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Abstract

Decision-making is ubiquitous throughout all levels of biological complexity, from

social insect colonies to individual cells and multi-cellular organisms. The study

of decision-making by different fields has suggested that there are shared underly-

ing principles and decision-making mechanisms that can be used to describe the

behaviour of any given biological system, regardless of its specific nature. The rel-

atively recent application of decision theory to the study of cellular systems has

provided great insights into the nature of different cellular processes.

In this thesis, I aim to explore and describe the sugar consumption dynamics ob-

served in a yeast culture growing in a binary-sugar mixture. In order to study this

cellular process, I develop several mathematical models to describe the sugar con-

sumption behaviour of yeast. The models are influenced by the work of Pais et al.

(2013) on house-hunting honeybee swarms. I use experimental data gathered from

yeast cultures grown in maltose, galactose, and a mixture of both sugars to validate

and parameterise the models. I show that with a single parameterisation, the mod-

els are capable of replicating the metabolic and biomass experimental data of yeast

growing in single sugar, as well as binary-sugar mixtures.

Additionally, the models are studied by means of bifurcation and dynamical systems

analysis. As pointed out by Aidelberg et al. (2014), microorganisms growing in a

media with two different sugars present one of three different consumption strate-

gies: 1) simultaneous consumption of both sugars present in the media, 2) exclusive

consumption of one of the two sugars available, and 3) no consumption. I show that
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the models developed present features such as decision-deadlock, deadlock-breaking

bifurcations, and deadlock-restoring bifurcations, which give rise to these consump-

tion strategies. We also show that the transition between these regimes depends on

the value of key parameters of our models.
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Chapter 1

Introduction

In this introductory chapter I discuss the study of decision-making within the context

of cellular behaviour, I focus primarily on the behaviour regarding carbon catabolism

and selection of carbon sources, which is the point of interest of this thesis. I describe

the advance that have being made in regards of understanding the sugar preferences

observed in microorganisms. Additionally, I discuss how the scientific community

has tackled the challenge of studying biochemical networks, as well as the difference

between the study of the behaviour of a microbial population, contrasted with the

behaviour displayed by the individuals within that population. Additionally, I de-

scribe how stochasticity has being studied in microbial and cellular systems. Finally,

I state the objectives of this thesis as well as describing the specific system we are

interested in studying, and the analyses we performed on the mathematical models

we developed.

1.1 Cellular decision-making

Cellular biology and microbiology are fields in which decision-making has been thor-

oughly studied. Cellular decision-making has always been present in one way or

another since the first studies about carbon consumption in microbes emerged. As
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we have already mentioned, in recent years, research efforts made by dissimilar fields

such as neuroscience, psychology, behavioural biology and microbiology have shown

remarkable parallels in the mechanisms and interaction patterns employed by differ-

ent biological systems in order to reach a decision. The application of concepts from

other fields within a cellular or microbiology context has provided great insights into

cellular decision-making (Perkins and Swain, 2009; Tyson et al., 2003; Rhee et al.,

2012). Decision-making in cellular behaviour has been studied primarily in cellular

differentiation, bacterial motility, and nutrient selection. In what follows we will

talk mostly about decision-making in nutrient selection.

One of the most important decisions a microbe must make is what carbon source

consumption strategy to adopt in response to the specific nutrients available to

it. In the specific case of a binary-sugar mixture, the microbe has three potential

metabolic profiles it could display: 1) simultaneous consumption of both sugars, 2)

preferential consumption of either one of the sugars, or 3) no consumption of either

sugar (Aidelberg et al., 2014). The question of which nutrients are preferentially

consumed by a given organism has been a main subject of study and observation for

microbiologists for quite a long time (Monod, 1949; D’amore et al., 1989). Although

the quest to explain the underlying mechanisms through which those decisions are

implemented by the organism is addressed through the study of metabolic pathways

and biochemical interactions, the tools from decision-making theory can also be

applied to explore the subject.

Concepts such as value-sensitivity and inhibition are particularly useful in the con-

text of cellular behaviour since they are inherent properties of their regulatory sys-

tems (Horák, 2013). Aidelberg et al. (2014) have recently established a preference

hierarchy of carbon sources in E. coli based on binary-sugar mixtures experiments.

Preferential consumption of nutrients has been observed in microorganisms since

the beginnings of the field (Monod, 1949). It is usually accepted that cells prioritise

the consumption of whichever of the available sugars provides the greatest growth

advantage. Nutrients that provide a greater growth advantage have a higher value
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to the cell. Hence they will be preferred than those that give a lower growth ad-

vantage. For most microorganisms, it is a well established fact that their preferred

carbon source is glucose, which they will consume exclusively regardless of which

other sugars are also available (Horák, 2013). This preference, and the overarching

existence of a consumption hierarchy, not only underscores the notion of value-based

decisions being implemented at the cellular level, but also highlights how inhibition

plays a role within the cellular decision-making dynamics, just as it does within

social insect decision-making (Pais et al., 2013). In addition, if the value of sugar

i is associated with its extracellular concentration and sugar i was the alternative

being exploited by the microorganism, then this value would smoothly decrease over

time as a result of the cellular system consuming sugar i, and thereby decreasing its

extracellular concentration. Depending on the implementation, this feature could

entail dynamical phenomena such as hysteresis loops to emerge in the system as the

value of the alternatives is diminishes, as shown by Pais et al. (2013); Pomerening

et al. (2003) and Laurent and Kellershohn (1999). The carbon catabolite repression,

also known by its more casual name “glucose effect”, refers to a global inhibitory

effect that glucose metabolism exerts upon the consumption of other sugars (Horák,

2013). This means that, whenever glucose is present and is being consumed by

the cell, an entire network of regulatory pathways will trigger into action to stop

the uptake and consumption of any other sugars. As glucose is depleted, the tight

control will also diminish, allowing the cell to consume other sugars (Horák, 2013).

Although the name might imply otherwise, there is evidence that non-glucose sugars

can trigger the global repressive effect, although it is not yet entirely clear which

sugars can be considered to trigger this inhibitory effect, nor to what extent or un-

der which conditions (Lodi et al., 1991; Herrero et al., 1985; Chambers et al., 2004;

Horak et al., 2002).

The study of complex biochemical networks is a great challenge in biology. However,

as Alon (2007c) points out, the biological complexity observed in metabolic systems

can be simplified to be studied and analysed in a way that allows researchers to draw
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insights from the biological machinery. This perspective bears a close resemblance

to the concept of heuristics and how they are built. Hutchinson and Gigerenzer

(2005) describe heuristics as robust strategies, which consist in building blocks that

make use of the different capacities inherent to the organism. This is reflected by the

observation made by Tyson et al. (2003); diagrams of the biochemical interactions in

molecular regulatory mechanisms bear close resemblance to electrical circuitry. This

similarity is found also in the way the regulatory systems are built. The complexity

of the cellular regulatory network emerges from simpler modules connected to one

another. Work done by Alon (2007a) highlights the circuit-like nature of molecular

biology. The simple recurring patterns of interaction or Network motifs are found in

a plethora of different organisms, and in all them they perform the same information

processing operation (Alon, 2007b). Alon (2007a) discusses how network motifs are

likely the result of convergent evolution, being independently discovered due to the

important functions they perform. Additionally, they are found in a number of other

biological networks.

Over time, the regulatory networks that control the metabolic cellular response to

external stimuli optimise their responses to the expected environmental conditions,

even when this forces them to follow sub-optimal strategies when conditions change.

A way in which cellular populations tackle environmental variability is through phe-

notypic heterogeneity. Phenotypic heterogeneity is a form of diversity that presents

itself in genetically identical cellular populations. Individuals within these popu-

lations display different phenotypes independently of environmental changes. As

Ackermann (2015) describes in his review, phenotypic heterogeneity is common,

particularly when implementing a sensing strategy is sub-optimal due to the envi-

ronmental fluctuations. This strategy is a bet-hedging strategy. More specifically,

it is a stochastic switching strategy, which allows the population to tackle the prob-

lem of uncertainty about their environment by adopting diverse survival or feeding

strategies. Diversifying the phenotype within a population is beneficial because

it allows some individuals to survive through dramatic environmental fluctuations.
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Therefore, phenotype heterogeneity ensures that the genotype survives in a variable

environment. Investing all resources into a single good strategy under a specific set

of current environmental conditions is the optimal move in a stable state. However,

if the environment changes, the group will go through a period of adaptability whilst

it changes and implements a new strategy befitting the new environment.

As stated by Ackermann (2015), populations will not invest all their resources into

a single optimal strategy, they will rather diversify their strategies. That way, if the

environment suddenly changes, there is already a strategy put in place that ensures

that some individuals of the population will survive the new environmental condi-

tions. This diversification occurs at the individual level within these populations.

Additionally, and broadly speaking, one could categorise the different strategies

exhibited by the population as either optimistic or pessimistic. McNamara et al.

(2011) show that depending on the nature of the environmental fluctuations, spatial

or temporal, natural selection will favour either optimistic or pessimistic behaviour

respectively. What is notable, is that both optimistic and pessimistic behaviour drive

organisms to behave in a different manner that what would be optimal for their given

environment. Optimistic individuals will behave as if environmental conditions are

better than they actually are, and vice versa. This is relevant because acting in

such an apparent irrational way, under certain conditions, proves to yield long term

benefits for the genotype of the population by increasing its fitness, at the cost of

short term measures such as the number of surviving offspring. Interestingly, this

behaviour fits with Olofsson et al. (2009) definition of bet-hedging: lowering fitness

variance in order to maximise long-term fitness. This phenotypic heterogeneity is

accomplished through stochastic switching, which is randomly switching strategies

throughout the entire population, meaning that some individual cells will display one

strategy, whereas other individual will display a different one. Stochastic switching

has been especially studied within the microbial context. Kussell and Leibler (2005)

show that, in principle, adopting a stochastic switching strategy can be more benefi-

cial to the survival of the population than relying on environmental sensing when the
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environment changes infrequently. Their simulations highlight the relation between

switching rates and environmental change statistics: the switching rates are propor-

tional to the probability of the environment to change and inversely proportional to

the average duration of each environmental state. They also point out that if the

environment changes too quickly, sensing becomes an optimal strategy over stochas-

tic switching. These ideas have been expanded by subsequent studies. Salathé et al.

(2009) study how stochastic switching evolves in microbial populations and how

the switching rate evolves in accordance with the environmental fitness landscape,

meaning, how costly it is for the organisms to not be well adapted to the environ-

mental conditions. Notably, they found that when the cost of being maladapted to

an environment is low (small selective pressure), stochastic switching rates not only

decrease but they are not proportional to the environmental rate of change. Another

conclusion of their work is that when the cost of being maladapted to the environ-

mental conditions varies with the environmental state, stochastic switching might

not evolve at all. Other studies examine the underlying genetic mechanisms that

facilitate stochastic switching. As Møller et al. (2013) point out, several environ-

mental parameters can change at once, which presents a great challenge to microbial

populations. In their work they propose that in order to tackle such a hurdle, organ-

isms such as S. cerevisiae implement what is called a hub-switch, which is a genetic

or epigenetic switch that triggers several phenotype changes at once. Instead of

relying on different genetic or epigenetic events to occur, which would increase the

complexity of adaptation to new environmental conditions, a single event that is

tied to several phenotypical changes would increase the robustness of the stochastic

switching bet-hedging strategy.

Perkins and Swain (2009) discuss how a stochastic switching strategy is present in

cellular decision-making as an optimal bet-hedging strategy in situations where ele-

ments of the environment are unknown, which is plausible given that a cell’s sensing

accuracy is not perfect. In addition, without such stochastic switching it might

be impossible to obtain any phenotypic heterogeneity within a cellular population,
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which is the basis of diversified bet-hedging. A population of cells is phenotyp-

ically heterogeneous when cells with the same genetic content express a different

phenotype, in other words, activate different genes. This gives rise to phenotypic

sub-populations. A relevant instance of heterogeneity presents itself when a cellular

culture grows in a medium with two different sugars. Traditional approaches to

this classical scenario state that bacteria will perceive the two sugars available to

them and proceed to consume their preferred substrate. The sugar consumption is

reflected by their exponential growth. Once they consume the first sugar to com-

pletion, they will experience a period of slow, if not completely arrested growth

rate, during which the bacteria reshape their metabolism in order to consume the

remaining sugar by degrading specific enzymes and synthesising new ones. Once

they have re-adapted to the second nutrient they experience a second phase of ex-

ponential growth. This phenomena is called diauxic growth (Hogg, 2005). This view

of diauxic growth assumes that all individual cells go through the same process of

reshaping their genetic expression to match the environmental changes. However,

recent studies show that a thorough analysis of the individual cellular phenotypes

reveals a diversified bet-hedging strategy taking place (Solopova et al., 2013; Koirala

et al., 2016). The analysis shows that one sub-population displays the phenotype

necessary to consume one sugar whilst a second sub-group presents an alternative

phenotype that matches the other nutrient present in the medium. This realisation

modifies the conventional view of the diauxic growth. These results suggest that the

period of arrested growth is not due to a population-wide readjustment, but rather

to one of the phenotypic sub-populations stopping their growth altogether, whilst

an already existing sub-population ramps up their growth due to the favourable

environmental conditions (Solopova et al., 2013).

The importance of single-cell analysis is highlighted by the fact that, as Boulin-

eau et al. (2013) point out, our knowledge regarding cellular growth behaviour has

largely come from bulk experiments that provide information from the entire popu-

lation leaving single-cell behaviour unclear. Ozbudak et al. (2004a) emphasise that
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inferring single-cell behaviour from population techniques can entail misleading con-

clusions. In their own work analysing bistability in the lac operon, population aver-

age showed a gradual activation of the system, whilst individual cells are either fully

induced or not at all. Other authors have found similar differences between popu-

lation dynamics and single-cell analysis underscoring the need to analyse single-cell

behaviour (Solopova et al., 2013; Koirala et al., 2016).

Phenotypic heterogeneity can also permit the existence of a division of labour within

a cellular population, which can allow it to grow faster (Ackermann, 2015). This

particular instance of phenotypic heterogeneity can be asymmetrical, meaning that

one cell type displays a phenotype that benefits other cell types, without reciprocity

from the benefited cell sub-populations. It can be conceptualised as either a “cheat-

ing” strategy, as some cells that do not contribute any resources to an activity,

accrue almost if not all of the benefit derived from the work of others, or an altruis-

tic one, as some cells sacrifice their own individual fitness by exhibiting a behaviour

that benefits the entire population (Perkins and Swain, 2009; Veening et al., 2008).

A perhaps more unambiguously benign instance of division of labour is when it

allows a population to overcome the incompatibility between different cellular pro-

cesses, both of which can be necessary for the population to thrive. This is the case

with filamentous cyanobacteria. In order for them to fixate nitrogen, individual

cells need to produce nitrogenase, an enzyme which turns nitrogen into ammonia.

However, this enzyme is dismantled in the presence of oxygen, which is released dur-

ing photosynthesis. The strategy that cyanobacteria evolved in order to tackle this

conundrum is to segregate these processes into different sub-populations, one that

carries on with photosynthesis, and a second specialist group called heterocyst that

provides the appropriate oxygen-free environment required for nitrogenase (Adams,

2000).

The study of cellular behaviour from the standpoint of decision-making has, and is

still providing great insights about the functioning of the complex metabolic net-

works that allow cells to make decisions. The analysis of cellular decision-making
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with tools and concepts originated in neuroscience and psychology, provides an ap-

proach that not only allows researchers to overcome the biological complexity of the

cell, but also reinforces the existing notion that the same decision-making mecha-

nisms are shared throughout nature, regardless of the specific biological system.

1.2 Objectives of this thesis

The aim of this project is to identify the underlying principles that guide cells

to make decisions from the perspective of decision-making theory. I will focus on

the mechanism through which cells decide which strategy to adopt when they are

presented with different sugar alternatives; whether to consume them sequentially,

in which case they must decide which carbon source to consume preferentially before

the other, and under what conditions can cells consume nutrients simultaneously.

The scenario we are interested in studying with this project is the sugar consumption

behaviour displayed by S. cerevisiae, or baker’s yeast. Specifically, we will analyse

the behaviour of a yeast culture growing in a medium containing two different sugars,

in which both maltose and galactose are available for consumption. We will analyse

this system from the value-based decision-making standpoint. In order to do this, we

will develop a mathematical model that will be able to replicate experimental data,

and which can be analysed as a dynamical system under steady-state conditions. As

we have mentioned in this chapter, microorganisms have consumption preferences

regarding the sugars they consume (Alon, 2007b). Aidelberg et al. (2014) show

that, through metabolic experiments and analysis, different carbon sources can be

ranked in a hierarchy of preference, which is specific to the organism. In principle,

a carbon source is preferred over another as a function of the growth advantage it

provides to the organism. Through the process of evolution, microorganisms have

configured their metabolism and sensing mechanisms in such a way as to facili-

tate the catabolism of their preferred sugars over the non-preferred carbon sources.
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This fact is most clearly observed with glucose. As glucose is the preferred carbon

source of many organisms, including yeast, entire families of glucose transporters

are dedicated to the internalisation of it. The preference for glucose is so robust

that in order to increase the efficiency of the glucose transport, yeast synthesises

different individual transporters depending on the concentration of glucose detected

in the environment. Glucose metabolism also triggers a whole network of regulatory

pathways that prevent other sugars from being consumed, ensuring the preferential

consumption of glucose (Horák, 2013). These metabolic manifestations of the pref-

erence for glucose are a consequence of the growth advantage that microorganisms

perceive from consuming glucose. Our objective is to capture the “value” that each

sugar has to the organism, through the parameterisation of our mathematical model.

The parameterisation is made by fitting the model to the experimental data.

Through dynamical systems analysis, we aim to elucidate the decision-making dy-

namics that the model is capable of. The results gathered from this approach,

primarily through the discovery of bifurcations, permit a qualitative interpretation

of the choices available to the system. We expect that through mathematical mod-

elling we can conduct a broader analyses which will allow us to study the expected

dynamics in equal-value and non-equal value decision-making scenarios. In this

regard, this work is motivated primarily by the studies done in house-hunting hon-

eybee swarms by Pais et al. (2013). We take their approach as a starting point for

our analysis.

Our design philosophy aims for simplicity whenever possible, symmetry and non-

specificity. The model should be as minimal as possible. The goal is to be able

to explain the behaviour that we observe in the experimental data with as little

mathematical complexity as possible, whilst still retaining accuracy. Clearly, this is

a trade-off, and as we make the model simpler to facilitate manipulation and anal-

ysis, which will become a necessity with the dynamical systems analysis, we lose

accuracy in the experimental data fit. There must be a balance between the ease of

analysis and manipulation, and the model’s capacity to replicate the experimental
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data. The model must also be symmetric. In this context, symmetry means that,

in a binary decision context, both alternatives are described by either equations

or sets of equations that are structurally identical and only differ in their param-

eterisation. In more detail, the system we are interested in is the binary decision

between two carbon sources. Most carbon sources are catabolised through distinct

metabolic pathways. For instance, the two sugar tested in the experiments we are

using to conduct our modelling efforts, have used maltose and galactose. Taking

into account membrane transporters, regulatory factors and enzymes, maltose re-

quires three proteins to be transformed into glucose, which then enters glycolysis.

Galactose on the other hand, makes use of eight different proteins before it is trans-

formed into glucose-6-phosphate, which is the substrate for the second step of the

glycolytic pathway (Horák, 2013). A straightforward approach used in systems bi-

ology would be to do a simulation of the entire system, specifying both of these

metabolic pathways, taking each biochemical interaction into account and giving it

its own mathematical representation (Palsson, 2011). However, this approach would

result in a larger system that would steer away from two of our goals: 1) develop and

test a model with a decision-making like structure, and 2) we are aiming to develop

a model that is as simple as possible. Hence, all the enzymatic and proteic interac-

tions will be lumped up into a single and generalised equation as other authors such

as Narang and Pilyugin (2007); Narang (1998) and Chu and Barnes (2016) have

done. We expect the different parameterisations of both equations to be enough

to produce the behaviour we want to simulate from the experimental data. From

a decision-making perspective, the symmetric structure is important to place our

model within the context of other decision-making model structures (notably, the

canonical decision-making models described by Bogacz et al. (2006)), which are sym-

metrical in nature. Finally, our model must be non-specific. We aim to construct a

model that captures the broad dynamics of the cellular carbon consumption system.

Regardless of the specific sugars used in the experiments, the model must be ver-

satile enough that through parameterisation alone, a new decision scenario between

other different carbon sources could be modelled. In order to do this, we attempt
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not to describe any particular metabolic pathway or substrate-specific mechanism.

We aim to describe a general representation of the overall biochemical interactions

that allow cells to consume nutrients regardless of their specific chemical identity.

In closing, with this thesis, we hope to find an answer to the following questions:

We know from the literature that microorganisms have a hierarchy of nutrients

they prefer to feed on (Aidelberg et al., 2014). There is also ample knowledge and

evidence regarding yeast’s metabolism, and it’s regulation. With this in mind, and

from the perspective of decision-making theory, what general mechanisms of yeast’s

metabolism and regulation play a vital role in the system’s behaviour and nutrient

preferences. By this, I do not mean specific regulatory pathways of signal molecules,

but rather, broad and general mechanisms such as inhibition or value sensitivity.

We anticipate that this thesis will draw parallels between cellular decision-making

dynamics, and the more general principles from decision-making theory originated

in other fields of research. We have placed constraints on the structure and the

complexity with which we will design our model. With such limitations in place, how

accurately can our model fit to experimental data? What details in the experimental

data are not-captured by our model? And, what elements of our model are essential

to fit the data? Lastly, in the context of decision-making, in a binary decision

problem, the agent chooses one of the alternatives, and it is rewarded accordingly.

Is this dynamic of unambiguously choosing one of the alternatives over the other

present in the cellular system we intend or are the system’s preferences expressed

differently?

38



Chapter 2

Literature review

In this chapter I introduce decision-making as an overarching field of study that

aims to uncover the underlying mechanisms that allow organisms or groups of or-

ganisms to make decisions about their environment and themselves. We go over

the biological significance of the study of decision-making as well as some of the

strategies that organisms use to facilitate and streamline their decisions in an al-

ways fluctuating environment, of which no certain information is available to them.

I discuss several different approaches to the study of decision-making: the study of

perceptual decision-making in the field of neuroscience and psychology, collective

decision-making, nutritional decision-making and value-sensitive decision-making.

Going into further detail, I discuss the relevance that value-sensitivity has in the

study of naturalistic decisions. Next, I cover the canonical models of neurologically

and psychologically-inspired decision-making models, as well as how decision-making

has been studied in other systems, such as insect groups and slime moulds, remark-

ing on the significance of multistability within the decision-making dynamics of a

system. Additionally, I present a relevant discussion of yeast metabolism, more

specifically of the carbon regulation network that allows yeast to control its carbon

source consumption, as well as enact decisions regarding its sugar uptake. Subse-

quently, I go over the main different modelling approaches that have been employed
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in order to study and analyse metabolic dynamics.

2.1 Decision-making

The premise of an agent (human or otherwise) having to choose between different

alternatives, each one prompting their own set of associated rewards and costs as

well as the cost of not making a choice accruing over time, presents a dilemma that

has occupied both biologists and philosophers for a very long period of time. A

classical example of such scenarios is the Buridan’s ass paradox. In this traditional

layout, an ass stands at equal distance between water and hay whilst being equally

hungry and thirsty. Some other versions have the ass in between two bundles of

hay. Philosophers from ancient times such as Al-Ghazali and Aristotle, coming all

the way up to our modern times and including the eponymous french philosopher

Buridan, have ruminated over the fate of the hesitant animal, or man in some cases

(Aristotle, 2006; Chislenko, 2016). The classic outcome of this paradox is that,

unable to choose between to equally valued resources, the ass would forever linger in

between both options until it dies of both thirst and hunger. We can imagine that,

despite of the conclusion presented by this scenario, the ass would not have gone

either hungry or thirsty for long. The animal could just choose the pail of water

and satiate its thirst, then eat its way through the pile of hay, or vice versa. Just

as easily it could alternate between the hay and the water.

The study of decision-making processes, such as the one exemplified by the Buri-

dan’s ass paradox, as a field of research aims to understand how agents make their

decisions by identifying the underlying mechanisms that allow these processes to

take place, as well as to identify the optimal strategies that an agent can take in

a given situation in order to maximise their reward, or minimise their loses. No-

tably, research efforts made by dissimilar fields such as neuroscience, psychology

and behavioural biology have shown remarkable parallels in the mechanisms and
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interaction patterns employed by different biological systems in order to reach a de-

cision. These similarities have allowed concepts from neuroscience and psychology,

originally envisioned to describe the primate brain decision-making, to be applied

in the study of other wildly different biological systems such as social insect colonies

foraging behaviour, or nest selection for instance (Marshall et al., 2009; Reina et al.,

2018).

Decision-making has usually been looked at from the perspective of classical utility

theory which dictates that the objective of any decision-maker is to maximise their

utility, which means that they are assumed to be rational. However, experimental

data from human subjects has proven that humans can be quite irrational decision-

makers (Hanks and Summerfield, 2017). As Sasaki and Pratt (2018) point out, in

order to be an ideal decision-maker, a subject would always calculate the utility

of each option before making a decision. However, this is not what is observed

in human subjects. Instead, humans use heuristics and rules of thumb in order

to facilitate their decision-making. The implementation of these mechanisms can

explain the departure from rationality observed in humans and animals (Hanks and

Summerfield, 2017).

In the following subsections we will cover some of the strategies that organisms

use in order to facilitate their decision-making processes, generalise rules and deal

with the effects of stochasticity. These strategies are heuristics, bet-hedging and

stochastic switching, which can be considered as a bet-hedging sub-strategy.

2.1.1 Heuristics

Hutchinson and Gigerenzer (2005) explain that rules of thumb and heuristics are

prevalent mechanisms used by organisms to facilitate the decision-making process.

They help organisms make decisions with limited amounts of information and pre-

vent overspecialisation in a single environmental scenario. As Tversky and Kahne-
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man (1974) mention, heuristics exist in great part to compensate for the degree of

uncertainty in the information, as well as in its value, used to make a decision. In hu-

mans at least, it has the consequence of reducing the number of complex probability-

assessing tasks a subject must do in order to make a choice because they generalise

a particular rule so it can be easily applied in different similar scenarios. Microor-

ganisms also seem to employ this approach to expedite their decision-making. E.

coli cultures have been shown to use practical heuristics in order to calibrate their

metabolic response to a specific environment through their regulatory network. This

approach that permitted optimal growth rate in some environmental conditions also

caused sub-optimal growth under different circumstances (Towbin et al., 2017).

Whether or not an organism uses heuristics or rules of thumb, its decision-making

process is related to the generalist-specialist dichotomy in ecology. Generalist strate-

gies provide an advantage to organisms that need to quickly adapt to rapidly

and ever-changing environmental conditions, whilst specialist strategies work better

when the environment is highly predictable and stable (Henke-Von Der Malsburg

and Fichtel, 2018). Organisms can either adapt rapidly to change and sub-optimally

benefit in any given environment, or they can optimally take advantage of a specific

environmental condition whilst sacrificing adaptability (New et al., 2014).

Strategies that make use of heuristics are usually considered to be generalist strate-

gies. As Hutchinson and Gigerenzer (2005) point out, the implementation of heuris-

tics might loose its advantage in static environments where generalisation is not

needed. Heuristics seemed to have evolved as a response to change. In static envi-

ronments where conditions change at a lower rate compared to more dynamic envi-

ronments, other strategies which are specific to the current and static environmental

conditions might be optimal. This observation reflects the arguments presented by

Arkes and Ayton (1999). Their work with human subjects shows that, following

a generalist approach by making use of heuristics, can make the subjects fall into

sunk-cost fallacies and sub-optimal decision-making, as it sacrifices the capacity to

change a decision when it is no longer cost-efficient.
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2.1.2 Bet-hedging

The natural environment in which an organism lives changes constantly, both in

space and time. The information an organism has about its environment and its

changes is not perfect but rather uncertain, noisy and incomplete. Organisms im-

plement bet-hedging in an effort to tackle this uncertainty by displaying behaviours

or phenotypes that insure favourable outcomes regardless of the changes the envi-

ronment presents. The technical definition of bet-hedging is a strategy that reduces

arithmetic mean fitness in order to reduce variance in fitness (Ripa et al., 2009;

Slatkin, 1974). Olofsson et al. (2009) defines it as lowering fitness variance between

years to maximise long-term fitness. This is particularly relevant in changing and

unpredictable environmental conditions. Specialisation in a specific set of environ-

mental conditions means that the organism would have high fitness in those specific

conditions. This also means that it would do badly if those conditions were ever to

change, resulting in high variance over time. In contrast, a generalist would have a

much lower fitness variance regardless of the environmental conditions because they

are better suited to survive in changing environmental conditions. They never do

as well as the specialist, nor as bad in terms of fitness. This concept, which is stud-

ied mainly in evolution and ecology, is similar to the risk aversion principle taken

from utility theory. As described by Philippi and Seger (1989), the risk aversion

principle states that the associated cost of negatively deviating from the mean is

larger that the benefit associated to a positive deviation of the same amount. In

biological terms, this principle says that what organisms tend to do is avoid risks of

death at all costs, even if it means sacrificing an opportunity to thrive in the given

environment.

