this technique is the opposite of the active learning uncertainty sampling
technique, where the least confident samples are selected instead.

Non-probabilistic active learning is usually performed using SVM [Ertekin et al., 2007a,b;
Tong and Koller, 2001]. In active learning with SVM, intuitively the closest instance to
the margin would offer the most information and the model will be least certain about this
instance. In probabilistic techniques, within the GP framework, there are some works based
on information gain in Bayesian methodology, such as Houlsby et al. [2011]; Lawrence et al.
[2003]; MacKay [1992]. Informative Vector Machines (IVM) [Lawrence et al., 2003] are
designed specifically for GPs in which you have to calculate the information gain from all
of the data and pick the one that gives you the highest information. Houlsby et al. [2011]
proposes an approach using information gain in terms of predictive entropies.

4.2 Gaussian process classification 57

For the imbalanced data problem, active learning might not offer any help on its own.
A few works tackle the imbalanced problem using active learning such as Attenberg and
Provost [2010]; Ertekin et al. [2007a]; Wallace et al. [2010], to name a few. Attenberg
and Provost [2010] tackles the imbalanced problem by proposing ’guided learning’, which
allows an oracle to search for a specific class. Wallace et al. [2010] built two models, one
with fine granularity and the other with coarse granularity, and used query by disagreement
between these two models to perform active learning on the new documents for querying.
This technique overcomes the imbalanced problem better compared to many standard active
learning techniques. Ertekin et al. [2007a] proposed active learning based on SVM to tackle
the imbalanced data problem. In this method, they first choose K random samples from the
pool, after which the instance that is closest to the margin is selected. This new instance
is added to the training set, and the model is re-trained. This method is efficient when the
dataset is very large, so there is no need to search the entire pool. They also show that the
data within the overlapping margin between two classes is less imbalanced.

The different strategies for active learning have their own advantages and disadvantages.
For example, the uncertainty sampling approach is simple and fast, easy to implement, and it
can be used alongside probabilistic models [Settles, 2012]. However, there is a risk that the
corresponding models become over confident about incorrect predictions [Settles, 2012].

The stopping criteria for active learning is when the accuracy has reached a plateau and
labeling more data does not help to improve the accuracy, and so labeling more data is a
waste of resources and time [Settles, 2012].

In this work we will use GPs as a probabilistic method to combine with the pool based
least confident active learning technique. We review GP classification in the next section,
and in Section 4.4 we will explain how we combine an active learning workflow with the GP
classification.

4.2 Gaussian process classification

Gaussian process classification was introduced in detail in Section 2.2.3. As mentioned, when
target values are discrete, we have a classification problem. In classification cases, since the
likelihood is not Gaussian, we cannot calculate the posterior analytically. Instead we need to
approximate the posterior. The Gaussian process prior f and likelihood are defined as:

p(f |x,θ) =N(f |0, k f f)

p(y|x, f) = Bernoulli(σ(f (x))).

58 Gaussian processes using active learning for scarce data problems

We consider the logistic function σ where, given the value of f , the target value y takes the
Bernoulli distribution with probability σ(f (x)). The non-Gaussian likelihood σ introduces
complications for calculating the posterior distribution, and we need to approximate it. In
this chapter, we use Laplace approximation, which was explained in more detail in Section
2.2.4.1. The latent function f was originally between (−∞,+∞), but since our target values
are now binary and are, for example, between (0,1), the logistic function will transform
it; we call the new function πn ∈ [0,1]. The mean and the covariance of the approximate
posterior is:

q(f|X,y) =N(f̂,(W+K−1
f f)

−1), (4.1)

where, f̂ = K f f (
δ log(y|f̂,X)

δ f̂
) and W=−δ 2 log(y|f̂,X)

δ f2 . These have to be found iteratively as they
cannot be calculated in a closed form. More mathematical details can be found at Chapter 2.

GPs learn the structure of data using a covariance function. With kernels such as RBF, we
can use the information in a dataset to learn about length-scale and variance hyper-parameters.
The covariance function will tell us how quickly the correlation in our data changes with
distance in the input space. To fully use the information, we therefore need to build kernels
with great representation power. This will be achieved using Convolutional Neural Network
(CNN) [Wilson et al., 2016b]. GPs achieve better performance when using features from
CNN rather than raw pixels [Wilson et al., 2016a]. Furthermore, for handling the data scarcity
problem, a combination of transfer learning from CNN with GP classification is proposed. In
the next section we will briefly introduce CNNs.

4.3 Convolutional neural networks (CNN)

CNNs are widely used in computer vision tasks. These networks are composed of different
layers: an input layer, an output layer, and several hidden layers, where some of these hidden
layers are convolutional. Convolutional layers learn local patterns in small windows of
two dimensions, such as visual futures like edges and lines. This is the main difference
between convolutional layers and fully connected layers, because fully connected layers
are useful for learning global patterns rather than local patterns. Convolutional layers
have two hyper-parameters: filter size (also called kernel) and stride. Smaller filter sizes
encourage the use of more local information, while larger filters allow the use of more global
information. The number of steps the filter window moves on the input image is called stride.
In different convolutional layers, using a variety of filters and strides allows for detecting
specific characteristics or features in the image.

4.4 Active learning workflow 59

Convolutional layers are usually followed by pooling layers, which are a form of non-
linear down-sampling method. Pooling layers provide condensed information from convo-
lution layers, and so reduce the dimensionality on intermediate representation. There are a
variety of pooling techniques, such as max-pooling and average-pooling, where max-pooling
gets the maximum value of the window and average-pooling gets the average value of the
window.

Image data are by nature usually very complex, and manual feature extraction is no longer
needed with CNNs, as they use a different combination of filters and pooling which helps to
have translation invariant features. There are various architectures such as LeNet [LeCun
et al., 1998], AlexNet [Krizhevsky et al., 2012], VGGNet [Simonyan and Zisserman, 2014],
and GoogLeNet (also known as Inception) [Szegedy et al., 2015]. We use InceptionV3
architecture [Szegedy et al., 2016] as the feature extractor with Imagenet pre-trained weights
[Deng et al., 2009]. An InceptionV3 diagram is illustrated in Figure 4.2.

Fig. 4.2 An illustration of the high-level diagram of the model, taken from "cloud.google.
com/tpu/docs/inception-v3-advanced".

In the next section, we will explain how we combine an active learning workflow with
GP classification and CNN.

4.4 Active learning workflow

The active learning workflow that we are proposing is general and can be applied to any
image problem that lacks labeled data or where labeling is very expensive. In such cases the
model needs to learn the data in the most efficient way possible to reduce costs, for example.
The active learning workflow is presented in Figure 4.3. Images are available in a large pool.
We will use this pool to sample data for labeling and training purposes. Often there is a need

"cloud.google.com/tpu/docs/inception-v3-advanced"
"cloud.google.com/tpu/docs/inception-v3-advanced"

60 Gaussian processes using active learning for scarce data problems

Preprocessing

Initial labelling

Unlabelled image patches

If GP is Unsure

Training the
model

Inference
from the
image
pool

Prediction
result

Labelling from
the image pool

Labelled data is added to the training set

Labelled data
is added to the
training setclamp

clamp non-clamp

Original images

Fig. 4.3 The active learning workflow.

4.5 Experiments 61

for pre-processing images. For example, images may differ in size or we might need to have
a different granularity for labeling, to name a few. In the former case, we might need to
resize images to a fixed size, and in the latter scenario we might need to cut images into small
patches, depending on the size of the region of interest (ROI). The ROI might capture a very
small section of the entire image and we are interested to label the ROI. Small patches should
roughly capture the ROI. A small number of image patches are sent to human expert/oracle
to label. We call this initial labeling. Initially labeled data will be used to train the model for
the first time. To train the GP classifier we use features extracted using CNN from image
patches. For feature extraction using CNNs, we need to resize images to have a fixed image
size as input. For example, InceptionV3 needs images to be 299×299 pixels. The second
step is that the model will select K samples from the pool of unlabeled image patches. Based
on the prediction result of the model, the least confident samples are sent to an oracle for
labeling. This process is continued until a stopping criteria is met.

In the next section, we will apply the active learning workflow to the water and gas pipe
images. As mentioned earlier in this chapter, we have image-level labels for this dataset and
we aim at classifying clamp versus non-clamp images.

4.5 Experiments

In this section, we demonstrate our model with a real-world dataset — our aim is to tackle
the imbalanced data problem as it relates to detecting clamps. It is essential that clamps
are used when making electrofusion joints to ensure that the pipe and joint are correctly
aligned and stabilized during the fusion process. In the absence of clamps, there is a risk that
pipes may be misaligned within the joint, which raises the possibility of gaps occurring and
is a potential source of leakage. Uncontrolled movement of the joint during welding may
also occur in the absence of clamps, which is likely to result in a loss of intimate contact of
the welded areas and therefore a poorer weld. The flowchart of this work is represented in
Figures 4.3 and 4.4. The images that are used are from an operational environment; each is
taken from one of a few different angles with different phones under various lighting and
weather conditions. The size of the images also varies. We first pre-process the images by
fixing their size to 1280× 720. A few of the original images are presented in Figure 4.1.
The original images are pre-processed and cut into small patches. From this image pool, a
small number of patches are labeled by an expert and an initial model is trained. In all our
trainings we use 3000 iterations with a Stochastic Gradient Descent (SGD) algorithm for
optimization. We use the RBF kernel with 20 dimensions. Then from the image patches’
pool a few images are selected to test against the current model. If the model is unsure about

62 Gaussian processes using active learning for scarce data problems

Getting clamp data and clean the
data

Pre-processing the data (299 x 299
patches with 50% stride)

Feature extraction (last fully
connected layer)

Apply PCA dimensionality reduction

Initial labelling (first 126 patches)

Train using GP classification on
training image patches

GP prediction

Label unsure results (~0.5)

Add labelled data to train set

Train again using GP and
augmented train set

Repeat

Fig. 4.4 The workflow of the whole process.

4.5 Experiments 63

Fig. 4.5 Examples of the user interface of the software developed using Python for the
labeling process. The dump button is for saving the labeled images.

any image patch, that patch will be labeled by the expert and added to the training set. This
process is continued until the stopping criteria is met (no improvement in F-score).

Because of the imbalanced nature of this problem, and since we do not have any low-level
labels, we are trying to model this problem in the most efficient way using active learning.
This involves cutting the images into small patches (299×299) with 50% stride so that we
can have a mixture of clamp and non-clamp image patches.
We used a pre-trained neural network as the feature extractor. We also used the features
of the last fully connected layer from the InceptionV3 [Szegedy et al., 2016] architecture
with Imagenet [Deng et al., 2009] pre-trained weights. These features have a dimensionality
of 1× 1× 2048, which were projected down to 20 dimensions using PCA [Tipping and
Bishop, 1999a] which was introduced in Section 2.2.5. We chose 20 dimensions because the
eigenvalues are negligible for the remaining dimensions. The result of the PCA is fed into
the GP classification as input.

For the experiments, 300 images were used for training and validation purposes. Addi-
tionally, four different independent sets, each containing 100 images, were used as the test
set, in order to calculate the standard deviation. The ratio of non-clamp to clamp images in
the training and test sets was 1:4. Each image consisted of 21 patches.
For initialization, we first labeled 126 image patches (six images in total) using the software
developed. An example of the software user interface is illustrated in Figure 4.5. These
126 image patches were split into the training and validation set at the patch level. GP
classification was then used to train the model using the patch images. New image patches
were added randomly from the pool of image patches, for prediction using GP classification.

64 Gaussian processes using active learning for scarce data problems

The images that the GP is unsure about (0.5±0.05) were added to the labeling system. The
new unsure patches were labeled, and this labeled data was added to the training set for
further training. This process was repeated until stopping criteria were met and there was not
much improvement in the F1-score of the validation set. For the final result, GP prediction
was used to predict the patches from four test sets. Only 433 image patches were labeled as
the training set and 101 were labeled as the validation set. The total number of image patches
that we used for the training and validation was equal to around 25 images, which shows the
efficiency of the GP classification using active learning.

Since our data is imbalanced, and in this experiment we have a training set of only 300
images, training a competitive baseline of neural networks from scratch was not feasible.
Instead, a pre-trained network was used in a transfer learning scenario. InceptionV3 pre-
trained network using ImageNet images were used as the base model. The 300 training
images that we had were augmented by a factor of 10 (rotation, mirroring, zoom, translation)
and used to fine-tune the parameters of the model. During training, only parameters of the
fully connected layers were updated — for all other layers, the parameters were frozen and
were not updated during the error back propagation to avoid over-fitting.
Random sampling was used to compare against GP classification’s selection criteria. The
same amount of patches that were used for GP classification were randomly selected and
added to the training set. The model was trained using these randomly selected patches.
To compare GP to another probabilistic method, we used Logistic Regression (LR). Like
the GP method, in the LR case, image patches were added randomly from the pool in order
to make predictions using LR, and the images that LR was unsure about (0.5±0.05), were
added to the labeling system. The new uncertain patches were labelled, and the labelled data
was added to the training set for further training. This process was continued until a similar
number of image patches that we used for our GP classification model were acquired.
In Table 4.1, we calculate precision, recall and F1-score. Our active learning technique is
much more efficient both in terms of the quantity of data that is used and speed. It surpasses
CNN, random patch selection, and LR in terms of assessment. Because the data is imbalanced
and because the size of data is not big enough, CNN gets a very low F1-score when compared
to other techniques. In random patch selection, we use the features extracted from CNN. We
then train the random patches with a GP classifier that is not as data hungry as CNN, so we
get better results in terms of recall and F1-score compared to CNN.

In this work we are interested in capturing all of the cases that are in fact positive (non-
clamps) and are identified as belonging to the positive class. This is the definition of recall,
and even though GP is comparable with baseline CNN in terms of precision, it surpasses the
other techniques in term of recall and F1-score.

4.5 Experiments 65

Fig. 4.6 Sample of predicted image patches. The big image is cut into small patches
(299×299) with 50% stride. The patches are represented by green boxes. The parts of the
image that are smaller than 299×299 are skipped. The numbers in the middle of the green
boxes represent the prediction for that specific patch. The patches that have prediction closer
to 100% are classified as clamps and the ones closer to 0% are classified as non-clamps.

We present a sample from our test set, by putting together all of the patches from one image
and representing the probability of each patch belonging to the clamp or non-clamp classes
in Figure 4.6. The threshold for the classifier is 50%.

Table 4.1 Results based on Precision, Recall and F1-score, with mean and standard deviation
from four test sets.