This principle is better appreciated by analysing the three sub-strategies that exist

within the bet-hedging purview. According to Olofsson et al. (2009), these are: 1)

conservative, 2) diversified and 3) coin flipping. Seger and Brockmann (1987) go

into more detail regarding the different bet-hedging definitions, listing up to 5, al-
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though they focus their attention on their analogues for conservative and diversified

or probabilistic diversification which is the name they give this strategy. Conserva-

tive bet-hedging refers to an organism always using the same low investment and

low risk strategy. The diversified strategy is what we have described in the previous

paragraph, investment in several strategies simultaneously. The third strategy, coin

flipping or stochastic switching, is the random switch between different strategies

by different individuals (Olofsson et al., 2009). These three different strategies can

be exemplified with this perennial conundrum: With limited resources, should an

organism produce many small eggs or a few larger (with more chances of individual

survivability) ones? Mirroring our three different bet-hedging strategies, the ques-

tion can be rearranged as follows: Should the organism in question a) always invest

in a few large eggs (conservative), b) diversify the egg size each time according to a

fixed distribution (diversified), or c) randomly switch the egg size each cycle (coin

flipping)? A combination of all three is also a possibility.

Cooper and Kaplan (1982) have a seminal article examining the stochastic switching

as a survival strategy. In their work, they show that adopting a coin flipping strategy

can outcompete adopting pure strategies, especially in an environment that presents

unpredictable temporal fluctuations. In more recent studies that explore the effects

of spatial and temporal fluctuations in expanding populations, it is shown that

environments that have a fast rate of change are concomitant with the population

adopting a single optimal strategy, whereas a phenotypically diverse population can

be optimal in slower changing environments (Villa Mart́ın et al., 2019).

2.1.3 Perceptual decision-making in psychophysics

In the preceding section we discussed how decision-making has been a subject of

ample study in ecology, evolutionary and behavioural biology, and behavioural psy-

chology. Within the field of psychology and neuroscience, there has been a clear

focus on the study and mathematical analysis of perceptual decisions. In this sec-
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tion we will cover this as it pertains to naturalistic decisions. We will overview

the assumptions being made in the traditional zero-one perceptual decision-making

approach as well as the solutions offered by value-sensitive decision-making.

Within the field of decision-making, the concept of perceptual decisions receives

a great amount of attention, in no small part due to the advances of psychology

and neuroscience. Perceptual decision-making describes the process of observation,

analysis and categorisation of information perceived by the senses (Hanks and Sum-

merfield, 2017). As we have discussed in the previous section, these processes are

subject to inherent biases and incomplete information.

From an economic viewpoint, the study of perceptual decision reflects on the gains

and loses of each decision. The outcome of most decisions made by any organisms

are in essence a balancing act between the increasing cost of the decision-making

process and the potential gains from making the right choice. This approach to the

analysis of decision-making usually places a great deal of attention on the question

of optimality. It also implies that, in a two-alternative scenario, there is a correct

alternative and incorrect one; choosing the right option in a timely manner accrues

rewards, whilst choosing the wrong option incurs costs to the decision-maker. Al-

ternatively, taking too long to choose also represents a cost, independently of the

alternative chosen. As Bogacz et al. (2006) mention, one of the simplest scenarios

that is considered within the optimality framework is one called the two alterna-

tive forced choice (TAFC). The TAFC is a simplified scenario of real life situations

in which an agent must make a decision between two alternatives, with uncertain

information about the options and with limited time to make the decision.

The decision-making process described by TAFC has three assumptions listed by

Bogacz et al. (2006): 1) the decision-maker accumulates evidence on both alterna-

tives, 2) once it has accumulated enough evidence in favour of one of the alternatives,

the decision is taken, and 3) the process is stochastic. As Bogacz et al. (2006) and

Pirrone et al. (2014) point out, there is a body of behavioural and neurological
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evidence that fits within the TAFC framework (Ratcliff and Rouder, 2000; Usher

and McClelland, 2001; Ratcliff and L. Smith, 2004). In order to describe and study

these processes, many mathematical models motivated by the neurological findings

have been produced. The simplest of them is the drift diffusion model (DDM), a

very well studied and characterised standard decision-making model. The DDM

works precisely within the assumptions listed above, and it has also been shown

to describe the optimal mechanism to solve TAFC decision-making (Ratcliff, 1978;

Bogacz et al., 2006). Bogacz et al. (2006) present a very complete review of dif-

ferent neurologically-motivated models used to study perceptual decisions and how

they can be made to approximate the DDM under specific conditions. I discuss and

provide a brief summary of the models discussed by Bogacz et al. (2006) in section

2.2.1.

Analysing decision-making from the framework of optimality theory necessitates

to consideration of the effect of the cost of time and decision accuracy. The time

to make a decision is limited and the faster the decision is made, the smaller the

cost is, whilst the risk of remaining in an undecided state is kept at a minimum.

In terms of accuracy, the agent is pressured into choosing the correct option as

often as possible, or to make as few errors as possible, in order to maximise the

reward. Both of these constraints are presumed to play strong evolutionary roles

in the optimisation of different decision-making related mechanisms. Decision-time

and error-rate are usually a point of great interest when studying and analysing

decision-making models (Bogacz et al., 2006; Pirrone et al., 2014). This raises the

conundrum commonly known as the speed-accuracy trade-off: agents that prioritise

faster decision-making, inevitably make more mistakes, and agents that aim for

more accurate decisions must invest more time gathering evidence and making the

decision (Pirrone et al., 2014). In models such as the DDM, this trade-off is managed

by the value of the decision thresholds (Bogacz et al., 2006).
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2.1.4 Nutritional decision-making

Going back to the Buridan’s ass paradox, another solution to the problem is offered

by the geometric framework approach. The geometric framework describes an n-

dimensional nutrient space that spans n-axes, each one representing a particular

nutrient or food-item. In such a nutritional space the current nutritional state of

the animal, as well as its nutritional target can be represented by two different

points. Hence, the nutritional deficit can be defined as the distance between these

two points. In said nutrient space, the animals or agents try to overcome their deficits

by making decisions that take them closer and closer to their target (Bose et al.,

2017). Originally proposed by Simpson and Raubenheimer (1993), the geometric

framework is usually implemented in a way that each axis represents one nutrient

type (protein, carbohydrates, lipids, etc). The animal has to choose a sequence of

decisions that will take it to its nutritional target by potentially consuming different

available food items each with different nutrient compositions.

The cost associated with nutritional decisions are a defining factor that shapes the

animal’s foraging strategy. If there are no costs associated with switching from one

food source to another and the food sources are considered to be always available,

there is no unique optimal strategy. However, if one considers the costs of switching

between two food items, or the fact that food availability might be in jeopardy,

different strategies arise. By considering the possibility of interruption, due to food

items becoming unavailable, Houston et al. (2011) have shown that a switching

line that leads directly to the nutritional target emerges. In the context of a two-

dimensional nutrient space, corresponding to two different nutrients, on one side of

this line, the subject must consume exclusively food A, on the other side, food B.

The strategy that emerges then for a subject that has two different food options

and two nutritional deficits, is to reach the switching line, and once on it, both

nutrients alternatives are consumed simultaneously at a ratio, in an attempt to be

as close to a straight path between the current state and the nutritional target as
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possible. Additionally, Marshall et al. (2015) show the effect that the cost associated

with switching between the nutrient alternatives and cross-inhibition has on such

models. Their study demonstrates that by including cross-inhibition as part of the

system’s dynamics, the performance of the system improves. The performance is

measured by calculating the penalty associated with the remaining deficits once a

simulation is interrupted.

Figure 2.1: Nutrient space for two nutrients x and y. The two dotted lines represent two different
food items with different ratios of both nutrients. By switching between the two foods in sequential
feeding sessions (indicated by the blue arrows), the foraging animal aims to reach the nutritional
target represented by the green circle from its initial position at the origin. An alternative repre-
sentation measures the minimisation of a nutritional deficit, rather than nutrient intake. In such
cases, the movement of the animal targets the origin of the plane, where the nutrient deficit is
eliminated.

Bose et al. (2019b) show that such a foraging strategy can be produced with other

modelling approaches such as neural decision-making models. Specifically a model

derived from the pooled inhibition model presented by Wang (2002). The pooled

inhibition model describes three different neural populations, two that integrate

evidence for one out of two alternatives, and a third neural population that inhibits

the activity of the former two populations. Bose et al. (2019b) show that oscillating
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dynamics is much more efficient at reducing both deficits, and with the correct

parameterisation this behaviour can be produced with the pooled inhibition model.

The relevance of the geometric framework is not limited to the study of ecology.

Recent studies have explored how this approach might be used to make advances

in human health and nutrition, as well as poultry farming (Simpson et al., 2017;

Cowieson, 2014).

2.1.5 Collective decision-making

Collective decision-making studies how groups of individuals make decisions with

no leadership (Bose et al., 2017). The study of the mechanisms through which indi-

viduals interact with one another so that the group makes a decision is at the core

of collective decision-making. Different alternatives can be supported by different

fractions of the population. However, the group achieves consensus by collectively

choosing one of the alternatives unambiguously. This is analogous to what is ob-

served in neural systems (Kao et al., 2014). The interaction between individuals

with simple rules gives rise to the dynamics of the group. Collective behaviour can

give rise to the superorganism, a concept that describes a highly interdependent

group that acquires the features that would normally be ascribed to the individual,

such as group-cognition. Sasaki and Pratt (2018) argue that the concept of the

superorganism is most appropriately used with groups in which the fitness of the

individual largely depends on the success of the entire group. It is often observed

that the decision-making capabilities of superorganisms are superior than those of

the individuals within the group (Masuda et al., 2015). Couzin (2009) has done

a thorough analysis of collective decision-making, and goes into great detail about

how groups can outperform individual decision-making performance and overcome

uncertainty and noise. This, however, is not always the case. It has been shown that

when the difference in quality between two different nest-sites is large, ant colonies

perform worse at making accurate decisions than individuals. The reverse however is
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also true, when the difference is small (which is considered to be a difficult decision),

the colony does outperform the individual (Sasaki and Pratt, 2018).

Reaching consensus is one of the most relevant challenges of a social group. Failing

to reach a single decision as a group can have extremely detrimental consequences for

the group and its members. In the case of house-hunting honeybees, failing to reach

consensus regarding where to establish a new nest can have potentially devastating

consequences for the survivability of the swarm. Lindauer (1957) documents an

instance in which an unbreakable deadlock within a honeybee group led the swarm

to build its nest in a low-quality location that resulted in the colony being unable to

survive the German winter. Inability to reach consensus can also presents the risk

of fragmentation the group (Couzin and Krause, 2003). Since some features such as

the risk of predation and the accuracy of decisions greatly depend on the number of

individuals within the group, fragmentation of the group is an undesirable outcome

(Partridge, 1982; Sumpter et al., 2008).

To avoid this, groups performing collective decision-making must manage and over-

come the inherent internal conflict and non-compatible preferences in order to reach

consensus. The resolution to such obstacles is not always reducible to the majority

rule. In fact, as Couzin et al. (2011) highlight, opinionated minorities can drive the

group completely. However, groups with uninformed individuals, i.e. individuals

with very weak opinions, insulate the group from minority control, restoring the

control of the group to the majority.

Another interesting concept is the capacity of groups to learn collectively. Kao

et al. (2014) have studied the implication about the way both individuals and the

collective learn about their environment, and how this affects the decisions of the

collective. Their modelling work showed that the optimal collective decision-making

performance was achieved when the individuals learned to associate environmental

cues to reward within the social context of their group, as opposed to individuals

learning by themselves, which performed poorly.
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When talking about collective decision-making, a prescient question arises: How

does a group with no leader reach a decision? Probably the most well-known mecha-

nism that facilitates decision-making within a group is majority voting. Considering

a binary decision problem, majority voting means that a decision will be taken in

favour of the option supported by more than half of the members of the group. The

majority rule is considered by some authors as a collective decision-making stan-

dard. Hastie and Kameda (2005) point out that in human societies, both ancient

and modern, majority voting as a decision mechanism is prevalent.

The majority voting rule is closely related to the Condorcet’s jury theorem. Simply

stated, the Condorcet’s jury theorem argues that in binary problems, the accuracy

of a homogeneous group of individuals will approach 1 as the number of individuals

increases, if the individuals themselves are good decision-makers (i.e. the individual

probability of being correct is larger than 0.5). In contrast, if the individual accuracy

is poor (less than 0.5), then the group’s accuracy will approach 0. As Marshall

et al. (2019a) mention, the Condorcet’s jury theorem permeates the way we think

about collective decisions. One key interpretation from this theorem is that majority

rule is considered to be the best collective decision mechanism a group can have.

Marshall et al. (2019a) reach two important conclusions: 1) in many situations, the

Condorcet’s jury theorem does not hold true, and 2), usually, a majority voting rule

is sub-optimal to a sub- or super-majority quorum decision rule. In contrast to what

the Condorcet’s jury theorem predicts, they show that by replacing the decision rule

from majority voting to a properly chosen sub- of super-majority quorum decision,

a group’s accuracy will approach 1, even if the individual accuracy is less than 0.5.

Their results highlight the importance of utilising quorums as a collective decision-

making mechanism, as it can optimise collective decision-making by improving a

group’s accuracy beyond what a majority voting rule can provide.

Quorums and quorum sensing are widely studied mechanisms in decision-making.

Quorum sensing refers to the how individuals within a group start an action only

when the number of members of the group committed to the same course of action
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reaches a certain threshold (Masuda et al., 2015). Quorum sensing presents itself in

a cornucopia of systems and its a core concept in collective behaviour and consensus

decision-making. Quorum sensing is present in bacterial populations in the form

of individual bacteria communicating with each other through signal molecules. In

this way, they can coordinate behaviours that take place at the population level

(Balázsi et al., 2011). Quorum sensing in bacteria seems to be so vital that V.

harveyi appears to have evolved a quorum sensing circuit that reduces noise and

individuality when population level behaviour is taking place (Long et al., 2009).

Insect colonies are prime systems in which quorum sensing has been documented.

Seeley and Kirk Visscher (2004) have documented quorum sensing taking place in

house-hunting honeybees swarms just as they decide a new location in which to

establish a new hive, and Pratt et al. (2002) have reported quorum sensing during

the colony emigration process in Leptothorax albipennis ants.

2.1.6 Information theory

In nature, organisms must make decisions in order to increase their chances of sur-

vival and reproduction. Choosing the best alternative as often as possible is imper-

ative. However, organisms face a plethora of obstacles that make this task challeng-

ing. All decisions any organism makes in nature will be made based on uncertain

and incomplete information about an environment that fluctuates across time and

space, with limited resources (including the time available to make the decision),

and facing competition from other organisms. Despite these obstacles, organisms

try to increase the efficiency of their decision-making processes based on the infor-

mation, limited as it is, that they can gather in order to adapt to the environmental

conditions they find themselves in.

A useful approach to study these problems has come from information theory. As

Bowsher and Swain (2014) mention, there is a challenge in understanding how cells

respond to a fluctuating environment with biochemical mechanisms that are inher-
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ently stochastic. They also discuss how, information theory and more specifically,

mutual information, can aid in quantifying the influence of stochasticity in these

systems. In this context, gene regulation can be viewed as a channel that receives

an input x and provides (or maps them onto) an output y. Stochasticity in this

channel means that for a given value of x, there is not a single value y, but rather

the output is drawn from a probability distribution (Tkačik and Walczak, 2011). If

we also consider the inputs to be drawn from a probability distribution, then an

important question to ask and challenge to solve is how strongly are the inputs and

the outputs dependent on each other. Mutual information is a branch of informa-

tion theory that has proved to be helpful in this regard. Generally speaking, mutual

information relates to the ability to infer a signal from an output, or the amount

of information that can be obtained regarding one random variable by observing

a second random variable. According to Tkačik and Bialek (2016), a stochastic

channel also implies that there is a limit to the amount of information that can be

successfully transmitted. In conjunction with mutual information, rate-distortion

theory, another branch of information theory which is used to calculate the amount

of information necessary to achieve a desired level of accuracy, has been successfully

used to study decision-making problems such as chemotaxis, and gradient sensing

in bacteria (Andrews and Iglesias, 2007).

2.1.7 Value-sensitive decision-making

In the previous section we have discussed the traditional approach to the study

of perceptual decisions, which optimises the reward of each decision based on the

speed-accuracy trade-off. One of the drawbacks of this approach to the study of

decision-making is that the agents are assumed to optimise a zero-one loss function.

In other words, the conceptualisation of decision accuracy implies that only one

alternative is correct and the rest are incorrect options.
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Bogacz et al. (2006) mention that many scenarios can be simplified to a decision

between two alternatives in which the decision-maker has to prioritise either accu-

racy or speed. This set of conditions referred to as the two-alternative forced-choice

(TAFC) task, has prompted a vast number of formal modelling efforts as well as

neuro-physiological studies, the results of which support models such as the Drift

Diffusion Model (Ratcliff and McKoon, 2008; Usher and McClelland, 2001). Study-

ing decision-making within the TAFC framework has been useful in a plethora of

different fields, from ecology to economics, neuroscience and psychology. However,

under different circumstances, this approach can be quite limiting in the analysis of

naturalistic decisions. As Pirrone et al. (2014) explain, the mechanisms behind this

type of decision-making are very well known, in large part because they match the

laboratory experimental conditions, where subjects are rewarded only when they

make the correct choice. They argue that, although some naturalistic decisions do

match this zero-one loss function, in most naturalistic choices there is no correct-

incorrect dichotomy, rather alternatives are likely to have different values, and the

decision-maker is rewarded according to the value of the chosen alternative, such as

choosing a food item to be consumed (Pirrone et al., 2014; Pais et al., 2013). This

feature is known as magnitude-sensitivity or value-sensitivity. In relation to decision

times, Bose et al. (2019a) mention that value-sensitivity is characterised by decreas-

ing decision times in response to increasing values of 1) the difference between the

value of the alternatives, and 2) the average value of the alternatives. This feature

has been observed in humans (Pirrone et al., 2018b), monkeys (Pirrone et al., 2018a)

and slime moulds (Dussutour et al., 2019). In value-based decisions, and unlike the

perceptual decision-making, regardless of the option selected, the agent will always

receive a reward, the value of which will depend on the alternative chosen. This is

the difference between perceptual discriminatory decisions and value-based decisions

(Sugrue et al., 2005).

As Bose et al. (2017) mention in their review, the dynamics found in value-based

decision-making have led to the modification of the speed-accuracy trade-off concept,
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used in the perceptual discrimination decision-making, into the speed-value trade-

off. This concept encapsulates the new dilemma faced by agents performing a value-

based decision. Since the decision-maker has to prioritise either decision time (speed)

or obtaining highest possible reward (value). In this context, value can be interpreted

differently depending on the context of the decision and it is by no means a fixed

concept. In perceptual decisions, value can indicate the magnitude of a signal, and

in value-sensitive decisions, value can represent a reward, for instance, the perceived

energetic content of a food item or the suitability of a potential location for a new

shelter. The reward is what the organism actually gets, for instance, the energy

contribution of a food item.

Equal-value alternative decision-making

In the study of value-based decisions, an interesting case to analyse is that of a

decision between two options of equal value. The aforementioned Buridan’s ass

paradox describes an instance of equal-value alternative decision-making. An ass

at equal distance of two piles of hay that are indistinguishable from each other.

In the original outcome of this dilemma, the ass dies of hunger unable to chose

one pile of hay over the other because they are equal, both in distance and in the

perceived quality. Without knowing much about the mathematics behind value-

based decision-making, or the philosophy of intentionality and free will, inherently

we doubt that an animal would simply starve when presented with two equally

nutritious food items because it could not decide which one is the best. As Chislenko

(2016) mentions, there are three main philosophical answers to the Buridan’ass

dilemma: 1) denying the possibility that equal-value decisions exist, 2) “biting the

bullet” and accepting that the ass must starve, and 3) choosing randomly in order

to break the decision deadlock. Randomly choosing one of the two alternatives as

a solution to the Buridan’s ass was proposed by Rescher (1960), as a solution to

problems of choice in the absence of preference as he calls them. This solution to

the philosophical reading of the Buridan’s ass problem mirrors the findings of the
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mathematical analysis of equal-value alternative decisions. Specifically, they are

analogous to the results yielded by the modelling efforts that describe the decision

faced by house-hunting honeybee swarms. Honeybee swarms selecting a location in

which to build their new nest are composed of scout-bees whose job is to explore

and evaluate different potential locations. If two alternatives have the same value

(in this context value means the suitability of the location to be a nest, determined

by the protection it offers from the environment and predators, as well as cavity

volume and other structural factors), the swarm faces the same predicament as the

Buridan’s ass: how to make a choice without preference, or in other words, how to

make a decisions if the estimated nest locations have identical value. According to

Seeley et al. (2012), and very much like neural decision-making systems, honeybee

nest-site scouts not only accumulate evidence in favour of each potential nest-site,

but they also deliver stop signals to scouts committed to different sites as a form of

cross-inhibition. Cross-inhibition is an important feature of some neural decision-

making models, and it refers to the mechanism by which each neural population

that integrates evidence for one of the alternatives, inhibits the activation of the

competing neural populations (Bogacz et al., 2006). In honeybees, cross-inhibition

takes the form of scouts directing inhibition signals (stop-signals which are basically

headbutts) at scouts committed to competing sites, whenever they promote their

site to uncommitted bees via the waggle dance. In cellular metabolism, inhibition

takes the literal form of regulatory metabolic pathways that inhibit the activity of

target genes in response to different external and internal chemical signals. Seeley

et al. (2012) show that models that lack cross-inhibition will not break their decision

deadlock (the ass starves to death unable to decide), whereas models that implement

cross-inhibition between the nest-site scout populations, successfully break deadlock

by choosing one of the two alternatives at random.

In contrast, in equal-value alternative problems, speed-accuracy decision-making

models such as the DDM predict a state of deadlock. As Pirrone et al. (2018b)

mention, optimising accuracy and disregarding the absolute value of the alternatives
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makes equal- and near-equal-value alternatives decisions, particularly hard within

such an approach. Because these models do not take into account the average or ab-

solute magnitude of the alternatives, but rather just focus on the difference between

them, as the difference in value diminishes, the system risks a state of deadlock.

Additionally, the mean value of the alternatives does not affect the decision times in

such systems. Equal-and-high or equal-and-low cases are treated in the same way

by value-insensitive systems. As long as the difference in value is the same, high-

and low-mean value alternatives will have the same decision times.

Work by Tajima et al. (2016, 2019) on optimal value-based decision-making for

binary and multichoice problems puts forward the argument that drift diffusion

models present the optimal mechanism to describe such decisions, regardless of the

number of alternatives. However, as pointed out in a commentary made by Marshall

(2019), their results hinge on the assumption that the time invested in taking the

decision has a linear cost, which is subtracted from the rewards gained by making

the decision. Cost can refer to the cost of delaying a decision or the investment

of resources related to the accumulation of evidence. In the cellular context, a cost

would be anything that negatively affects growth rate. Time being a linear cost runs

contrary to the reality of most naturalistic decisions, in which costs are considered to

increase with the passage of time, rather than remain constant. This has been shown

experimentally. Steverson et al. (2019) tested the prediction of models including

both a linear (or additive as it is called in their paper) and a multiplicative cost

by contrasting them with experimental data. They show that the experimental

results they obtained support the hypothesis of a multiplicative cost of time passed.

Pirrone et al. (2018a) also found similar results in their experiments with both

human and monkey subjects. Additionally, Steverson et al. (2019) also highlight

another limitation of approaching value-sensitive decisions with a drift diffusion

approach. DDM makes predictions based on the difference in value between the two

alternatives, not taking into account the absolute magnitude of them. This does

not fit with their results, which show that high-valued alternatives decrease decision
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times. This fact only emphasises the limitation of this approach in predicting some

naturalistic decisions in which the mean value plays an important role in determining

the dynamics of the system. Pirrone et al. (2018a) mentions that value-insensitive

models such as the DDM can tackle this disadvantage by implementing additional

mechanisms such as collapsing boundaries or asymmetric inhibition. However, these

methods do not confer the models with magnitude-sensitivity.

The value-sensitivity approach on the other hand, facilitates the breakage of decision

deadlocks because it optimises value of the potential reward to be gained, rather than

accuracy within a zero-one loss function problem. The rational of value-sensitivity

states that in equal-value cases, a deadlock state can be broken depending on the

average value of the alternatives. Equal-and-high value cases have shorter decision

times than equal-and-low value cases. This can be easily understood if one imagines

an agent choosing between two equally low value food items. In this case, it might

be worth it to simply wait in case a better third option presents itself, as shown by

Pais et al. (2013). On the other hand, if the subject is faced by two equally high

alternatives, it is more beneficial to choose as fast as possible.

Returning to the nest hunting honeybee swarm, varying the strength of the cross-

inhibition in this model also affects the dynamics of the system. As Pais et al.

(2013) and Reina et al. (2017) show, a swarm that finds itself in a state of deadlock

can break out of it by increasing the strength of cross-inhibition over time. This

will eventually allow them to randomly choose one of the alternatives. Because this

system is value-sensitive, the average value of the options also affects the decision-

making dynamics of the system. As Bose et al. (2017) point out, if a honeybee

swarm faces a choice between two potential nest locations of equal but low value,

then the system will be remain in a state of deadlock. Neither option is good enough

to overcome the potential benefit of waiting for a better third option, which is the

sensible choice. Experiments with slime mould by Dussutour et al. (2019) also

provide proof of another aspect of value sensitivity. They observe that when a slime

mould has two food sources at equal distance and of equal quality, then the average
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value of the food patches determines the decision time. As the average value of the

patches increased, the time it took the slime mould to reach either one of the two

food sources diminished.

2.2 Decision-making systems in biology

Decision-making has been studied and analysed in a plethora of different biological

systems, from neurons to insect colonies and cells. The broad range of fields in

which decision-making principles take place highlights how ubiquitous they are in

all of biology. In this section we briefly touch upon the different fields and systems

in which decision-making has being studied or applied.

2.2.1 Neuroscience

Decision-making study in neuroscience have focused on producing models of the

neural circuits responsible for assessing the alternatives available and make the de-

cision through the activation of different population of neurons. The models have

not only been derived from neurological experimental data, but also psycho-physical

experiments with human subjects.

Bogacz et al. (2006) present a review of the canonical decision-making models in

neuroscience. In what follows we give a brief description of these models based

upon the classification presented by Bogacz.

DDM

One of the first and most used formal decision-making models is the drift diffusion

model (DDM). Originally proposed by Ratcliff (1978), the DDM has been shown to

be very successful in describing a vast quantity of data from different experiments
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(Ratcliff and Rouder, 2000; Usher and McClelland, 2001; Ratcliff and L. Smith,

2004; Ratcliff, 1978). Notably, when fitting to experiments such as signal detection,

lexical decision and recognition memory, the DDM renders the best fit compared

to other neurologically inspired models Ratcliff and L. Smith (2004). As Bogacz

et al. (2006) and Marshall et al. (2009) point out, the DDM is a continuous case

of the sequential probability ratio test (SPRT), which is discrete in nature. The

SPRT has been proven to be the optimal decision-making mechanism for TAFC,

as it minimises the decision time for any given error rate (Wald and Wolfowitz,

1948). This means that the SPRT will reach a decision the fastest for any desired

accuracy. This property is also present in the DDM. Hence, the DDM is optimal for

TAFC decision-making tasks. The DDM describes the integration of the difference

in evidence between two different options or hypothesis.

The DDM describes how the difference in evidence supporting either one of the two

alternatives varies over time. This accumulation process continues until the differ-

ence of evidence reaches a certain threshold, which leads to a decision in favour of

the alternative whose boundary was just crossed. The process of evidence integra-

tion is described as a continuous random walk process. Equation (2.1) shows what

is known as the pure DDM,

dx = Adt+ c dW, (2.1)

where x is the position of a particle in a time/evidence line where the position of

the particle represents the difference between evidence supporting the correct and

incorrect alternatives over time. x is also referred to as an integrator unit. An

unbiased process starts at x(0) = 0. The change in the position of x, or the change

in the difference in evidence between both alternatives dx, is determined by the

term Adt, which is the drift that describes the accumulation of evidence in favour

of the correct option. The sign of the constant A correlates to which one of the

alternatives is the correct one. If A is positive then option 1 is correct, whereas if
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A is negative, the correct option is option 2. The term c dW is the white noise that

affects the process of evidence accumulation. The decision is then reached when the

position of x crosses a decision boundary, indicating that the difference between the

evidence of both alternatives is large enough to have crossed a threshold in favour

of one options, allowing the decision to be taken. Figure 2.2 shows examples of

unbiased decision-making processes simulated with the DDM.

Figure 2.2: Examples of evidence accumulation with the drift diffusion model (DDM). The x is the
difference between the amounts of evidence accumulated supporting the two options. Each one of
these ten time series corresponds to one decision process taking place. The parameters used are:
A = 1, c = 1, x(0) = 0 and with threshold = 1. The dotted lines at x = 1 and x = −1 are the
decision thresholds for the correct and incorrect options, respectively. Once a path crosses one of
these boundaries the decision is taken in favour of that option.

Race model

The race model presented by Bogacz et al. (2006) is a continuous-time variant of the

model described originally by Vickers (1970). The DDM consists in one unit that

integrates all the evidence for both options. The race model is two-dimensional,

therefore, two units integrate evidence for each of the alternatives independent from

each other. The race model is effectively two drift diffusion equations
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dy1 = I1 dt+ c dW1

dy2 = I2 dt+ c dW2.

(2.2)

In contrast to the DDM (2.1), the race model accumulates absolute evidence rather

than the difference between them. Both integrator units yi represent the evidence

accumulated in favour of their corresponding alternative. The Ii dt terms modulate

the rate at which each units accumulate evidence. Each independent evidence accu-

mulation process is subjected to white noise, set by the term c dWi. Two different

decision conditions can be applied: a temporal one or an evidence threshold. A tem-

poral decision condition means that at a specific time, the alternative with the higher

yi value is selected. In a scenario with no time constraints, an evidence threshold

value exists and whichever alternative reaches this value first, is selected. Unlike

the following models, the race model is not neuro-scientifically motivated. However,

other race-type decision-making mechanisms have been described in Bacillus subtilis

cells (Kuchina et al., 2011).

Mutual inhibition

This model consists in four different units that represent four different neuron pop-

ulations: for each alternative, a neuron group provides evidence in support of their

cognate option, and a second neuron group accumulates the evidence provided by

the first group. The integrator units in this model inhibit each other’s activity

directly. The mutual inhibition model reads

dy1 = (−k y1 − w y2 + I1) dt+ c dW1

dy2 = (−k y2 − w y1 + I2) dt+ c dW2.

(2.3)

The integrator units yi have an inherent decay of activity, or leak, that takes place

at a rate determined by k. The integrator units accumulate evidence at a rate de-
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termined by the activity of the evidence-provider units Ii. The integrator units also

inhibit each other’s activity with strength w. Again, as in the previously described

models, the term c dWi sets the contribution of white noise. A decision is made

when either unit crosses a threshold value.

Feed-forward inhibition

This model is somewhat similar to the mutual inhibition model (2.3). The difference

here is that the inhibition, suffered by the integrator neurons, comes from the input

units providing the evidence. The feed-forward inhibition reads

dy1 = I1 dt+ c dW1 − u(I2 dt+ c dW2)

dy2 = I2 dt+ c dW2 − u(I1 dt+ c dW1).

(2.4)

In this model, there is no decay of activity and the input units perform two tasks:

provide evidence for their corresponding accumulators, and inhibit the activity of

the competing accumulator. The strength of the cross-inhibition is mediated by

parameter u. The decision is taken as soon as one of the two integrator units crosses

a threshold value.

Pooled inhibition

This model was originally proposed by Wang (2002). This model adds a fifth unit

to the four-unit structure implemented by the mutual and the feed-forward models.

The sole purpose of this fifth unit is to inhibit the two integrator neuron populations.

The model is written as follows
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dy1 = (−k y1 − w y3 + υ y1 + I1) dt+ c dW1

dy2 = (−k y1 − w y3 + υ y2 + I1) dt+ c dW1

dy3 = −kinh y3 + w′(y1 + y2) dt.

(2.5)

Like the mutual inhibition model (2.3), the activity of integrator units decays over

time at a rate mediated by parameter k, and they integrate evidence at a rate de-

fined by the input units Ii. The effect of inhibition comes from the inhibitory unit

y3, not from each other, and its strength is modulated by parameter w. Addition-

ally, the accumulators in this model have a self-excitatory feedback loop that helps

to maintain the activity of the accumulator. The inhibitory unit y3 also exhibits

activity decay at rate kinh. Both integrator populations of neurons y1 and y2 excite

the inhibitory group of neurons represented by unit y3. The activation of this inter-

action is weighted by w′. Again, this model reaches a decision whenever the activity

of one of the integrator units reaches a determined threshold.

The models presented by Bogacz et al. (2006) can be considered the canonical

decision-making model architectures. All of the models are motivated by experi-

mental data from neurological studies as well as psychophysical experiments done in

humans, primates and other animals such as rats (Hanks and Summerfield, 2017).

Following their development, these models have continued to be used in psychol-

ogy and neuroscience. Moreover, the architectures and underlying structures of the

models can be seen paralleled in the study of other biological systems, such as slime

mould (Zabzina et al., 2014), insect swarm behaviour (Pais et al., 2013) and cellular

behaviour (Chu and Barnes, 2016; Nené et al., 2012).

2.2.2 Decision-making in insect colonies

The study of decision-making is particularly prevalent in the study of social insect

behaviour. In colonies of such social species, individuals are highly related to one
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another and work with a high degree of cooperation within the group. This means

that the individual interests are aligned with the interests of the entire group.

Quintessential examples of collective decision-making in insect groups are honey-

bees swarms and ant colonies. They present a notable instance of the concept of

the superorganism and group-cognition. As Sasaki and Pratt (2018) mentions, the

knowledge of the colony does not depend on knowledgeable individuals within the

colony. In fact, individuals only have partial information. It is the interaction be-

tween the individuals that allows group-cognition to emerge. This is particularly

apparent in the case of foraging colonies in which most individuals only know one of

the potential food sources, yet the colonies “know” all of them, and therefore, they

can “choose” how to allocate their individuals to the different food options available.

The process through which honeybee swarm chooses a location for their new nest

has been the subject of thorough study. Seeley et al. (2012) describe the nest-site

selection mechanism in detail: when a honeybee swarm leaves their hive to create

a new colony, scout bees leave the group to find potential nest locations. Then,

they come back to the group and try to recruit uncommitted honeybees to the nest-

site they themselves are committed to through the “waggle dance”, a mechanism

that allows scouts to recruit uncommitted bees to their site by communicating the

direction and distance of the site. The scouts also deliver “stop signals” to dancing

scouts promoting different sites than the one they are committed to. This cross-

inhibition between the scouts allows the swarm to reach a decision. A scout-bee

receiving stop signals reduce the length of its waggle dance. Once enough bees are

committed to the same site, the swarm collectively makes the decision and relocates

to the winning option to build a new nest. Pais et al. (2013) present a model

that explores the dynamics of this process for a two-alternative decision. Reina

et al. (2017) expands on the work done by Seeley et al. (2012) in order to produce

a N-nest-site selection model for cases with more than two options. It is worth

noting that both insect colonies and neural systems seem to preform decision-making

through the accumulation of evidence by different population with cross-inhibition
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occurring in between them. Marshall et al. (2009) describe the parallels that exist

between decision-making in primate brains and insect colonies. Their work shows

how analysis techniques used on neural models can also be used to study decision-

making processes in insect groups.

Decision-making in ants colonies has been equally extensively studied. Particu-

larly, the behaviour of foraging ants has been illuminating. Ants follow a trail of

pheromones left by previous ants, from the nest to the food source. The quan-

tity of pheromones in the trail is in proportion with the quality of the food source.

Modelling efforts have successfully modelled foraging ants by accounting for the

competition effect that exists between the trails of pheromones. The trails compete

for ants in terms of how attractive the trail is for the foraging individuals, which is

in proportion the the quality of the food source. Unlike the case with house-hunting

honeybee swarms, ants do not necessarily need to chose one food source. Nicolis and

Deneubourg (1999) work shows that, under certain conditions, an ant colony can

exploit multiple food sources simultaneously. Selection of new nest-sites have also

being a subject of great interest in studies on ant colonies. Masuda et al. (2015) ex-

plore how a response-threshold model, that includes variability among ants on their

level of acceptance of a new nest site, delivers results that are supported by data.

Similarly, Sasaki and Pratt (2018) analyse nest selection by ants through the use

of neural models, namely, the drift diffusion model, further cementing the existence

of underlying decision-making principles that are applicable to all decision-making

systems.

2.2.3 Other biological systems

Foraging is a fundamental task that every individual or group of individuals must

succeed at, in order to survive. Decision-making in the context of choosing between

sources of food has not only been explored in insect colonies, but also in slime mould.

Zabzina et al. (2014) present a detailed modelling work of the slime mould Physarum
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polycephalum foraging for food and having to choose between two identical sources

of food. Their model describes collective decision-making that reaches a decision

through quorum sensing. Their modelling efforts, which are confirmed by their

experimental data, present a scenario in which the slime mould has three courses of

action available to itself: it can either consume none of the options, consume one

of the two, or consume both of them simultaneously. Similarly, Vogel et al. (2018),

also found the slime mould P. polycephalum to be capable of multistability. They

find that when the alternatives are of low quality, the slime mould would generally

exploit them both. However, at high average value, the symmetry breaks and the

slime mould makes a decision for one of the two options presented. The slime mould

proves itself to be multistable at medium quality values. In this experiment, Vogel

et al. (2018) report that at this value, half of time, the slime mould exploit both

options, whilst the other half the commit to only one. Both of these articles deal

with the concept of symmetry-breaking, which in this context means that a system

in a homogeneous environment, transitions into asymmetric behaviour. In other

words, the system makes a decision in a two equal-alternatives scenario.

Multistability, or bistability, are features of some systems which indicate that the

system, under certain conditions, can find itself in any of multiple different biological

states (two in the case of bistability). This property is intrinsic to many systems,

including the slime mould in the equal alternative scenario, and very present in

cellular decision-making. Some bistable systems present the property known as hys-

teresis, which implies that the current state of the system, depends on where the

system started. This can be conceptualised as a switch. For instance, a switch-like

response curve that presents bistability and hysteresis, can be in either its “on” or

“off” state depending on the value of the trigger signal. However, the trigger sig-

nal threshold value at which the switch from on-to-off takes place, is not the same

value at which the switch from off-to-on occurs (Ferrell, 2002; Laurent and Keller-

shohn, 1999; Ozbudak et al., 2004a). Bistability can also present itself as irreversible

switches in which once the switch happens, there is no coming back. The switch-
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ing behaviours obtained through bistability are used by cells in apoptosis, cellular

differentiation and cell cycle progression (De La Cruz et al., 2015). The maturation

of Xenopus oocytes (frog eggs), which is decided through the complex interaction

between different molecular signals, is such a system. In fact, the maturation occurs

thanks to two different molecular cascades that are irreversible switches. Xenopus

oocytes has also being used to study mitosis or cell division, which occurs as a com-

petition between two different types of enzymes with opposite effects, kinases and

phosphatases (Domingo-Sananes et al., 2011). Apoptosis, the process of cellular

death, might also be another process that is a one-way, or irreversible, switch, as

Tyson et al. (2003) points out. However, new studies have indicated that this might

not be the case, and that under certain conditions cells can turn off apoptosis even if

the process had already begun. This is particularly prevalent in cancer cells, which

presents the challenge of cancer cells that can overcome the effects of chemotherapy

(Tang et al., 2009). Non-cancer cells are known to be able to reverse the process of

apoptosis, at least at the very early stages (Elmore, 2007; Geske et al., 2001). Ferrell

(2002) mentions that in order for a system to present bistability, it is necessary that

a positive feedback loop (or the equivalent) exist. It is also necessary that, within

the feedback circuit, some form of non-linearity be included.

2.2.4 Swarm robotics

The study of collective decision-making has also been implemented in the field of

robotics, specifically swarm robotics and produced significant insights into biologi-

cally inspired models (Talamali et al., 2019, 2020; Mitri et al., 2013). Swarm robotics

can be particularly insightful and helpful to the research of decision-making when-

ever the physical environment and the interactions that the individuals from the

group have with it are a major factor in the decision-making process. Such compo-

nents, especially if they are very specific, can be sometimes hard to model, which

is why physical experiments with robotic swarms can be quite an effective tool to
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study biological systems (Bose et al., 2017).

2.3 Biological background of yeast metabolism

The dynamics of carbon consumption in microorganisms is an essential sub-field

of interest within microbiology. Seminal early studies by Monod (1949) as well as

Novick and Weiner (1957) were amongst the first to describe nutrient consumption

dynamics in microorganisms and establish some of the first concepts that have later

been expanded upon throughout the following decades. One such concept that has

received much attention is carbon source consumption. More specifically, the be-

haviour an organism presents when placed in a medium with two or more available

carbon sources. As Aidelberg et al. (2014) mention, it is well established that when

a population of cells finds itself under such conditions, it can either consume both

sugars simultaneously, or consume the sugars sequentially by first depleting the pre-

ferred carbon source. Both Beisel and Afroz (2015) and Koirala et al. (2016), point

out that, single cells within that population can find themselves in one of three

different states: 1) they can be completely un-induced or uncommitted to either

one of the sugars, 2) they can be induced to one of the two sugars, or 3) both

simultaneously. One of the first examples of sequential preferential consumption

was presented by Monod (1949) by showing that, when E. coli is presented with a

glucose-lactose mixture, the bacteria consumes glucose first, their preferred carbon

source, and once depleted it moves on to lactose. Over the following decades several

studies have built upon those findings and have shown that carbon sources prefer-

ences in microorganisms can be organised in hierarchies based on the growth rate

they provide. Aidelberg et al. (2014) presented a sugar consumption hierarchy for E.

coli based on their analysis of gene expression patterns. When presented with two

alternatives, the metabolic genes which correspond to the preferred sugar activate

in order to build up the molecular machinery required for its consumption. The

high levels of genetic activity detected reflect the commitment of the cell to a high
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valued alternative. This commitment is reinforced by the lack of genetic activity

present in the genes of non-preferred sugars.

For most organisms glucose is the preferred carbon source and their regulatory

networks are usually tuned to respond with great specificity to its presence and

metabolism (Stülke and Hillen, 1999). For Saccharomyces cerevisiae, commonly

known as baker’s yeast, the general order of consumption is relatively well doc-

umented: glucose is the preferred sugar and it is consumed first over any other

available alternative. Once glucose is depleted, any other fermentable sugars are

then consumed over any non-fermentable carbon sources, which are consumed last

(Schweizer and Dickinson, 1999; Broach, 2012). The carbon catabolism dynamics

observed in yeast, as well as the resulting hierarchy, are explained by the interaction

of a number of biochemical pathways of cross-regulation by which the catabolism

of the preferred sugar represses the uptake and metabolism of less valuable sugars

(Broach, 2012; Gancedo, 1998; Horák, 2013; Wang et al., 2015). This order of con-

sumption is maintained by carbon catabolite repression (CCR). This feature makes

reference to the universally observed phenomenon that, in the presence of their pre-

ferred carbon sources, microorganisms will repress the utilisation pathways of non-

preferred carbon sources in order to ensure preferential selective consumption (Görke

and Stülke, 2008). As Lengeler (2001) explains, it is the presence of a preferred and

rapidly metabolisable sugar such as glucose or fructose that triggers the inhibition

of the catabolic pathways of non-preferred carbon sources (Chambers et al., 2004).

Stülke and Hillen (1999) and Görke and Stülke (2008) provide comprehensive reviews

in which they examine the different mechanisms used by different microorganisms

to regulate their carbon metabolism. As Brückner and Titgemeyer (2002) point out,

bacterial CCR not only ensures preferential consumption but also limits catabolism

according to the cellular metabolic capacities. Brückner and Titgemeyer (2002) also

describe different regulatory mechanisms, some of which are sugar specific, whilst

others act on a global scale affecting a vast number of metabolic pathways, even

those cognate to the triggering carbon source. For instance, E. coli growing in lac-
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tose will trigger inhibitory mechanisms that autoregulate the expression of the lac

operon, the DNA unit responsible for lactose uptake and initial metabolism, thereby

reducing the activity of lactose consumption, presumably, in order to not exceed the

metabolic capacity of the cell (Brückner and Titgemeyer, 2002; Hogema et al., 1999).

In S. cerevisiae, CCR pathways also exert a level of autoregulation in order to re-

duce the transition time once glucose is depleted (Kaniak et al., 2004). Petit et al.

(2000) explore how the kinase Hxk2p, which is one of the enzymes that catalyses the

first step of glycolysis by phosphorylating the glucose molecule, autoregulates the

high affinity glucose transporter. Similarly, maltose and galactose have also been

documented regulating their own catabolism (Jiang et al., 2000; Horak et al., 2002).

CCR in yeast, and in S. cerevisiae in particular, has been thoroughly studied

(Gancedo, 1998; Santangelo, 2006; Carlson, 1999; Horák, 2013; Johnston et al.,

1994; Broach, 2012; Schüller, 2003). As is the case with E. coli, CCR refers to

a rather complex array of varied mechanisms which are often redundant and act at

different levels of metabolic activity in response to different signals (Wang et al.,

2004; Kaniak et al., 2004; Lane et al., 2018; Vega et al., 2016; Zaman et al., 2009;

Novak et al., 2004). As is the case with most microorganisms, including yeast, glu-

cose is also the preferred sugar. Therefore, CCR, or the glucose effect as it is often

called, is mainly triggered by the presence of glucose. When glucose is detected, a

multitude of mechanisms both repressive and inducing are triggered (Horák, 2013;

Jiang et al., 1997; Herrero et al., 1985; Kayikci and Nielsen, 2015; Johnston et al.,

1994; Chubukov et al., 2014; Bendrioua et al., 2014; Ozcan and Johnston, 1999). In

fact, close to 40% of the entire genome is affected within minutes after introduc-

ing glucose into the environment (Broach, 2012; Wang et al., 2004). Reviews by

Carlson (1999); Zaman et al. (2009); Gancedo (2008) and Novak et al. (2004) pro-

vide great insight into the details of this transcriptional restructuring and highlight

the inherent redundancy of the regulatory network. At the level of genetic expres-

sion, easily fermentable sugars, usually glucose, silence the genetic expression of less

valuable carbon sources, both fermentable and non-fermentable (Schüller, 2003).
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For instance, in a glucose/galactose mixture, galactose metabolism is repressed by

the Snf1p/Mig1p pathway, the main glucose repression pathway in yeast (Horák,

2013). Johnston et al. (1994) show that the Snf1p/Mig1p pathway is responsible for

the 1000-fold inhibition that the galactose metabolism endures when yeast grows on

a glucose rich medium. Papamichos-Chronakis et al. (2004) provide an in-depth ex-

planation of how the Snf1p/Mig1p pathway interacts with other regulatory elements

in yeast in order to produce its inhibitory effect. The Snf1p/Mig1p pathway is by no

means the only regulatory pathway glucose makes use of. Zaman et al. (2009) have

a detailed breakdown of the signalling pathways by which glucose represses genetic

transcription. The most important among them will be discussed in the text below.

CCR also encompasses mechanisms at the post-transcriptional level that can in-

crease the degradation rate of specific mRNAs as well as affect the synthesis rate of

specific proteins. Cereghino and Scheffler (1996) not only explain this process thor-

oughly, but their findings indicate that for some genes the rate of mRNA turnover

might be the most important element of the regulatory process. Andrade et al.

(2005) present similar work that shows how lactose uptake is repressed by glucose-

triggered mRNA decay. Work done by Federoff et al. (1983) and DeJuan and La-

gunas (1986) and others shows how glucose induces mRNA decay as part of its re-

pression of maltose and galactose uptake respectively (Klein, 1997; Hu et al., 2000).

At the post-translational level, CCR induces the internalisation of membrane trans-

porters of non-preferred carbon sources, as well as their inactivation by proteolysis,

which can occur in the citosol or within a vacuole (Brondijk et al., 2001; Horak

and Wolf, 1997). This process is usually called catabolite inactivation. Horak et al.

(2002) and Jiang et al. (2000) describe how the metabolic activity of Hxk2p, the

enzyme responsible for catalysing the first step in the glycolytic pathway, triggers

GAL2p and FBPase proteolysis. As Medintz et al. (1996) mention, transport inhi-

bition is not only the result of the membrane transporters being degraded but also

in some cases it is preceded by a phosphorylation that rapidly inactivates the trans-

porter. Novak et al. (2004) also point out that in the case of maltose transporter
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Mal61p, the catabolic inactivation seems to respond to both glucose sensing and

glucose transport. It is not uncommon to have all different levels of repression act-

ing at once. Glucose-triggered inhibition at all levels of both maltose and galactose

metabolisms has been well documented (Novak et al., 2004; Johnston et al., 1994;

DeJuan and Lagunas, 1986).

A great deal of attention has been placed on the identity of the glucose signal that

triggers CCR into action. Although it has not been elucidated in its entirety, some

progress has been made. Carlson (1999) gives an overview on the subject by going

through some of the main candidates. A growing amount of evidence points to glu-

cose phosphorylation during the first step of glycolysis as an essential part of the reg-

ulatory glucose signal. Specifically, the kinase Hxk2p, which catalyses the first step

of the glycolytic pathway, and the product of that reaction, D-glucose 6-phosphate

(G6P), have both been thoroughly analysed as potential “trigger molecules” (Meijer

et al., 1998; Ahuatzi et al., 2006). Jiang et al. (2000) mentions that early stages of

catabolism, specifically the first step of glucose phosphorylation, seem to be required

to activate the inhibition effect. Lane et al. (2018) findings strengthen this point by

suggesting that G6P might regulate Snf1p, which in turn serves as a global repressor

to numerous non-glucose carbon source metabolic pathways (Teusink et al., 1998).

Studies by Cereghino and Scheffler (1996), on the other hand, show that glucose

phosphorilation, not G6P nor F6P, which is a fructose metabolic intermediate, is

enough to trigger post-transcriptional regulation of Ip proteins which are required

for succinate metabolism. Other authors have further suggested that Hxk2p plays

a central role in yeast CCR. Work done by Andrade et al. (2005) has pointed out

that mutants without the Hxk2 gene see their glucose-triggered repression allevi-

ated. Vega et al. (2016) also support the notion that Hxk2p is heavily involved in

the repression apparatus, as well as being an internal glucose sensor. An important

element to note is that not every pathway that makes up the CCR phenomenon

responds to the same signal. Work done by Kaniak et al. (2004) shows that the

regulatory pathways Snf3p/Rgt2p and Snf1p/Mig1p, although intertwined with one
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another, might respond to different signals. Snf3p/Rgt2p is a glucose sensing mech-

anism, primarily responsible for activating the synthesis of concentration-specific

glucose transporters, as well as the activation of various transcription factors that

play a role in CCR (Horák, 2013). They also point out that the cell might benefit

from responding to different glucose signals whilst having a coordinated activation

of different regulatory pathways. Snf3p/Rgt2p shows activity in response to high

glucose concentration, whereas the Snf1p/Mig1p pathway, considered a master reg-

ulator, responds to glucose metabolism through its interaction with Hxk2p (Vega

et al., 2016). Meijer et al. (1998) have suggested that the Snf3p/Rgt2p sensing mech-

anism has the capacity to sense intracellular glucose concentration, and it is this that

triggers some regulatory pathways. Their results also rule out glucose flux through

the membrane as a potential trigger of the inhibitory network. It is rather glucose

concentration that activates glucose repression. In addition to this, some studies

on glucose-induced galactose inhibition showed that the inhibitory mechanism is

triggered by the galactose/glucose ratio, rather than by any absolute concentration

(Escalante-Chong et al., 2015; Nguyen-Huu et al., 2015).

Whilst the Snf3p/Rgt2p and Snf1/Mig1p pathways have been characterised as the

two main regulatory pathways involved in carbon regulation, the cAMP/PKA or

RAS-cAMP pathway, considered to be the third main carbon regulatory pathway,

has also been analysed in great depth (Rolland et al., 2002; Tamaki, 2007; Horák,

2013). In contrast to both Snf3p/Rgt2p and Snf1/Mig1p, which exert a rather

specific control of the carbon metabolism in yeast, the control that cAMP/PKA

pathway has over the yeast metabolism is much broader, affecting many other cel-

lular functions, not only carbon metabolism. As Rolland et al. (2002) mention in

their review, cAMP/PKA pathway in yeast is essential to regulate overall metabolic

functions, stress response and proliferation. Studies in E. coli metabolism regula-

tion support this finding. You et al. (2013) show that in E. coli, the function of

the cAMP signalling pathway is focused in the global redistribution of proteomic

resources. They conclude that the cAMP pathway is not involved in regulating
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carbon metabolism. These findings are mirrored in yeast by several authors who

have found that the cAMP/PKA pathway is not essential to achieve glucose-induced

repression, indicating that at the very least there are cAMP-independent pathways

that redundantly inhibit non-glucose carbon source metabolism (Wang et al., 2004;

Horak et al., 2002; Eraso and Gancedo, 1984). Diagrams of the regulatory pathways

discussed in this section can be found in references Horák (2013); Rolland et al.

(2002); Kayikci and Nielsen (2015).

Compared to glucose, the repressive potential of non-glucose carbon sources has

received scant examination. Although the study of bacterial systems has unveiled

a hierarchy of consumption within non-glucose carbon sources, the mechanisms by

which this happens are not yet fully understood (Beisel and Afroz, 2015; Aidelberg

et al., 2014; Chubukov et al., 2014). Likewise, studies in Saccharomyces cerevisiae

suggest that a hierarchy of consumption still exists between non-glucose carbon

sources, both fermentable and non-fermentable (Gancedo, 1998; Jiang et al., 2000;

Brondijk et al., 2001; Horak et al., 2002; Simpson-Lavy and Kupiec, 2019). Although

it is known that the CCR network is not glucose exclusive, and in fact other sugars

such as fructose, mannose and galactose have long been known to elicit a repres-

sive effect, the extent to and conditions under which non-glucose sugars trigger a

repressive effect is not yet clear. (Sierkstra et al., 1993; Cereghino and Scheffler,

1996; Andrade et al., 2005; D’amore et al., 1989; Hong et al., 2011; Simpson-Lavy

et al., 2017). Sucrose, for instance, can interact with upstream elements of the

cAMP/PKA pathway, namely Gpr1p, with higher affinity than either glucose or

fructose (Lemaire et al., 2004). In particular, galactose has been well documented

for its repressive capacity. Both Lodi et al. (1991) and Herrero et al. (1985) show that

galactose not only regulates its own metabolism, but can also inhibit other metabolic

pathways including the expression of respiration related enzymes. In some cases,

these sugars can repress just as much as glucose. Other authors, however, have been

unable to find galactose-induced inhibition (Chambers et al., 2004). Horak et al.

(2002) reports that, under specific circumstances and in non-wild type strains of
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Saccharomyces cerevisiae, galactose does not induce FBPase degradation, which has

been reported previously by Herrero et al. (1985), albeit in different experimental

conditions. In the same experiments, Horak et al. (2002) shows that maltose re-

presses galactose metabolism, which contrasts heavily with maltose’s reputation as

a non-repressive sugar. Other studies present strong evidence for maltose-induced

repression in different yeast species (Eraso and Gancedo, 1984; Gancedo, 1998).

Nevado et al. (1993) document that galactose’s ability to repress glucose, fructose

and mannose depends greatly on the strain and the growing conditions of the cell

population. Metabolic pathways involved in the consumption of non-fermentable

carbon sources are also repressed by non-glucose sugars (Herrero et al., 1985; Cham-

bers et al., 2004). Non-fermentable carbon sources exert some degree of inhibition

as well. Belinchon and Gancedo (2003) show that non-fermentable carbon sources

can repress gluconeogenic enzymes. Similarly, acetate has been shown to exert some

repressive effect over ethanol metabolism (Simpson-Lavy and Kupiec, 2019).

Yeast is capable of both respiration and fermentation. Which one it uses depends

on the carbon source available. Yeast presents what is known as the Crabtree effect.

The Crabtree effect is the fermentation of sugars when oxygen is available and the

sugar concentration is high. A condition under which one could expect respiration

to occur, especially if one considers that respiration is much more energetically ben-

eficial than fermentation. As Pfeiffer and Morley (2014) point out, there are several

evolutionary reasons behind this seemingly energetically counterintuitive behaviour.

One explanation is that fermentation might be a better option in order to defend

a sugar rich environment since through fermentation yeast produces ethanol which

is toxic to other microorganisms. In addition, ethanol can be further consumed by

yeast. A second point that Van Voorhies et al. (2012) also highlight, is that although

respiration is more efficient, it is slower, whilst fermentation produces less energy at

a faster rate, which might give yeast a selective advantage. On this note, Bruggeman

et al. (2020) offer a very substantial article on how microorganisms are selected to

maximise their immediate growth rate. In this context, seemingly counterintuitive
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phenomena such as the Crabtree effect can be explained as strategies that maximise

the growth rate of the microorganism.

The importance of single-cell analysis is highlighted by the fact that, as Boulin-

eau et al. (2013) point out, our knowledge regarding cellular growth behaviour has

largely come from bulk experiments that provide information from the entire pop-

ulation, leaving single-cell behaviour unclear. Ozbudak et al. (2004b) emphasise

that inferring single-cell behaviour from population techniques can entail mislead-

ing conclusions. In their work, which focuses on the analysis of bistability in the

lac operon, the results from the population average show a gradual activation of the

system, whilst individual cells are either fully induced or not at all. Other authors

have found similar differences between population dynamics and single-cell analysis,

underscoring the importance of differentiating population from single-cell behaviour

(Koirala et al., 2016; Solopova et al., 2013; Beisel and Afroz, 2015).