Method Precision Recall F1-score
Baseline CNN 0.93 ± 0.09 0.41 ± 0.04 0.56 ± 0.04
LR 0.67 ± 0.005 0.70 ± 0.11 0.68 ± 0.06
Random patch 0.55 ± 0.08 0.63 ± 0.05 0.59 ± 0.06
CNN+GP
classification

0.81 ± 0.08 0.76 ± 0.08 0.78 ± 0.03

66 Gaussian processes using active learning for scarce data problems

4.6 Conclusion

The class imbalance problem is a challenging problem. Using high dimensional image data
adds further complexity. In this chapter, active learning combined with GP classification
was used as a selection criterion for the next round of labeling. Starting with a very small
training set, additional samples were selected randomly from the pool of unlabeled data.
These samples were labeled and the ones that the classifier is unsure about were added to
the training set. The proposed technique requires fewer expert labels and as a result reduces
the cost of labeling. We showed that our active learning method is able to use fewer data
as compared to other supervised learning approaches. We were able to detect the minority
class with an F1-score of 0.78±0.03. This technique is applicable to a wide range of data,
especially where there is a lack of labeled data or where labeling the data is very expensive
since it is important to have good models with small labeled samples.

Chapter 5

Multi-task learning for aggregated data

Many datasets in fields such as ecology, epidemiology, remote sensing, sensor networks, and
demography appear naturally aggregated; that is, variables in these datasets are measured
or collected in intervals, areas, or supports of different shapes and sizes. For example,
census data are usually sampled or collected in an aggregated form at different administrative
divisions, e.g. borough, town, postcode, or city levels. Likewise, in sensor networks,
correlated variables are measured at different resolutions or scales. In the near future, air
pollution monitoring across cities and regions could be done using a combination of a
few high-quality low time-resolution sensors and several low-quality (low-cost) high time-
resolution sensors. Aggregating such data usually results in data scarcity issues. However,
joint modelling of the variables registered in the census data or the variables measured using
different sensor configurations at different scales can improve predictions of otherwise scarce
data at the point or support levels.

In this chapter1, we are interested in providing a general framework for multi-task learning
on these types of datasets. Our motivation is to use multi-task learning to jointly learn models
for different tasks, where each task is (potentially) defined at a different support of any shape
or size, and (potentially) has a different nature, i.e. it is a continuous, binary, categorical,
or count variable. We appeal to the flexibility of Gaussian processes (GPs) for developing
a prior over this type of datasets, and provide a scalable approach for variational Bayesian
inference.

Gaussian processes have previously been used for aggregated data [Law et al., 2018;
Smith et al., 2018; Tanaka et al., 2019a], as well as in the related field of multiple instance
learning [Haußmann et al., 2017; Kandemir et al., 2016; Kim and De la Torre, 2010]. In

1This chapter is based on "Multi-task Learning for Aggregated Data using Gaussian Processes" that was
published at Advances in Neural Information Processing Systems (NeurIPS), 2019 - a paper where I appear as
a first author.

68 Multi-task learning for aggregated data

multiple instance learning, each instance in the dataset consists of a set (or bag) of inputs,
with only one output (or label) for that whole set, and the aim is to provide predictions at the
level of individual inputs. Smith et al. [2018] provide a new kernel function to handle single
regression tasks defined at different supports, using cross-validation for hyper-parameter
selection. Law et al. [2018] use the weighted sum of a latent function, evaluated at different
inputs, as the prior for the rate of a Poisson likelihood. The latent function follows a GP
prior. The authors use stochastic variational inference (SVI) for approximating the posterior
distributions. Tanaka et al. [2019a] mainly use GPs for creating data from different auxiliary
sources. Furthermore, they only consider Gaussian regression and do not include inducing
variables. While Smith et al. [2018] and Law et al. [2018] perform the aggregation at the
latent prior stage, Kandemir et al. [2016]; Kim and De la Torre [2010] and Haußmann et al.
[2017] perform the aggregation at the likelihood level. These three approaches target a binary
classification problem. Both Kim and De la Torre [2010] and Haußmann et al. [2017] focus
on the case in which the label of the bag corresponds to the maximum of the (unobserved)
individual labels of each input. Kim and De la Torre [2010] approximate the maximum
using a softmax function, computed using a latent GP prior, evaluated across the individual
elements of the bag. They use Laplace approximation to compute the approximated posterior
[Rasmussen and Williams, 2006b]. Haußmann et al. [2017], on the other hand, approximate
the maximum using the so called bag label likelihood, introduced by the authors, which is
similar to a Bernoulli likelihood, with soft labels given by a convex combination between the
bag labels and the maximum of the (latent) individual labels. The latent individual labels
in turn follow Bernoulli likelihoods, with parameters given by a GP. The authors provide a
variational bound and include inducing inputs for scalable Bayesian inference. Kandemir
et al. [2016] follow a similar approach to Law et al. [2018], equivalent to setting all the
weights in Law et al.’s model to one. The sum is then used to modulate the parameter of
a Bernoulli likelihood that models the bag labels. They use a Fully Independent Training
Conditional approximation for the latent GP prior [Snelson and Ghahramani, 2006b].

In contrast to these works, we provide a multi-task learning model for aggregated data that
scales to large datasets and allows for heterogeneous outputs. The idea of using multi-task
learning for aggregated datasets was simultaneously proposed by Hamelijnck et al. [2019]
and Tanaka et al. [2019b]; both are additional models to the one we propose in this chapter.
In our work, we allow heterogenous likelihoods, in contrast with both Hamelijnck et al.
[2019] and Tanaka et al. [2019b]. We also allow an exact solution to the integration of the
latent function through the kernel in Smith et al. [2018], where Hamelijnck et al. [2019] does
not. Furthermore, with respect to computational complexity, inducing inputs are used, which

5.1 Multi-task Gaussian process 69

also distinguishes our work from the work in Tanaka et al. [2019b]. Other relevant work is
described in Section 5.2.

In building the multi-task learning model we appeal to the linear model of coregionali-
sation [Goovaerts, 1997; Journel and Huijbregts, 1978] which has gained popularity in the
multi-task GP literature in recent years [Alvarez et al., 2012; Bonilla et al., 2008]. We also
allow different likelihood functions [Moreno-Muñoz et al., 2018] and different input supports
per individual task. Moreover, we introduce inducing inputs at the level of the underlying
common set of latent functions, an idea initially proposed in Alvarez and Lawrence [2009].
We then use stochastic variational inference for GPs [Hensman et al., 2013], leading to an
approximation similar to the one obtained in Moreno-Muñoz et al. [2018]. Empirical results
show that the multi-task learning approach developed here provides accurate predictions in a
number of challenging datasets where tasks have different supports.

5.1 Multi-task Gaussian process

Multi-task Gaussian processes deal with cases where there are multiple outputs available.
Many applications of machine learning need to solve problems where there are multiple cases
with dependencies between them. The challenge is usually that the task that we are interested
in has little or no data but there are other tasks available that can possibly help to predict
the task of interest. The simplest way of solving these kind of problems is to use a single
model for each task, which ignores the correlation between tasks and makes predictions
for each output individually. However, it has been proven that the joint prediction of these
outputs, and using the interaction between them, improves individual predictions [Alvarez
et al., 2012]. Within the machine learning community this type of modelling is generally
referred to as multi-task learning. The core idea is that sharing information between tasks
will result in better predictions than learning each task individually Alvarez et al. [2012]. In
classical supervised single-task models there exist N input-output pairs (X,y), where each
input x is a vector and each output y is a scalar. In multi-task learning each output is a vector.
And, as mentioned, in multi-task learning the assumption is that the tasks are related to each
other and each component has different inputs.

5.1.1 Multi-task learning for aggregated data at different scales

In this section we first define the basic model in the single-task setting. We then extend
the model to the multi-task setting, and finally provide details for the stochastic variational
formulation for approximate Bayesian inference.

70 Multi-task learning for aggregated data

Change of support using Gaussian processes

Change of support has previously been studied in geostatistics [Gotway and Young, 2002].
In this work, we use a formulation similar to Kyriakidis [2004]. We start by defining a
stochastic process over the input interval (xa,xb) using

f (xa,xb) =
1
∆x

∫ xb

xa

u(z)dz,

where u(z) is a latent stochastic process that we assume follows a Gaussian process with
zero mean and covariance k(z,z′) and ∆x = |xb − xa|. Dividing by ∆x helps to maintain
proportionality between the length of the interval and the area under u(z) in the interval.
In other words, the process f (·) is modelled as a density, meaning that inputs with widely
differing supports will behave in similar ways. The first two moments for f (xa,xb) are given
as:

E[f (xa,xb)] = 0 (5.1)

E[f (xa,xb), f (x′a,x
′
b)] =

1
∆x∆x′

∫ xb

xa

∫ x′b

x′a
E[u(z)u(z′)]dz′dz. (5.2)

The covariance for f (xa,xb) follows as:

cov[f (xa,xb), f (x′a,x
′
b)] =

1
∆x∆x′

∫ xb

xa

∫ x′b

x′a
k(z,z′)dz′dz, (5.3)

since E[u(z)] = 0. Let us use k(xa,xb,x′a,x
′
b) to refer to cov[f (xa,xb), f (x′a,x

′
b)]. We can now

use these mean and covariance functions for representing the Gaussian process prior:

f (xa,xb)∼ GP(0, k(xa,xb,x′a,x
′
b)). (5.4)

For some forms of k(z,z′) it is possible to obtain an analytical expression for k(xa,xb,x′a,x
′
b).

For example, if k(z,z′) follows an Exponentiated-Quadratic (EQ) covariance form:

k(z,z′) = σ
2 exp{−(z− z′)2

ℓ2 }, (5.5)

5.1 Multi-task Gaussian process 71

where σ2 is the variance of the kernel and ℓ is the length-scale, it can be shown that
k(xa,xb,x′a,x

′
b) follows as:

k(xa,xb,x′a,x
′
b) =

σ2ℓ2

2∆x∆x′

[
h
(

xb − x′a
ℓ

)
+h
(

xa − x′b
ℓ

)
−h
(

xa − x′a
ℓ

)
−h
(

xb − x′b
ℓ

)]
,

where h(z)=
√

πzerf(z)+e−z2
with erf(z), the error function, defined as erf(z)= 2√

π

∫ z
0 e−r2

dr.
Other kernels for k(z,z′) also lead to analytical expressions for k(xa,xb,x′a,x

′
b). See for exam-

ple Smith et al. [2018]. Detailed formulas regarding integrals and derivations are derived and
available in Appendix C.1.

So far, we have restricted the exposition to one-dimensional intervals. However, we can
define the stochastic process f over a general support υ , with measure |υ |, using

f (υ) =
1
|υ |

∫
z∈v

u(z)dz. (5.6)

The support υ generally refers to an area or volume of any shape or size. Following similar
assumptions to the ones we used for f (xa,xb), we can build a GP prior to represent f (υ)
with covariance k(υ ,υ ′) defined as:

k(υ ,υ ′) =
1

|υ ||υ ′|

∫
z∈υ

∫
z′∈υ ′

k(z,z′)dz′dz. (5.7)

Let z ∈ Rp. If the support υ has a regular shape, e.g. a hyper-rectangle, then assumptions on
u(z) such as additivity or factorisation across input dimensions will lead to kernels that can
be expressed as an addition of kernels or a product of kernels acting over a single dimension.
For example, let u(z) = ∏

p
i=1 ui(zi), where z = [z1, · · · ,zp]

⊤, and a GP over each ui(zi) ∼
GP(0,k(zi,z′i)). If each k(zi,z′i) is an EQ kernel, then k(υ ,υ ′) = ∏

p
i=1 k(xi,a,xi,b,x′i,a,x

′
i,b),

where (xi,a,xi,b) and (x′i,a,x
′
i,b) are the intervals across each input dimension. If the support

υ does not follow a regular shape, i.e it is a polytope, then we can approximate the double
integration by numerical integration inside the support.

5.1.2 Multi-task learning setting

Linear model of coregionalization Our inspiration for multi-task learning is the linear
model of coregionalisation (LMC) [Journel and Huijbregts, 1978]. This model has connec-
tions with other multi-task learning approaches that use kernel methods. For example, Teh
et al. [2005] and Bonilla et al. [2008] are particular cases of LMC. A detailed review is
available in Alvarez et al. [2012]. In the LMC, each output (or task in our case) is represented

72 Multi-task learning for aggregated data

as a linear combination of a common set of latent Gaussian processes. Let {uq(z)}Q
q=1 be a

set of Q GPs with zero means and covariance functions kq(z,z′). Each GP uq(z) is sampled
independently and identically Rq times to produce {ui

q(z)}
Rq,Q
i=1,q=1 realizations that are used

to represent the outputs.

fd(z) =
Q

∑
q=1

Rq

∑
i=1

ai
d,qui

q(z). (5.8)

The cross-covariance between two functions fd and fd′ is given as:

k fd , fd′ (z,z
′) =

Q

∑
q=1

bq
d,d′kq(z,z′),

where bq
d,d′ = ∑

Rq
i=1 ai

d,qai
d′,q. The kernel can now be expressed as:

K(z,z′) =
Q

∑
q=1

Bqkq(z,z′),

where each Bq ∈ RD×D is known as a coregionalisation matrix. The matrix Bq has elements
bq

d,d′ . We will now integrate LMC with our multi-task learning. Let { fd(υ)}D
d=1 be a set of

tasks where each task is defined at a different support υ . We use the set of realizations ui
q(z)

to represent each task fd(υ) as

fd(υ) =
Q

∑
q=1

Rq

∑
i=1

ai
d,q

|υ |

∫
z∈v

ui
q(z)dz, (5.9)

where the coefficients ai
d,q weight the contribution of each integral term to fd(υ). Since

cov[ui
q(z),ui′

q′(z
′)] = kq(z,z′)δq,q′δi,i′ , with δα,β the Kronecker delta between α and β , the

cross-covariance k fd , fd′ (υ ,υ
′) between fd(υ) and fd′(υ ′) is then given as

k fd , fd′ (υ ,υ
′) =

Q

∑
q=1

bq
d,d′

|υ ||υ ′|

∫
z∈υ

∫
z′∈υ ′

kq(z,z′)dz′dz,

where bq
d,d′ = ∑

Rq
i=1 ai

d,qai
d′,q. Following the discussion in Section 5.1.1, the double integral

can be solved analytically for some options of υ , υ ′ and kq(z,z′), generally a numerical
approximation can be obtained.

It is also worth mentioning at this point that the model does not require all tasks to be de-
fined at the area level. Some tasks could also be defined at the point level. Say for example that

5.1 Multi-task Gaussian process 73

fd is defined at the support level υ , fd(υ), whereas fd′ is defined at the point level, say x∈Rp,
fd′(x). In this case, fd′(x) = ∑

Q
q=1 ∑

Rq
i=1 ai

d′,qui
q(x). We can still compute the cross-covariance

between fd(υ) and fd′(x), k fd , fd′ (υ ,x), leading to, k fd , fd′ (υ ,x) = ∑
Q
q=1

bq
d,d′
|υ |
∫

z∈v kq(z,x)dz.
For the case Q = 1 and p = 1 (i.e. dimensionality of the input space), for z,z′,x ∈ R,
υ = (xa,xb) and an EQ kernel for k(z,z′), we get

k fd , fd′ (υ ,x) =
bd,d′

∆x

∫ xb

xa

k(z,x)dz =
bd,d′ℓ

2∆x

[
erf
(

xb − x
ℓ

)
+ erf

(
x− xa

ℓ

)]
.