2.4 Previously developed models

Various different theoretical approaches have been used in the past to model and

study the behaviour of microorganisms. High-throughput modelling approaches

such as flux balance analysis (FBA) which use stoichiometric matrices as their in-

put allow the modelling of entire metabolic networks comprising a vast number of

metabolic reactions at once (Palsson, 2011; Varma and Palsson, 1994). Such mod-

els are typically used to study a particular metabolic steady-state. They use data

on metabolic pathways to build their matrices and produce accurate and testable

predictions (Daran-Lapujade et al., 2004b). Usually, an objective function, usually

growth rate maximisation, is used to find the metabolic state that optimises this

function (Nilsson and Nielsen, 2016). Further developments of this approach into

dynamical FBA or mass action stoichiometric simulation (MASS) models have ex-

tended the applicability and predictive power of stoichiometric approach (Jamshidi
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and Palsson, 2010; Mahadevan et al., 2002). Another established modelling strategy

is the use of ordinary differential equations (ODEs). This approach has proven

to be versatile as it allows the study of individual gene expression, as it has been

done in order to analyse the lac operon on numerous occasions (Ozbudak et al.,

2004b; Santillán and Mackey, 2004; Yildirim et al., 2004; Noel et al., 2009), the

reconstruction of dynamic metabolic networks (Palsson, 2011), and the modelling

of entire cellular processes that encompass copious amounts of genes and metabolic

pathways into a small number of ODEs (Narang and Pilyugin, 2007; Kuchina et al.,

2011). This modelling approach has also led to the use of bifurcation and dynamical

systems analysis, which in recent years has provided insights into cellular behaviour

(Nené et al., 2012; Zabzina et al., 2014). The work of Nikolov et al. (2010) is an

example of an overarching modelling approach that integrates ODE modelling with

sensitivity and bifurcation analysis to provide predictive simulations. Similarly, Nee-

lamegham and Liu (2011) provide an example of how modelling and experiments

are being integrated in the field of glycobiology.

A significant distinction within the different modelling approaches is that between

deterministic and stochastic strategies. A deterministic modelling approach assumes

that there are no random fluctuations. The output of such a system is determined

by the parameters of the model and the initial conditions. This means that with the

same input, this type of model will always produce the same output. On the other

hand, a stochastic modelling approach assumes that there is noise, both internal and

external, that affects the behaviour of the system. Stochastic models will produce

different outputs every time they are run, even with the same initial conditions. It

can be argued that, as Perkins and Swain (2009) mention, since life at the cellu-

lar level is intrinsically stochastic, a stochastic modelling strategy is always better

suited to simulate cellular systems. However, the inclusion of stochasticity adds

more complexity to the simulation task, a resource investment that might not al-

ways be necessary. El-Samad and Khammash (2010) also emphasise the importance

of accounting for stochasticity when modelling cellular systems. Some established
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stochastic modelling approaches they mention are the master equation, which

accounts for the probabilistic nature of cellular reactions, and the Langevin equa-

tion, which usually describes the stochasticity from external sources. As Pais et al.

(2013) mention, when one uses stochastic differential equations, such as the Langevin

equation, the source of noise is external to the system, whereas the source of noise

in the master equation is internal, and dependent on the size of the system. The

master equation, however, can prove to be difficult to analyse and solve. Therefore,

the usual approach is to numerically approximate the solution to the master equa-

tion, via the Gillespie algorithm (Gillespie, 1976). The Gillespie algorithm simulates

stochastic chemical reactions systems, with the probability of any given reaction to

take place as a function of the concentration of its cognate substrates. Chu and

Barnes (2016) present an approach to model a stochastic biochemical network using

the Gillespie algorithm. The model consists of coupled chemical reaction equations

that are then simulated using a version of the Gillespie algorithm which, in their

case, was modified to allow growth and cell division to be modelled, since the original

is suited to simulate reactions within a single cell. A plethora of different techniques

and mathematical approaches are being use to simulate stochastic systems. De-

sponds et al. (2019) use a Markov chain, a different probabilistic approach, to study

the decision process that takes places in a fly embryo. Similarly, Nguyen-Huu et al.

(2015) use a delayed stochastic simulation algorithm (dSSA) to study the response

of a minimum galactose metabolism model to changes in its environment. Another

useful approach to study stochastic systems is information theory (section 2.1.6).

Concepts such as mutual information have been widely used in the context of gene

expression and cellular decision-making to address the inherent stochasticity of these

systems (Bowsher and Swain, 2014; Tkačik and Walczak, 2011; Tkačik and Bialek,

2016).

Building models that can be used to study and analyse a particular system has

become a necessity. However, constructing models and designing specific computa-

tional tools in order to analyse a particular system can prove to be labour intensive
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as well as technically complex. In the past couple of decades, there have been ef-

forts to the creation of modelling tools that can address the gap between the textual

descriptions of biological systems, and the mathematical models that describe those

systems as well as the computational tools required to analyse them.

Tools that offer a few specific analytic functionalities are widely available. Tools

such as MATCONT and Dynamica, for Matlab and Mathematica, respectively, as

well as XXP-AUT offer very robust dynamical systems analysis and bifurcation

analysis (Dhooge et al., 2003; Beer, 2016; Ermentrout, 2002). GillesPy, StochSS

and StochKit2 provide modelling software that focuses on performing stochastic

simulations based on the Gillespie stochastic simulation algorithm (Abel et al., 2017;

Drawert et al., 2016; Sanft et al., 2011). More generalised modelling tools that aim to

encapsulate a vast array of analytic functionalities also exist. For instance, MuMoT

is a highly accessible tool that allows the user to describe a system as a set of

chemical reactions, as well as to perform a wide array of analyses such as dynamic

systems analysis, bifurcation analysis and stochastic simulations (Marshall et al.,

2019b). The emergence and continuous development of such computational tools

allows researchers, particularly those that might not have the technical background,

to analyse and study their systems with mathematical rigour in an efficient manner.

Most mathematical models use and describe recurring patterns of interaction be-

tween different molecular elements. These recurring regulatory molecular circuits

have coined the name of network motifs. As Alon (2007a) points out in his review,

the chief idea behind the network motifs is that each one of them carries out a

specific function. Network motifs can be classified based on the information pro-

cess they perform. Other authors, such as Schaerli et al. (2014), show that the

variety between different motifs can be redundant since some motifs show the same

dynamical profile or can be reduced to other more simple motifs without loosing

their dynamic behaviour. Ferrell (2002); Laurent and Kellershohn (1999) and other

authors provide a lot of detail about how different motifs elicit certain bifurcations

and other different dynamical properties as well as their biological implications such
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as bistability (Ozbudak et al., 2004b; De La Cruz et al., 2015). Tyson et al. (2003)

review a variety of different mathematical terms and examples for specific dynamical

properties. For examples of articles that go in-depth on specific motifs see (Hart

et al., 2013, 2012; Yi et al., 2016; Briat et al., 2016; Shoval et al., 2010).
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Chapter 3

Models developed

In this chapter I describe the models that were developed in order to reproduce

experimental data and to analyse the decision-making dynamics through dynami-

cal systems analysis. I touch upon some relevant models from literature that have

informed our modelling efforts. I continue by presenting the models that we de-

veloped, discussing how suitable they are for the purposes of this project. These

models follow several of the canonical decision-making structures described by Bo-

gacz et al. (2006) that were discussed in Chapter 2. Additionally I also describe

the process of preliminary evaluation through which we screened and selected our

model. Furthermore, I provide a small summary of a particular feature of the ex-

perimental data in order to better explain the reasoning behind some of our design

choices. A full description of the experimental data is provided in the Chapter 4.

I finalise by providing an in-depth description and breakdown of the global inhibi-

tion model, discussing the notable features we have used to represent key aspects of

yeast metabolism, as well as the four different variants of the model that have been

analysed in Chapters 4 and 5.
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3.1 Relevant models from literature

In this small section I will go over a few models from literature, or just some features

of them, that are particularly relevant to our design efforts, and particularly, point

out some of the elements that have been incorporated into the design of our own

models.

3.1.1 Models by Narang et al. (1997) on E. coli

Throughout the years, Atul Narang has developed several models use to study differ-

ent aspects of E. coli growth and metabolism (Narang and Pilyugin, 2007; Narang,

1998; Narang et al., 1997). Specifically, the model by Narang et al. (1997) presents

some similarities to ours in the way it models the bacterial system. We have incor-

porated some elements from one of them, primarily the inhibition term they use in

their model, which reads

dc

dt
= Vg c

p

Kmp + p

dp

dt
=

2∑
j=1

Y Vx
xj

Kmx + xj
− Vg

p

Kmp + p
− Vg p

p

Kmp + p

dsi
dt

= −Vs ei c
si

Ks + si
dxi
dt

= Vs ei
si

Ks + si
− Vx

xi
Kmx + xi

− Vg xi
p

Kmp + p

dei
dt

= Ve
xi

(Ke (1 + p
Kinh

)) + xi
+Be −Kdcy ei − Vg ei

p

Kmp + p
,

(3.1)

where c is biomass, p is the concentration of precursors, si and xi are the extra-

and intracellular concentrations of substrate, respectively, and ei is the concentra-

tion of enzyme or the “lumped” system of inducible enzymes associated with the

internalisation and catabolism their cognate sugars. Narang’s models and ours bear

close resemblance in their structure, however, there are some key differences that

are worth pointing out. The last terms of equations dp/dt, dxi/dt and dei/dt of
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model (3.1) describes the rate of dilution of these cellular components within the

cell. In our approach we have decided not to include this element. This decision was

made based on the preliminary evaluation explained in section 3.2.3. In addition,

we think that without these dilution terms, we could better analyse and evaluate

the contribution of inhibition and alternative’s value to the decision-making pro-

cess. Moreover, in our final model (3.24) we have included a the decay term to the

biomass equation (B). Because our model couples biomass to the metabolic activity

levels through a common resource term, to some extent it could stand for the effect

depicted in model (3.1).

In the early stages of our analyses we explored the original as well as modified

versions of model (3.1) and other Narang models present in other studies (Narang

and Pilyugin, 2007; Narang, 1998). The initial fit to the experimental data was

subpar compared with our models, hence, we decided to move forward with the

model we developed.

3.1.2 Model by Zabzina et al. (2014)

An interesting example of collective decision-making models is provided by the work

of Zabzina et al. (2014). They modelled the foraging dynamics of slime mould

Physarum polycephalum. A feature that I will highlight from their two-dimensional

model is the system size term they use to limit the growth of the foraging branches,

since it is very similar to the term we use to represent the competition for a common

resource in our own model (3.24). Their model reads

dX1

dt
= φ (M −X1 −X2)

X2
1

k2 +X2
1

− v X1

dX2

dt
= φ (M −X1 −X2)

X2
2

k2 +X2
2

− v X2.

(3.2)

The term (M − X1 − X2) represents the uncommitted units of the system, and it
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is the the common resource that both X1 and X2 need in order to increase. M is

simply the system size (number of individuals), which decreases as units X1 and

X2 increase. This in turn reduces the overall output of the entire induction term,

thereby slowing the growth of units X1 and X2.

3.1.3 Model by Chu and Barnes (2016)

The model presented by Chu and Barnes (2016), which has a similar structural

approach as our models, focuses on permease synthesis as a way of analysing the

trade-offs that exist between fast adaptation to new environments and rapid growth.

The reaction that produces permease Pi with substrate Ei, which is the internal

nutrient i, has the following rate

leaki + ai
E2

i

K2
i + E2

i

(
1− (P1 + P2)

2

K2
L + (P1 + P2)2

)
.

(3.3)

A single aspect of this expression that is of particular interest to us is the way that

the current amount of total permease, (P1+P2) limits its own synthesis rate. In this

Hill-like equation, the parameter KL is the saturation capacity of the membrane. As

P1 and P2 are synthesised the membrane has less available space to accommodate

more permeases, which in turn has the effect of diminishing the rate of production.

3.2 Models developed

In this section I present the models that were developed and tested. We considered

three different model structures or architectures, which are taken from Bogacz et al.

(2006): 1) Mutual inhibition, 2) Feed-forward inhibition, and 3) Global inhibition.

I discuss their structure, as well as the limitations. Furthermore, I discuss the

developing process for the global inhibition model, as well as describe the relevant
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features that make it the most suitable model to study the system we are interested

in.

3.2.1 Mutual inhibition model

The mutual inhibition model describes the concentration of two sugar alternatives,

as a system of two ordinary differential equations.The model reads

dx1
dt

= I1 x1 − α1 f(x1)− β1 g1(x1, x2)

dx2
dt

= I2 x2 − α2 f(x2)− β2 g2(x1, x2).
(3.4)

In this model we considered three different elements that drive the decision pro-

cess: the inducing or input term Ii xi represents all the mechanisms that drive the

metabolism and/or intake of sugar i, which ultimately drive the system to choose

one alternative over the other i. In this particular model, the input term is a first

order reaction, the strength of which is modulated by parameter Ii. The rate βi

determines the strength of the inhibition that the competing alternatives exert on

each other. Finally, αi is the rate of decay or consumption of sugar i. In this system,

the feedback is captured by the Ii xi term, whilst non-linearity is introduced through

the equations fi(xi) and gi(x1, x2), which read

fi(xi) =
xni

Kn
i + xni

(3.5)

gi(x1, x2) =
xn1 x

n
2

(Kn
1 + xn1 ) (Kn

2 + xn2 )
. (3.6)

Some features we are interested in obtaining and analysing with our models are

bistability and super-critical pitchfork bifurcations, since they are very powerful

tools used to interpret and analyse the decision-making behavioural profile of a
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system. These dynamical properties have been shown to present themselves in

several models of biological systems such as the decision-making model of house-

hunting honeybee swarms, which is the work that has motivated this project (Pais

et al., 2013). Similarly, Zabzina et al. (2014) have analysed the decision-making

behaviour of slime moulds through dynamical system analysis and the further study

of the deadlock-breaking bifurcations of their system.

We find that model (3.4) presents some critical hindrances: 1) In terms of dynamical

systems analysis, we are interested in exploring the multistable nature of decision-

making systems. However, this model presents little behaviour of interest, since we

found no bifurcations in our analysis. Additionally, the bi- and multistable nature

of cellular and genetic expression models has been very well documented (Laurent

and Kellershohn, 1999; Ozbudak et al., 2004b). Some of these studies have unveiled

the mathematical elements required for these systems to exhibit multistability. Par-

ticularly, Ferrell (2002) explicitly point out that positive feedback, or autocatalysis,

and non-linearity within the feedback motif are essential for bistable systems to

emerge. The work of Zabzina et al. (2014) provides a neat example of this. In

their model (equations (3.2)), the equations that track the commitment to either

alternative consist of a linear decay term and nonlinear positive feedback term. Re-

gardless of its simplicity, the dynamical systems analysis they performed revealed

that their model displayed quite complex behaviour in the form of bistability. Note

that model (3.4) lacks any non-linearity in its positive feedback terms Ii xi, in con-

trast to the negative feedback terms fi(xi) and gi(x1, x2), which are non-linear in

nature. 2) The xi equations represent sugar concentration rather than metabolic

activity. Although both are related to one another, metabolic activity is a much

more immediate measurement of the system’s commitment to either one of the

sugar alternatives. Additionally, the experimental data we are interested in repli-

cating describes metabolic activity rather than sugar concentration. We conclude

that model (3.4) is unsuitable for our purposes
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The Hill function

It is worth discussing the Hill equation, as it is a key element of all our models.

Equations (3.5) and (3.6) are Hill functions. These expressions describe biological

processes which are activated or repressed by a given substrate, usually a transcrip-

tion factor or a repressor. Hill equations are widely used to represent gene response

curves. The canonical Hill equation for an activator reads

f(x) =
V xn

Kn + xn
, (3.7)

where three parameters of the Hill equation are K, V and n. Parameter K is

called the activation coefficient or the dissociation constant. K determines the

inflexion point of our curve and it represents the substrate concentration at which

our reaction reaches half of its maximum value (Alon, 2007a). The value of this

constant has an inverse relationship with the affinity of the reaction for its substrate.

The second parameter, V , is the maximum expression level. High levels of expression

can only be achieved when the activator x has a much higher concentration than

the activation coefficient K. The third parameter is the Hill coefficient n. As

Alon (2007a) states, this parameter determines the steepness of the curve. The

larger it is the steepest it is. Originally, the Hill coefficient was used to estimate a

number of ligands that a specific receptor needed in order to produce a functional

response. However, Weiss (1997) comments that the Hill coefficient is not capable

of providing such details and instead it should be interpreted as an interaction

coefficient that reflects the level of cooperativity in receptor-ligand interactions. In

systems biology it represents the sensitivity of a reaction for its substrate or the level

of positive binding between receptor and substrate, which determines the steepness

of the curve (Palsson, 2011). Traditionally, the Hill coefficient value used to describe

biological processes is 1, especially for the microbial growth curves, which results in

the classic Monod hyperbolic curve (El-Samad and Khammash, 2010; Weiss, 1997).

However, in all models with the exception of model (3.4), we use a Hill coefficient
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value of 2 by default, which produces a sigmoidal curve. Our decision is motivated

by the analyses of Ozbudak et al. (2004b), whose results show that a mathematical

approximation with a Hill coefficient value of ≈ 2 is the value that best approximates

their experimental data for the lac operon in Escherichia coli (Yildirim et al., 2004;

Narang et al., 1997; Yagil and Yagil, 1971). Chu and Barnes (2016) demonstrated

that this value was the lowest integer to produce bifurcations with their genetic

models. Similarly, we also found a richer dynamical behaviour with a coefficient

value of 2, as well as a better fit to our experimental data.

3.2.2 Feed-forward inhibition model

The feed-forward inhibition model describes a four dimensional system of ordinary

differential equations. This model describes the concentration of two sugar alterna-

tives, and the activity of their corresponding metabolisms. The model reads

dn1

dt
= −h1 p1

n2
1

(k2n1 + n2
1)

dn2

dt
= −h2 p2

n2
2

(k2n2 + n2
2)

ds1
dt

= h1 p1
n2
1

(k2n1 + n2
1)
− γs1 s1

ds2
dt

= h2 p2
n2
2

(k2n2 + n2
2)
− γs2 s2

dp1
dt

= a1 p1 − γp1 p1 + b1
s21

(k2s1 + s21)

k2r1
(s22 + k2r1)

dp2
dt

= a2 p2 − γp2 p2 + b2
s22

(k2s2 + s22)

k2r2
(s21 + k2r2)

.

(3.8)

In this model, ni and si are the extracellular and intracellular concentrations of

sugar i respectively, whilst pi is the metabolic activity level associated with the

metabolism of sugar i. Both equations make use of the Hill equation structure

(equation (3.7)) for their induction term, as well as the repressor dynamics in case

of the pi equations. Pragmatically, the metabolic activity levels pi can be represented

by the levels of a key enzyme in the catabolic pathway of the corresponding carbon
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source. In this case, we originally considered pi to represent the levels of active sugar-

specific membrane transporter molecules. The intracellular sugar concentration si

increases proportionally to the cognate metabolic activity pi which internalises the

extracellular nutrient ni at a maximum rate hi and with a dissociation constant

kni. The γsi parameter describes the rate of sugar consumption, primarily through

its catabolism, although this term does include any form of degradation such as

dilution.

The ai parameter is the basal rate of pi synthesis. Chu and Barnes (2016) call

this term leaki (eq. (3.3)). Parameter ai is the promoter’s expression independent

from the effect of either the activating sugar and the repressing sugar. As a brief

observation on this point, ai parameter should be independent from pi similar to

how the leaki is independent from Pi in model (3.3). The γpi parameter is the rate

of transporter degradation. The last term of the transporter concentration equation

is the induction term. It is comprised of two interactions with opposing effects that

modify the protein’s synthesis rate: the activating effect of the corresponding sugar,

and the repressing effect of the competing sugar alternative. The bi parameter in the

expression is the maximum activity rate. Both ksi and kri are dissociation constants

to the cognate activating sugar and the repressing competing sugar respectively.

They modulate the affinity with which the sugar substrates exert their effect over

the expression of pi, be it an activating or repressing effect. Unlike the mutual-

inhibition models described in Chapter 2, the source of inhibition is the input units,

not the activity units. Translated to our model, the source of inhibition is si rather

than pi.

In contrast with model (3.4), the feed-forward inhibition model (3.8) the induction

term and the inhibitory term are integrated as one single term. From the biological

perspective, this change better reflects the reality of the molecular biology of genetic

regulation. Having an induction term separated from the repressive/silencing terms

does not reflect the reality of the carbon catabolism regulation in yeast. In simple

terms, a gene’s expressed is controlled by a regulatory sequence. This regulatory se-
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quence interacts with other molecules that can have either an inducing or a silencing

effect in terms of genetic activity. When it interacts with an inducer or activator, the

gene’s expression is induced (the gene is activated), hence the synthesis of whichever

protein that gene codes for increases. On the other hand, if a repressing or silenc-

ing molecule interacts with the regulatory sequence, the expression of this gene is

reduced, or silenced.

3.2.3 Global inhibition model development

We moved from the two-dimensional mutual inhibition model (3.4) to the feed-

forward inhibition model (3.8). The two-dimensional model is far to simple to be

a relevant representation of the system. Secondly, the limited results of the ini-

tial dynamical systems analysis called for a redesign of the model’s autocatalytic

terms, from linear to non-linear in order to facilitate the emergence of multistable

behaviour (Ferrell, 2002). Additionally, the literature shows that yeast regulates

its selection of carbon sources through a complex array of regulatory pathways that

seem to affect, with varying levels of intensity, the transportation and metabolism of

all different sugars. Similarly, different sugars seem to be able to present a repressing

effect at different levels, although there is conflicting evidence about which sugars

are considered or to be repressive and to what extent. More details about yeast’s

metabolism are explored in much further detail in Chapter 2. The feed-forward

inhibition model (3.8) represents a scenario in which the sugars in question repress

each other directly and specifically. Biologically this would imply that each sugar

has a specific regulatory pathway that then acts upon other sugars in a targeted

manner. However, the literature suggests that the same network of regulatory path-

ways affects the metabolic pathways of all sugars. The literature also suggests that

this regulatory network can be triggered by various sugars with different degrees of

intensity (Lodi et al., 1991; Herrero et al., 1985; Chambers et al., 2004; Horak et al.,

2002). Notably, glucose is the most repressive sugar in yeast, since it is also its
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preferred substrate (Horák, 2013; Stülke and Hillen, 1999; Chambers et al., 2004).

We decided to explore a different model structure: the pooled inhibition model,

which is taken from Bogacz et al. (2006). I discuss this model in more detail in section

2.2.1. In this model, units y1 and y2 represent groups of neurons accumulating

evidence in favour of their respective alternatives. The activity of these units also

activates a third group of neurons, y3, which is in charge of exerting an inhibitory

effect on both decision units y1 and y2. It is important to note that both decision

units activate the inhibitory unit, which then inhibits them as can be observed in

the figure 3.1.

Figure 3.1: Canonical pooled inhibition decision-making model architecture (Bogacz et al., 2006).
This model characterises itself for its feedback loops and the inhibition-specific unit y3.

This structure makes it much more suitable to represent yeast’s regulatory network.

It also facilitates the analysis of biomass dynamics. This is an important addition,

since the experimental data we have worked with includes metabolic data as well as

biomass data.

In the following subsections I provide a small summary of a specific aspect of the

experimental data that is of particular relevance to our model design. A complete
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discussion of the experimental data is provided in Chapter 4. I also provide a

brief description of the model development process, which is specific to the global

inhibition model.

Grouping pattern in the binary-sugar mixture experimental data

As a compact summary, the experimental data we worked with are time series

that display the biomass and the metabolic activity levels of specific maltose and

galactose catabolic enzymes in yeast cultures growing over a period of ∼ 25 hours

in a medium with: 1) maltose, 2) galactose, and 3) both maltose and galactose. In

each of these regimes, several yeast cultures were grown simultaneously in media

with different concentrations of the sugars. We describe the experimental data in

much greater detail in Chapter 4.

An notable feature observed in sugar mixture data is that the metabolic activity

presents a grouping pattern. In the experimental results shown in figure 3.2, nine

different conditions were tested by pairing up three different concentrations of both

maltose and galactose. The fluorescence curves are organised in three groups, each

one of them consisting of three curves. The order of the three groups is dependent on

the sugar concentration: the higher the sugar concentration, the higher activity level

of its own metabolism. The order of the curves within the group, however, appears to

correspond to the concentration of the competing sugar: the higher the concentration

of the competing sugar; the higher the activity levels of the metabolism of the

competing sugar.
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Figure 3.2: Mal12 levels as a function of maltose and galactose concentration in yeast grown
over approximately 24 hours. Mal12 is a key enzyme in the maltose catabolic pathway. It splits
the maltose molecule into two glucose molecules, which can be further processed. Its activity is
traced by tagging with a fluorophore, which in this case is mCherry. This data corresponds to the
binary-sugar mixture experiments from 25 March 2017 PR1 (Table A.28).

Preliminary visual evaluation through manual parameter tuning

In order to develop a global inhibition model we followed a simple process for model

development which is described in figure 3.3. We began by developing several pre-

liminary candidate models by varying overall structure, interactions between the

different variables and specific mathematical terms. All of them, however, shared

the pooled inhibition model structure (Fig. 3.1) as the blueprint for their design.

Along with the analysis of the preliminary models, we also analysed models from

Narang et al. (1997) and Narang (1998), both their original version, in which the

Hill coefficient of the Hill-like functions present in the model is = 1, as well as a

modified version in which the Hill coefficient is = 2.
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Figure 3.3: Flow diagram of the steps followed to select a model for data fitting.

The preliminary candidate models were then parameterised with parameters taken

and calculated from literature. However, the graphical output obtained with such

parameterisation is unsatisfactory and it does not resemble the experimental re-

sults our models are meant to simulate (the experimental results can be observed

in section 4.1.2. Specifically, the experimental results consist of curves of, roughly,

sigmoidal shape, whereas the models parameterised with values taken from the lit-

erature produced approximately straight lines at y = 0 over the same time range

as the experimental results. Moreover, taking this parameterisation as a starting

point for the fitting process (described in detail in section 4.2) yielded subpar re-

sults when compared to the results produced by adjusting the initial parameters.

The adjustment can be described as a visual manual fit that consisted on varying

parameter values and visually comparing the model’s output to the experimental

results. The objective of this was to take the model’s output from a straight line to

a curve resembling a sigmoidal curve, which parallels the experimental output much

better than the straight lines produced by the un-adjusted parameterisation. An-

other prime concern was to explore if the model could replicate the grouping pattern

discussed in the previous section. We found that if the model could not reproduce
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such behaviour at this stage through visual manual fit, then it would not reproduce

it even after the fitting process had taken place. Furthermore, I performed initial

dynamical systems analysis on some key parameters that we were interested in, in

order to asses the models’ dynamic behaviour. The model we chose out of this

process followed the structure observed in figure 3.4.

Figure 3.4: Architecture of the selected model.

Global inhibition model for single sugar data

The model yielded by the process detailed in section 3.2.3 is a system of eight

ordinary differential equations that reads
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dB

dt
= VB

G2

K2
G +G2

−DcyB B

dG

dt
= Y1 VG1 S1 + Y2 VG2 S2 − VB G

G2

K2
G +G2

dNi

dt
= −VSi Pi

N2
i

K2
Si +N2

i

dSi

dt
= VSi Pi

N2
i

K2
Si +N2

i

− VGi Si

dPi

dt
= VPiAi −DcyPi Pi + VPi (M − P1 − P2) fi(Si, G),

(3.9)

where Ni is the extracellular carbon source i (i ∈ {1, 2}), Si is the intracellular

carbon source i, Pi is the sugar i metabolic pathway activity levels. It can also be

thought of as the concentration of a critical enzyme in the catabolic pathway of sugar

i, which can then be taken as a approximation of the overall activity of the entire

metabolic pathway. This approach is parallel to the one used in the experimental

design that produced the data we use to parameterised our models (described in

section 4.1.1. State variable G is the global inhibition signal of unspecified biochem-

ical identity but assumed to be related to the accumulation of biomass precursors,

similar to the P equation in (3.1) (the non-specificity of the molecule represented

by G is explained is discussed in detail in section 2.3). Finally, B is biomass. The

induction term fi(Si, G) in the Pi equations can take two forms depending on the

modelling of the inhibition: 1) It can be represented as a Hill function with substrate

G acting as a repressor

fi(Si, G) =
S2
i

K2
Pi + S2

i

K2
inhi

G2 +K2
inhi

,
(3.10)

or 2) it can be integrated into the activating Hill function with substrate Si, by

negatively affecting the affinity of the substrate:
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fi(Si, G) =
S2
i(

KPi

(
1 +

G

Kinhi

))2

+ S2
i

.

(3.11)

Both induction terms considered yield similar results regarding fitting to the exper-

imental data. However, they have different implications biologically as well as in

the dynamic systems analyses results. The first term (3.10), describes a process in

which Si acts as a inducer molecule and G as a repressor molecule. In this term, the

activation of Pi can be though of as a process in which both molecules, activator

and repressor, exert their effects over Pi’s synthesis independently from each other.

In contrast, the second term (3.11), which takes the inhibition term from the model

presented by Narang et al. (1997), integrates the inhibitory effect of G and the in-

ducing effect of Si into the same term. This term implies that instead of G and

Si exerting their effects independently, G inhibits the expression of Pi by reducing

the affinity of Si. In other words, G increments the value of the effective affinity

constant.

In terms of fitting the model to the experimental data sets, model (3.9) satisfactorily

fits single sugar data sets. However, it is incapable of properly reproducing the

metabolic activity curves of the binary-sugar mixture data sets, due to the grouping

pattern’s complexity. Although the curves are properly separated into groups by

the concentration of their cognate sugar, the order of the curves within the groups

is inversely proportional to the competing sugar concentration. This pattern is the

exact opposite to that observed in the experimental data in figure 3.2. Sugar mixture

data suggests that there is positive interaction between the two metabolic branches.

The concentration levels of either maltose or galactose’s metabolic enzyme seem to

respond positively to the concentration of not only their corresponding sugar, but

also the competing sugar, to a minor degree. Model 3.9 does not have any interaction

between the two metabolic branches, as can be seen in both the equations of the

model, and its structure (Fig. 3.4).
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The last stages of models development, which I describe in the following subsections,

are focused on modelling the positive cross-interaction between the two branches

that is observable in the data, and the selection of a common resource term.

Cross-interaction between the branches

With the goal of accounting for the grouping pattern observed in the binary-sugar

mixture data (fig. 3.2), whilst retaining the model’s capacity to fit to single sugar

data, several modifications to model (3.9) were considered. I performed a prelimi-

nary manual fit of the model iterations to the sugar mixture data.

Positive cross-interaction between the branches was considered to be present at

two levels: Sugar internalisation and metabolic activation. Biologically, the former

represents the idea that the membrane transporters that allow sugar molecules access

to the inside of the cell for their subsequent metabolisation, are not specific, and both

sugars can make use of both membrane transporters, albeit with different affinity

constants and internalisation rates. Cross-interaction at the metabolic activation

level implies that both sugars, once inside the cell, can activate both metabolic

pathways to a different extent. We assume that sugar i is the main substrate of its

own metabolism, and a secondary substrate for the metabolism of other sugars.

Implementation of cross-interaction at the sugar internalisation level is accomplished

by modifying both Si equations as follows:

dS1

dt
= VS1 P1

N2
1

K2
S1 +N2

1

+ VS2 P2
N2

1

K2
SI1 +N2

1

− VG1 S1

dS2

dt
= VS2 P2

N2
2

K2
S2 +N2

2

+ VS1 P1
N2

2

K2
SI2 +N2

2

− VG2 S2.

(3.12)

Based on the results from preliminary analysis, we concluded that the metabolic

activation type of cross-interaction was sufficient to render the grouping pattern

observed in the experimental data. At the metabolic activation level, two different
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terms were considered. Whereas the induction terms fi(Si, G) (3.10) and (3.11)

have one activator, which is their corresponding sugar, and one inhibitor, which is

the global inhibitor G, the modified induction terms fi(S1, S2, G) are functions of

both sugars, which act as activators, and of G which acts as an inhibitor. Both

of these terms (3.13) and (3.14) continue to use the Hill function (3.7) as basis for

their structure. The nature of the competing sugar activation is what differentiates

the two induction terms: In the term RFO1(S1, S2, G) (3.13), the activating effect

of the competing sugar S2 is a first order reaction, which means that the reaction

depends on the concentration of only S2. In the second induction term we use,

RSO1(S1, S2, G) (3.14), the activating effect of competing sugar S2 depends on the

concentration of both S1 and S2, making it a second order reaction. Both inducing

terms read

RFO1 =
(S1 + S2 I1)

2

(S1 + S2 I1)2 + (KP1 (1 +
G

Kinh1

))2
(3.13)

RSO1 =
(S1 (1 + S2 I1))

2

(S1 (1 + S2 I1))2 + (KP1 (1 +
G

Kinh1

))2
.

(3.14)

The new parameter Ii is introduced in both of these terms to mediate the activating

influence that the competing sugar has. Similarly to the inducing terms with no

cross-interaction (3.10) and (3.11), the inhibitory effect of G in both RFOi and

RSOi terms can be modelled as a Hill function, or directly integrated into the affinity

constant, similar to the term used by Narang et al. (1997). The equations displayed

here are shown with the latter approach. With this approach, the effective affinity

is inversely proportional to the amount of G. Parameter KPi is the affinity constant

that Pi has for its substrates, whereas parameter Kinhi moderates the inhibitory

effect that global inhibition signal G exerts. The higher the concentration of G is,

the lower the affinity of the metabolic pathway for its substrates is, which in turn

lowers the levels of Pi.
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Equation (3.15) shows how the RSO1 term looks like with Hill-like inhibition. This

approach describes G as a direct repressor of metabolic activity, independently of

its substrate and its affinity constant.

RSO1 =
(S1 (1 + S2 I1))

2

(S1 (1 + S2 I1))2 +K2
P1

K2
inh1

K2
inh1 +G2

. (3.15)

The Pi equations represent the lumped sum of metabolic pathways that are related

to the internalisation and consumption of their corresponding sugars, we believe

that the integrated inhibition captures the array of inhibitory mechanisms in yeast

discussed in Chapter 2 better than the direct inhibition of the Hill-like term. Addi-

tionally, both approaches were equally successful in fitting to both the single sugar

and the binary-sugar mixture experimental data in our preliminary analysis. How-

ever, they showed significant differences in the initial dynamical systems analysis.

The integrated inhibition of equations (3.13) and (3.14) provided a much richer

dynamical profile, which is why we chose this approach to model inhibition.

Common resource term

Allocation of finite resources to a given task implies a reduction of the available

amount of the same resources to carry out other processes. The idea to use a com-

petition for finite resources is present in various modelling efforts. Chu and Barnes

(2016) use the surface saturation capacity for permeases as a finite resource that lim-

its the synthesis of new permeases in their system. Modelling the foraging of slime

mould Physarum polycephalum, Zabzina et al. (2014) make use of a term that, in

their case, keeps track of the number of uncommitted units within the system. Only

by recruiting from this pool of uncommitted units, can either pool of committed

units to either option continue to grow toward the food alternative they have com-

mitted to. Similarly, Pais et al. (2013) also uses the fraction of uncommitted bees

to modulate the growth of sub-populations of honeybees committed to a potential
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nest site in which the swarm can establish itself by building a new nest.

In a cellular context, some common resources that constrain cellular processes, as

described by Weiße et al. (2015), are finite levels of energy, finite levels of ribosomes

for protein synthesis, and finite levels of cellular mass. In their review, Chubukov

et al. (2014) point out how the TOR pathway in yeast might mediate translation

rates by controlling ribosome biogenesis in response to amino acid concentration.

Towbin et al. (2017) also point out that resources such as ribosomes increase linearly

with growth rate. Furthermore, the study of cell economics shows that growth

rate maximisation is constrained by the trade-offs of synthesising specific proteins

and enzymes, citosolic space as well as the capacity of the ribosomes (Molenaar

et al., 2009). On that point, Bosdriesz et al. (2015) points out that growth rate is

dependent on ribosome concentration, and how efficiently ribosomes are being used.

Additionally, they mention that because protein concentration changes minimally,

the synthesis of certain proteins comes at the expense of others. The induction

terms of the Pi equations in model (3.9) are multiplied by a common resource linear

term. We considered and tested four different variations of this term, which read

dP1

dt
= VP1A1 −DcyP1 P1

+ VP1 (M − P1 − P2) fi(S1, S2, G)

(3.16)

dP1

dt
= VP1A1 −DcyP1 P1

+ VP1 (M B − P1 − P2) fi(S1, S2, G)

(3.17)

dP1

dt
= VP1A1 −DcyP1 P1

+ VP1 (M G− P1 − P2) fi(S1, S2, G)

(3.18)
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dP1

dt
= VP1A1 −DcyP1 P1

+ VP1 (1− (P1 + P2)
2

(M B)2 + (P1 + P2)2
) fi(S1, S2, G).

(3.19)

With each of these equations, the units of parameter M are modified to accommo-

date the changes made to the common resources term. Model (3.9) used common

resource term (3.16) for the analysis performed. The non-linear common resource

term (3.19) is taken from the model by Chu and Barnes (2016), whereas the linear

terms are slight modifications of the term used by Zabzina et al. (2014). The effects

of the common resource term were tested with RFOi (3.13) as induction term. The

results of fitting the model to experimental data both single sugar and binary-sugar

mixture showed a great degree of homogeneity, particularly between terms (3.17)

and (3.18). I decided to choose term (3.17) to be used in the final model. In this

term, the increase of biomass B entails a proportional increase of the finite resource

amount. A metabolic pathway would inevitably necessitate a resource which is

finite and in demand by the catabolic pathways of competing carbon sources, as

well as other metabolic processes. Therefore, this common resource term plays an

important role in the overall dynamics of the system.

Cellular growth functions

We use two different equations to describe the rate of biomass growth. The first

equation makes use of a Hill function (Monod, 1949). This equation reads

dB

dt
= VB

G2

K2
G +G2

−DcyB B. (3.20)

At first glance the apparent zero order growth kinetics might be cause for objection.

We argue that, through the structure of our model (Figure 3.5b), biomass B levels

indirectly affect its own growth rate. B grows by using G as its substrate, the

levels of which increase proportionally to the concentration of intracellular sugar Si.
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Subsequently, the Si levels increase proportionally with Pi. Pi activity is repressed in

three different ways: 1) its own decay, 2) the inhibition effect of the global inhibition

signal G and 3) the constraint imposed by the common resource term, and more

specifically by parameter M , and biomass level B. The chosen common resource

term (3.17) shows that the common resource constraint increases proportionally with

biomass levels B. Increasing levels of B alleviate the common resource constraint.

The larger the common resource M ∗B value is, the larger the Pi values are. Larger

Pi values increase Si, which in turn increase G. Ultimately, increasing biomass B

induces its own growth by increasing the amount of common resource required by

both metabolic pathways. This process, called global feedback, is properly described

as the coupling of the cellular growth of individual cells with all gene expression

regardless of the status of specific signalling pathways (Shahrezaei and Marguerat,

2015). Kargi (2009) presented a similar approach in their work reducing Monod

kinetics to the logistic equation, effectively describing batch growth kinetics in terms

of the limiting substrate in lieu of the current biomass value. Secondly, we have used

the logistic growth equation as activation term using G ∗KG as an indicator of the

the carrying capacity of the system (Weisstein, 2019). This equation reads

dB

dt
= VB B

(GKG −B)

GKG

−DcyB B2. (3.21)

Now, although the logistic equation itself already accounts for deaths within the

population (Weisstein, 2019) we found better results when we included an explicit

decay term. The second order kinetics used here are reminiscent of models used to

describe migration dynamics in insect populations (Murray, 2002).

It can be observed that in both equations, the two terms differ in the degree of the

state variable B. We had much better success fitting the OD data when the decay

term had a higher degree than the growth term. If both terms had the same degree,

the equation would not fit the data properly. We decided to try two combinations.

The Hill function growth equation had a growth term with a zero degree and a decay
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term with degree one. The logistic growth equation’s growth term has a degree one,

whilst its decay term’s degree is two. The logistic growth equation does include the

state variable B within the fraction part of the term, but the observation still stands

between the decay and the VB B part of the growth term. Again, we found that this

arrangement was necessary to achieve better fits. This arrangement, however, does

change the units of equation B. In particular, the B equation with the Hill function

becomes unitless, which is unorthodox. We decided to keep this equation and test it

regardless. The units of the B equation with the logistic function are conventional,

as can be seen in table 3.1.

It is also important to note that both the B equation and the decay term of the

equationG change in unison. Particularly, the decay term fdcy.G(G,B) is very similar

to the activating term in B, find.B(G,B). However, it is not identical, rather, the

non-linear term serves as the rate of the reaction, which is also a function of a

different state variable depending on the equation that the term finds itself into, B

or G. The two equations we use for biomass, the Hill like function and linear decay

equation (3.20), and the logistic growth with quadratic decay equation (3.21), have

their analogues in equation G, which read as follows

find.B(G,B) = VB
G2

K2
G +G2

−→ fdcy.G(G,B) = VB G
G2

K2
G +G2

(3.22)

find.B(G,B) = VB B
(GKG −B)

GKG

−→ fdcy.G(G,B) = VB G
(GKG −B)

GKG

.

(3.23)
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Table 3.1: State variables units. State variable B has to different units depending on the
find.B(G,B) function used.

Variable Units
Ni gr/gdw
Si gr/gdw
Pi gprot/gdw
G gr/gdw
B unitless (eq. (3.20)) and gdw/L (eq. (3.21))

3.2.4 Global inhibition model with cross-interaction

I have taken model (3.9), which is successful in reproducing single sugar data, and

modified its induction terms to account for the grouping pattern observed in the

binary-sugar mixture data. The global inhibition model with cross-interaction reads

dB

dt
= find.B(G,B)− fdcy.B(B)

dG

dt
= Y1 VG1 S1 + Y2 VG2 S2 − fdcy.G(G,B)

dNi

dt
= −VSi Pi

N2
i

K2
Si +N2

i

dSi

dt
= VSi Pi

N2
i

K2
Si +N2

i

− Yi VGi Si − VB Si

dPi

dt
= VPiAi −DcyPi Pi + VPi (M B − P1 − P2) fi(S1, S2, G),

(3.24)

where fi(S1, S2, G)) is the induction term of Pi and can take two forms which are

described in section 3.2.3: RFOi (3.13) or RSOi (3.14). This model (3.24) and

(3.9) are virtually the same. The only differences between them are the Pi induc-

tion terms, the decay of equations Si, which is slightly modified, and the common

resource term. Additionally, biomass equation B, as well as the decay term for

global inhibition unit G, can take two forms, which are introduced and discussed in

subsection 3.2.3. The units of each state variable are shown in table 3.1.

This model structure bears close resemblance to the pooled inhibition model, one

of the canonical decision-making model architectures used in neuroscience (Bogacz

et al., 2006). The pooled inhibition model in neuroscience was derived originally
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by Wang (2002) based on neurophysiological observations. It describes two neural

populations, y1 and y2, each one of them accumulates evidence in favour of one

alternative. Each decision unit has a self-activating feedback loop in order to main-

tain their activity levels. They represent individual neurons being activated within

the population. The way both populations compete is by activating a third neural

group which inhibits both decision neuron groups, y1 and y2. Figure 3.5 displays the

structure of model (3.24) as well as that of the pooled inhibition model, highlighting

the close dynamic resemblance. It is worth noting that other structures such as the

race, feed forward and mutual inhibition models can also be used by cellular net-

works (Narang, 1998; Narang and Pilyugin, 2007; Ozbudak et al., 2004b; Kuchina

et al., 2011).

a) b)

Figure 3.5: Model architecture comparison. a) The pooled inhibition decision-making model used
in neuroscience (Wang, 2002). The response units y1 and y2 are activated by the input units Ii
and by themselves through a feedback loop. The response units also activate the inhibitory unit
y3 which in turn represses the levels of both response units. b) Model 3.24. Although our model
has more state variables and more complex interactions between them, the overall dynamics of the
pooled inhibition model are maintained.

Lastly, it is important to note that, although our model comprises different processes

that proceed at their respective timescales, and that time-delays can be present

between them, our model does not include delays nor timescale separations between
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the various state variables. Work from Santillán and Mackey (2004); Nguyen-Huu

et al. (2015) and Nikolov et al. (2010), do implement time-delays in the modelling of

biological systems. In particular, Nikolov et al. (2010) present a detailed analysis of

the catabolite repression of the lac operon that emphasises the time-delay between

the processes their system encompasses. In the interest of simplicity, we omit such

elements from our models and their analyses. We expect that this allows us to study

better the direct interactions between state variables and features such as inhibition.

3.3 Conclusions

The aim of the model we have developed is to study the cellular decision-making

process between two carbon sources. Our goal is to generate a single model capable

of reproducing experimental data from both single sugar and binary-sugar mixture

regimes. It is important to note that the models are, by design, generic and symmet-

ric, which, at least in theory, should allow the use of such models in similar cellular

decision-making scenarios regardless of the metabolic pathways in question or the

microorganism. In order to do this, we have developed several models following

three different models architectures: 1) Mutual inhibition, 2) Feed-forward inhibi-

tion, and 3) Pooled inhibition. The global inhibition model (3.24), which has the

pooled inhibition blueprint, is the most successful model in reproducing experimen-

tal data from both single sugar and binary-sugar mixture experiments, according

to our preliminary analysis. Additionally, the pooled inhibition architecture repre-

sents the yeast’s carbon catabolism regulation better than the other two structures

considered. In order to represent the binary-sugar mixtures, two induction terms

are considered plausible: RFOi (3.13), and RSOi (3.14). Likewise, two different

B equations are also considered: Hill-like cellular growth (3.20) and logistic growth

(3.21). This yields four model iterations that we fit to the experimental data in

Chapters 4, and analyse as dynamical systems in Chapter 5.
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Chapter 4

Fitting experimental data

In this chapter I present the experimental data used in this project which was pro-

vided by Lucia Bandeira and Peter Swain from the Swain Lab from the Department

of Synthetic Biology at the University of Edinburgh. I explain how it was analysed

and what data sets were used from it. Subsequently, I detail the process through

which the models introduced in the previous chapter were parameterised, as well as

the specific error metrics used to evaluate each fit. Finally, I present the relevant

results.

4.1 Experimental realisation

Experimentally, a plethora of technologies allows researchers to study closely both

single cell and population behaviour. Studying cell cultures in flasks and chemostat

growing conditions is a common experimental approach. Chemostats are bioreac-

tors that allow continuous cultures to remain in steady-state, by maintaining the

internal conditions constant through a continuous supply and overflow of content

(Vazquez, 2018). They have proven to be very useful in studying metabolism and

its regulation due to the level of control over individual parameters such as temper-

ature, pH, cell dilution rate, growth rate, as well as the concentrations of individual
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nutrients (Daran-Lapujade et al., 2004a). Experiments on single-cells have been of

crucial significance in revealing cellular behaviour, as was shown in the results from

the seminal work of Novick and Weiner (1957) on enzyme induction phenomena in

the late 50’s. Single-cell analysis was originally done by multiple and subsequent

dilutions, however it has been refined throughout the decades thanks to the emer-

gence of new technologies including flow cytometry and microfluidic devices, both

of which allow a high level of versatility as well as provide high detail of single-cell

measurements in a short time (Ormerod, 2008; Reece et al., 2016). Microfluidics is

the science and technologies that allow the control of small amounts of fluid (in the

range of 10−9L) (Farré et al., 2012). Flow cytometry refers to a system in which

cell are made to flow passed a point where, one by one, they are measured. As

(Ormerod, 2008) points out, in principle, the measurement could be any of a num-

ber of different types of analyses, and flow cytometry refers to the equipment that

allows for this single-cell measurement to be made. For examples of flow cytometry

and microfluidics experiments see references (New et al., 2014; Wang et al., 2015;

Venturelli et al., 2015) and (Boulineau et al., 2013).

Next, I present a description of the experimental data in this project. I first will

discuss the experimental setup, as well as provide some detail about the fluorescent

tags used in the experiments. Subsequently, I will describe the two types of exper-

imental data sets that were utilised: single sugar and binary-sugar mixture data

sets. I will briefly touch upon the most significant aspects of the platereader Python

library developed by Swain Lab which was used in order to analyse and transform

the raw experimental data.

The data used in this project were provided by Lucia Bandeira and Peter Swain

from the Swain Lab in the Department of Synthetic Biology at the University of

Edinburgh.
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4.1.1 Methods

The experiments consisted in growing yeast cultures for approximately 25 hours

with medium containing different sugars at varying concentrations. The experi-

ments can be categorised into single sugar and binary-sugar mixture regimes; under

single sugar conditions the cultures were only fed with either galactose or maltose

at different concentrations, whereas under a sugar mixture regime sugars were fed

simultaneously with both maltose and galactose at different concentrations (both

experimental regimes included a glucose run as control, and sugar mixture exper-

iments also included single sugar batches as control, both of which are not shown

in the figures presented). Two types of data were gathered from these experiments:

the fluorescence levels of both tags (mCherry and GFP) that indicate the relative

levels of enzymatic concentration (which in turn we assume to be proportional to

the overall activity of the metabolic pathway the tagged enzymes belong to), as well

as absorbance levels, which correlate with the amount of cellular mass in the sam-

ple. Table 4.1 provides more details about the experimental layout. Fluorescence

levels are reported in R.F.U. (relative fluorescence units), whereas absorbance (in

the graphs indicated as OD, which stands for optical density) data are reported in

A.U. (arbitrary units). In each single sugar experiment there were three replicates

per condition, meaning that each sugar concentration was measured three times in

parallel with three independent yeast cultures in three different wells on a 96 well

plate. The sugar mixture experiments had only two replicates. All of these exper-

iments are batch cultures, meaning that once the media and the inoculum are set,

they are let to incubate and no more media nor nutrients are added, and no contents

are removed (Hogg, 2005). It is important to remark that the data gathered from

these experiments inform about the state of the population, not the individual cells

that are part of the culture.
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Table 4.1: The specific experimental data that were used in our analyses have been separated into single sugar and sugar mixtures. The four single sugar experiments
are divided into two sets: two experiments with maltose and two with galactose. The binary-sugar mixture experiments are divided into two sets of experiments
which differ in the concentration of galactose used. For these two sets of experiments the maltose concentrations are identical. They are: 0.25%, 0.5%, 1%, 1.5%,
2%, 3% and 4%. the galactose concentrations used are: 0.125%, 0.25%, 0.5% for one set of experiments, and: 0.75%, 1%, 1.5% and 2% for the second set of
binary-sugar mixture experiments. These two sets are respectively labelled PR1 and PR2, which refers to the physical plate reader used to read the samples.

Type of experiment Date Data used Strain Maltose concentration Galactose concentration
Single sugar 16 Mar 2017 mCherry, OD 680 (Mal12:mCherry) 0.25 - 4% -
Single sugar 16 Mar 2017 mCherry, OD 710 (Mal12:mCherry, Gal10:GFP) 0.25 - 4% -
Single sugar 10 Apr 2017 GFP, OD 708 (Gal10:GFP) - 0.125 - 2%
Single sugar 10 Apr 2017 GFP, OD 710 (Mal12:mCherry, Gal10:GFP) - 0.125 - 2%

Sugar mixture (PR1) 25 Mar 2017 mCherry, GFP, OD 710 (Mal12:mCherry, Gal10:GFP) 0.125 - 1% 0.125 - 0.5%
Sugar mixture (PR1) 26 Mar 2017 mCherry, GFP, OD 710 (Mal12:mCherry, Gal10:GFP) 0.125 - 1% 0.125 - 0.5%
Sugar mixture (PR2) 25 Mar 2017 mCherry, GFP, OD 710 (Mal12:mCherry, Gal10:GFP) 0.125 - 1% 0.75 - 2%
Sugar mixture (PR2) 26 Mar 2017 mCherry, GFP, OD 710 (Mal12:mCherry, Gal10:GFP) 0.125 - 1% 0.75 - 2%
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In the specific experiments that we used, the yeast cultures had enzymes Mal12p

and Gal10p tagged with mCherry and GFP respectively in order to measure their

fluorescence levels. The fluorescence levels are assumed to be proportional to the

concentration of the protein they are coupled with. Enzyme concentration is in turn

assumed to be representative of the metabolic activity related to the consumption

of the protein’s cognate sugar.

It must be mentioned that there is a caveat to this assumption, which is that flu-

orophore maturation dynamics represent an extra layer of complexity. This means

that the recorded fluorescence observations might differ from the actual protein dy-

namics. Once a fluorophore is expressed by a cell, it need to undergo (depending on

the specific fluorescent molecule) some further steps before it is functional, and its

fluorescence properly measurable (Milo and Phillips, 2015). This process is called

maturation and each fluorophore has a different maturation time, meaning that

there is a discrepancy between the time at which the fluorophore was synthesised in

the cell, and the time at which its signal is detectable. Work by Macdonald et al.

(2013) has demonstrated that in E.coli EGFP (Enhanced GFP) and mCherry have

maturation times of 15 ± 3.5 minutes, and 155 ± 10 minutes respectively at room

temperature (20 C). Khmelinskii et al. (2012) have reported maturation times for

sfGFP (super folded GFP, a variant of the wild type GFP that has a shorter matu-

ration time due to its fast folding nature) and mCherry in Saccharomyces cerevisiae

of 5.63 ± 0.82 minutes for sfGFP, and both 16.91 ± 1.23 and 30.30 ± 1.88 minutes

for mCherry. Milo and Phillips (2015) provide a comprehensive table comparing

the different maturation times of several fluorophores measured in different experi-

mental conditions. The pattern that can be recognised is that, in general, mCherry

has a higher maturation time compared to GFP and most of its variants. Milo

and Phillips (2015) judiciously advise that implementing a separation of timescales

between the fluorophore dynamics, and the process of interest would be a useful

modification in the pursuit of accuracy. We did not implement this separation of

timescales. However, we expect that since the half-lives of both tagged enzymes are
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in the order of several hours, the timescale differences, as well as their effect on our

results can be considered to be trivial.

Both enzymes are essential to the metabolism of their respective sugars. Mal12p

breaks maltose into two glucose molecules whereas Gal10p is the first enzyme of the

Leloir pathway that catalyses galactose’s transformation into glucose 6-phosphate

which can be further metabolised through the glycolytic pathway (Vanoni et al.,

1989; Timson, 2007). As mentioned, optical density (OD) was also measured, as

this is a standard technique used to assess the biomass of a cell colony (Sonnleitner

et al., 1992; Mytilinaios et al., 2012). As mentioned before, I used the Python

package platereader developed by the Swain Lab to correct for the media fluorescence

in the case of mCherry and GFP readings, as well as correcting the non-linearities

of OD measurements. Additionally, the software tool also provided the first and

second derivative of each data curve (Swain et al., 2016; Lichten et al., 2014).

The corrections performed on the fluorescent data take all replicates from each con-

dition and output a single corrected time series. This is why none of the figures

depicting fluorescence data from individual experiments have an error region. On

the other hand, the non-linearities present in the raw absorbance data can be cor-

rected on each individual well. Consequently, the OD values observed in individual

experiments are the mean values taken from the corrected values of each individual

well for each sugar concentration (three for single sugar experiments, and two for

the sugar mixture experiments).
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Figure 4.1: Fluorescent data of the two fluorescent molecules GFP and mCherry observed in the
same experimental conditions. Top: Fluorescent data of yeast cultures grown in maltose. Bottom:
Fluorescent data of yeast cultures grown in galactose.

The same experiment performed on the same day, read by the same equipment can

deliver noticeably different time series depending on the molecule used to tag the

enzyme of interest. The different dynamics displayed by the two fluorophores can

be observed in figure 4.1. Two of observations to be made here are: 1) The values

of fluorescence reported vary drastically between mCherry and GFP. In the maltose

experiment the maximum fluorescence values are ≈ 3400 and ≈ 1000 R.F.U.s for

GFP and mCherry respectively, whereas in the galactose experiments these values

are ≈ 4700 and ≈ 500 R.F.U.s for GFP and mCherry respectively. This is also

observable when comparing the maltose activity curves (Fig. 4.3) with the galactose

curves (Fig. 4.4) from different experiments. It is also readily apparent that the

relationship between the fluorescence values from mCherry and GFP is inconsistent
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across experimental conditions. The GFP (R.F.U.) / mCherry (R.F.U.) ration in

the maltose experiment is close to 3, whilst in the galactose experiments, the ratio

is much closer to 10. 2) The signal from GFP appears to decay much faster than

that of mCherry. The different dynamics from the same enzyme would suggest that

this effect is much more related to the degradation of the tagging molecules.

4.1.2 Results

As indicated in table 4.1, single sugar experiments consist of seven different concen-

trations of their respective sugar, whilst in the binary-sugar mixture experiments,

the yeast culture grows in nine or twelve different conditions (PR1 and PR2 re-

spectively). These conditions are combinations of different concentrations of both

maltose and galactose.

Figures 4.3 to 4.7 offer a visualisation of the experimental data. It can be noted that

the curves in each graph have three recognisable stages that parallel the archetypal

stages found in the microbial growth curve: 1) A lag phase that starts at t = 0

in which the curve remains mostly flat, 2) the exponential phase characterised by

exponential increase and 3) the stationary phase in which the growth reaches a

plateau (Hogg, 2005). Figure 4.2 shows these three section of the microbial growth

curve. This pattern is observed in both the fluorescent data and the optical density

data. It is worth noting that, in none of the optical density curves, which measures

the cellular mass, do we observe the fourth stage: death. On the other hand, the

fluorescent data does show signal decay. This effect is particularly noticeable in the

GFP fluorescent data, regardless of the enzyme being tagged (Mal12p or Gal10p),

which suggests that the decay of the signal is related to the fluorophore’s dynamics

rather than an indication of proteolysis (Fig. 4.1).
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Figure 4.2: Segmentation of the microbial growth curve. This curve covers only the first three
phases, it does not show the death phase.

Figures 4.3 and 4.4 show the experimental data corresponding to yeast cultures

grown in maltose and galactose, respectively. Changes between different curves

within the stationary and exponential growth phases are subtle, and in the case of

OD in maltose grown cultures, there is nearly a complete overlap. The most no-

ticeable change in all three data sets occurs at their respective stationary phases,

which is when the sugar has been depleted. This stage is remarkably flat in both OD

and mCherry (Mal12p), showing little decay. GFP (Gal10p) data, however, shows

more complex dynamics compared to mCherry. It can be noted that the inflexion

points of each curve change noticeably as a function of the galactose concentration.