We used σ2 = 1 to avoid overparameterization for the variance. Again, if υ does not have a
regular shape, we can approximate the integral numerically.

Let us define the vector-valued function f(υ) = [f1(υ), · · · , fD(υ)]
⊤. A GP prior over

f(υ) can use the kernel defined above so that

f(υ)∼ GP

(
0,

Q

∑
q=1

1
|υ ||υ ′|

Bq

∫
z∈v

∫
z′∈v′

kq(z,z′)dz′dz

)
,

where each Bq ∈ RD×D is known as a coregionalisation matrix. The scalar term∫
z∈v
∫

z′∈v′ kq(z,z′)dz′dz modulates Bq as a function of υ and υ ′.
The prior above can be used for modulating the parameters of likelihood functions that

model the observed data. The most simple case corresponds to the multi-task regression
problem, which can be modelled using a multivariate Gaussian distribution. Let y(υ) =
[y1(υ), · · · ,yD(υ)]

⊤ be a random vector modelling the observed data as a function of υ . In
the multi-task regression problem y(υ)∼N(µµµ(υ),ΣΣΣ), where µµµ(υ) = [µ1(υ), · · · ,µD(υ)]

⊤

is the mean vector and ΣΣΣ is a diagonal matrix with entries {σ2
yd
}D

d=1. We can use the GP prior
f(υ) as the prior over the mean vector µµµ(υ)∼ f(υ). Since both the likelihood and the prior
are Gaussian, both the marginal distribution for y(υ) and the posterior distribution of f(υ)
given y(υ) can be computed analytically. For example, the marginal distribution for y(υ) is
given as

y(υ)∼N(0,
Q

∑
q=1

1
|υ ||υ ′|

Bq

∫
z∈v

∫
z′∈v′

kq(z,z′)dz′dz+ΣΣΣ).

Moreno-Muñoz et al. [2018] introduced the idea of allowing each task to have a different
likelihood function and modulated the parameters of that likelihood function using one or
more elements in the vector-valued GP prior. For that general case, the marginal likelihood
and the posterior distribution cannot be computed in closed form.

74 Multi-task learning for aggregated data

5.1.3 Stochastic variational inference

In Chapter 2 we introduced variational sparse Gaussian process (in Section 2.2.6.1) and
stochastic variational inference (SVI) (in Section 2.2.6.1). Here we will introduce SVI
for multi-task learning. Let D = {ϒϒϒ,y} be a dataset of multiple tasks with potentially
different supports per task, where ϒϒϒ = {υυυd}D

d=1, with υυυd = [υd,1, · · · ,υd,Nd]
⊤, and y =

[y1, · · · ,yD]
⊤, with yd = [yd,1, · · · ,yd,Nd]

⊤ and yd, j = yd(υd, j). Notice that y without υ

refers to the output vector for the dataset. We are interested in computing the posterior
distribution p(f|y) = p(y|f)p(f)/p(y), where f = [f1, · · · , fD]

⊤, with fd = [fd,1, · · · , fd,Nd]
⊤

and fd, j = fd(υd, j). In this work, we will use stochastic variational inference to compute a
deterministic approximation of the posterior distribution p(f|y)≈ q(f), by means of the the
well known idea of inducing variables.

Even in the Gaussian likelihood case, for which the posterior distribution can be computed
analytically, a variational treatment with inducing variables will lead to an inference procedure
that is computationally efficient. In contrast to the use of SVI for traditional Gaussian
processes, where the inducing variables are defined at the level of the process f, we follow
Álvarez et al. [2010] and Moreno-Muñoz et al. [2018], and define the inducing variables
at the level of the latent processes uq(z). For simplicity in the notation, we assume Rq = 1.
Let u = {uq}Q

q=1 be the set of inducing variables, where uq = [uq(z1), · · · ,uq(zM)]⊤, with
Z = {zm}M

m=1 the inducing inputs. Notice also that we have used a common set of inducing
inputs Z for all latent functions but we can easily define a set Zq per inducing vector uq.

For the multi-task regression case, it is possible to compute an analytical expression for
the Gaussian posterior distribution over the inducing variables u, q(u), following a similar
approach to Álvarez et al. [2010]. However, such approximation is only valid for the case
in which the likelihood model p(y|f) is Gaussian and the variational bound obtained is not
amenable for stochastic optimization. An alternative way of finding q(u) also establishes
a lower-bound for the log-marginal likelihood log p(y), but uses numerical optimization to
maximise the bound with respect to the mean parameters, µµµ , and the covariance parameters,
S, for the Gaussian distribution q(u) ∼ N(µµµ,S) [Moreno-Muñoz et al., 2018]. Such a
numerical procedure can be used for any likelihood model p(y|f), and the optimization can
be performed using mini-batches. We follow this approach.

Lower-bound The lower bound for the log-marginal likelihood follows as

log p(y)≥
∫ ∫

q(f,u) log
p(y|f)p(f|u)p(u)

q(f,u)
dfdu = L,

5.1 Multi-task Gaussian process 75

where q(f,u) = p(f|u)q(u). By simplifying L, as explained in Equation (2.52) the
variational lower bound becomes:

L=
∫ ∫

p(f|u)q(u) log p(y|f)dfdu−
Q

∑
q=1

KL(q(uq)∥p(uq)),

where p(f|u)∼N(KfuK−1
uu u,Kff−KfuK−1

uu K⊤
fu), and p(u)∼N(0,Kuu) is the prior over

the inducing variables. Here Kfu is a blockwise matrix with matrices Kfd ,uq . In turn, each of
these matrices have entries given by k fd ,uq(υ ,z′) =

ad,q
|υ |
∫

z∈υ
kq(z,z′)dz. Similarly, Kuu is a

block-diagonal matrix with blocks given by Kq, with entries computed using kq(z,z′). The
optimal q(u) is chosen by numerically maximizing L with respect to the parameters µµµ and
S. To ensure a valid covariance matrix S (positive definiteness), we optimize the Cholesky
factor L for S = LL⊤.

It can be shown [Moreno-Muñoz et al., 2018] that the bound is given as

L=
D

∑
d=1

Nd

∑
j=1

E
[
log p(yd(υd, j)| fd(υd, j))

]
−KL(q(u)∥p(u)), (5.10)

where the expected value is taken with respect to the q(f) =
∫

q(f,u)du distribution, which
is a Gaussian distribution. Moreover, the approximate marginal posterior for f is defined by
q(f) as:

q(f) =N
(

f|KfuK−1
uu µµµ,Kff +KfuK−1

uu (S−Kuu)K−1
uu K⊤

fu

)
. (5.11)

The variational bound above is factorized w.r.t. the outputs according to the independence
assumption between outputs:

log p(y|f) =
D

∑
d=1

log p(yd|fd),

The conditional expectation is also independent across data observations:

log p(y|f) =
N

∑
j=1

log p(y j|f j).

For Gaussian likelihoods,

p(yd(υd, j)| fd(υd, j)) =N(yd(υd, j)| fd(υd, j),σ
2
yd
),

76 Multi-task learning for aggregated data

we can compute the expected value in the bound in closed form. For other likelihoods,
we can use numerical integration to approximate it, such as Gauss-Hermite quadratures as
in Hensman et al. [2015] and Saul et al. [2016]. More details regarding Gauss-Hermite
quadrature and various likelihoods can be found in Appendix C.2 and C.5, respectively.
Instead of using the whole batch of data N = ∑

D
d=1 Nd , we can use mini-batches to estimate

the gradient.
The computational complexity is similar to that of the model in Moreno-Muñoz et al.

[2018], O(QM3+JNQM2), where J depends on the types of likelihoods used for the different
tasks. For example, if we model all the outputs using Gaussian likelihoods, then J = D. The
inversion cost of Kuu is O(QM3), and the cost of products such as K f u is O(JNQM2). For
details, see Moreno-Muñoz et al. [2018].

Hyper-parameter learning When using the multi-task learning method, we need to opti-
mize the hyper-parameters associated with the LMC, namely: the coregionalisation matrices
Bq, the hyper-parameters of the kernels kq(z,z′), and any other hyper-parameter associated
with the likelihood functions p(y|f) that has not been considered as a member of the latent
vector f(υ). Hyper-parameter optimization is done using the lower bound L as the objective
function. L is first maximised with respect to the variational distribution q(u) and then with
respect to the hyper-parameters. These two-steps are repeated one after the other until we
reach convergence. This style of optimization is known as variational EM (Expectation-
Maximization), when using the full dataset [Beal, 2003], or its stochastic version when
employing mini-batches [Hoffman et al., 2013]. In the Expectation step we compute a
variational posterior distribution, and in the Maximization step we use a variational lower
bound to find point estimates of any hyper-parameters. To optimize the hyper-parameters in
Bq, we also use a Cholesky decomposition for each matrix to ensure positive definiteness. So
instead of optimizing Bq directly, we optimize Lq, where Bq = LqL⊤

q . For the experimental
section, we use the EQ kernel for kq(z,z), so we fix the variance for kq(z,z) to one (the
variance per output is already contained in the matrices Bq) and optimize the length-scales ℓq.
More mathematical details for derivatives of the variational bound with respect to variational
parameters and hyper-parameters can be found at Appendix C.3 and C.4, respectively.

Predictive distribution Given a new set of test inputs ϒϒϒ∗, the predictive distribution for
p(y∗|y,ϒϒϒ∗) is computed using p(y∗|y,ϒϒϒ∗) =

∫
f∗ p(y∗|f∗)q(f∗)df∗, where y∗ and f∗ refer to

the vector-valued functions y and f evaluated at ϒϒϒ∗. Notice that q(f∗)≈ p(f∗|y). Even though
y does not appear explicitly in the expression for q(f∗), it has been used to compute the

5.2 Related work 77

posterior for q(u) through the optimization of L, where y is explicitly taken into account.
We are usually interested in the mean prediction E[y∗] and the predictive variance var[y∗].

Both can be computed by exchanging integrals in the double integration over y∗ and
f∗. For example, E[y∗] =

∫
y∗ y∗p(y∗|y,ϒϒϒ∗)dy∗=

∫
f∗
∫

y∗ y∗p(y∗|f∗)dy∗q(f∗)df∗. The inner
integral in E[y∗] is computed with the conditional distribution p(y∗|f∗) and its form depends
on the likelihood term per task. The outer integral can be approximated using numerical
integration or Monte-Carlo sampling. A similar procedure can be followed to compute
var[y∗].

5.2 Related work

Machine learning methods for different forms of aggregated datasets are also known as
multiple instance learning, learning from label proportions, or weakly supervised learning
on aggregate outputs [Bhowmik et al., 2015; Kotzias et al., 2015; Kück and de Freitas, 2005;
Musicant et al., 2007; Patrini et al., 2014; Quadrianto et al., 2009]. Law et al. [2018] provided
a summary of these different approaches. Typically these methods start with the following
setting: each instance in the dataset is in the form of a set of inputs for which there is only one
corresponding output (e.g. the proportion of class labels, an average, or a sample statistic).
The prediction problem usually consists then in predicting the individual outputs for the
individual inputs in the set. The setting we present in this chapter is slightly different in the
sense that, in general, for each instance, the input corresponds to a support of any shape and
size and the output corresponds to a vector-valued output. Moreover, each task can have
its own support. Similarly, while most of these ML approaches have been developed for
either regression or classification, our model is built on top of Moreno-Muñoz et al. [2018],
allowing each task to have a potentially different likelihood.

As mentioned in the introduction, Gaussian processes have also been used for multiple
instance learning or aggregated data [Hamelijnck et al., 2019; Haußmann et al., 2017;
Kandemir et al., 2016; Kim and De la Torre, 2010; Law et al., 2018; Smith et al., 2018;
Tanaka et al., 2019a,b]. Unlike most of these previous approaches, our model goes beyond
the single task problem and allows learning multiple tasks simultaneously. Each task can
have its own support at training and test time. Further, in contrast with other multi-task
approaches, we allow for heterogeneous outputs. Although our model was formulated for
a continuous support x ∈ υd, j, we can also define it in terms of a finite set of (previously
defined) inputs in the support, e.g. a set {xd, j,1, · · · ,xd, j,Kd, j} ∈ υd, j which is more akin to
the bag formulations in these previous works. This would require changing the integral

1
|υd, j|

∫
z∈υd, j

ui
q(z)dz in (5.9) for the sum 1

Kd, j
∑∀x∈υd, j

ui
q(xd, j,k).

78 Multi-task learning for aggregated data

In geostatistics, a similar problem has been studied under the names downscaling and
spatial disaggregation [Zhang et al., 2014], particularly using different forms of kriging
[Goovaerts, 1997]. It is also closely related to the problem of change of support described
in detail in Gotway and Young [2002]. Block-to-point kriging (or area-to-point kriging, if
the support is defined in a surface) is a common method for downscaling; this is, it provides
predictions at the point level provided data at the block level [Goovaerts, 2010; Kyriakidis,
2004]. We extend the approach introduced in Kyriakidis [2004] later revisited by Goovaerts
[2010] for count data, to the multi-task setting, including also a stochastic variational EM
algorithm for scalable inference.

If we consider the high-resolution outputs as high-fidelity outputs, and low-resolution
outputs as low-fidelity outputs, our work also falls under the umbrella of multi-fidelity
models where co-kriging using the linear model of coregionalisation has also been used as an
alternative [Fernández-Godino et al., 2016; Peherstorfer et al., 2018].

5.3 Experiments

In this section, we apply the multi-task learning model for prediction to three different
datasets: a synthetic example for two tasks that each have a Poisson likelihood, a two-
dimensional input dataset of fertility rates aggregated by year of conception and ages in
Canada, and an air-pollution sensor network, where we have two tasks. One task corresponds
to a high-accuracy, low-frequency particulate matter sensor and another task corresponds to a
low-cost, low-accuracy, high resolution sensor. In these examples, we use k-means clustering
over the input data, with k = M, to initialise the values of the inducing inputs, Z, which are
also kept fixed during optimization. We assume the inducing inputs are points, but they could
also be defined as intervals or supports. For standard optimization we used the LBFGS-B
algorithm and, when SVI was needed, the Adam optimizer, included in climin library, was
used for the optimization of the variational distribution (variational E-step) and the hyper-
parameters (variational M-step). The implementation is based on the GPy framework and is
available on Github: https://github.com/frb-yousefi/aggregated-multitask-gp.