As galactose concentration increases the decay present in the stationary phase in-

creases as well, and the second inflexion point becomes the maximum point of the

curve, a property which is not present in the mCherry data set.
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Figure 4.3: Fluorescent and absorbance data from yeast cultures grown in maltose. The graphs
on the left correspond to the mCherry fluorescent measurement, and the graphs on the right show
the absorbance values that indicate the amount of cellular mass. Top: The mean values from the
experiments in two different strains, 680(Mal12:mCherry) and 710(Mal12:mCherry, Gal10:GFP),
with an error region corresponding to one standard deviation. Middle and Bottom: The exper-
imental data from the two different strains, respectively.
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Figure 4.4: Fluorescent and absorbance data from yeast cultures grown in galactose. Similarly to
figure 4.3, the graphs on the left correspond to the GFP fluorescent measurement, and the graphs
on the right show the absorbance values that indicate the amount of cellular mass. Top: The mean
values from the experiments in two different strains, 708 (Gal10:GFP) and 710(Mal12:mCherry,
Gal10:GFP), with an error region corresponding to one standard deviation. Middle and Bottom:
The experimental data from the two different strains, respectively.
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Notably, the curves for a 1.5% galactose concentration (figure 4.4) present a spike

(the second inflexion point) that surpasses the maximum point of the 2% galactose

curve. Such behavioural properties are present in other experiments in which Gal10p

was tagged with mCherry, hence, we do not presume this effect is exclusively caused

by the dynamics of the fluorophore, rather we think it is more likely a consequence

of the Gal10p dynamics. Figures 4.5, 4.6 and 4.7 show the experimental data for

the sugar mixture experiments. The labels PR1 and PR2 used to differentiate

between the two data sets refer to the plate readers used for the measurements of

each experiment. Between them the only difference is the galactose concentration

used, as indicated in table 4.1.

In these experiments, several concentrations of both maltose and galactose are avail-

able to the yeast cultures. PR1 data consists of three different concentrations of

both maltose and galactose, whereas PR2 has three maltose concentrations and four

galactose concentrations, generating nine and twelve different experimental condi-

tions respectively. PR1 fluorescent data is organised in three groups with three

curves per group, the order of which is contingent on the concentration of the cog-

nate sugar. The order within the groups, however, appears to correspond to the

competing sugar concentration. PR1 shows a great degree of overlap over the sta-

tionary and exponential phases, separating in the stationary phase (the grouping

effect and the overlap are more evident in mCherry). PR1 and PR2 differ only in

the galactose concentrations used, which elicit noticeable differences. By comparing

the mCherry curves from both experimental data sets PR1 and PR2, it can be no-

ticed that curves from the PR2 data set take longer to reach their stationary phase,

and in their exponential phase the slope of every curve increases as the concentration

of galactose increases, a feature which is not present in the PR1 data set. An inter-

pretation for this is that the higher galactose concentrations in PR2 beget a slower

synthesis rate for Mal12p without affecting the pattern observed in the stationary

phase of PR1 (higher galactose concentration equals a higher Mal12p level).
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Figure 4.5: Fluorescent and absorbance data from yeast cultures grown in a binary-sugar mix-
ture (Maltose: 0.25% - 1%, Galactose: 0.125% - 0.5%). Graphs on the left correspond to the
experiment performed on March 25th, 2017, whereas those on the right are labels as the exper-
iment performed on March 26th, 2017. The yeast strain used in this case is the double-tagged
strain 710(Mal12:mCherry, Gal10:GFP). Top: Fluorescence levels of Mal12 enzyme tagged with
mCherry. Middle: Fluorescence levels of Gal10 enzyme tagged with GFP. Bottom: Absorbance
levels that indicate the amount of cellular mass.
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Figure 4.6: Fluorescent and absorbance data from yeast cultures grown in a sugar mixture (Mal-
tose: 0.25% - 1%, Galactose: 0.75% - 2%). Graphs on the left correspond the experiment performed
on March 25th, 2017, whereas those on the right are labels as the experiment performed on March
26th, 2017. The yeast strain used in this case is the double-tagged strain 710(Mal12:mCherry,
Gal10:GFP). Top: Fluorescence levels of Mal12 enzyme tagged with mCherry. Middle: Fluo-
rescence levels of Gal10 enzyme tagged with GFP. Bottom: Absorbance levels that indicate the
amount of cellular mass.
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Figure 4.7: Mean values of fluorescent and absorbance data from yeast cultures grown in binary-
sugar mixture experimental conditions: 1) Maltose: 0.25% - 1%, Galactose: 0.125% - 0.5%, and
2) Maltose: 0.25% - 1%, Galactose: 0.125% - 0.5%. Here the graphs on the left correspond to the
data on the first experimental conditions, whereas the graphs on the right depict the data from the
second experimental condition. Each curve is the mean of the two experiments shown in figures 4.5
and 4.6, with an error region corresponding to one standard deviation. Top: Fluorescence levels of
Mal12 enzyme tagged with mCherry. Middle: Fluorescence levels of Gal10 enzyme tagged with
GFP. Bottom: Absorbance levels that indicate the amount of cellular mass.
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The dissimilarities found between GFP curves in both PR1 and PR2 are even more

drastic. The data are still organised in groups in data set PR2 (although the 2%

galactose - 1% maltose curve challenges this pattern), however, unlike both mCherry

and GFP in PR1 and mCherry in PR2, in the GFP curves there is no clear organising

pattern within the groups as can be observed in figure 4.6. It is possible that the

dynamical pattern observed in PR1 (particularly in GFP) is lost in PR2 due to

undefined metabolic dynamics revealed at high galactose concentrations.

The more complex and noisier patterns presented by the curves from experiment

PR2, namely, the exponential phase dynamics and the lack of observable grouping

patterns in the GFP data, have motivated our decision to work only with binary-

sugar mixture experiment PR1.

We perform our experimental fit analyses with three individual experiments: For

both single sugar conditions we used the experimental data corresponding to the

single-tagged strains 680 (Mal12:mCherry) and 708 (Gal10:GFP), for maltose and

galactose respectively, and the PR1 experiment from March 25th, 2017 on the

double-tagged strain 710 (Mal12:mCherry, Gal10:GFP).

4.2 Parameterisation

In this section I will describe the parameterisation process used to fit the models to

the experimental data for each experimental condition: single sugar, both maltose

and galactose, as well as the mixed experiments. The objective of the parameter-

isation process is to converge into a set of parameters with which the model can

satisfactorily reproduce the experimental time series of the fluorescence data (pro-

tein concentration) and the absorbance data (cellular mass).
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Table 4.2: Parameter values obtained or otherwise derived from literature. Conversion factors were
taken from Ho et al. (2018); Haddad and Lindegren (1953); White (1952); Day et al. (2004); Kim
et al. (2015); Lowry et al. (1951); Reifenberger et al. (1997).

Parameter Value range Units Notes

Ai 0.001-0.002 gprot/gdw

Derived from the un-induced abundance
of Gal2p (transporter)

multiplied by 1000 fold increase when induced
(Narang et al., 1997; Boccazzi et al., 2006).

VSi 101.07 gr/(gprot hr)
Glucose uptake as a function of

transporter levels (Kim et al., 2015; Ho et al., 2018).

VPi 0.006 /hr
Induced abundance of Gal2p (transporter)

(Boccazzi et al., 2006).
VGi 3.1-20.75 /hr Assumed to be 0.01 VSi (Narang et al., 1997).

Kinhi 0.18 gr/gdw
Calculated from maltose transporter activity with and
without the presence of galactose (Jiang et al., 2000).

KSi 0.4235-1.06 gr/gdw Galactose uptake Km (Horák, 2013).
Ii - - Speculated parameter.

KPi 0.048 gr/gdw

Near saturation intracellular sugar
concentration. KPi is assumed to be in the same

order of magnitude
(Narang et al., 1997; Teusink et al., 1998).

DcyPi
0.046 - .00433

0.00006*
/hr

Derived from the range of
yeast protein half-lives

(Horak and Wolf, 1997; Gancedo et al., 1982; Snapp, 2009).
*Narang et al. (1997) assume this parameter to be 0.01 VPi.

Yi 0.49 gdw/gr Glucose biomass yield (Van Hoek et al., 1998).
VB 0.42 /hr Maximum specific growth (Van Hoek et al., 1998).
KG 0.07 gr/gdw Precursor concentration (Costenoble et al., 2007).

M 0.2-0.27 gprot/gdw
Grams of protein per grams of dry yeast

(Siwiak and Zielenkiewicz, 2010).

DcyB - /hr
Death rate and/or dilution rate
in a continuous culture scenario.

Speculated value.

Parameter values in table 4.2 change their units depending on the model being used

(Hill-RFO, Hill-RSO, Logistic-RFO and Logistic-RSO). The table shows the pa-

rameter units for the Hill-RFO model. With RSO models, the Ii parameter changes

from unitless to gdw/gr units. With a Logistic model, the units of parameters

KG, M and DcyB change to gdw2/gr L, gprot L/gdw2 and L/gdw hr, respectively.

The parameterisation process starts by taking parameter values from the literature,

which serve as initial values and indicators of the order of magnitude that we should

expect each parameter of the models to be in. The equations of the models we

have developed, and described in Chapter 3, represent entire metabolic pathways

and dynamics that take place at the population level. They are not intended to

represent specific enzymatic reactions. Since most of the parameter values derived

from the literature are rates of specific reactions, there are reservations regarding
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how comparable they can be to the rate of the metabolic pathway as a whole. Table

4.2 lists the parameter values as well as the reference from where they were taken.

The table also succinctly describes the assumptions made or the reasoning behind

such parameter choice.

Figure 4.8: Data fitting flow diagram.

Figure 4.8 is a general diagram of the overall process followed in order to obtain an

optimal parameterisation. In the following subsections I will detail the steps that I

took to perform the parameterisation of the models described in Chapter 3.

4.2.1 Manual exploration and grid search

Initial attempts to optimise the parameterisation of the models using the method

described in subsequent sections showed that the starting parameterisation needed

to be pre-adjusted to the data in order to improve performance. Hence, once the

initial parameter values were identified (table 4.2), I manually adjusted them to the

data through visual evaluation (a process already described in section 3.2.3). As
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I mentioned there, the goal of this parameter adjustment was to get the models’

output closer to the sigmoidal curve shape that is characteristic of the experimental

results, as well as to explore the models’ capability to replicate the binary-mixture

experiments’ grouping pattern (figs. 4.3 to 4.6). Adjusting the parameters before

performing the fitting routine described in the following section yielded better re-

sults, i.e. the model’s output was closer to the experimental data, than doing the

fitting routine without performing the adjustment.

Additionally, a grid search, also referred to as parameter sweep, was performed to

further explore the parameter space. In order to perform the grid search, I selected a

number of parameters of interest and created an array per parameter with manually

selected values, usually differentiated by an order of magnitude when fitting to single

sugar data. For some parameters, such as Yi and VB, an increase of an order of

magnitude was considered unrealistic given their biological meaning and therefore a

more moderate step size was used instead. These initial parameter values are shown

in table 4.3. With the results of the grid search from the single sugar conditions, I

narrowed the range of values for the grid search on binary-sugar mixture data.

Table 4.3: Selected parameters and manually specified values used during the grid search under
single sugar and binary-sugar mixture conditions. Several grid searches were performed on each
model for each condition. All of the parameters listed here were searched for, albeit not all in the
same grid search.

Single Sugar Sugar mixture
Parameters Values tested Parameters Values tested
Ai ∈ {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1} VSi ∈ {600, 800, 1000}
VSi ∈ {1e−1, 1e0, 1e1, 1e2, 1e3, 1e4} VPi ∈ {0.003, 0.005, 0.01}
VPi ∈ {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1} VGi ∈ {7.5, 10, 12.5}
Kinhi ∈ {1e−4, 1e−3, 1e−2, 1e−1, 1e0, 1e1} Kinhi ∈ {0.5, 5}
KSi ∈ {1e−4, 1e−3, 1e−2, 1e−1, 1e0, 1e1} KPi ∈ {0.05, 0.15, 0.3}
KPi ∈ {1e−4, 1e−3, 1e−2, 1e−1, 1e0, 1e1} Ii ∈ {0.01, 0.5, 0.15}
DcyB ∈ {0, 1e−3, 1e−2, 1e−1, 1e0, 1e1} DcyPi ∈ {0.0006, 0.06}
VB ∈ {1e−3, 1e−2, 1e−1, 2e−1, 1e0} Yi ∈ {0.1, 0.5}
DcyPi ∈ {0, 1e−4, 1e−3, 6e−2, 1e−1}
Yi ∈ {1e−3, 1e−2, 1e−1, 4.9e−1, 1e0}
M ∈ {1e−3, 1e−2, 1e−1, 3e−1, 1e0}

As performance metric we used root mean square error (RMSE) in order to mea-

sure and evaluate the accuracy of the fit of each possible permutation within the
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parameter space in relation to the experimental data.

Once the RMSE score had been computed for each permutation, the top scoring

parameter set was stored and used as the input for the optimised fitting routine.

The same grid search procedure was used in order to find initial conditions of all state

variables except the extracellular sugar concentration Ni, since those are explicitly

given by the experimental data. Table 4.4 shows the values used for these grid

searches. Once again, the RMSE score was computed in order to determine the best

initial conditions.

Table 4.4: Initial conditions tested during grid search.

Single sugar Sugar mixture
State variable Values tested State variable Values tested

B ∈

{1e−3, 3.25e−3, 5.5e−3, 7.75e−3,
1e−2, 3.25e−2, 5.5e−2, 7.75e−2,
1e−1, 3e−1, 3.25e−1, 5.5e−1,
6.5e−1, 7.75e−1, 1}

B ∈ {8e−2, 1.5e−1, 2.2e−1, 2.9e−1,
3.6e−1, 4.3e−1, 5e−1}

G ∈

{1e−3, 3.25e−3, 5.5e−3, 7.75e−3,
1e−2, 3.25e−2, 5.5e−2, 7.75e−2,
1e−1, 3e−1, 3.25e−1, 5.5e−1,
6.5e−1, 7.75e−1, 1}

G ∈ {8e−2, 1.5e−1, 2.2e−1, 2.9e−1,
3.6e−1, 4.3e−1, 5e−1}

Si ∈

{1e−6, 3.25e−6, 5.5e−6, 7.75e−6,
1e−5, 3.25e−5, 5.5e−5, 7.75e−5,
1e−4, 3.25e−4, 5.5e−4, 7.75e−4,
1e−3, 5.5e−3, 1e−2}

{S1, S2} ∈ {1e−7, 5.5e−7, 1e−6, 5.5e−6,
1e−5, 5.5e−5, 1e−4, 5.5e−4}

Pi ∈

{1e−6, 3.25e−6, 5.5e−6, 7.75e−6,
1e−5, 3.25e−5, 5.5e−5, 7.75e−5,
1e−4, 3.25e−4, 5.5e−4, 7.75e−4,
1e−3, 5.5e−3, 1e−2}

{P1, P2} ∈ {1e−7, 5.5e−7, 1e−6, 5.5e−6,
1e−5, 5.5e−5, 1e−4, 5.5e−4}

Additionally, we also explored using Latin-hypercubes sampling to obtain initial

conditions and parameters. We took 100, 000 samples from uniform distributions

within manually established ranges for each state variable and parameter. These

100, 000 samples were insufficient to provide comparable results in terms of RMSE

scores, to the initial conditions and parameters yielded by the grid search technique,

which were acceptable for our purposes. It is possible that the ranges determined by

the uniform distribution of each model parameter were too broad. Hence, hindering

the sampling process. It is also a possibility that more samples were needed to yield

comparable RMSE scores to the grid search technique. However, larger sample sizes
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exceeded the grid search’s computational time. Therefore, we decided to continue

using the grid search technique.

4.2.2 Fitting routine

Once a satisfactory set of initial parameter values was obtained, the model was

parameterised through a fitting routine. To do this we employ the minimising algo-

rithm L-BFGS-B available through the scipy.optimize.minimize function from the

scipy library for Python 3.6. L-BFGS-B is a variant of the popular BFGS (Broyden-

Fletcher-Goldfarb-Shanno) algorithm with limited memory and the capacity to work

within manually established bounds for each parameter. This last property is partic-

ularly useful since it prevents the algorithm from optimising values below zero, which

are not biologically relevant. It is important to note that out of the eight state vari-

ables we used P1, P2 and B to compare them with the fluorescent (Mal12/mCherry

and Gal10/GFP) and optical density data, respectively. The data sets are time

series of approximately 25 hours and 100 points (103 in single sugar experiments

and 101 in the binary-sugar mixture experiments).

The input for this algorithm are a function and the parameters. This input func-

tion, in our case must be a performance metric or objective function that outputs

the goodness of fit of the model’s output to the experimental data. Each iteration

the parameter set is modified in the direction that reduces the output of the ob-

jective function, hence reducing the distance between the model’s output and the

experimental data.

The performance metric used int this process it the weighted RMSE. I have modified

the RMSE formula to include a weighting factor wi. The weighted RMSE formula

reads
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Weighted RMSE =

√√√√ 1∑m
i=1 wi

m∑
i=1

wi (pi − di)2, (4.1)

where the vector weight w multiplies the errors by a different factor. This equation

uses the definition of the weighted arithmetic mean or weighted average formula

Weighted mean =

∑m
i=1 wi xi∑m
i=1 wi

. (4.2)

The reason we have decided to used a weighted version of the RMSE is to be able

to separately weight the phases of the curve: lag, exponential and stationary. Once

the squared errors are computed, they are multiplied by the weight wi, the value of

which depends on the phase of the curve the error belongs to. If the error belongs to

the region of the curve that has been deemed to be more relevant, the contribution

of that error to the overall score is increased. In order to do this, the weighting

vector is constructed by multiplying the weights corresponding to the selected curve

phase by a weighting factor. For instance, a weighting factor of 2 means that the

errors within the selected region of the curve are worth twice as much as the errors

of other regions. This would allow us to fit the entirety of the curve with differential

values assigned to data points depending on the curve phase, and even fits on curve

phases separately (e.g. an exponential only fit).

In order to correctly separate the three different phases I identified the inflexion

points of each curve, which are the maximum and minimum values of the second

derivative of each curve. In order to do this, I have use the software platereader devel-

oped by the Swain Lab to calculate the second derivative of all data-sets (mCherry,

GFP and OD) and subsequently identify their maxima and minima. Manual refine-

ments had to be made to correctly separate the curve phases.
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Figure 4.9: Flow diagram of the steps followed by the optimising routine at each iteration.

Figure 4.9 shows the steps followed by the input function at each iteration of the

optimisation routine. The first step of the objective function is the integration of

the model over the initial sugar concentrations of the experiment. In the RMSE

context, this effectively gives us the predictions pi for each initial extracellular sugar

concentration. Subsequently, both the data and the model’s output are normalised.

We used a min-max normalisation, the formula of which reads

normalised xi =
xi −min

max−min
. (4.3)

Once both values have been normalised, the squared error is calculated, and sub-

sequently multiplied by the weight vector. The weighed squared errors are then

summed up and divided by the total amount of data points within the experimental

data set. The total weighted RMSE score for any given experimental data set is

given by the formula

Total weighted RMSE =

√√√√√ c∑
k=1

∑n
j=1

∑m
i=1 wkji (pkji − dkji)2

n
c

, (4.4)
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where data point dkji corresponds to the point i, from the sugar concentration j and

data type k; m is the number of points within a single time series, n is the number of

all initial sugar concentrations that give rise to the different curves per experiment

(seven for single sugar experiments and nine for sugar mixture experiments), and

c is the number of data types in the experiment: two for single sugar experiments

(mCherry or GFP, and OD), and three for sugar mixture experiments (mCherry,

GFP, and OD). For instance, taking the maltose single sugar data, data point d1,3,5 is

the fifth point from the 1% maltose curve (the 3rd concentration in ascending order)

from the fluorescent data (the first data type, the second being optical density).

Together, data point dkji, curve prediction pkji and weight wkji are used to compute

the corresponding weighted error.

The optimisation method iterates through this process until the difference in the

RMSE scores between steps falls below tolerance value 2.220446 e−9 (default value),

according to the formula

fk − fk+1

max(|fk|, |fk+1|, 1)
≤ 2.220446 e−9, (4.5)

where fk is the RMSE score at iteration k. I followed this process to parameterise

all of the models (described in detail in the previous chapter) for all experiments. In

the following section I present the results of our parameterisations for each model.

4.3 Fitting results

In this section I present the fitting routine results obtained. Each of the four models

was fitted to the experimental data introduced in a previous section. In total, each

model was fitted to four different experiments: 1) Maltose single sugar data, 2)

Galactose single sugar data, 3) Sugar mixture data (experimental data set labelled

PR1), and 4) the three experimental data sets at once. All experimental data sets

132



were fitted with several weighting factors. For the fitting results presented here, the

weighting factor affects the points belonging to the stationary phase of the curves.

When the weighting factor is < 1, the fitting errors in the stationary phase are less

significant than those in the other two regions of the curves. On the other hand,

when the weighting factor is > 1, the errors in the stationary phase contribute to a

higher extent to the overall RMSE score, which in principle signifies that they drive

the fitting routine. Finally, a weighting factor = 1, is equal to a non-weighted RMSE

computation, meaning that no curve phases is more important that any other.

Although different weighting factors were used in the optimisation routine, here we

present and rank the resulting parameterisations based on their RMSE scores with a

weighting factor = 1. Each phase and data type is scored separately for each model

and experiment. The graphs presented correspond to the parameterisation with the

smallest overall RMSE score for each experimental data set. Additionally, I take the

best scoring PR1 parameterisation to reproduce all three experimental data sets by

changing the initial values of the state variables through a grid search.

The initial values of the state variables (with the exception of the extracellular

sugar concentrations Ni which are explicitly given by the experimental setup) were

estimated manually, informed by value ranges used by Narang et al. (1997), whose

models were discussed in the previous chapter. Additionally, grid search was used to

inform the selection of initial values. Similarly, the initial parameter values used for

each model were obtained by manually adjusting parameters found in the literature

along with grid search. Table 4.2 shows the values found or otherwise derived from

the literature for each parameter in our models.

It is worth mentioning that some grid searches were performed with models slightly

different than the final four presented in the previous chapter. The grid searches were

not performed after every modification to the models due to: 1) time constraints,

and 2) through preliminary analyses, some modification were deemed too small to

merit a new grid search being performed.
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Unless stated otherwise, the only bounds implemented during the fitting are lower

bounds set to 0 for every parameter, in order to prevent negative values, which are

biologically meaningless, and for models with the RFOi induction terms, parameters

Ii are also upper bounded to avoid values above 1. The reasoning behind this

decision is that in this case, Ii functions as a proportional factor that regulates

the contribution of the sugar Si to the activation of the metabolism cognate to the

competing alternative. As such, we assume that sugar Si cannot have more influence

over the metabolic activation, than the competing sugar alternative the metabolism

of which is being activated. For instance, an Ii value = 1 would mean that sugar Si

is equally effective at activating the competing sugar’s metabolism as the competing

sugar itself. On the other hand, if Ii = 0 then sugar Si has no influence over the

induction or activation of the competing sugar alternative’s metabolism. This is not

a problem for the RSOi induction terms, since the contribution of sugar Si to the

activation of the competing sugar’s metabolism is dependent on the concentration

of the competing sugar.
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Table 4.5: Overall RMSE scores from the four different models per experimental data set and
fitting routine. Cells shaded in blue represent the best RMSE score for that experimental data set
out of all models. Cells shaded in green are the best RMSE score for that experimental data set
within that model. GS stands for grid search. The results under this column correspond to the
PR1 parameterisation and grid search for new initial conditions.

Hill function biomass model
RSOi induction term

All data Single sugar PR1 GS

PR1 0.097897 0.057441 0.056279
Maltose 0.084844 0.047408 0.068498

Galactose 0.124461 0.057331 0.064633
All data 0.103719 0.0633421

Hill function biomass model
RFOi induction term

All data Single sugar PR1 GS

PR1 0.059324 0.040205 0.04035
Maltose 0.05277 0.051341 0.056897

Galactose 0.106383 0.069543 0.055133
All data 0.07664 0.051332

Logistic equation biomass
and quadratic decay model

RSOi induction term
All data Single sugar PR1 GS

PR1 0.068124 0.052153 0.052664
Maltose 0.078905 0.051796 0.091442

Galactose 0.065549 0.04798 0.072602
All data 0.071095 0.073951

Logistic equation biomass
and quadratic decay model

RFOi induction term
with no upper bounds

All data Single sugar PR1 GS

PR1 0.081046 0.070712 0.044997
Maltose 0.07388 0.045677 0.062399

Galactose 0.108054 0.050985 0.048301
All data 0.088886 0.052445

Logistic equation biomass
and quadratic decay model

RFOi induction term
with upper bounds

All data Single sugar PR1 GS

PR1 0.088543 0.070663 -
Maltose 0.066459 0.047365 -

Galactose 0.109978 0.040624 -
All data 0.090096 -

I present only the best fit for each experimental data set, according to table 4.5.

This is: 1) the Hill-RFO model fitted to experimental data set PR1, 2) the three

experimental data sets at once, 3) the logistic-RFO model fitted to both maltose,
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and 4) galactose single sugar experimental data sets. All other fitting results can be

found in appendix A. Firstly, in each subsection I provide the initial values of the

state variables used in the fitting routine. Subsequently, in each case, I present the

RMSE score by curve phase and data type (fluorescence and absorbance), as well

as by experiment. Finally, I present the graphs which depict the experimental data

along with the parameterised model’s output.

4.3.1 Fits to the PR1 data set

The best PR1 fit, measured by overall RMSE score, comes from the Hill-RFO model.

In this case, the fitting algorithm has no upper bounds for any parameter, except

the Ii parameters which had an upper bound of 1. Additionally, the lower bounds

were set to 0, to avoid negative-valued parameters. Additionally, table 4.6 shows

the initial values used during the fitting routine.

Table 4.6: Initial values of the state variables used during the PR1 fitting routine with the Hill-RFO
model.

B G S1 S2 P1 P2

PR1 0.1 0.3 1e−5 1e−5 1e−5 1e−5

Table 4.7 shows the RMSE scores divided by section of the curve and by weighting

factor used for the fit. Table 4.8 shows the RMSE scores of the lowest scoring fit

(overall score) by section of the curve and data type.

Table 4.7: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 2 for all three
experimental data sets.

Weight factor 2.0 0.5 10.0 5.0 1.0 100.0 0.1 I.P. 0.01
Overall RMSE 0.0402047 0.0410185 0.0434217 0.0437596 0.0450072 0.0478087 0.0602773 0.0904905 0.120234
Lag RMSE 0.014203 0.0201152 0.0123978 0.0117584 0.016948 0.0111846 0.0392858 0.0244699 0.0735935
Exponential RMSE 0.045735 0.0498759 0.0522993 0.0538437 0.0582028 0.0458202 0.0852931 0.122413 0.190627
Stationary RMSE 0.0505553 0.0464255 0.0526061 0.0520318 0.0490118 0.068062 0.0456265 0.0947722 0.040173
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Table 4.8: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 2).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.021991 0.052576 0.048537 0.043219
GFP 0.008275 0.046597 0.071151 0.049336
OD 0.007288 0.036600 0.015785 0.023394

RMSE per phase 0.014203 0.045735 0.050555 0.040205 Total RMSE score for the PR1 fit

Figure 4.10: Results from the fit to sugar mixture experimental data set (PR1). This corresponds
to the parameterisation with the lowest overall RMSE score. Top: These graphs correspond
to the fit to the mCherry fluorescence data, which corresponds to the concentration of Mal12p.
Middle: These graphs correspond to the fit to GFP fluorescence data, which corresponds to the
concentration of the Gal10p. Bottom: These graphs present the results of the fit to the absorbance
data (O.D.). Graphs to the left present the experimental data whilst graphs to the right present
the model results.
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Figure 4.10: (cont.)

4.3.2 Fits to all three data sets

The best scoring parameterisation of all data sets corresponds to the best PR1 pa-

rameterisation of the Hill-RFO model. As mentioned earlier, this parameterisation

is used to reproduce all three experimental data sets by changing the initial values

of the state variables through a grid search. Table 4.9 shows the resulting initial

condition.

Table 4.9: Initial values of state variables resulting from the grid search performed with the lowest
overall RMSE PR1 parameterisation.

B G S1 S2 P1 P2

PR1 0.08 0.22 1e−3 1e−3 1e−3 1e−5

Maltose 0.775 0.325 1e−6 0 1e−6 0
Galactose 0.775 0.325 0 5.5e−3 0 1e−4

Table 4.10 shows the RMSE scores divided by experiment and by section of the

curve. Tables 4.11, 4.12, and 4.13 show the RMSE score divided by data type

and section of the curve of PR1, maltose single sugar, and galactose single sugar

experiments respectively.
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Table 4.10: RMSE scores divided by curve phase and experimental data set (single sugar and sugar
mixture).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.014897 0.046096 0.050374 0.040350
Maltose 0.027098 0.081423 0.048456 0.056897

Galactose 0.006112 0.071271 0.063260 0.055133
RMSE per phase 0.018199 0.067907 0.054428 0.051332 Total RMSE score

Table 4.11: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.023813 0.052006 0.048079 0.043140
GFP 0.007729 0.047803 0.071013 0.049624
OD 0.006243 0.037212 0.016071 0.023678

RMSE per phase 0.014897 0.046096 0.050374 0.040350 Total RMSE score for the PR1 fit

Table 4.12: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.038085 0.104629 0.047422 0.069872
OD 0.004264 0.048085 0.049468 0.039906

RMSE per phase 0.027098 0.081423 0.048456 0.056897 Total RMSE score for the maltose fit

Table 4.13: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (galactose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.004940 0.069190 0.085131 0.063401
OD 0.007092 0.073293 0.027503 0.045382

RMSE per phase 0.006112 0.071271 0.063260 0.055133 Total RMSE score for the galactose fit

Figure 4.11: Fit to the single sugar experimental data sets with the lowest scoring PR1 parameter-
isation (overall RMSE) after performing a grid search for new initial state variables values (table
4.9). Top: The maltose data set. Bottom: galactose data set. Graphs to the left correspond to
the fit to the fluorescence data (mCherry in the case of maltose, GFP in the case of galactose),
whilst the graphs to the right present the results of the fit to the absorbance data (O.D.).
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Figure 4.11: (cont.)

Figure 4.12: Fit to the binary-sugar mixture experimental data sets with the lowest scoring PR1
parameterisation (overall RMSE) after performing a grid search for new initial state variables
values (table 4.9). Top: These graphs correspond to the fit to the mCherry fluorescence data,
which corresponds to the concentration of the Mal12p. Middle: These graphs correspond to the
fit to the GFP fluorescence data, which corresponds to the concentration of the Gal10p. Bottom:
These graphs present the results of the fit to the absorbance data (O.D.). Graphs to the left
present the experimental data whilst graphs to the right present the model results.
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Figure 4.12: (cont.)

4.3.3 Fits to single sugar data sets

The best fits to both maltose and galactose data sets, measured by overall RMSE

score, correspond to the logistic-RFO model. The initial conditions used for these

fitting routines are specified in table 4.14.

Table 4.14: Initial values of the state variables used during the fitting routine to maltose and
galactose, respectively.

B G S1 S2 P1 P2

Maltose 0.1 0.1 1e−4 0 3e−3 0
Galactose 0.05 0.1 0 1e−4 0 2.5e−3

Fits for the maltose data set

For the maltose fitting routine, the fitting algorithm has lower bounds of 0 for all

parameters, and no upper bounds except for parameters Ii, which has an upper

bound of 1. Table 4.15 shows the RMSE scores divided by section of the curve and

by weighting factor used for the fit. Table 4.16 shows the RMSE scores of the lowest

scoring fit (overall score) by section of the curve and data type.
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Table 4.15: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 5 for the
maltose experimental data set.

Weight factor 5.0 1.0 10.0 2.0 0.5 0.1 I.P.
Overall RMSE 0.0456774 0.0470314 0.0475757 0.0480517 0.0483821 0.0571065 0.138003
Lag RMSE 0.0341704 0.0399212 0.0320045 0.033028 0.0418254 0.051641 0.034953
Exponential RMSe 0.0588438 0.0606472 0.0580573 0.066224 0.0629521 0.0752772 0.208984
Stationary RMSE 0.0403618 0.0369335 0.0489429 0.0380845 0.0361959 0.038079 0.110625

Table 4.16: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.040451 0.059209 0.038075 0.046875
OD 0.026438 0.058476 0.042526 0.044448

RMSE per phase 0.034170 0.058844 0.040362 0.045677 Total RMSE score for the maltose fit

Figure 4.13: Fit to the to maltose experimental data set with no upper bounds. This corresponds
to the parameterisation with the lowest overall RMSE score. The left graph corresponds to the fit
to the mCherry fluorescence data, whilst the graph to the right presents the results of the fit to
the absorbance data (O.D.).

Fits for the galactose data set

In the case of the galactose fit, the best fit is a result of parameterising the logistic-

RFO model with lower bounds of 0 for all parameters, and upper bounds equal

to ten times the initial parameter value, except for parameters Ii, which have an

upper bound of 1. The reason for the implementation of upper bounds is that

without them, for some weight factors, some parameters were optimised to more

than 300 times the initial parameter value. This was not the case for the maltose fit,
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which did not present this problem. Additionally, for the galactose fitting routine,

the parameters corresponding to the absent sugar were explicitly ignored by the

optimisation algorithm. When this metabolic branch was not ignored (as was the

case for the maltose fit) the parameters were changed rather drastically. This stands

in contrast to the maltose fit, in which the parameters corresponding to the absent

sugar were hardly affected. Table 4.17 shows the RMSE scores divided by section

of the curve and by weighting factor used for the fit. Table 4.18 shows the RMSE

scores of the lowest scoring fit (overall score) by section of the curve and data type.

Table 4.17: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for the
galactose experimental data set.

Weight factor 1.0 5.0 2.0 0.5 10.0 0.1 I.P.
Overall RMSE 0.0406239 0.0432867 0.0432917 0.043908 0.0465057 0.0847988 0.188308
Lag RMSE 0.0171684 0.0141906 0.015175 0.0236251 0.0160985 0.0541885 0.0916783
Exponential RMSE 0.0524045 0.048932 0.0493312 0.0538257 0.0500648 0.127329 0.281704
Stationary RMSE 0.0437028 0.0550046 0.0543935 0.0482535 0.061014 0.0492296 0.136447

Table 4.18: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.016932 0.054940 0.057682 0.047019
OD 0.017402 0.049740 0.022197 0.033013

RMSE per phase 0.017168 0.052404 0.043703 0.040624 Total RMSE score for the galactose fit

Figure 4.14: Fit to the to galactose experimental data set with no upper bounds. This corresponds
to the parameterisation with the lowest overall RMSE score. The left graph corresponds to the fit
to the GFP fluorescence data, whilst the graph to the right presents the results of the fit to the
absorbance data (O.D.).
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4.3.4 Conclusions

Table 4.5 shows the RMSE scores of each model divided by experimental data set

and fitting routine. The Hill function biomass model with RFOi induction term

scored better for the PR1 data set as well as all three data sets in parallel. Logistic

equation biomass and quadratic decay model with RFOi induction term scored best

at fitting the single sugar data sets. The maltose data set was fitted better with no

upper bounds, whilst the galactose data set fit scored better with the implementation

of upper bounds.

In general, the single sugar data sets scored better when the model was fitted to

the single sugar data set exclusively rather than with other data sets (labelled as all

data) or with the grid search method. The sugar mixture data set PR1 scored better

through either an exclusive fit or the grid search method. Noteworthy is the fact

that the grid search method delivers better scores on all data sets (both individually

and collectively) for all models compared with the all data sets fitting routine, which

fits the models with the three data sets collectively. The logistic equation biomass

and quadratic decay model with RSOi induction term is an anomaly in this regard

since all but the PR1 data sets are better fitted with the all data sets fitting routine.

Moreover, what seems to affect the overall RMSE score of the all data sets fitting

routine and push it above the score yielded by the grid search method, is the fit

to the galactose data set. The galactose data set score is noticeably larger than

the score for maltose and PR1 data sets (in all models but for the logistic equation

biomass and quadratic decay model with RSOi induction term). On the other hand

the grid search method seems to reach RMSE scores per experimental data set which

are closer to one another and generally lower.

Regarding the binary-sugar mixture data set (PR1), it can be observed that the

model that achieve the lowest RMSE score, the Hill-RFO model, struggles to re-

produce the grouping pattern observed in the experimental data (section 4.1.2),

particularly in the case of mCherry data (figures 4.10 and 4.12). In fact, both RFO
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models (Hill and logistic) show difficulties reproducing this pattern (appendices A.2

and A.4). On the other hand, and despite scoring a higher RMSE score, both RSO

models (Hill and logistic) perform better at reproducing and correctly separating

the curves in the same group pattern as the one observed in the experimental data

(appendices A.1 and A.3).

Generally speaking, based on the RMSE scores it can be observed that, for all

models, the parameterisations presented here have the biggest difficulty fitting to the

exponential phase of the curves, since the scores are generally higher in contrast to

the stationary or lag phases. The higher rate of change in this region could account

for this pattern. Additionally, the region around the second inflexion point (the

separation point between the exponential and stationary phase) can differ between

the model’s output and the experimental data. This is particularly noticeable in

the maltose data set (fig. 4.13). Moreover, the separation point, which was chosen

based on the experimental data, could be different in the model’s output, meaning

that part of the model’s stationary phase is captured as part of the exponential

phase. This miss match could be a contributing factor driving the exponential

RMSE scores higher. It is interesting to note that fitting the models to GFP data

does not present this pattern. Fits to GFP data have a higher exponential phase

RMSE score than the stationary phase score. The stationary phase of the curve

presents the second highest RMSE scores, whilst the lag phase shows the lowest

RMSE scores. The only anomalies in this regard are found in the galactose data set.

Particularly, in the stationary phase of the curve of the GFP data set, which unlike

the other experimental data sets, presents the highest RMSE scores out of the three

curve sections. This is explained by the decay of the signal, which our model does

not capture.

As I discussed in section 4.1.2, we suspect that the strong decay observed after the

peak in the Gal10/GFP curves results from GFP’s dynamics (half-life) rather than

the enzyme’s behaviour. Figure 4.1 shows how the two tagging proteins, mCherry

and GFP, present different behaviour, even when they tag the same enzyme (Gal10
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or Mal12) under the same experimental conditions. mCherry does not present the

same strong decay from the peak as GFP does. This decay is not particularly

well captured by our model, reflected by the higher RMSE scores observed in the

Gal10/GFP curves’ stationary phase fit. In contrast, our models had much more

success fitting to the Mal12/mCherry curves’ stationary phase, as indicated by the

lower RMSE scores.

In this chapter, we determined the best model and the best parameter set based on

the RMSE scores: The lower the score for a given experimental data set, the better

the fit. The parameterised model with the lower score is considered the model that

fits that data set the best. Our fitting methodology can be limiting in that it only

provides us with a set of parameters. In contrast, procedures such as maximum

likelihood estimation (MLE) or approximate Bayesian computation (ABC) could

yield more information such as posterior probabilities of the models been tested, as

well as a broader selection of parameter sets for the selected model (Ben Abdessalem

et al., 2018). Furthermore, an improvement in model selection could be made by

implementing penalised selection model criteria such as Akaike information criterion

(AIC) and Bayesian information criterion (BIC), among others. Such tests aim to

find a balance between the goodness of fit and model complexity (measured in

the number of free parameters), penalising overly complex models (Kuha, 2004).

These criteria could be implemented in our model selection process, particularly at

later stages, e.g. choosing between RFOi and RSOi or between a Hill and logistic

B equation. Selection criteria such as AIC or BIC could be useful even at the

early stages of model structure selection (mutual inhibition, feed-forward inhibition,

pooled inhibition). However, as mentioned in Chapter 3, our model structure choice

was heavily informed by the literature on yeast regulatory mechanisms. Hence it

would be unlikely to change.

As already discussed in section 4.3, several fits were performed for each model and

experimental data set, each using a different weighting factor. The fitting results

presented in this chapter correspond to the best fit. By this, I mean the set of
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parameters that scored the lowest RMSE for a given model and a given experimental

data set. It is evident that the best fits we could obtain with this method still do

not capture all of the dynamics observed in the experimental data. Our models are

simple and symmetric by design. This simplicity and lack of specificity come at the

cost, which in this case is that even the best fits (according to RMSE score) still fail

to replicate details in the experimental data.

I have mentioned already that our models do not include timescale separation, de-

lays, dilution, nor fluorophore dynamics. Considering these elements could improve

the model’s goodness. In addition and as mentioned in Chapter 3, the Pi equa-

tions of our models represent the metabolic activity levels associated with sugar

i. This approach is similar to model (3.1) in which equations ei are described as

the “lumped” system of inducible enzymes associated with the internalisation and

catabolism their cognate sugars (Narang et al., 1997). A more detailed modelling

of the specific metabolic pathways of interest would necessitate equations for each

enzyme and metabolite in the chain, significantly increasing the model’s size. Also,

finding parameters for such a model would be challenging (Kholodenko, 2006). A

reasonable expectation would be that a more complex and detailed model would fit

the experimental data better. Subsequent iterations of our models could find greater

success in fitting to the data by including some of the elements we decided to forgo,

and in so doing, we could achieve a better understanding of the experimental data.

In this chapter, I have described the experimental data used for this project as

well as the process through which the models introduced in the previous chapter

were parameterised to fit the experimental data. Each data set has been fitted

both individually and collectively. In addition, two approaches have been described

in order to obtain a single parameterisation that manages to fit to all data sets.

The grid search method yielded better scores than the “ All data ” fitting routine.

Furthermore, both models with the RFOi induction term generally yielded better

scores for almost all data sets than their RSOi counterparts. More specifically,

the best overall collective fit is that of the Hill function biomass model with RFOi
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induction term through the grid search method.

In the next chapter I will take these model with the resulting parameterisations

and analyse them as dynamical systems. I will study them under two different

conditions: equal and unequal-value alternatives. We expect that this analysis will

be informative about the decision-making dynamics that these models present.
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Chapter 5

Dynamical systems analysis

In this chapter, I present the dynamical systems analysis, which includes bifurcation

analysis, performed on the models developed in Chapter 3 (eq. (3.24)) and described

in detail in section 3.2.4. The aim of these analyses is to study the dynamics

and bifurcation of these models. In relation to the work presented in Chapter 4,

these analyses should be considered as a separate study focused on the stability and

dynamics of the models, not on their capacity to simulate experimental data from

batch cultures. They can be considered as different systems.

To perform these analyses, we make the assumption that the extracellular nutrient

concentrations are constant, which is necessary in order to achieve a steady-state in

the system. By implementing this assumption, the models go from having eight state

variables down to six (state variables Ni are now constants). Using these models, we

analyse two different settings: 1) Equal-value alternatives case, and 2) unequal-value

alternatives case. The equal-value alternatives case depicts a scenario in which there

are two sources of the same nutrient with a constant concentration. This exploration

of the model’s dynamics presents similarities to the analysis presented by Pais et al.

(2013) on house hunting honeybee swarms, or the studies of Dussutour et al. (2019)

and Vogel et al. (2018) with slime mould. On the other hand, the unequal-value

alternatives case represents a situation in which there are two different nutrients
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at different and constant. One such scenario would a continuous culture in which

new media is fed to the culture constantly, in an effort to maintain the nutrient

concentration constant.

For the equal-value case, we present the results of the two RFO models (Hill-RFO,

and Logistic-RFO). In the unequal-value case, call models are analysed. I present

a description of the general approach that was taken in order to perform the bi-

furcation analysis, as well as introduce the tools used to perform such an analysis.

Subsequently, I describe how these tools were used in order to obtain the results.

Additionally, I also analyse the model under saturating conditions, as well as a

variant of the unequal-value alternatives case by taking the equal-value alternatives

parameterisation and varying a single parameter. These conditions are variants of

the unequal-value alternatives case, and their results can be found in appendix B.5.

The analyses presented by Pais et al. (2013) and Zabzina et al. (2014) on the equal-

value alternatives case is characterised by the presence of pitchfork bifurcations,

revealing that in such decision the state of deadlock can be broken by increasing

the value of certain parameters. In particular, our results show parallels to Zabzina

et al. (2014), which show that the deadlock state can be restored if the parameter

value is increased further.

5.1 Analysis of the binary-sugar mixture decision

of a cell culture

As previously mentioned, our interest lies in using our models to explore the cellular

decision-making behaviour that a cell or a cell population presents when it encoun-

ters two sources of nourishment in its vicinity. In order to perform the dynamical

systems analysis, and more specifically, the bifurcation and stability analysis, we

must consider certain assumptions that are necessary to obtain a steady-state, which

is necessary for any dynamic systems analysis. We consider the extracellular sugar
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concentrations Ni as constant. Without this adjustment, the extracellular sugar

concentration would be depleted over time, implying that a steady-state would not

be reached until the nutrients, in our case the extracellular sugar concentrations Ni,

are completely exhausted, which makes the steady-state rather uninteresting. In

contrast, by making the extracellular sugar concentrations Ni constant, the system

is allowed to reach a non-zero steady-state.

From a biological standpoint, one of the assumptions made is that the value of a

carbon source to an organism is a function of the energetic contribution or growth

advantage it grants to the organism, which itself can be seen as an aggregate of

various factors such as the grams of biomass produced per gram of sugar consumed,

the rate at which the sugar in question is internalised and metabolised, as well as

its extracellular concentration (Perkins and Swain, 2009; Wang et al., 2015; Koirala

et al., 2016). Other possible factors that can affect the cell’s preferences are related

to the role that a specific sugar plays in anabolic pathways. For instance, Shimada

et al. (2013) argue that D-ribose has a higher value to E. coli than its energetic

contribution would merit due to its role in nucleotide synthesis. One fundamental

assumption in our analyses is that the model’s parameters determine the sugar alter-

natives’ value. The analyses performed can be divided into two different categories:

1) Equal-value alternatives, and 2) Unequal-value alternatives. The latter case is

where two different sugars are available within the media. This would correspond

to analysing our models with the parameters corresponding to the binary-sugar

mixture experimental data. On the other hand, the equal-value alternatives case

corresponds to the theoretical situation in which the system is presented with two

sugars with the same parameters. This situation does not necessarily reflect single

sugar experimental conditions, an environment in which one branch of the system

remains inactive since there is only one sugar available. In the equal-value alterna-

tives case, there are two extracellular sugars pools available to the system, which

has two active branches with the same parameters. By branch I refer to the two sets

of equations present in the models (Ni, Si and Pi) which are structurally identical

151



to one another (they are only differentiated by their parameters).

5.1.1 Reparameterisation centred around the mean and the

difference

We follow the approach presented by Pais et al. (2013) regarding the bifurcation

analysis of a two-alternative decision problem. Pais et al. (2013) present a model,

which analyses the value-based decisions of a honeybee swarm scouting and even-

tually choosing a new location in which to establish a new nest, uses two main

parameters, namely the cross inhibition, and the perceived value or quality of the

location in consideration. The two equations that define their model are structurally

similar to the Pi equations in our models (explained in detail in Chapter 3). Simi-

larly to ours, the two equations are symmetrical to one another, only distinguished

by their parameterisation. Following their analysis and taking advantage of the

structural symmetry of the model, most of the parameters in our models can be

replaced by parameters that represent the mean value and the difference in their

value between the two branches. The relationship between the mean and difference

and the original parameters on each branch of the model are described by

p1 = p̄+ ∆p

p2 = p̄−∆p,

(5.1)

where pi is the a parameter corresponding to the ith branch, p̄ is the mean value

of the two parameters, and ∆p corresponds to half the difference between the two

parameters. Making these substitutions maintains the original parameter values,

and allows us to perform the bifurcation analysis by varying the value of either

the mean or the difference between parameter, rather than the absolute values.

Parameters VB, KG, M and DcyB are unique parameters, and as such they were

analysed as they are.

152



This reparameterisation is made in order to study how the system’s dynamics change

in response to changes to the mean of parameters and their difference. This is

particularly relevant in the case of certain parameters of interest, which can be

interpreted as indicators of the value of a sugar alternative to the yeast culture

(KPi, VPi, Yi), and the strength of inhibition (Kinhi). In this regard, analysing the

mean and difference rather than the individual absolute values, serves to analyse the

system’s behaviour as the mean value of its alternatives changes, or as they become

more distinct, which allows us to analyse the models in the context of value-sensitive

decision-making, describe in detail in section 2.1.7.

5.1.2 Software used

In order to perform the dynamical systems analysis of the models we used MatCont,

a MATLAB package for numerical bifurcation analysis of ODE systems (Dhooge

et al., 2003). We use MATLAB version R2018a for these analyses (MATLAB,

2018). I tested all the different solvers available through MatCont and selected

the solver ode15s, as it seems to handle our models the best in terms of efficiency

and consistency. The ode15s is a solver that is particularly suited to solve stiff

equations (MathWorks, 2020). Stiffness in the computational context refers to a

system of coupled differential equations for which certain numerical methods are

inefficient or unstable (Liu et al., 2019). Rathinam et al. (2003) mention two main

reasons behind the stiffness of a system: 1) multiple timescales, and 2) the presence

of variables of both small and large quantities. In our system, the state variables

range over several orders of magnitude, which would cause stiffness. Hence, the

necessity to employ numerical methods that can handle such systems.

Additionally, I used the Dynamica package for Mathematica, which similarly to

MatCont is a package aimed to provide tools for the analysis of dynamical systems.

Going into more detail, MatCont is a graphical software package for MATLAB that

allows the user to perform continuation and numerical studies on parameterised
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dynamical systems, specifically, bifurcation analysis, and it facilitates the computa-

tion of curves of equilibria, branch points, Hopf points, fold bifurcations and more.

(Govaerts et al., 2019). MatCont performs its curve continuations by implementing

a prediction-correction algorithm, which, as the name implies, predicts where the

next point of a curve is, and then corrects it. The specific algorithm used is the

Moore-Penrose continuation (Dhooge et al., 2003). Through the implementation of

several test functions, MatCont can detect bifurcation points such as Hopf and fold

bifurcations. MatCont also allows the user to monitor the eigenvalues of the system,

which can be used to understand the stability of the solution (Strogatz, 1994). Sim-

ilarly, Dynamica is a package build for Mathemathica for the analysis of dynamical

systems, and it allows the user to compute vector fields, trajectories, flows, phase

portraits, and bifurcation diagrams (Beer, 2016). An in-depth discussion of how

either one of these software packages work goes beyond the scope of this work. For

a more detail description see Dhooge et al. (2003); Govaerts et al. (2019) and Beer

(2016).

I used Dynamica to obtain the trajectories and phase portraits in fig. 5.1, and es-

pecially in the initial stages of the bifurcation analysis for its ease of use to explore

the parameter space. It also plays an important role during the single-parameter

difference analysis (appendix B.5). Whilst MatCont requires the user to manually

input the values for the state variables in order to integrate a particular solution,

Dynamica does not. It does a sweep through the parameter space finding all the pos-

sible solutions to the systems. This is a particularly useful feature, especially when

the solutions are not connected to one another, as is the case with the bifurcation

analysis of our system under the single parameter difference case.

5.1.3 Colour coding in the bifurcation diagrams

The bifurcation diagrams in the following sections are all presented as either three-

or two-dimensional diagrams that show the evolution of the system’s dynamics as a
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function of a parameter’s value within the P1, P2 space. The choice of coordinates

comes about because P1 and P2 represent the system’s metabolic activity required

to consume either sugar and therefore, their dynamics are a good representation of

the system’s commitment to either alternative. The colour of the solutions in the

diagrams represents the stability of that solution: Blue represents a stable solution,

in which the real part of all eigenvalues is negative. The resulting solution can either

be a node or a spiral (depending on whether the eigenvalues are real or complex,

respectively) (Strogatz, 1994). A stable solution means that all local trajectories

lead to it. Green represents an unstable solution in which the real part of one of the

eigenvalues is positive; this is an unstable solution. More specifically, within the P1,

P2 plane, this solution behaves like a saddle point. Finally, red represents a solution

in which the real part of two eigenvalues is positive. Within the P1, P2 plane, this

solution is unstable. It can be either an unstable node or an unstable spiral, which

depends on the eigenvalues being real or complex. This type of solution implies

that within the P1, P2 plane, all local trajectories move away from it. A graphic

representation of these solutions can be observed in the phase portraits in figure 5.1.

5.2 Equal-value alternatives

In this section I present the results obtained from applying dynamical systems anal-

ysis to the models in an equal-value alternatives decision problem. The equal-value

alternatives case refers to the hypothetical situation where the system is presented

with two sugar alternatives with the same value, in other words, the same sugar.

This is simulated by parameterising the models with the same parameter values in

both branches. This means that the parameters in the two branches of the models,

as well as parameters VG1, Y1, VG2, Y2, have the same value. As mentioned in the

previous section, this setting does not reflect the single sugar experiments used in the

previous chapter. In that case, one of the branches would not present any relevant

activity since there would only be one extracellular sugar pool Ni. The approach
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put forward here is a theoretical exploration of the model’s dynamics, similar to

the bifurcation analysis presented by Pais et al. (2013) on house hunting honeybee

swarms, or the studies of Dussutour et al. (2019) and Vogel et al. (2018) with slime

mould.

The results displayed correspond to the two RFO models. The parameterisation

used for these analyses is the initial parameterisation obtained through the manual

estimation of parameters, as specified in Chapter 4. Similarly, the initial conditions

are those specified in the previous chapter, obtained through grid search. To im-

plement the equal-value alternatives setting, the parameters of the galactose branch

were chosen and the two branches of the model were parameterised with them. It is

noteworthy that analysing the difference parameters leads to no bifurcations. The

bifurcations obtained emerge by changing the value of mean parameters, as well as

unique parameters such as VB. Additionally, these resulting bifurcations, regard-

less of the parameter that elicited them, present a consistent pattern in their shape

and overall dynamics. Our results show a restoration of symmetry similar to that

described by Vogel et al. (2018), where bifurcations along a unique stable solution

present themselves in pairs: The initial branching point creates a pitchfork bifurca-

tion which changes the stability of the unique solution from stable to unstable, and

from which two new solutions emerge. The second bifurcation occurs at the second

branching point where the two solutions which emerge at the first branching point

collapse. After this point, only the initial unique solution remains with its stability

restored. It is worth mentioning that not all the bifurcation diagrams are shown

here, those missing can be found in appendix B.1.

5.2.1 Phase portraits of the equal-value alternatives case.

In all of the results presented, the dynamics of the system were analysed in the P1,

P2 space. To reiterate what has been stated in previous chapters, they represent

the metabolic activity of the pathway related to the consumption of their cognate
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sugar. Biologically, this can be the concentration of a specific and essential enzyme

in the metabolism of a particular sugar. The assumption being made here in regards

to decision-making is that the commitment, or decision of the system, to either one

of the sugar alternatives is expressed or represented by the relative levels of P1

and P2. Whereas the bifurcation portraits that constitute the bulk of the results

presented in this chapter describe the dynamical changes undergone by the system

as the value of one parameter is changed, the phase portraits presented in figure 5.1

present the state of the system with a particular parameterisation. For all intents

and purposes, these phase portraits can be understood to be longitudinal slices

taken from a bifurcation diagram at a particular parameter value. They depict all

the solutions available to the system, as well as their stability in a two-dimensional

P1, P2 plane. Additionally, the phase portraits also show several trajectories in that

particular state of the system to illustrate the solutions’ dynamics and stability.

The portraits in figure 5.1 are qualitative in nature and are presented in order

to illustrate the different dynamic states that the models produce under different

parameterisations.

Portraits 5.1a and 5.1b depict a single stable solution, to which all trajectories are

attracted to. From the decision-making perspective, this unique stable solution

represents a decision-deadlock state in which the system is not committed to any

single alternative. However, these two deadlock states can not be interpreted to be

qualitatively equal. Portrait 5.1a shows how all trajectories in the space are driven

to a near-zero deadlock state. This comes about as a result of the system, and in

particular the induction terms of equations Pi, not being active. Pi has two sources:

1) the induction term which is sensitive to Si, and 2) the basal activity represented

by the term Ai ∗ VPi, which is independent of the value of any state variable. This

state of deadlock represents an inactive or un-induced cell culture, the metabolism of

which is inactive. In this state, neither of the sugar alternatives are being properly

utilised, therefore, the system is uncommitted. On the other hand, the deadlock

state depicted in portrait 5.1b, due to its high Pi value can be interpreted as a
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state in which both metabolic branches are active, hence, both sugar alternatives

are being consumed simultaneously. The state depicted here can be interpreted as

a commitment to both alternatives through simultaneous consumption.

(a) (b)

(c) (d)

Figure 5.1: Phase portraits in the P1, P2 space, showing the different dynamics that the RFO
models can present in the equal-value alternatives case. Blue dots represent stable attractors,
green dots are saddle attractors, and red dots are unstable solutions.
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(e) (f)

Figure 5.1: cont.

Finally, portrait 5.1f shows that, in some cases, all these solutions are available to

the system. It is important to mention that not all bifurcation portraits exhibit all

these behaviours. In particular the dynamics in phase portrait 5.1f are only seen

in bifurcation diagrams such as those of figure 5.9. Portrait 5.1c shows a system in

which a deadlock solution is unstable. The saddle node displayed in green pushes

approaching trajectories to either one of the two stable solutions. These two stable

solutions represent a commitment of the system to the consumption of one of the

alternatives over the other. Portraits 5.1d and 5.1e show the coexistence of these

two stable solutions, as well as a state of deadlock.

5.2.2 Hill function biomass model: RFO induction term

Here I present the results of the dynamical systems analysis on the Hill-RFO model.

Table B.1 shows the values of the parameters in terms of mean and difference.