Synthetic data In this section we evaluate our model with a synthetic dataset. For all of the
experiments we use Q = 1 with an EQ covariance for the latent function u1(z). We set up a
toy problem with D = 2 tasks, where both likelihood functions are Poisson. We sample from
the latent vector-valued GP and use those samples to modulate the Poisson likelihoods using
exp(f1(·)) and exp(f2(·)) as the respective rates. The first task is generated using intervals
of υ1 = 1 units, whereas the second task is generated using intervals of υ2 = 2 units. All

https://github.com/frb-yousefi/aggregated-multitask-gp

5.3 Experiments 79

of the inputs are uniformly distributed in the range [0,250]. We generated 250 observations
for task 1 and 125 for task 2. To train the multi-task model, we select N1 = 200 from the
250 observations for task 1 and use all N2 = 125 for the second task. The other 50 data
points for task 1 correspond to a gap in the interval [130,180] that we use as the test set. In
this experiment, we evaluated our model’s capability in predicting one task, sampled more
frequently, using the training information from a second task with a larger support.

In Figure 5.1 we show that the data in the second task, with a larger support, helps
in predicting the test data in the gap present in the first task, with a smaller support (b).
Figure 5.1 (c) is the same as figure 5.1 (b), except that the green bars are removed for better
visualisation purposes. However, this is not the case in the single task learning scenario, where
the predictions are basically constant and equal to 1 (a). Both models predict the training
data equally well. SMSE (Standardized Mean Squared Error) and SNLP (standardized
negative log probability density) are calculated for five independent runs. For the multi-task
scenario they are 0.464± 0.136 and −0.822± 0.109 and for the single task case they are
0.9699±0.016 and −0.095±0.036, respectively.

Fertility rates from a Canadian census In this experiment, a subset of the Canadian
fertility dataset is used from the Human Fertility Database (HFD).2 The dataset consists of
live birth statistics by year, age of mother, and birth order. The mothers’ ages fall between
[15,54] and the years fall between [1944,2009]. The dataset contains 2640 data points of
fertility rate per birth order (the output variable), and there are four birth orders. We used
the 2640 data points corresponding to the 1st birth only. The dataset was randomly split into
1640 training points and 1000 test points. We consider two tasks: the first task consists of a
different number of data observations randomly taken from the 1640 training points. The
second task consists of all the training data aggregated at two different resolutions: 5×5 and
2×2 (we wanted to test the predictive performance when the relation of high-resolution data
to low-resolution data was 12 to 52 as well as 12 to 22). The aggregated data for the 5×5
case (a squared support of 5 years for the input age times 5 years for the input years of the
study) is reduced to 104 data points and the aggregated data for the 2×2 case is reduced to
660 points.

In the experiments, we train this multi-task model by slowly increasing the original
resolution training data, while maintaining a fixed amount of training points, as mentioned
before for the aggregated second task. The output variable (fertility rate for the first birth)
was assumed to be Gaussian, so both tasks follow a Gaussian likelihood. We use Q = 1
with an EQ kernel k1(z,z′) with z ∈ R2, where the two input variables are age of mother

2https://www.humanfertility.org

https://www.humanfertility.org

80 Multi-task learning for aggregated data

0 50 100 150 200 250
Input

0

2

4

6

8

Co
un

t

(a) Single-task learning

0 50 100 150 200 250
Input

0

2

4

6

8

Co
un

t

(b) Multi-task learning

0 50 100 150 200 250
Input

0

2

4

6

8

Co
un

t

(c) Multi-task learning

Fig. 5.1 Counts for the Poisson likelihoods and predictions using the single-task vs multi-task
models. Predictions are shown only for the first task (the one with support of υ1 = 1). The
blue bars are the original one-unit support data, the green bars are the predicted training count
data and the red bars are the predicted test results in the gap [130,180]. We did not include
the two-unit support data (the second task) for clarity in the visualisation. The multi-task
figure (b) is illustrated again in figure (c) for better visualisation with the green bars removed.

5.3 Experiments 81

5 10 30 50 80 100 500
Number of samples for high-resolution output

0.0

0.2

0.4

0.6

0.8

1.0
SM

SE
Single
Multi

5 10 30 50 80 100 500
Number of samples for high-resolution output

0.0

0.2

0.4

0.6

0.8

1.0

SM
SE

Single
Multi

Fig. 5.2 SMSE plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right panel)
aggregated data. The Figure shows the performance in terms of the number of training
instances used for the data sampled at a higher resolution. The test set always contains 1000
instances. We plot the mean and standard deviation for five repetitions of the experiment
with different sets of training and test data.

and birth year. We used 100 fixed inducing variables and mini-batches of size 50 samples.
The prediction task consists of predicting the 1000 original resolution test data with the help
of the second task, which consists of the aggregated data (5× 5 or 2× 2 for two separate
experiments).

Figure 5.2 shows SMSE for five randomly selected data points in the training and test sets.
We notice that the multi-task learning model outperforms the single-task GP when there are
few observations in the task with the original resolution data. This pattern holds below 500
observations. At that point, both models perform equally well, since the single-task GP now
has enough training data. With respect to the two different resolutions, the multi-task model
performs better when the second task has a 2×2 resolution rather than 5×5 resolution, as
one might also expect.

Figure 5.3 shows the results in terms of SNLP for the Fertility dataset. We can notice a
similar pattern to the one observed for the SMSE in Figure 5.2.

In Figure 5.4, different baselines are compared to the proposed method. Dependent GPs
(DGP) [Boyle and Frean, 2005] and Intrinsic Co-regionalisation Model (ICM) or Multi-task
GPs [Bonilla et al., 2008] use the centroid of the area as input. MTGPA (the proposed
method) performs better or similarly to these baselines as we increase the number of training
points for the high-resolution output.

82 Multi-task learning for aggregated data

5 10 30 50 80 100 500
Number of samples for high-resolution output

4.0

3.8

3.6

3.4

3.2

3.0

SN
LP

Single
Multi

5 10 30 50 80 100 500
Number of samples for high-resolution output

4.0

3.8

3.6

3.4

3.2

3.0

SN
LP

Single
Multi

Fig. 5.3 SNLP plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right panel)
aggregated data.

10 30 50 80 100 500
Number of samples for high-resolution output

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

SM
SE

MTGPA
IND
DGP
ICM

10 30 50 80 100 500
Number of samples for high-resolution output

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
SM

SE

MTGPA
IND
DGP
ICM

10 30 50 80 100 500
Number of samples for high-resolution output

4

3

2

1

0

1

2

SN
LP

MTGPA
IND
DGP
ICM

10 30 50 80 100 500
Number of samples for high-resolution output

4

3

2

1

0

1

2

SN
LP

MTGPA
IND
DGP
ICM

Fig. 5.4 SMSE and SNLP plots for the fertility dataset for 5×5 (left panel) and 2×2 (right
panel) aggregated data for different baselines, MTGPA , Independent GP (IND), DGP and
ICM.

In Figure 5.5, SNLP is calculated for four outputs (two outputs with high-resolution and
a few data points, and two outputs with low-resolution and many more data points). The
high-resolution data correspond to the fertility rates of the first and second birth orders.

The first task consists of a different number of data observations randomly taken from the
training points of the fertility rate of the first birth. The second task consists of all the training
data at the first task aggregated at two different resolutions, 5×5 and 2×2. The third task

5.3 Experiments 83

consists of a different number of data observations randomly taken from the training points
of the fertility rate of the second birth. The fourth task consists of all the training data at the
third task aggregated at two different resolutions, 5×5 and 2×2.

We use two different versions of our model and compare their SNLPs. In one version, all
of the outputs are considered as Gaussians (MTGPA), and in the second version all of the
outputs are considered as heteroscedastic Gaussians (HetGPA).

Heteroscedastic Gaussians In the Gaussian case, only the mean parameter is modelled as
a latent function, while the variance is a hyper-parameter. However, in the heteroscedastic
case, both mean and variance are assumed to follow latent functions. The model with
HetGPA outperforms the model with MTGPA, since it allows more flexibility toward the
latent function that models the variance of the Gaussian.

5 10 30 50 80 100 500
Number of samples for high-resolution output

5.00

4.75

4.50

4.25

4.00

3.75

3.50

3.25

SN
LP

MTGPA
HetGPA

5 10 30 50 80 100 500
Number of samples for high-resolution output

5.00

4.75

4.50

4.25

4.00

3.75

3.50

3.25

SN
LP

MTGPA
HetGPA

Fig. 5.5 SNLP plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right panel)
aggregated data for four outputs (two fertility rates). All outputs are considered as Gaussian
(MTGPA) and all outputs are considered as heteroscedastic Gaussian (HetGPA).

Air pollution monitoring network Particulate air pollution can be measured accurately
with high temporal precision by using a β attenuation (BAM) sensor or similar. Unfortunately
these are often prohibitively expensive. We propose instead that one can combine the
measurements from a low-cost optical particle counter (OPC), which gives good temporal
resolution but is often badly biased, with the results of Cascade Impactors (CIs), which are a
cheaper method for assessing the mass of particulate species, but which integrate data over
many hours (e.g. 6 or 24 hours).

One can formulate the problem as observations of integrals of a latent function, with
the CI integrating over 6 hour periods and the OPC sensor integrating over short 5 minute
periods. We used data from two fine particulate matter (PM) sensors. The sensors are less
than 2.5 micrometer diameter (PM2.5) and are colocated in Kampala, Uganda at 0.3073◦N
32.6205◦E. The data is taken between 2019-03-13 and 2019-03-22. We used the average

84 Multi-task learning for aggregated data

0

20

40

60

80

PM
2.

5
(b

ia
s)

 /
gm

3

Colocated low-cost sensor

75 80 85 90 95
Time / hour

0

5

10

15

20

PM
2.

5
/

gm
3

Reference sensor data and prediction
prediction
true
training data

Fig. 5.6 Upper plot: a (biased) OPC low-accuracy high-frequency measurement of PM2.5 air
pollution. Lower plot: the high-precision low-frequency training data (black rectangles), the
test data from the same instrument (red), and the posterior prediction for this output variable,
making predictions over the same 15-minute periods as the test data (blue, with pale blue
indicating 95% confidence intervals). The ticks in the bottom of the lower plot indicate the
position of the inducing inputs. We have also deliberately cut the higher peaks of the samples
in the upper plot that can go as high as 500 µg/m3, to visualise the samples in other parts of
the plot better.

from six-hour periods from a calibrated mcerts-verified Osiris (Turnkey) particulate air
pollution monitoring system as the low-resolution data, and then compared the prediction
results to the original measurements (available at a 15 minute resolution). We used a PMS
5003 (Plantower) low-cost OPC to provide the high-resolution data. We typically found these
values to be biased. We normalised (scaled) the data to emphasise that the absolute values of
these variables are not of interest in this model.

Our multi-task model consists of a single latent function, Q = 1, with covariance k1(z,z′),
that follows an EQ form. We assume both outputs follow Gaussian likelihoods. In our
model, one task represents the high accuracy low-resolution samples and the second task
represents the low-accuracy high-resolution samples. The posterior GP aims both to fulfil the
6-hour long integrals of the high-accuracy data (from the Osiris instrument) while remaining
correlated with the high-frequency bias data from the OPC. We used 2000 iterations of the

5.4 Conclusion 85

variational EM algorithm, with 200 evenly spaced inducing points, and a fixed length-scale
of 0.75 hours. We only optimize the parameters of the coregionalisation matrix B1 ∈ R2×2

and the variance of the noise of each Gaussian likelihood.
Figure 5.6 illustrates the results for a 24 hour period. The training data consists of the

high-resolution low-accuracy sensor and a low-frequency high accuracy sensor. The aim
is to reconstruct the underlying level of pollution that both sensors are measuring. To test
whether the additional high-frequency data improves accuracy, we ran the coregionalisation
both with and without this additional training data.

We found that the SMSE for the predictions over the 9 days tested were substantially
smaller with multi-task learning, as compared to using only the low-resolution samples, giving
0.439± 0.114 and 0.657± 0.100 respectively — this difference is statistically significant
using a paired t-test with a p value of 0.0008. In summary, the model was able to incorporate
this additional data and use it to improve estimates, while still ensuring the long integrals
were largely satisfied.

5.4 Conclusion

In this chapter, we have introduced a powerful framework for working with aggregated
datasets that allows the user to combine observations from disparate data types, with varied
support. This allows us to produce both finely resolved and accurate predictions by using the
accuracy of low-resolution data and the fidelity of high-resolution side-information. In all of
the experiments, we showcased situations where high-resolution data can be rare, showing
that jointly modeling the high-resolution data with the information from the other tasks helps
to improve individual predictions, and so copes with lack of data or data scarcity issues. We
chose our inducing points to lie in the latent space, a distinction which allows us to estimate
multiple tasks with different likelihoods. SVI and variational-EM with mini-batches make the
framework scalable and tractable for potentially very large problems. A potential extension
would be to consider how the “mixing” achieved through coregionalisation could vary across
the domain by extending, for example, the Gaussian Process Regression Network model
[Wilson et al., 2012] to be able to deal with aggregated data. Such a model would allow latent
functions of different length-scales to be relevant at different locations in the domain. In
summary, this framework provides a vital toolkit, allowing a mixture of likelihoods, kernels,
and tasks, and paves the way to the analysis of a very common and widely used data structure
- that of values over a variety of supports on the domain.

Chapter 6

Conclusion and future work

This final chapter summarizes the research work and contributions carried out in this thesis
and discusses possible directions and ideas for future research. In Section 6.1 we recapitulate
the contributions presented across the thesis. In Section 6.2 we sketch possible directions for
future work.

6.1 Thesis summary

In this thesis we have looked into data scarcity and the issues with lack of labeled data
in different applications. The main objective of this thesis was to study various ways of
tackling these issues using Gaussian processes. We proposed different approaches for various
granularity of labels. We could use latent variable models for the cases where we have a
limited patch-level labeled data (Chapter 3). We could use active learning when we have high-
level labels and no patch-level labels are available (Chapter 4). Lastly, we could combine
various granularity of data and use multi-task learning to jointly learn them in Chapter 5.

In Chapter 3, we developed a latent variable model known as SCLVM that can cope
with imbalanced data by dividing the latent space into a shared space and a private space.
The shared space captures the data characteristics shared across all of the data, regardless
of category. The private space captures the data characteristics specific to each category.
We proposed a new kernel formulation that enables the separation of the latent space by
incorporating label information and which derives an efficient variational inference method.
Since the modeling of the private space is category specific, the larger category does not
dominate the minority class anymore.

In Chapter 4, we address data scarcity and lack of labeled data issues in image clas-
sification using a combination of transfer learning from Convolutional Neural Networks
with Gaussian process classification. Manually labelling images is tedious and potentially

88 Conclusion and future work

expensive. In many applications, there are lots of data with no labels, and even if labels
are available, they are often high-level labels. To overcome this difficulty, our goal was
to select data in a sensible manner so that we have efficient models which require fewer
labeled images. This was achieved using active learning. The process started with a small
set of labeled data and continued by actively adding data from a pool of unlabeled data by
manually annotating them. The proposed technique requires fewer expert labels and reduces
the cost of annotation, while being more data efficient compared to other supervised learning
approaches such as CNNs. In order to tackle data scarcity, we proposed cutting images to
small patches, which helped to increase the data for the region of interest, and subsequently
alleviated the lack of minority class issue.

In Chapter 5, we presented a novel multi-task learning model based on Gaussian processes
for joint learning of variables that have been aggregated at different input scales. Data rarity
can arise due to lack of high-resolution data. Jointly modeling tasks using information from
other tasks helps to improve predictions on rare cases. Our model represented each task as
a linear combination of the realizations of latent processes that are integrated at a different
scale per task. We were then able to compute the cross-covariance between different tasks
either analytically or numerically. We also allowed each task to have a potentially different
likelihood model and provide a variational lower bound that can be optimized in a stochastic
fashion, making our model suitable for larger datasets.

By combining the ideas introduced throughout this thesis we believe we have gone some
way toward addressing data scarcity and lack of labeled data issues with various granularities
using Gaussian processes.

6.2 Future directions

There are various future directions which could be pursued based on the studies conducted in
this thesis. A brief summary of possible future directions are provided in this section.

Deep GPs have been shown to be applicable when data is scarce [Damianou and Lawrence,
2013]. Deep GPs encapsulate the idea of stacking Gaussian Processes in an analogous way
to nesting layers of a neural network. A single layer of the deep GP can be considered as a
GPLVM, and variables in each layer of a deep hierarchy can be treated as latent variables
[Damianou and Lawrence, 2013]. This enables a hierarchical setting for the variational
methodology. One can extend the uncertainty propagation in the "shallow" GPs to multiple
layers to allow for a more complex mapping function from input to output. This idea can be
applied to the imbalanced data problem in Chapter 3 where very few labeled data examples
are available for the class of interest.

6.2 Future directions 89

In Chapter 3, we restricted our experiments to use RBF kernel since we could calculate
the lower bound in closed form. One future direction is exploring other kernels or combining
different kernels [Duvenaud, 2014]. Different kernels express different structures. We
can explore combining various kernels with the proposed shared-private kernel structure
to include as much structure as necessary into our model with the capacity necessary to
represent more specific applications.

In Chapter 4, for addressing the lack of labeled data, we used active learning to determine
which input the expert/oracle should label next based only on the GP classification predictive
mean p(y∗|y) of the transformed latent function. However, we have access to the full
predictive posterior of f for any input point, as a result of modeling the latent function f
with a Gaussian Process. One possible direction in which to take this would be to explore the
predictive variance for the latent function f . In this setting there are a number of directions
we could take. We could only choose the data with an uncertain mean of p(y∗|y) and
uncertain variance of p(f ∗|y), but we also could select the data with a certain mean and
uncertain variance. Bayesian optimization (BO) can be used to search efficiently the space of
parameters [GPyOpt, 2016; Osborne et al., 2009]. The parameters in our setting will have a
predictive mean of p(y∗|y) versus predictive variance of p(f ∗|y). In BO the aim is to find the
optimum parameters by spending the lowest possible number of evaluations. This is linked to
exploration versus exploitation trade-off. Exploration seeks to sample in locations where the
uncertainty is high. Exploitation on the other hand, seeks to sample where the model predicts
a good objective and continuously exploiting known information might give little to no yield.

A final possible direction in Chapter 5 would be to extend the method to apply to images.
In Chapter 5 we only used the location information. Combining the features from images
with the location information (x and y coordinates) could open new directions for applying
multi-task learning to aggregated image datasets. There might be cases where there are
many low-quality images and very few high quality images. Jointly modeling images with
various resolutions will help improve the individual predictions. This could be achieved by
combining the structural properties of deep learning architectures with the non-parametric
flexibility of GPs [Wilson et al., 2016a].

Another potential extension that we mentioned in Chapter 5 would be to consider how
the “mixing” achieved through coregionalisation could vary across the domain by extending,
for example, the Gaussian Process Regression Network model [Wilson et al., 2012], which
combines the structural properties of a Bayesian neural network with Gaussian processes to
be able to deal with aggregated data. Such a model would allow latent functions of different
length-scales to be relevant at different locations in the domain.

References

Abe, N. (2003). Invited talk: Sampling approaches to learning from imbalanced datasets:
active learning, cost sensitive learning and beyond. In Proc. of ICML Workshop: Learning
from Imbalanced Data Sets, volume 22.

Álvarez, M., Luengo, D., Titsias, M., and Lawrence, N. (2010). Efficient multioutput
Gaussian processes through variational inducing kernels. In AISTATS, pages 25–32.

Alvarez, M. A. and Lawrence, N. D. (2009). Sparse convolved Gaussian processes for
multi-output regression. In NIPS, pages 57–64.

Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued
functions: A review. Foundations and Trends in Machine Learning, pages 195–266.

Attenberg, J. and Provost, F. (2010). Why label when you can search? alternatives to
active learning for applying human resources to build classification models under extreme
class imbalance. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 423–432.

Barber, D. and Williams, C. K. (1997). Gaussian processes for bayesian classification via
hybrid monte carlo. In Advances in neural information processing systems, pages 340–346.

Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD explorations
newsletter, 6(1):20–29.

Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. Ph. D. Thesis,
University College London.

Bhowmik, A., Ghosh, J., and Koyejo, O. (2015). Generalized linear models for aggregated
data. In AISTATS, pages 93–101.

Bishop, C. M. et al. (2006). Pattern recognition and machine learning (information science
and statistics). Springer-Verlag New York, Inc., Secaucus, NJ.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877.

Bonilla, E. V., Chai, K. M., and Williams, C. (2008). Multi-task Gaussian process prediction.
In NIPS, pages 153–160.

Boyle, P. and Frean, M. (2005). Dependent Gaussian processes. In NIPS, pages 217–224.

92 References

Chan, P. K. and Stolfo, S. J. (1998). Toward scalable learning with non-uniform class and
cost distributions: A case study in credit card fraud detection. In KDD, volume 98, pages
164–168.

Chawla, N. V. (2009). Data mining for imbalanced datasets: An overview. In Data mining
and knowledge discovery handbook, pages 875–886. Springer.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357.

Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004). Special issue on learning from
imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1):1–6.

Chen, Z., Ding, R., Chin, T.-W., and Marculescu, D. (2018). Understanding the impact of
label granularity on cnn-based image classification. In 2018 IEEE International Conference
on Data Mining Workshops (ICDMW), pages 895–904. IEEE.

Cieslak, D. A., Hoens, T. R., Chawla, N. V., and Kegelmeyer, W. P. (2012). Hellinger distance
decision trees are robust and skew-insensitive. Data Mining and Knowledge Discovery,
24(1):136–158.

Csató, L. and Opper, M. (2002). Sparse on-line gaussian processes. Neural computation,
14(3):641–668.

Damianou, A. (2015). Deep Gaussian Processes and Variational Propagation of Uncertainty.
PhD thesis, The University of Sheffield, Sheffield, UK.

Damianou, A., Ek, C., Titsias, M., and Lawrence, N. (2012). Manifold relevance determina-
tion. arXiv preprint arXiv:1206.4610.

Damianou, A. and Lawrence, N. (2013). Deep gaussian processes. In Artificial Intelligence
and Statistics, pages 207–215.

Damianou, A. C., Titsias, M. K., and Lawrence, N. D. (2014). Variational inference for
uncertainty on the inputs of gaussian process models. arXiv preprint arXiv:1409.2287.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE.

Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 155–164.

Drummond, C., Holte, R. C., et al. (2003). C4. 5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets
II, volume 11, pages 1–8. Citeseer.

Duvenaud, D. (2014). Automatic model construction with Gaussian processes. PhD thesis,
University of Cambridge.

Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference
on artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd.

References 93

Elliott, A. (2019). The culture of AI: Everyday life and the digital revolution. Routledge.

Ertekin, S., Huang, J., Bottou, L., and Giles, L. (2007a). Learning on the border: active
learning in imbalanced data classification. In Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, pages 127–136. ACM.

Ertekin, S., Huang, J., and Giles, C. L. (2007b). Active learning for class imbalance problem.
In Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 823–824. ACM.

Estabrooks, A., Jo, T., and Japkowicz, N. (2004). A multiple resampling method for learning
from imbalanced data sets. Computational intelligence, 20(1):18–36.

Fan, W., Stolfo, S. J., Zhang, J., and Chan, P. K. (1999). Adacost: misclassification cost-
sensitive boosting. In Icml, volume 99, pages 97–105.

Fawcett, T. and Provost, F. J. (1996). Combining data mining and machine learning for
effective user profiling. In KDD, pages 8–13.

Fernández-Godino, M. G., Park, C., Kim, N.-H., and Haftka, R. T. (2016). Review of
multi-fidelity models.

Fumera, G. and Roli, F. (2002). Support vector machines with embedded reject option. In
Pattern recognition with support vector machines, pages 68–82. Springer.

Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating marginal
densities. Journal of the American statistical association, 85(410):398–409.

Ghahramani, Z. (2013). Bayesian non-parametrics and the probabilistic approach to mod-
elling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371(1984):20110553.

Gibbs, M. N. and MacKay, D. J. (2000). Variational gaussian process classifiers. IEEE
Transactions on Neural Networks, 11(6):1458–1464.

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University
Press.

Goovaerts, P. (2010). Combining areal and point data in geostatistical interpolation: Ap-
plications to soil science and medical geography. Mathematical Geosciences, pages
535–554.

Gotway, C. A. and Young, L. J. (2002). Combining incompatible spatial data. Journal of the
American Statistical Association, pages 632–648.

GPyOpt (2016). GPyOpt: A bayesian optimization framework in python. http://github.com/
SheffieldML/GPyOpt.

Hamelijnck, O., Damoulas, T., Wang, K., and Girolami, M. (2019). Multi-resolution multi-
task Gaussian processes.

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

94 References

Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-smote: a new over-sampling
method in imbalanced data sets learning. In International Conference on Intelligent
Computing, pages 878–887. Springer.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
applications.

Haußmann, M., Hamprecht, F. A., and Kandemir, M. (2017). Variational Bayesian multiple
instance learning with Gaussian processes. In CVPR, pages 810–819.

He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263–1284.

He, H. and Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applications.
John Wiley & Sons.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In UAI,
pages 282–290.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015). Scalable variational Gaussian
process classification. In AISTATS, page 351–360.

Herbrich, R., Lawrence, N. D., and Seeger, M. (2003). Fast sparse gaussian process methods:
The informative vector machine. In Advances in neural information processing systems,
pages 625–632.

Hjort, N. L., Holmes, C., Müller, P., and Walker, S. G. (2010). Bayesian nonparametrics,
volume 28. Cambridge University Press.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. The Journal of Machine Learning Research, pages 1303–1347.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M. (2011). Bayesian active learning
for classification and preference learning. arXiv preprint arXiv:1112.5745.

Iglesias, J. E., Konukoglu, E., Montillo, A., Tu, Z., and Criminisi, A. (2011). Combining
generative and discriminative models for semantic segmentation of ct scans via active
learning. In Biennial International Conference on Information Processing in Medical
Imaging, pages 25–36. Springer.

Jaakkola, T. S. and Jordan, M. I. (1996). Computing upper and lower bounds on likelihoods in
intractable networks. In Proceedings of the Twelfth international conference on Uncertainty
in artificial intelligence, pages 340–348. Morgan Kaufmann Publishers Inc.

Jolliffe, I. T. (1986). Principal Component Analysis. springer, New York.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233.

Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press.

References 95

Kandemir, M., Haussmann, M., Diego, F., Rajamani, K. T., van der Laak, J., and Hamprecht,
F. A. (2016). Variational weakly supervised Gaussian processes. In Proceedings of the
British Machine Vision Conference (BMVC).

Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T. (2007). Active learning with gaussian
processes for object categorization. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1–8. IEEE.

Key, T. J., Verkasalo, P. K., and Banks, E. (2001). Epidemiology of breast cancer. The lancet
oncology, 2(3):133–140.

Kim, M. and De la Torre, F. (2010). Gaussian processes multiple instance learning. In ICML,
pages 535–542.

Konyushkova, K., Sznitman, R., and Fua, P. (2017). Learning active learning from data.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages
4225–4235. Curran Associates, Inc.

Kotzias, D., Denil, M., de Freitas, N., and Smyth, P. (2015). From group to individual labels
using deep features. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 597–606.

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions.
Progress in Artificial Intelligence, 5(4):221–232.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

Kubat, M., Holte, R. C., and Matwin, S. (1998). Machine learning for the detection of oil
spills in satellite radar images. Machine learning, 30(2-3):195–215.

Kück, H. and de Freitas, N. (2005). Learning about individuals from group statistics. In UAI,
pages 332–339.

Kukar, M., Kononenko, I., et al. (1998). Cost-sensitive learning with neural networks. In
ECAI, pages 445–449.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86.

Kuss, M. and Rasmussen, C. E. (2005). Assessing approximate inference for binary Gaussian
process classification. Journal of machine learning research, 6(Oct):1679–1704.

Kyriakidis, P. C. (2004). A geostatistical framework for area-to-point spatial interpolation.
Geographical Analysis, pages 259–289.

Law, H. C. L., Sejdinovic, D., Cameron, E., Lucas, T. C., Flaxman, S., Battle, K., and
Fukumizu, K. (2018). Variational learning on aggregate outputs with Gaussian processes.
In NeurIPS, pages 6084–6094.

96 References

Lawrence, N. (2005). Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of machine learning research, 6(Nov):1783–1816.

Lawrence, N. D., Seeger, M., and Herbrich, R. (2003). Fast sparse gaussian process methods:
The informative vector machine. In Advances in Neural Information Processing Systems
15. Citeseer.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to
tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning
Research, 18(17):1–5.

Lewis, D. D. and Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised
learning. In Machine learning proceedings 1994, pages 148–156. Elsevier.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classifiers. In
SIGIR’94, pages 3–12. Springer.

MacKay, D. J. (1992). Information-based objective functions for active data selection. Neural
computation, 4(4):590–604.

Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal
and unknown. In ICML-2003 workshop on learning from imbalanced data sets II, volume 2,
pages 2–1.

Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.

Minka, T. P. (2001). Expectation propagation for approximate bayesian inference. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages
362–369. Morgan Kaufmann Publishers Inc.

Moreno-Muñoz, P., Artés, A., and Álvarez, M. A. (2018). Heterogeneous multi-output
Gaussian process prediction. In NeurIPS, pages 6711–6720.

Musicant, D. R., Christensen, J. M., and Olson, J. F. (2007). Supervised learning by training
on aggregate outputs. In Seventh IEEE International Conference on Data Mining (ICDM),
pages 252–261.

Neal, R. M. (1997). Monte carlo implementation of gaussian process models for bayesian
regression and classification. arXiv preprint physics/9701026.

Nickisch, H. and Rasmussen, C. E. (2008). Approximations for binary gaussian process
classification. Journal of Machine Learning Research, 9(Oct):2035–2078.

Opper, M. and Archambeau, C. (2009). The variational gaussian approximation revisited.
Neural computation, 21(3):786–792.

Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian processes for global
optimization. In 3rd international conference on learning and intelligent optimization
(LION3), pages 1–15.

References 97

Patrini, G., Nock, R., Rivera, P., and Caetano, T. (2014). (almost) no label no cry. In NIPS,
pages 190–198.

Peherstorfer, B., Willcox, K., and Gunzburger, M. (2018). Survey of Multifidelity Methods
in Uncertainty Propagation, Inference, and Optimization. SIAM Review, 60(3):550–591.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector
machines.

Provost, F. (2000). Machine learning from imbalanced data sets 101. In Proceedings of the
AAAI’2000 workshop on imbalanced data sets, pages 1–3.

Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments. Machine
learning, 42(3):203–231.

Quadrianto, N., Smola, A. J., Caetano, T. S., and Le, Q. V. (2009). Estimating labels from
label proportions. J. Mach. Learn. Res., pages 2349–2374.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approximate
gaussian process regression. Journal of Machine Learning Research, 6(Dec):1939–1959.

Quinonero-Candela, J., Rasmussen, C. E., and Williams, C. K. (2007). Approximation
methods for gaussian process regression. In Large-scale kernel machines, pages 203–223.
MIT Press.

Rasmussen, C. E. and Williams, C. K. I. (2006a). Gaussian Processes for Machine Learning.
mit, Cambridge, MA.

Rasmussen, C. E. and Williams, C. K. I. (2006b). Gaussian processes for machine learning.
MIT Press.

Roy, N. and McCallum, A. (2001). Toward optimal active learning through monte carlo
estimation of error reduction. ICML, Williamstown, pages 441–448.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252.

Saul, A. D. (2016). Gaussian Process Based Approaches for Survival Analysis. PhD thesis,
University of Sheffield.

Saul, A. D., Hensman, J., Vehtari, A., and Lawrence, N. D. (2016). Chained Gaussian
processes. In AISTATS, page 1431–1440.

Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.

Seeger, M. (2000). Bayesian model selection for support vector machines, gaussian processes
and other kernel classifiers. In Advances in neural information processing systems, pages
603–609.

98 References

Seeger, M., Williams, C., and Lawrence, N. (2003). Fast forward selection to speed up sparse
gaussian process regression. Technical report.

Settles, B. (2012). Active Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning Series. Morgan & Claypool.

Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query by committee. In Proceedings
of the fifth annual workshop on Computational learning theory, pages 287–294.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Smith, M. T., Álvarez, M. A., and Lawrence, N. D. (2018). Gaussian process regression for
binned data.

Snell, V. (2013). Shape and Texture Recognition for Automated Analysis of Pathology Images.
PhD thesis, Centre for Vision, Speech and Signal Processing, University of Surrey, Surrey,
UK.

Snelson, E. and Ghahramani, Z. (2006a). Sparse gaussian processes using pseudo-inputs. In
Advances in neural information processing systems, pages 1257–1264.

Snelson, E. and Ghahramani, Z. (2006b). Sparse Gaussian processes using pseudo-inputs. In
NIPS, pages 1257–1264.

Society, T. A. C. (2020). How common is breast cancer?

Sun, Y., Kamel, M. S., Wong, A. K., and Wang, Y. (2007). Cost-sensitive boosting for
classification of imbalanced data. Pattern Recognition, 40(12):3358–3378.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–2826.

Tanaka, Y., Iwata, T., Tanaka, T., Kurashima, T., Okawa, M., and Toda, H. (2019a). Refining
coarse-grained spatial data using auxiliary spatial data sets with various granularities. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 5091–5099.

Tanaka, Y., Tanaka, T., Iwata, T., Kurashima, T., Okawa, M., Akagi, Y., and Toda, H. (2019b).
Spatially aggregated Gaussian processes with multivariate areal outputs.

Teh, Y.-W., Seeger, M., and Jordan, M. I. (2005). Semiparametric latent factor models. In
AISTATS, page 333–340.

Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE
Transactions on Knowledge and Data Engineering, 14(3):659–665.

Tipping, M. E. and Bishop, C. M. (1999a). Mixtures of probabilistic principal component
analyzers. Neural computation, 11(2):443–482.

References 99

Tipping, M. E. and Bishop, C. M. (1999b). Probabilistic principal component analysis.
JRSSb, 6(3):611–622.

Titsias, M. (2009a). Variational learning of inducing variables in sparse gaussian processes.
In Artificial Intelligence and Statistics, pages 567–574.

Titsias, M. and Lawrence, N. D. (2010). Bayesian Gaussian process latent variable model.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 844–851.

Titsias, M. K. (2009b). Variational model selection for sparse gaussian process regression.
Report, University of Manchester, UK.

Tong, S. and Koller, D. (2001). Support vector machine active learning with applications to
text classification. Journal of machine learning research, 2(Nov):45–66.

Urtasun, R. and Darrell, T. (2007). Discriminative Gaussian process latent variable model for
classification. In Proceedings of the 24th international conference on Machine learning,
pages 927–934. ACM.

Veta, M., Van Diest, P. J., Willems, S. M., Wang, H., Madabhushi, A., Cruz-Roa, A.,
Gonzalez, F., Larsen, A. B., Vestergaard, J. S., Dahl, A. B., et al. (2015). Assessment of
algorithms for mitosis detection in breast cancer histopathology images. Medical image
analysis, 20(1):237–248.

Wallace, B. C., Small, K., Brodley, C. E., and Trikalinos, T. A. (2010). Active learning for
biomedical citation screening. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 173–182.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016a). Deep kernel learning. In
Artificial Intelligence and Statistics, pages 370–378.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P. (2016b). Stochastic variational
deep kernel learning. In Advances in Neural Information Processing Systems, pages
2586–2594.

Wilson, A. G., Knowles, D. A., and Ghahramani, Z. (2012). Gaussian process regression
networks. In ICML.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods.
In 33rd annual meeting of the association for computational linguistics, pages 189–196.

Yousefi, F., Álvarez, M., Lawrence, N., and Ek, C. H. (2018). Active learning using gaussian
processes for imbalanced datasets. Neural Information Processing Systems (NeurIPS)
workshop on Bayesian NonParametrics (BNP).

Yousefi, F., Dai, Z., Ek, C. H., and Lawrence, N. (2016). Unsupervised learning with
imbalanced data via structure consolidation latent variable model. International Conference
on Learning Representations-Workshop track.

100 References

Yousefi, F., Smith, M. T., and Álvarez, M. (2019). Multi-task learning for aggregated data
using gaussian processes. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems
32, pages 15076–15086. Curran Associates, Inc.

Zhang, J., Atkinson, P., and Goodchild, M. F. (2014). Scale in Spatial Information and
Analysis. CRC Press.

Zheng, Z., Wu, X., and Srihari, R. (2004). Feature selection for text categorization on
imbalanced data. ACM Sigkdd Explorations Newsletter, 6(1):80–89.

Zhou, Z.-H. and Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Transactions on Knowledge and Data
Engineering, 18(1):63–77.

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis
lectures on artificial intelligence and machine learning, 3(1):1–130.

Appendix A

This appendix contains some basic maths knowledge that can be useful for calculating
Gaussian distribution and matrix identities.

A.1 Gaussian identities

A.1.1 Conditional and marginal distributions of partitioned Gaussians

Given a joint Gaussian distribution N(x|µ,Σ), two dis-joint subsets of x are xa and xb.

x =

[
xa

xb

]
, µ =

[
µa

µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
(A.1)

The conditional distribution is:

p(xa|xb) =N(x|µa −Λ
−1
aa Λab(x−µb), Λ

−1
aa), (A.2)

where, Λ = Σ−1 and it is called the precision matrix:

Λ =

[
Λaa Λab

Λba Λbb

]
(A.3)

The marginal distribution is:

p(xa) =N(xa|µa,Σaa). (A.4)

102

A.1.2 Conditional and marginal distributions of Gaussians

Given a marginal distribution for x and a conditional distribution for p(y|x):

p(x) =N(x|µ,Σx) (A.5)

p(y|x) =N(y|Ax+b,Σy). (A.6)

The marginal distribution of y and the conditional distribution of p(x|y) can be calculated as:

p(y) =N(y|Aµ +b,Σy +AΣxA⊤) (A.7)

p(x|y) =N(x|ΣA⊤
Σ
−1
f (y−b)+Σ

−1
x µ,Σ), (A.8)

where Σ = (Σ−1
x +A⊤Σ

−1
f A)−1.

A.2 Matrix identities

Following notations are used in this section: B is a n×n matrix, U and V are n×m and W is
m×m.

The matrix inversion lemma:

(B+UWV⊤)−1 = B−1 −B−1U(W−1 +V⊤Z−1U)−1V⊤B−1 (A.9)

A is n×n invertible matrix and its inverse A−1 is partitioned into:

A =

[
P Q
R S

]
,A−1 =

[
P̃ Q̃
R̃ S̃

]
(A.10)

P and P̃ are n1 × n1 matrices and S and S̃ are n2 × n2 matrices where, n = n1 + n2 and
sub-matrices are calculated as follows:

P̃ =P−1 +P−1QMRP−1

Q̃ =−P−1QM

R̃ =−MRP−1

S̃ =M,

A.2 Matrix identities 103

where,

M = (S−RP−1Q)−1 (A.11)

Appendix B

This appendix contains further details about calculating Ψ statistics, DGPLVM and Laplace
approximation.

B.1 Calculating the ψ statistics

Here we explain how to calculate Ψ statistics for RBF kernel. We re-write the equations
(3.18), (3.19), (3.20) from Chapter 3:

ψ0 = tr
(
⟨K f f ⟩q(X)

)
Ψ1 = ⟨K f u⟩q(X)

Ψ2 = ⟨Ku f K f u⟩q(X)

The expectation of the covariance matrices above with respect to q(X) can be computed for
each q(X) = ∑

N
n=1N(xn|µn,Sn) = ∑

N
n=1 q(xn). So we can write:

ψ0 =
N

∑
n=1

ψ
n
0 , (B.1)

where

ψ
n
0 =

∫
k(xn,xn)N(xn|µn,Sn) dxn. (B.2)

Ψ1 is an N ×M matrix:

(Ψ1)nm =
∫

k(xn,zm)N(xn|µn,Sn) dxn. (B.3)

106

Finally, Ψ2 is an M×M matrix and is written as:

Ψ2 =
N

∑
n=1

Ψ
n
2 (B.4)

where

(Ψn
2)mm′ =

∫
k(xn,zm)k(z′m,xn)N(xn|µn,Sn) dxn. (B.5)

Since the kernel is RBF, we can compute the convolution of the covariance function with a
Gaussian density analytically in equations (B.2), (B.3) and (B.5), so we have:

ψ0 = Nσ
2 (B.6)

(Ψ1)nm = σ
2

q

∏
j=1

exp
(
− 1

2
w j(µn j−zm j)

2

w jSn j+1

)
(w jSn j +1)

1
2

(B.7)

(Ψn
2)mm′ = σ

4
q

∏
j=1

exp
(
− w j(zm j−zm′ j)

2

4 − w j(µn j−
(zm j+zm′ j)

2)2

2w jSn j+1

)
(2w jSn j +1)

1
2

, (B.8)

where, w j is the hyper-parameter of the RBF kernel for every dimension of the data.

B.2 Discriminative Gaussian process latent variable model
(DGPLVM)

We used DGPLVM in Chapter 3, Section 3.3. We will provide more details about it here.
DGPLVM uses Generalized Discriminant Analysis (GDA) constraints and places informative
prior that is derived from discriminative criterion. This prior encourages latent positions of
the same class to be close to each other and latent position of different classes to be far. Linear
discriminant analysis (LDA) and the kernelized version called Generalized discriminant
analysis (GDA) are discriminative latent variable models. These methods are not probabilistic
and might not generalize well when training data is little [Urtasun and Darrell, 2007].

J(X) = tr(S−1
w Sb), (B.9)

B.3 Laplace Approximation 107

where Sw is the within class matrix and Sb is the between class matrix and they are defined
as:

Sw = ∑
c
(µc −µ)(µc −µ) (B.10)

Sb = ∑c∑i∈c(xi −µc)(xi −µ
⊤
c) (B.11)

where c is the number of classes, µ is overall mean of the data of all the classes, µc is the
mean of class c and xi are the training points of class c. Equation (B.9), is a function of latent
X and is defined as:

p(X) =
1
Z

exp(− 1
σ2 J−1), (B.12)

where Z is the normalization constant and σ2 represents a global scaling of the prior, smaller
σ means more discrimination and larger σ means more generalization. Inverse of Equation
(B.9) is used because we are minimizing the log likelihood.

B.3 Laplace Approximation

This is more detailed derivations for the Laplace approximation that is defined in Chapter 2,
Section 2.2.4.1 and can also be found in Rasmussen and Williams [2006a]. We re-write the
posterior:

p(f|X,y) =
p(y|f)p(f|X)

p(y|X)
. (B.13)

We can only consider an un-normlized posterior when maximizing w.r.t. f [Rasmussen and
Williams, 2006a].

p(f|X,y) ∝ p(y|f) p(f|X), (B.14)

taking the logarithm on the right hand side of the above equation and using GP prior formula:

p(f|X) =N(f|0,K f f)

log p(f|X) =−N
2

log2π − 1
2

log |K|− 1
2

f⊤K−1f

log p(f|X,y) = log(p(y|f))+ log(p(f|X)) (B.15)

= log p(y|f)− N
2

log2π − 1
2

log |K|− 1
2

f⊤K−1f

108

By assuming ψ(f) = log p(f|x,y) and by taking the first and second order derivatives of
Equation (B.15) w.r.t. f:

∂ψ

∂ f
= ∇ log p(y|f)−K−1f

∂ 2ψ

∂ f2 = ∇∇ log p(y|f)−K−1

It is assumed W=−∇∇ log p(y|f) and at the maximum:

∇ψ(f) = 0 ⇒ f̂ = K(∇ log p(y|f̂))

This equation can not be solved directly, since ∇ log p(y|f̂) is a non-linear function of f̂, and
Newton’s method will be used to iteratively find the maximum:

f new = f− (∇∇ψ)−1
∇ψ

= f+(K−1 +W)−1(∇ log p(y|f)−K−1f)

= (K−1 +W)−1(Wf+∇ log p(y|f)) (B.16)

If we divide f to two vectors f1 and f2 and assume that f1 corresponds to the points that are
not well explained and f2 corresponds to the points that are well explained. By well explained
points we mean that ∂ log p(yi|fi)/∂ fi and Wii are close to zero for these points. We can
show that

f new
1 = K11(I11 +W11K11)

−1(W11f1 +∇ log p(y1|f1)) (B.17)

f new
2 = K21K−1

11 f new
1 (B.18)

proof:[
f new
1

f new
2

]
=

[
K11 K12

K21 K22

]([
I11 0
0 I22

]
+

[
W11 0

0 W22

][
K11 K12

K21 K22

])−1

([
W11 0

0 W22

][
f1

f2

]
+

[
∇ log p(y1|f1))

∇ log p(y2|f2))

])

=

[
K11 K12

K21 K22

][
I11 +W11K11 W11K12

W22K21 I22 +W22K22

]−1[
W11f1 +∇ log p(y1|f1))

W22f2 +∇ log p(y2|f2))

]

Based on the assumption in Rasmussen and Williams [2006a], f2 corresponds to the
points that are well-explained, so the W22 ≃ 0 and ∇ log p(y2|f2)≃ 0 for these points and

B.3 Laplace Approximation 109

f1 corresponds to the ones that are not well-explained. Applying this definition inside the
matrices:

=

[
K11 K12

K21 K22

][
I11 +W11K11 W11K12

0 I22

]−1[
W11f1 +∇ log p(y1|f1))

0

]

Using A.2 we have:

A−1 =

[
P̃ Q̃
R̃ S̃

]

P̃ = (I11 +W11K11)
−1

R̃ = 0

S̃ = I22

For Q̃ we will use itself rather than writing down the inverse to keep the equations simple.

[
f new
1

f new
2

]
=

[
K11 K12

K21 K22

][
(I11 +W11K11)

−1 Q̃
0 I22

][
W11f1 +∇ log p(y1|f1))

0

]

=

[
K11(I11 +W11K11)

−1 K11Q̃+K12I22

K21(I11 +W11K11)
−1 K21Q̃+K22I22

][
W11f1 +∇ log p(y1|f1))

0

]

=

[
K11(I11 +W11K11)

−1W11f1 +∇ log p(y1|f1))

K21(I11 +W11K11)
−1W11f1 +∇ log p(y1|f1))

]

So

f new
1 = K11(I11 +W11K11)

−1W11f1 +∇ log p(y1|f1))

f new
2 = K21K−1

11 fnew
1

Appendix C

This appendix contains further details about detailed formulas and derivations of Chapter 5.

C.1 Change of support using Gaussian processes

This section contains more detailed formulas for the change of support using Gaussian
processes that is defined in Chapter 5, Section 5.1.1.

Basics

∫
erf(x)dx = x erf(x)+

1√
π

e−x2
+C (C.1)∫

σ
2e−

(x−x′)2

ℓ2 dx =
σ2ℓ

√
π

2
erf
((x− x′)

ℓ

)
(C.2)∫ t

s
σ

2e−
(x−x′)2

ℓ2 dx =
σ2ℓ

√
π

2
erf
((t − x′)

ℓ

)
− σ2ℓ

√
π

2
erf
((s− x′)

ℓ

)
(C.3)

∂erf(x)
∂x

=
2√
π

e−x2
(C.4)

∂
(
σ2e

−(x−x′)2

ℓ2
)

∂ℓ
=

2σ2

l3 (x− x′)2e−
(x−x′)2

ℓ2 (C.5)

Please note that the derivatives are w.r.t. the variance, that is why σ2 is written in partial
derivatives.

General formulas

We are using change of support because it finds the underlying function for block of data
better than let’s say RBF Smith et al. [2018]. For example in RBF for a block of data the
average between the block is used, however, in change of support our aim is to find the

112

locations of the block more accurately and not only the estimated average. We use general
notation to take integrals.

f (xb,1,xb,2) =
1
∆x

∫ xb,2

xb,1

u(x)dx, (C.6)

where u(x) is a latent stochastic process that we assume follows a Gaussian process with zero
mean and covariance k(x,x′). This construction is usually known in the Geostatistic literature
as the area-to-area interpolation problem or the modified areal unit problem (MAUP).
All the formulas and derivatives below are for the one dimensional case. The covariance is
calculated as follows:

cov[f (xa,1,xa,2), f (xb,1,xb,2)] (C.7)

= E[f (xa,1,xa,2) f (xb,1,xb,2)]−E(f (xa,1,xa,2)E(f (xb,1,xb,2))

= E[f (xa,1,xa,2) f (xb,1,xb,2)]

= E
[∫ xb,2

xb,1

u(x)dx
∫ xa,2

xa,1

u(x′)dx′
]

=
∫ xb,2

xb,1

∫ xa,2

xa,1

E[u(x)u(x′)]dxdx′

K f f =
1

∆x∆x′

∫ xb,2

xb,1

∫ xa,2

xa,1

k(x,x′)dxdx′.

For some forms of k(x,x′) it is possible to obtain an analytical expression for k(xa,xb,x′a,x
′
b).

For example, if k(z,z′) follows an Exponentiated-Quadratic (EQ) covariance form:

k(x,x′) = σ
2 exp{−(x− x′)2

2ℓ2 }, (C.8)

where σ2 is the variance of the kernel and ℓ is the length-scale. Each of the double integrals
take the following form:

∫ xb,2

xb,1

∫ xa,2

xa,1

σ
2 exp{−(x− x′)2

2ℓ2 }dxdx′. (C.9)

C.1 Change of support using Gaussian processes 113

The innermost integral in the indefinite form is:

∫
e
−
(

x2
2ℓ−

x′
ℓ x+ (x′)2

2ℓ

)
dx =

1
2

√
π

1
2ℓ

e

(
x′
2ℓ

)2
− 1

2ℓ
(x′)2

2ℓ
1
2ℓ erf

√ 1
2ℓ

x+
− x′

2ℓ√
1
2ℓ

 (C.10)

=
1
2

√
2ℓπerf

(√
1
2ℓ

x−
√

2ℓ
x′

2ℓ

)

=
1
2

√
2ℓπerf

[√
1
2ℓ

(x− x′)

]

= −1
2

√
2ℓπerf

[√
1
2ℓ

(x′− x)

]
.

Using the above result, for the definite integral we get:

∫ xa,2

xa,1

e
−
(

x2
2ℓ−

x′
ℓ x+ (x′)2

2ℓ

)
dx (C.11)

=−1
2

√
2ℓπerf

[√
1
2ℓ

(x′− xa,2)

]

+
1
2

√
2ℓπerf

[√
1
2ℓ

(x′− xa,1)

]

=
1
2

√
2ℓπerf

[√
1
2ℓ

(x′− xa,1)

]

− 1
2

√
2ℓπerf

[√
1
2ℓ

(x′− xa,2)

]
.

The outermost integral contains terms of the form:

1
2

√
2ℓπ

∫
erf

[√
1
2ℓ

(x′− xa,1)

]
dx′ =

1
2

√
2ℓπ

√
2ℓ
∫

erf(u)du, (C.12)

114

where we have used u =
√

1
2ℓ(x

′− xa,1). The indefinite integral above is equal to:

1
2

√
2ℓπ

√
2ℓ
∫

erf(u)du =
1
2

√
2ℓπ

√
2ℓ
[

u erf(u)+
1√
π

e−u2
]

(C.13)

=
1
2

√
2ℓπ

√
2ℓ

[√
1
2ℓ

(x′− xa,1)erf

[√
1
2ℓ

(x′− xa,1)

]

+
1√
π

e
−
(√

1
2ℓ (x

′−xa,1)

)2]

=
1
2

√
2ℓπ

{
(x′− xa,1)erf

[√
1
2ℓ

(x′− xa,1)

]

+

√
2ℓ
π

e−
(x′−xa,1)

2

2ℓ

}
.

By replacing u we get:

1
2

√
2ℓπ

∫ xb,2

xb,1

erf

[√
1
2ℓ

(x′− xa,1)

]
dx′ (C.14)

=
1
2

√
2ℓπ

{
(xb,2 − xa,1)erf

[√
1
2ℓ

(xb,2 − xa,1)

]

+

√
2ℓ
π

e−
(xb,2−xa,1)

2

2ℓ

}

− 1
2

√
2ℓπ

{
(xb,1 − xa,1)erf

[√
1
2ℓ

(xb,1 − xa,1)

]

+

√
2ℓ
π

e−
(xb,1−xa,1)

2

2ℓ

}
.

C.1 Change of support using Gaussian processes 115

The double integral is now calculated as:

∫ xb,2

xb,1

∫ xa,2

xa,1

exp
[
− (x− x′)2

2ℓ

]
dxdx′ (C.15)

=
1
2

√
2ℓπ

{
(xb,2 − xa,1)erf

[√
1
2ℓ

(xb,2 − xa,1)

]

+

√
2ℓ
π

e−
(xb,2−xa,1)

2

2ℓ

}

− 1
2

√
2ℓπ

{
(xb,1 − xa,1)erf

[√
1
2ℓ

(xb,1 − xa,1)

]

+

√
2ℓ
π

e−
(xb,1−xa,1)

2

2ℓ

}

− 1
2

√
2ℓπ

{
(xb,2 − xa,2)erf

[√
1
2ℓ

(xb,2 − xa,2)

]

+

√
2ℓ
π

e−
(xb,2−xa,2)

2

2ℓ

}

+
1
2

√
2ℓπ

{
(xb,1 − xa,2)erf

[√
1
2ℓ

(xb,1 − xa,2)

]

+

√
2ℓ
π

e−
(xb,1−xa,2)

2

2ℓ

}
.

116

For convenience, let us express 2ℓ= ℓ2 in the Equation (C.15). We then get:

∫ xb,2

xb,1

∫ xa,2

xa,1

exp
[
− (x− x′)2

ℓ2

]
dxdx′ (C.16)

=
ℓ2

2

{
√

π
(xb,2 − xa,1)

ℓ
erf
[

1
ℓ
(xb,2 − xa,1)

]

+ e−
(xb,2−xa,1)

2

ℓ2

}

− ℓ2

2

{
√

π
(xb,1 − xa,1)

ℓ
erf
[

1
ℓ
(xb,1 − xa,1)

]

+ e−
(xb,1−xa,1)

2

ℓ2

}

− ℓ2

2

{
√

π
(xb,2 − xa,2)

ℓ
erf
[

1
ℓ
(xb,2 − xa,2)

]

+ e−
(xb,2−xa,2)

2

ℓ2

}

+
ℓ2

2

{
√

π
(xb,1 − xa,2)

ℓ
erf
[

1
ℓ
(xb,1 − xa,2)

]

+ e−
(xb,1−xa,2)

2

ℓ2

}
.

We define g(x) as g(x) = x
√

πerf(x)+ e−x2
.

Please note that g(x) is an even function, if g(x) = g(−x). We can then express the double
integral above as:

∫ xb,2

xb,1

∫ xa,2

xa,1

exp
[
− (x− x′)2

ℓ2

]
dxdx′ (C.17)

=
ℓ2

2

{
g
[
(xb,2 − xa,1)

ℓ

]
−g
[
(xb,1 − xa,1)

ℓ

]

−g
[
(xb,2 − xa,2)

ℓ

]
+g
[
(xb,1 − xa,2)

ℓ

]}
.

C.1 Change of support using Gaussian processes 117

The covariance is defined as:

k(xa,xb,x′a,x
′
b) (C.18)

=
σ2ℓ2

2∆x∆x′
×

[
g
((xb,2 − xa,1)

ℓ

)
+g
((xb,1 − xa,2)

ℓ

)
−g
((xb,1 − xa,1)

ℓ

)
−g
((xb,2 − xa,2)

ℓ

)]
.

The cross covariance is calculated as follows:

cov[f (s, t),u(t ′)] = E[f (s, t)u(t ′)]−E(f (s, t)E(u(t ′)) (C.19)

= E[f (s, t)u(t ′)]

= E
[∫ t

s
u(z) dz u(t ′)

]
=

∫ t

s
E[u(z)u(t ′)]dz

K f u =
∫ t

s
k(z, t ′)dz.

By replacing k in the equation above we get:

K f u((s, t),(t ′)) = σ
2
√

πℓ

2

[
erf(

(t ′− s)
ℓ

)− erf(
(t ′− t)

ℓ
)
]

(C.20)

= σ
2
√

πℓ

2

[
erf(

(t − t ′)
ℓ

)+ erf(
(t ′− s)

ℓ
)
]
.

We calculate the gradient of the objective function (negative log marginal likelihood) w.r.t.
hyper-parameters to find the optimized parameters.

∂L
∂θ

=
∂L
∂K

∂K
∂θ

(C.21)

The RBF kernel has two hyper-parameters, so we will take derivative of the output kernel
w.r.t. the lenghscale and variance. We define h(z) = z

√
π

2 erf(z)+ e−z2
,

∂K f f ((s, t),(s′, t ′))
∂ℓ

= σ
2ℓ×

[
h
(
(t − s′)

ℓ

)
+h
(
(t ′− s)

ℓ

)
(C.22)

−h
(
(t − t ′)

ℓ

)
−h
(
(s− s′)

ℓ

)]
,

118

∂K f f ((s, t),(s′, t ′))
∂σ2 =

ℓ2

2
×

[
g
((t − s′)

ℓ

)
+g
((s− t ′)

ℓ

)
(C.23)

−g
((t − t ′)

ℓ

)
−g
((s− s′)

ℓ

)]
.

The covariance between f and u and corresponding derivatives w.r.t length-scale and
variance are defined as:

K f u = σ
2
√

πℓ

2

(
erf(

(t − t ′)
ℓ

)+ erf(
(t ′− s)

ℓ
)
)

(C.24)

∂K f u

∂ℓ
=

∂

∂ℓ

(
σ

2
√

πℓ

2

[
erf(

(t − t ′)
ℓ

)
]
+σ

2
√

πℓ

2

[
erf(

(t ′− s)
ℓ

)
])

(C.25)

∂K f u

∂ℓa
= σ

2
√

π

2

[
erf(

(t − t ′)
ℓ

)
]
+σ

2
√

πℓ

2
×−(

(t − t ′)
ℓ2)× 2√

π
e−(

(t−t′)
ℓ)2

= σ
2
√

π

2

[
erf(

(t − t ′)
ℓ

)
]
−σ

2 (t − t ′)
ℓ

e−(
(t−t′)

ℓ)2

∂K f u

∂ℓb
= σ

2
√

π

2

[
erf(

(t ′− s)
ℓ

)
]
+σ

2
√

πℓ

2
×−(

(t ′− s)
ℓ2)× 2√

π
e−(

(t′−s)
ℓ)2

= σ
2
√

π

2

[
erf(

(t ′− s)
ℓ

)
]
−σ

2 (t
′− s)
ℓ

e−(
(t′−s)

ℓ)2

∂K f u

∂ℓ
= σ

2
[√

π

2
erf(z1)− z1e−(z1)

2
+

√
π

2
erf(z2)− z2e−(z2)

2
]

(C.26)

= σ
2
[
h′(

t − t ′

ℓ
)+h′(

t ′− s
ℓ

)
]
,

where z1 =
(t−t ′)

ℓ and z2 =
(t ′−s)

ℓ and h′(z) =
√

π

2 erf(z)− ze−z2
.

∂K f u

∂σ2 =

√
πℓ

2

(
erf(

(t − t ′)
ℓ

)+ erf(
(t ′− s)

ℓ
)
)
. (C.27)

The derivatives w.r.t length-scale and variance for Kuu are defined as:

∂Kuu(x,x′)
∂ℓ

=
2σ2

ℓ

(x− x′)2

ℓ2 e−
(x−x′)2

ℓ2 (C.28)

∂Kuu(x,x′)
∂σ2 = e−

(x−x′)2

ℓ2 . (C.29)

C.2 Gauss-Hermite quadrature 119

The derivatives of K f u and Kuu w.r.t inducing inputs z are defined as:

∂K f u((s, t),(z))
∂ z

= σ
2
(
− e−

(t−z)2

ℓ2 + e−
(z−s)2

ℓ2
)

(C.30)

∂Kuu(t, t ′(z))
∂ z

= 2σ
2 (t − z)

ℓ2 e−
(t−z)2

ℓ2 . (C.31)

C.2 Gauss-Hermite quadrature

Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating the value
of univariate or bivariate integrals over Gaussian distributed variables. For example, in a
general case we have:

∫ +∞

−∞

e−x2
f (x)dx ≈

S

∑
s=1

ws f (xs), (C.32)

where S is the number of sample points used and ws are associated weights defined as:

ws =
2s−1s!

√
π

s2[Hs−1(xs)]2
, (C.33)

xs are the roots of Hermitian polynomial HS(x)(s = 1,2, . . . ,S), HS(x) is defined as:

HS(x) = (−1)Sex2 dS

dxS e−x2
. (C.34)

For solving integrals such as
∫

p(x) f (x)dx with p(x) = N(x|µ,σ), the expectation of a
function w.r.t a Gaussian distribution is defined as:

Ep(x)

[
f (x)

]
=

∫ +∞

−∞

p(x) f (x)dx (C.35)

=
∫ +∞

−∞

1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
f (x)dx, (C.36)

since the equation above does not correspond to the Hermite polynomial, we need change of
variables:

y =
x−µ

σ
√

2
→ x =

√
2σy+µ. (C.37)

120

Ep(x)

[
f (x)

]
=

∫ +∞

−∞

1√
π

exp(−y2
s) f (

√
2σys +µ)dy (C.38)

≈ 1√
π

S

∑
s=1

ws f (
√

2σys +µ). (C.39)

As number of samples S increases, the approximation gets more accurate. For the Equation
(5.10), the above calculation becomes:

Eq(fd)

[
log p(yd|fd)

]
≈ 1√

π

S

∑
s=1

ws log p(yd|
√

2σq(f)fs +µq(f)), (C.40)

where the mean µq(f) and variance σq(f) of the variational distribution q(f) are introduced in
Equation (5.11).

C.3 Derivatives w.r.t variational parameters

We need to take the derivative of the bound w.r.t. mean (µµµ) and covariance (S). We re-write
the variational bound in Equation (5.10):

L=
D

∑
d=1

Nd

∑
j=1

Eq(f)
[
log p(yd(υd, j)|fd(υd, j))

]
−

Q

∑
q=1

KL(q(uq)∥p(uq)). (C.41)

The derivative of the log marginal likelihood w.r.t mean (µµµ) The mean µ is composed
of the concatenation of all the µq. So we need only to compute the derivatives w.r.t. µq.

∂

∂ µµµq
log p(Y) =

∂

∂ µµµq

D

∑
d=1

Nd

∑
j=1

Eq(fd, j)

[
log p(yd(υd, j)|fd(υd, j))

]
−

Q

∑
q=1

KL(q(uq)|p(uq))

=
D

∑
d=1

Nd

∑
j=1

∂

∂ µµµq
Eq(fd, j)

[
log p(yd(υd, j)|fd(υd, j))

]
︸ ︷︷ ︸

VE

−
Q

∑
q=1

∂

∂ µµµq
KL(q(uq)|p(uq))︸ ︷︷ ︸

KL

.

C.3 Derivatives w.r.t variational parameters 121

The derivative of KL part in equation above w.r.t mean (µµµ):

∂

∂ µµµq
KL(q(uq)|p(uq)) =

∂

∂ µµµq

1
2

{
tr(K−1

uquq
Sq)+(0−µµµq)

T K−1
uquq

(0−µµµq)−M

+ log
∣∣Kuquq

∣∣− log
∣∣Sq
∣∣}

=
∂

∂ µµµq

1
2
{µµµ

T
q K−1

uquq
µµµq}=

1
2
(K−1

uquq
+K−1T

uquq
)µµµq

= K−1
uquq

µµµq.

Please note that we use the notation p(y| f) instead of p(y(υ)| f (υ)) in the below equations.
The derivative of VE part in equation above w.r.t mean (µµµ) is as follows:

∂

∂ µµµq
Eq(fd, j)

[
log p(yd, j|fd, j)

]
=

∂

∂ µµµq
EN(fd, j|md, j,vd, j)

[
log p(yd, j|fd, j)

]
=

∂

∂md, j
EN(fd, j|md, j,vd, j)

[
log p(yd, j|fd, j)

] ∂md, j

∂ µµµq

= Eq(fd, j)

[
∂

∂ fd, j
log p(yd, j|fd, j)︸ ︷︷ ︸

See likelihood section C.5

]
∂md, j

∂ µµµq
.

∂md, j

∂ µµµq
=

∂

∂ µµµq

Q

∑
q=1

Kfd, juqK−1
uquq

µµµq =
∂

∂ µµµq
Kfd, juqK−1

uquq
µµµq (C.42)

= K−1
uquq

Kuqfd, j .

The derivative of the log marginal likelihood w.r.t covariance (S)

∂

∂Sq
log p(Y) =

∂

∂Sq

D

∑
d=1

Nd

∑
j=1

Eq(fd, j)

[
log p(yd(υd, j)| fd(υd, j))

]
−

Q

∑
q=1

KL(q(uq)|p(uq))

=
D

∑
d=1

Nd

∑
j=1

∂

∂Sq
Eq(fd, j)

[
log p(yd(υd, j)| fd(υd, j))

]
︸ ︷︷ ︸

VE

−
Q

∑
q=1

∂

∂Sq
KL(q(uq)|p(uq))︸ ︷︷ ︸

KL

.

122

The derivative of KL part in equation above w.r.t covariance (S):

∂

∂Sq
KL(q(uq)|p(uq)) =

∂

∂Sq

1
2

{
tr(K−1

uquq
Sq)+(0−µµµq)

T K−1
uquq

(0−µµµq)−M

+ log
∣∣Kuquq

∣∣− log
∣∣Sq
∣∣}

=
∂

∂Sq

1
2

(
tr(K−1

uquq
Sq)− log(

∣∣Sq
∣∣)

= K−1
uquq

− 1
2

diag(K−1
uquq

)− 1
2

S−1
q .

The derivative of VE part in equation above w.r.t covariance (S):

∂

∂Sq
Eq(fd, j)

[
log p(yd, j|fd, j)

]
=

∂

∂Sq
EN(fd, j|md, j,vd, j)

[
log p(yd, j|fd, j)

]
(C.43)

=
∂

∂vd, j
EN(fd, j|md, j,vd, j)

[
log p(yd, j|fd, j)

] ∂vd, j

∂Sq

=
1
2
Eq(fd, j)

[
∂ 2

∂ f2
d, j

log p(yd, j|fd, j)︸ ︷︷ ︸
See likelihood section C.5

]
∂vd, j

∂Sq
,

where,

∂vd, j

∂Sq
=

∂

∂Sq

(
constant−

Q

∑
q=1

Kfd, juqK−1
uquq

SqK−1
uquq

Kuqfd, j

)
(C.44)

=− ∂

∂Sq
Kfd, juqK−1

uquq
SqK−1

uquq
Kuqfd, j

=−K−1
uquq

Kuqfd, jKfd, juqK−1
uquq

.

C.4 Derivatives w.r.t. hyper-parameters

Derivatives w.r.t. hyper-parameters: {Z,θ}

We need to compute derivatives of the variational bound with respect to inducing inputs
(Z) and kernel hyper-parameters (θ):

∂L

∂Kuquq

,
∂L

∂Kfduq

and
∂L

∂diag(Kfdfd)
. (C.45)

C.4 Derivatives w.r.t. hyper-parameters 123

The derivative of variational bound w.r.t Kuquq:

∂L

∂Kuquq

=
D

∑
d=1

Nd

∑
j=1

∂

∂Kuquq

Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

VE

−
Q

∑
q=1

∂

∂Kuquq

KL(q(uq)|p(uq))︸ ︷︷ ︸
KL

.

The derivative of KL part w.r.t Kuquq:

∂

∂Kuquq

KL(q(uq)|p(uq)) =
1
2

[
∂

∂Kuquq

tr(K−1
uquq

Sq)+
∂

∂Kuquq

(µµµqK−1
uquq

µµµq) (C.46)

+
∂

∂Kuquq

log |Kuquq|

]

=
1
2

[
− (K−1

uquq
SqK−1

uquq
)T − (K−1

uquq
)T

µµµqµµµ
T
q (K

−1
uquq

)T

+(K−1
uquq

)T

]
.

The derivative of VE part w.r.t Kuquq:

∂

∂Kuquq

Eq(fd, j)

[
log p(yd, j|fd, j)

]
=

∂

∂Kuquq

f (md, j(Kuquq),vd, j(Kuquq)) (C.47)

=
∂ f

∂md, j

∂md, j

∂Kuquq

+
∂ f

∂vd, j

∂vd, j

∂Kuquq

=
∂

∂md, j
Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

see likelihood section C.5

∂md, j

∂Kuquq

+
∂

∂vd, j
Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

see likelihood section C.5

∂vd, j

∂Kuquq

.

The derivative of variational bound w.r.t Kfduq:

∂L

∂Kfduq

=
D

∑
d=1

Nd

∑
j=1

∂

∂Kfduq

Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

VE

. (C.48)

124

The derivative of VE part w.r.t Kfduq:

∂

∂Kfduq

Eq(fd, j)

[
log p(yd, j|fd, j)

]
=

∂

∂Kfduq

f
(
md, j(Kfduq),vd, j(Kfduq)

)
(C.49)

=
∂ f

∂md, j

∂md, j

∂Kfduq

+
∂ f

∂vd, j

∂vd, j

∂Kfduq

=
∂

∂md, j
Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

see likelihood section C.5

∂md, j

∂Kfduq

+
∂

∂vd, j
Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

see likelihood section C.5

∂vd, j

∂Kfduq

.

The derivative of variational bound w.r.t Kdiag:

∂L

∂K f f
=

D

∑
d=1

nd

∑
j=1

∂

∂Kdiag
Eq(fd, j)

[
log p(yd, j|fd, j)

]
.

The derivative of VE part w.r.t Kdiag:

∂

∂Kdiag
Eq(fd, j)

[
log p(yd, j|fd, j)

]
=

∂

∂Kdiag
f (vd, j(Kdiag)) =

∂ f
∂vd, j

∂vd, j

∂Kdiag

=
∂

∂vd, j
Eq(fd, j)

[
log p(yd, j|fd, j)

]
︸ ︷︷ ︸

see likelihood section C.5

∂vd, j

∂Kdiag
.

C.5 Likelihoods

In the experiments’ section in Chapter 5, we used different likelihoods such as Poisson,
Gaussian and heteroscedastic Gaussian. for more information on various likelihoods please
refer to Moreno-Muñoz et al. [2018]. We can calculate the expected value in the bound
in closed form for the Gaussian likelihood, however, for other likelihoods a numerical
approximation such as Gauss-Hermite quadrature is needed and is explained in C.2. For
allowing a heterogenous likelihood p(yd| fd), we need to compute the first and second order
derivatives for the VE part of the log likelihood.
Poisson likelihood: The Poisson likelihood is for modeling the number of times an event
occurs in an interval of time or space. A discrete random variable y is said to have a Poisson
distribution with parameter λ > 0, if for different number of occurrences k, the probability

C.5 Likelihoods 125

mass function of y is defined as:

P(y = k) =
λ ke−λ

k!
,

where e is the Euler’s number (e = 2.71828 . . .) and λ is equal:

λ (x) = exp(f (x)).

The equation above is the link transformation between latent parameters f and Poisson
likelihood.
Heteroscedastic Gaussian likelihood has a link transformation between latent parameters
f and the likelihood with mean and variance defined as:

µ(x) = f1,σ(x) = exp(f2),

where f1 and f2 both follow a GP. Gaussian likelihood has a link transformation between
latent parameters function f and the likelihood with mean and variance defined as:

µ(x) = f ,σ ,

where the latent parameter function only models the mean, while the variance is a hyper-
parameter that does not follow a GP.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Outline of the thesis
	1.2 Publications and software

	2 Background
	2.1 Imbalanced data overview
	2.1.1 The imbalanced data problem in binary classification tasks
	2.1.2 Methods for addressing imbalanced learning
	2.1.2.1 Data level methods
	2.1.2.2 Algorithm level methods

	2.1.3 Assessment metrics

	2.2 Gaussian process overview
	2.2.1 Gaussian process regression
	2.2.2 Covariance functions
	2.2.3 Gaussian process classification
	2.2.4 Approximations
	2.2.4.1 Laplace approximation
	2.2.4.2 Variational approximation

	2.2.5 Latent variable models (LVM)
	2.2.5.1 Dual probabilistic principle component analysis
	2.2.5.2 Gaussian process latent variable model (GPLVM)

	2.2.6 Sparse Gaussian process
	2.2.6.1 Variational sparse Gaussian process

	2.3 Conclusion

	3 Learning imbalanced data using structure consolidation latent variable model
	3.1 Bayesian Gaussian process latent variable model
	3.2 Structure consolidation latent variable model
	3.3 Experiments
	3.4 Conclusion

	4 Gaussian processes using active learning for scarce data problems
	4.1 Active learning
	4.2 Gaussian process classification
	4.3 Convolutional neural networks (CNN)
	4.4 Active learning workflow
	4.5 Experiments
	4.6 Conclusion

	5 Multi-task learning for aggregated data
	5.1 Multi-task Gaussian process
	5.1.1 Multi-task learning for aggregated data at different scales
	5.1.2 Multi-task learning setting
	5.1.3 Stochastic variational inference

	5.2 Related work
	5.3 Experiments
	5.4 Conclusion

	6 Conclusion and future work
	6.1 Thesis summary
	6.2 Future directions

	References
	Appendix A
	A.1 Gaussian identities
	A.1.1 Conditional and marginal distributions of partitioned Gaussians
	A.1.2 Conditional and marginal distributions of Gaussians

	A.2 Matrix identities

	Appendix B
	B.1 Calculating the statistics
	B.2 Discriminative Gaussian process latent variable model (DGPLVM)
	B.3 Laplace Approximation

	Appendix C
	C.1 Change of support using Gaussian processes
	C.2 Gauss-Hermite quadrature
	C.3 Derivatives w.r.t variational parameters
	C.4 Derivatives w.r.t. hyper-parameters
	C.5 Likelihoods