The parameterisation used corresponds to the initial PR1 parameterisation of this

model obtained through manual pre-visualisation. Table B.2 shows the initial values

of the state variables used, which were taken from the experimental data fit initial

conditions. The second row are the state variable values of the steady-state. These

are obtained by following the process described in appendix B.3.
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Parameters Ā, D̄cyP , K̄S, Ī, ∆A, ∆DcyP , ∆VS, ∆VP , ∆VG, ∆KS, ∆I, ∆KP , ∆Y ,

∆N , KG, M and DcyB have one stable solution across the entirety of the analysed

interval. In contrast, the system presents bifurcations as a result of varying any

other parameters.

Two parameters of particular interest are K̄P and K̄inh. K̄P (the mean of parameters

KP1 and KP2) represents the affinity that the induction of Pi has for its sugar

substrates. Pi has an inversely proportional relation with KP i. Therefore, the

lower this value is, the more sensitive the synthesis of Pi is to changes in sugar

concentration and the faster it reaches saturation levels. In contrast, the larger this

value is, the more sugar concentration is needed in order to induce the synthesis of Pi.

On the other hand, K̄inh (the mean of parameters Kinh1 and Kinh2) is a parameter

that regulates the strength of the inhibitory effect of G onto the synthesis of Pi, and

it has a proportional relationship with the value of Pi. Kinhi affects G, which in

turn affects KP i. Hence, the higher Kinhi is, the smaller the repressive effect of G

over KPi is.

Figure 5.2: Top: Two-dimensional bifurcation diagram showing the value of P1 as K̄inh is changed.
Bottom: Same bifurcation diagram showing only the deadlock solution to illustrate the stability
changes.
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Figure 5.2: cont.

Figure 5.2 shows a two-dimensional bifurcation diagram (Top) that illustrates how

the value of P1 changes as K̄inh is varied. Since is is an equal-value alternative case,

the P2 diagram is equivalent to this one. It can be observed that there are two

different types of stable deadlock. In this context, deadlock means that both P1

and P2 have the same value, therefore, the system shows no preference between the

sugar alternatives. It should also be noted that state variables S1 and S2 also have

the same value. At low values of K̄inh the deadlock state is characterised by having

a near-zero Pi value. At this point K̄inh value is approximating zero, which in turn

strengthens the inhibitory effect of G, thereby reducing the synthesis rate of Pi whilst

only the basal production of Pi (through the term Ai∗V Pi) continues unfettered. As

the value of K̄inh increases, a branch point is encountered, upon which the solution

becomes unstable, first as a small region in which two eigenvalues turn from negative

to complex conjugates with a positive real component; this is the red part of the

solution. Subsequently, one of the complex eigenvalues with positive real part turns

negative, which corresponds to the solution’s green region. Within the P1, P2 space,

this has the dynamic properties of a saddle. As the K̄inh continues to increase the

average value of the deadlock saddle solution increases until a second branch point

is encountered. At this point the deadlock solution becomes completely stable. This

can all be observed in the bottom diagram of figure 5.2, where the deadlock solution
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has been isolated so that the bifurcations and stability changes can be observed

better. The average Pi value of this stable deadlock solution is much larger than the

stable deadlock region at lower K̄inh values. As K̄inh increases, the inhibition effect

is reduced, allowing state variables P1 and P2 to increase. Biologically, this can be

interpreted as reducing the affinity with which a repressor inhibits the expression

of a given gene; the lower the affinity the lower the inhibition of protein synthesis

through genetic expression. This stable deadlock solution reflects the state of the

system in which both sugar alternatives are being exploited to the same extent. At

the first branching point, not only does the stability of the deadlock solution change,

but two other solutions emerge which are symmetrical to one another. Each solution

depicts the commitment of the system to either one of the sugar alternatives, whilst

the other is relatively ignored. These two solutions start as saddle solutions (the real

part of one of the eigenvalues is positive) before becoming stable solutions as they

encounter a limit point. This change in stability is indicated by the change from

green to blue colouring. As K̄inh increases, depending on which branch one follows,

the value of either P1 or P2 increases above the Pi value of the saddle deadlock

solution. In this region, there are two stable solutions available to the system. The

deadlock solution behaves as a saddle which makes it push the trajectories toward

either one of the two stable solutions, as can be seen in phase portrait 5.1c.

Whilst the analyses presented here are deterministic, in a naturalistic scenario, one

would expect the system to show stochasticity. As Pais et al. (2013) mention in their

work, when analysing equal-value problems with noise, if the system has multista-

bility in the form of a pitchfork bifurcation, the system will find itself in or choose,

either one of the stable solutions at random. The two-dimensional diagram in fig-

ure 5.2 shows how in one of the solutions the value P1 increases as K̄inh increases,

whereas in the other stable solution its value remains both close to zero and rela-

tively flat. The P2 bifurcation diagram is identical to the P1 diagram shown here.

If one were to add noise terms to our model (similar to model (C.1) in appendix C)

and ran the model with a K̄inh value that allowed for one saddle deadlock solution
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and two stable solutions (for instance K̄inh = 0.03), the Pi equations’ output will

equal either one of the two stable solutions in which P1 is higher than P2, or vice

versa, but never the saddle solution. The deadlock state is only available if the

model is run as deterministic, due to its stability.

Eventually, both of these stable solutions find a second limit point which changes

their stability again back to that of a saddle, as one of the eigenvalues has its real

component turn positive. These saddle solutions then curve back to collapse at

the second branch point, leaving only the deadlock stable solution. This behaviour

contrasts with that reported by Zabzina et al. (2014). Their system also shows

multiple stable solutions as the system size parameter is increased. The difference

is that their system does not present the second limit points in each of the branches

that our system presents, therefore, the non-deadlock stable solutions never collapse.

This means that as the system size parameter is increased, their system always

presents three different stable solutions: a deadlock solution and two other in which

the system is committed to either one of the two alternatives. It is important to

note that this second bifurcation occurs at a lower K̄inh value than the limit points

at which the second and third solutions change their stability and move back. In

a similar fashion, the initial bifurcation occurs at a higher K̄inh value than that at

which the two emergent solutions change their stability from saddle to stable. This

results in two regions in which there are three stable solutions that the system can

potentially find itself in. The two saddle solutions in between them will push any

trajectories to either one of the stable solutions, as can be seen in the vector fields of

phase portraits 5.1d. Additionally, it can be inferred from these vector fields, that

the closer the stable and saddle solutions are to one another, the more likely it can

be for a given trajectory to be pushed away from that solution and into a different

stable attractor.

The system behaves differently as a function of changing the values of parameter

K̄P , as can be seen in the bifurcation diagrams of figure 5.3, although the same

pattern observed in the analysis of parameter K̄inh presents itself again: stable
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unique solutions flanking a multistable region in the centre, the start and end of

which are determined by the emergence of a subcritical-like bifurcation at each side.

The chief difference between the dynamics presented by varying parameter K̄P in

contrast with K̄inh is the relation that the average Pi value has with the changing

value of the parameter being analysed; in response to changes in K̄inh the average

Pi value increases as K̄inh increases, whereas this relationship is inverted in response

to K̄P , as it can be observed that the average Pi value decreases as K̄P increases.

As K̄P starts to increase from zero the system finds itself in a single stable solution

representing a deadlock state in which both alternatives are being used. Similarly, a

multistable region in which two solutions, each of which represents the commitment

to one of the alternatives over the other, emerges from a branch point as the initial

deadlock solution becomes unstable.

Figure 5.3: Top: Three-dimensional bifurcation diagram resulting from varying the K̄P parameter
in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same solution,
focusing on the value of P1 as K̄P is changed.
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Figure 5.3: (cont.)

As K̄P continues to increase, the average Pi value decreases, until a second bifur-

cation is found, upon which the multistable region comes to an end as the multiple

solutions collapse, and the deadlock solution regains its stability. In this final dead-

lock state, the Pi values are dominated by the basal rate of production (Ai VP i),

since the output of the induction term is close to zero. Parameter K̄P is inversely

proportional to the affinity of the substrate, hence the higher the K̄P value is, the

more concentration of Si is needed for Pi to be produced.

From these two sets of diagrams (figures 5.2 and 5.3), one can also observe that the

solution which represents the deadlock state tends to display a “hook” or S-shaped

curve as the system approaches one of the bifurcations, namely that which emerges

from or resolves into the basal-activity deadlock state. This dynamic phenomenon

is called hysteresis which can be defined as a jump between solutions as a parameter

is changed (Seydel, 1988). Hysteresis loops are also responsible for lagging effects,

or “switch” effects, as they are sometimes called in the context of genetic expression

(Ozbudak et al., 2004b; Laurent and Kellershohn, 1999). It can be seen in both

figures 5.2 and 5.3 that as the value of a parameter is increased the expression levels

of Pi remain relatively static before a point of drastic change, which is called the

hysteretic point, where the system jumps from that solution onto another one with
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a significant and immediate change in Pi values. The solutions that emerge from

the branching points show a similarly shaped curve near both bifurcations, which is

what results in the regions where three stable solutions are available to the system.

Phase portrait 5.1e depicts how the system’s dynamics look in such regions.

A clear exception to this pattern is the system’s dynamics in response to varying

values of ∆Kinh. The diagrams in figure 5.4 show the dynamics yielded by varying

parameter ∆Kinh. What can be observed is that as the parameter approaches the

values at which either Kinh1 or Kinh2 approach zero the system presents, for a small

range of values, hysteretic behaviour. The single solution presented by this diagram

shows that the middle section is both stable and flat, which means that the system is

quite resistant to changes in ∆Kinh, since for most of the interval explored the values

of P1 and P2 are extremely close to one another, although they are not identical.

Figure 5.4: Top: Two-dimensional diagram resulting from varying the ∆Kinh parameter in the
P1, P2 space. Bottom: Two-dimensional diagram showing the same solution, focusing on the
value of P1 as ∆Kinh is changed.
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Figure 5.4: (cont.)

Eventually, these values start to diverge noticeably as either P1 or P2 drops in an

almost straight line, depending on the sign of ∆Kinh. This drop occurs at Kinhi ≈ 0.

For instance, if ∆Kinh has a positive value as it increases toward the boundary value

at which Kinh2 ≈ 0, then it is the value of P2 which collapses, whilst P1 increases

slightly. The situation is mirrored if Kinh1 ≈ 0 as ∆Kinh is decreased. At these

extremes, the solution changes from a stable one to a saddle. These regions are also

bistable, since there is an overlap of the stable parts of the solution.

The pattern mentioned previously, namely a stable solution with a multistable region

in the middle, is present in almost all of the analyses made. All the parameters that

exhibited this pattern can be classified based on the relation that the average Pi

value has to the value of the parameter: proportional as is the case of parameter

K̄inh, or inversely proportional such as K̄P . Of the parameters whose results are not

shown, parameters Ȳ and V̄G present an inversely proportional relationship with

the average Pi value, such as K̄P , whereas parameters V̄P , V̄S show a proportional

relationship with the average Pi value, like K̄inh. Additionally, parameters V̄P , V̄S

have a more pronounced hysteresis loop, not dissimilar to that depicted in figure

5.9, where the multistable region encompasses four stable solutions, each one of the

stable solutions that represent commitment to only one of the alternatives, and two
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different stable deadlock solutions, one of high Pi value and one of low Pi value.

Figure 5.5: Top: Three-dimensional bifurcation diagram resulting from varying the N̄ parameter
in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same solution,
focusing on the value of P1 as N̄ is changed.

Another parameter of particular interest is N̄ . N̄ is the mean extracellular sugar

concentration. In all other analyses this quantity has been kept constant. However,

by varying it we can analyse the dynamics of the system as the concentration of

sugar in the medium changes. The diagrams in figure 5.5 reveal that, similarly to the

dynamics of the system in relation to changes to parameters V̄P , V̄S, the deadlock

solution in these diagrams also presents hysteresis. In this case, the multistable

region flanked by bifurcations is present. However, in this case, the stable sections

of the solutions that emerge at the branching points are relatively small, compared to
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the length of these solutions. Also, the deadlock solution does not regain its stability

at the second bifurcation. In this point, the solution turns from unstable to a saddle

(in the P1, P2 space), and it is only after that this solution eventually regains its

stability. It is also important to note that this behaviour occurs as parameter N̄ ≈ 0,

which means that the extracellular sugar pools are close to being depleted.

Figure 5.6: Top: Three-dimensional bifurcation diagram showing the dynamics of the system
in the P1, P2 space as VB is changed. What differentiates this bifurcation from others is the
small unstable region in the deadlock solution that presents some periodic solutions. Bottom:
Zoomed-in plot of the periodic solutions, in which P1 = P2.

Lastly, as parameter VB is change, similar dynamics are observed. However, the

bifurcation diagrams in figure 5.6 reveal that these solutions lack the characteristic

hysteresis loop, and the multistable region. The deadlock solution in this case has
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the shape of an exponential curve. Another remarkable feature is that the deadlock

solution’s unstable region has at each extreme a Hopf point, from which oscillatory

behaviour emerges. This region is relatively small, and the oscillations occur at

the middle of an unstable region, with two stable solutions available to the system.

Moreover, the oscillations themselves are unstable, since two of the eigenvalues have

a positive real component. It is noteworthy that this behaviour emerges at relative

by small values of VB. The initial parameter value is 0.9, whilst this dynamics

emerges as the value is dropped to 0.04 − 0.01. Additionally, in these periodic

solutions P1 = P2.

5.2.3 Logistic equation biomass model: RFO induction term

In this subsection I present the results of the dynamical systems analysis on the

logistic-RFO model. Table B.3 shows the values of the parameters in terms of mean

and difference. This parameterisation corresponds to the initial PR1 parameterisa-

tion yielded by manual pre visualisation. Table B.4 shows the initial values of the

state variables used, which were taken from the experimental data fit initial condi-

tions. The second row are the state variable values of the steady-state. These are

obtained by following the process described in appendix B.3.

Just as was done with the Hill-RFO model in the previous section, all the param-

eters were analysed. Parameters with only one stable deadlock solution are: Ā,

D̄cyP , Ī, Ȳ , ∆A, ∆DcyP , ∆VS, ∆VP , ∆VG, ∆KS, ∆I, ∆KP , ∆Y , ∆N , M and

DcyB. Compared to the Hill-RFO model, with the exception of Ȳ , the parameters

that do exhibit more complex dynamics and bifurcations are the same, with the ad-

dition of parameter KG, which in the case of the logistic-RFO model, does present

bifurcations.

The results obtained are very similar between the two models. From a qualitative

standpoint the same parameters show the same type of bifurcations with roughly the
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same shape. Additionally, the changes in stability in each solution occur in similar

locations. The bifurcation pattern observed in the previous model also presents

itself here. The bifurcation diagrams can be separated into three different regions:

1) As the given parameter is increased from zero, the system presents a single stable

solution which describes a state of deadlock. In this deadlock state, state variables P1

and P2 have the exact same value (similarly S1 and S2 also have the same value). 2)

A multistable region. The deadlock state reaches a branch point. At this point, the

stability of the deadlock solution changes from stable to unstable (either one or two

eigenvalues change from a negative real number to a complex number with a positive

real component). In addition, from this branch point two new symmetric solutions

emerge. In each one of these solutions, one of the sugar alternatives is “chosen”

over the other. This commitment is reflected by the fact that in each one of these

solutions, the value of either P1 or P2 is larger than the other. These solutions

start as unstable solutions since the real part of one of the eigenvalues is positive

(this behaves as a saddle in the P1, P2 space). Subsequently, these solutions become

stable for the majority of their length before changing their stability once again

back to that of a saddle. Finally, 3) a second branch point is encountered where

the deadlock solution becomes stable again, and the two non-deadlock solutions

collapse. Other features of these bifurcations that are shared by the two models are

the hysteresis loop and the multistable region that accompanies it, as well as the fact

that, depending on the parameter being varied, the average Pi value decreases or

increases proportionally to the change of the parameter. Parameters VB, KG, V̄S, V̄P ,

K̄inh and N̄ have a proportional relation with Pi, whereas parameters V̄G, K̄S and K̄P

have an inversely proportional relation with Pi. There are two sources from which

the value of Pi changes: the induction term which is sensitive to Si values as well as to

inhibition by G (this term is also sensitive to changes in almost all parameters), and

the term Ai ∗VPi which is the basal level of activity and is only sensitive to changes

to the parameters that are explicitly in it. As the Pi value decreases in response to a

changing parameter value, the contribution of the induction term is diminished, until

eventually the Pi value is mostly dominated by the basal activity. This allows us
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to roughly classify the deadlock states into two categories: basal activity deadlock,

and induced deadlock. Basal activity deadlock can be interpreted as a system that

has not committed to either one of the alternatives, whereas the induced deadlock

can be seen as the system exploiting both alternatives simultaneously.

Figure 5.7: Top: Three-dimensional bifurcation diagram resulting from varying the K̄inh parame-
ter in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same solution,
focusing on the value of P1 as K̄inh is changed.
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Figure 5.8: Top: Three-dimensional bifurcation diagram resulting from varying the K̄P parameter
in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same solution,
focusing on the value of P1 as K̄P is changed.

As mentioned before, all the parameters that present bifurcations are a different

variation of this general pattern. Some parameters such as V̄S, V̄P show a very

pronounced S-shaped curve, as can be observed in figure 5.9. In contrast, parameters

such as K̄P and K̄inh show a much less pronounced hysteresis loop, which takes place

as the average Pi value diminishes. An important observation to make when looking

at the two-dimensional diagram in this figure is that there are parameter values in

which the system presents four different stable solutions it can take. Phase portrait

5.1f shows how a slice of the system’s dynamics looks. It is immediately apparent

that the basal-activity deadlock state is almost impossible to be reached by any

173



trajectory due to the fact that it is closely surrounded by two saddle solutions and

an unstable solution. Any trajectory that is not already extremely close to this

solution has a much higher chance to be pushed to one of the other three stable

solutions.

Figure 5.9: Top: Three-dimensional bifurcation diagram resulting from varying the V̄P parameter
in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same solution,
focusing on the value of P1 as V̄P is changed.

By varying parameter ∆Kinh the system presents a single solution with two hys-

teresis loops at the extremes, as can be seen in figure 5.10. This result in particular

is very similar to that of the Hill-RFO model (figure 5.4). Another notable differ-

ence from this pattern is that of parameter VB. Figure 5.11 shows how in this case,

the system does not present any pitchfork bifurcations, but rather a single solution
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which presents a couple of Hopf bifurcations within which oscillatory behaviour is

observed. As is the case with the results from the Hill-RFO model, this behaviour

takes place as VB approaches zero, and the Pi value during these oscillations is

relatively small compared to their steady-state value.

Figure 5.10: Top: Two-dimensional bifurcation diagram resulting from varying the ∆Kinh pa-
rameter in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same
solution, focusing on the value of P1 as ∆Kinh is changed.

The periodic solutions are unstable since two eigenvalues have a positive real com-

ponent. This unstable region is bookended by saddle regions, in which only one

eigenvalue has a positive real part (the region at lower VB is very small). In turn,

these saddle regions are flanked by stable regions of the solution. It is unclear what

this result could represent in terms of the biological system’s behaviour. It is worth
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noting that the change in stability and oscillations emerge at a low VB (particularly

considering that the literature value for VB is 0.42). It is possible that a parameteri-

sation that includes VB values at which this behaviour is observed is not biologically

plausible.

Figure 5.11: Top: Three-dimensional bifurcation diagram resulting from varying the VB parameter
in the P1, P2 space. Bottom: Two-dimensional bifurcation diagram showing the same solution,
focusing on the value of P1 as VB is changed.

5.2.4 Final remarks on the equal-value alternatives analysis

In both of these models, the bifurcations were never found at parameter values close

to the initial values (tables B.1 and B.3). Instead, most bifurcations occurred at

values which differed in at least one order of magnitude from the initial values. In
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the case of VB and K̄P , these dynamics present themselves as the parameter value

approaches zero. The dynamics observed in this section may occur at values that

are improbable to be found in nature.

The dynamical systems analysis presented in this chapter was done under the as-

sumption of the extracellular nutrient concentrations (Ni) remaining constant. This

is why the, N̄ bifurcation diagram (fig. 5.5 is a particular case because it is the only

one in which this assumption is broken. In the case of parameter VB, it is also worth

mentioning that the oscillations shown by both models as a result of decreasing VB

values are only present within an unstable region of a deadlock solution at VB values

close to 0. The eigenvalues of these oscillations show that these are unstable since

two of them remain positive.

Another particular case worth highlighting is that of parameter Ȳ in the Hill-RFO

model. Figure 5.12 shows that as the parameter Ȳ is increased from zero, the first

bifurcation takes place at ≈ 4. Parameter Yi is the biomass yield of sugar i, also

called yield coefficient. Biomass yield is defined as the grams of biomass produced

per gram of substrate consumed (Hong, 1989). It is also generally accepted that

the maximum biomass yield for glucose is approximately 0.5 grams of cell mass

per gram of glucose consumed (Häggström et al., 2014; Van Hoek et al., 1998).

Hence, it is unlikely for any substrate to surpass this, much less to have a value

above 1. This means that our system’s realistic behaviour in response to Ȳ changes

takes place before even the first bifurcation emerges, which is a stable deadlock

solution. Similarly, the oscillatory behaviour in figure 5.11 could be taking place at

a biologically unlikely parameter value range.

Lastly, it is essential to point out that changing the model’s parameterisation af-

fects the system’s dynamics and not all features, such as bifurcations and stability

changes, will remain present if the entire parameterisation is changed. Our work

focused on the dynamical systems analysis of a single parameterisation per model.

Further work is required to address questions such as how the model’s dynamics
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change and what features are preserved, changed, gained or lost, with different pa-

rameterisations.

Figure 5.12: Two-dimensional bifurcation diagram showing the value of P1 as Ȳ is changed.

5.3 Unequal-value alternatives

The analysis of the unequal-value alternatives case consisted in analysing the models

parameterised for a binary-sugar mixture environment. In this case, all four models

were analysed for all different parameters. The parameterisation tested in each case

was the parameterisation obtained through the experimental data fitting routine to

data set PR1, in which the cellular culture was exposed to different concentrations

of maltose and galactose simultaneously. Likewise, the initial values of the state

variables used here are those specified in the previous chapter.

For the analysis, we followed the same procedure described in appendix B.3. In

general, the analysis produced no bifurcations under any of the conditions tested

for any parameter for any model. Almost all of the analyses showed a single stable

solution with no critical points of note. All models, both in their steady-state and as

the values of different parameters are varied, showed a preference for the alternative

1, a preference seen in the relatively large values of both S1 and P1, and the low
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values of S2 and P2. A few parameters elicited a brief change in the stability of the

solution as the value of the parameter being analysed approached a value of zero.

Additionally, the models presented hysteretic behaviour in response to increasing

values of parameter D̄cyP . These are the results presented here.

5.3.1 Hill function biomass model: RSO induction term

Table B.5 shows the values of the parameters in terms of mean and difference. The

original parameterisation was taken from the optimal parameterisation found by

fitting to the experimental data in the previous chapter. The values used correspond

to the best PR1 parameterisation for this model. Table B.6 shows the initial values

of the state variables used, which were taken from the experimental data fit initial

conditions, as well as the value of the state variables once the steady-state was

reached.

Figure 5.13: Three-dimensional diagram resulting from varying the V̄G parameter in the P1, P2

space.

Two eigenvalues become complex conjugates with a positive real part, which in the

P1, P2 space would signify an unstable focus or spiral. However, it must be stressed

that the value region in which we encounter this behaviour corresponds to that in

which, according to the equations (5.1), VG1 is close to 0. A similar solution to that

179



observed in figure 5.13 was obtained by varying the Ȳ parameter. The solution is

not only similar in the shape of the curve, but also the fact that this change in

stability emerges as Y1 is close to 0.

As the value of V̄G decreases, the solution which starts with a high P1 value relative

to that of P2, eventually reaches 0 for both P1 and P2. The unstable region covers

most of the part of the solution in which both state variables decrease simultaneously.

The unstable region regains stability once P2 = 0 and, from there, the now stable

solution continues to decrease the value of P1 until this too is equal to 0. This

drastic change in both state variables takes place over a relatively small range of V̄G

values, which is just at the threshold V1 ≈ 0.

The two points that encompass the unstable region are labelled as Hopf points by

MatCont. However they do not lead to any oscillatory behaviour. For both param-

eters, V̄G and Ȳ , as the value continues to decrease, the state variable G becomes

negative, which is a direct consequence of VG1 and Y1, respectively, becoming so small

(according to equations (5.1)) that G decays at a higher rate that it is generated.

5.3.2 Hill function biomass model: RFO induction term

Table B.7 shows the values of the parameters in terms of mean and difference. The

original parameterisation was taken from the optimal parameterisation found by

fitting to the experimental data in the previous chapter. The values used correspond

to the best PR1 parameterisation for this model. Table B.8 shows the initial values

of the state variables used, which were taken from the experimental data fit initial

conditions, as well as the value of the state variables once the steady-state was

reached.

In this case, a full analysis of the model with this parameterisation was done. How-

ever, the steady-state yields has negative values for two state variables, S2 and P2

(table B.8). This is a biological impossibility, which renders any analysis derived
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from it irrelevant, from the biological standpoint.

5.3.3 Logistic biomass equation model: RSO induction term

Table B.9 shows the values of the parameters in terms of mean and difference. The

original parameterisation was taken from the optimal parameterisation found by

fitting to the experimental data in the previous chapter. The values used correspond

to the best PR1 parameterisation for this model. Table B.10 shows the initial values

of the state variables used, which were taken from the experimental data fit initial

conditions, as well as the value of the state variables once the steady-state was

reached.

As shown in figure 5.14, with the parameterisation used for this analysis with this

model, as parameter V̄G is decreased, the system shows similar qualitative dynam-

ics to previous models in response to changes to parameter V̄G. Additionally, the

logistic-RSO model produces the same solution observed as parameter V̄G is de-

creased in response to decrements in ∆VG and ∆Y . As either V̄G or ∆VG are varied,

the unstable region of the solution presents itself where the value of VG1 approaches

0, whilst VG2 decreases or increases, respectively. Likewise, the unstable region of

the solution obtained when parameter ∆Y is decreased into the negative domain

corresponds to the parameter Y1 decreasing toward 0 and Y2 increasing.
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Figure 5.14: Three-dimensional bifurcation diagram resulting from varying the V̄G parameter in
the P1, P2 space.

5.3.4 Logistic biomass equation model: RFO induction term

Table B.11 shows the values of the parameters in terms of mean and difference. The

original parameterisation was taken from the optimal parameterisation found by fit-

ting to the experimental data in the previous chapter. The values used correspond

to the best PR1 parameterisation for this model. More specifically, the parame-

terisation with upper bounds set to ten times the initial value was selected. Table

B.12 shows the initial values of the state variables used, which were taken from the

experimental data fit initial conditions, as well as the value of the state variables

once the steady-state was reached.

The logistic-RFO model shows that as parameters ∆VG, ∆Y and Ȳ decrease, there

is a single solution which turns from stable to unstable in the P1, P2 space, as two

eigenvalues turn from negative real numbers to complex conjugates with positive real

components. Three-dimensional bifurcation diagrams for ∆VG and Ȳ are shown in

figure 5.15. In this unstable state, the values of both P1 and P2 go to 0. The

emergence of this stability change occurs as Y1 and VG1 approach 0 according to

equations (5.1). In the case of ∆VG, ∆Y , the decrement in these parameters not only
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implies that VG1 and Y1 decrease and approximate 0, but also that their counterparts

increase. This is not the case when the mean Ȳ decreases; in this case, both original

parameters Y1 and Y2 decrease. However, even here, it is Y1 that approaches 0.

Figure 5.15: Top: Three-dimensional bifurcation diagram resulting from varying the Ȳ parameter
in the P1, P2 space. Bottom: Three-dimensional bifurcation diagram resulting from varying the
∆VG parameter in the P1, P2 space.

5.3.5 The effect of varying the decay parameter.

It can be noted that, under unequal-value alternatives conditions, all four models

display a similar qualitative behaviour in response to changes of their parameters

(without taking the Hill-RFO model into account due to its negatively-valued steady-

state). In every model, the response elicited by the variation of most parameters is
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a single stable solution with a significant and noticeable bias for P1. This is further

discussed in subsection 5.5. The stability of this single solution changes from stable

to unstable in very few cases, which are stated in each model’s subsection. However,

this pattern is broken in the case of parameter D̄cyP . All models display a character-

istic hysteretic behaviour in response to increasing values of this parameter, as can

be observed in figure 5.16. Particularly, diagrams 5.16b and 5.16c, corresponding

to the logistic-RSO and logistic-RFO models respectively, display this phenomenon.

As the D̄cyP parameter is increased, the value of the stable solution decreases. A

limit point changes the stability of the solution, from stable into a saddle, at which

point the solution arcs back as the D̄cyP diminishes. A second limit point is found,

which restores the solution back to stable, at which point the solution continues

to decrease the value of P1, whilst D̄cyP continues to increase. The logistic-RFO

has a second instance of a hysteretic loop, which results in a region of D̄cyP values

in which the system can be in three different stable solutions, as can be noted in

diagram 5.16c.

As D̄cyP diminishes, and before reaching the first limit point, P1 decreases whilst P2

increases. Eventually, both P1 and P2 decrease their value in conjunction. Although

all three models show this behaviour, only the logistic-RFO model breaks the P1

bias, as in some sections of the hysteretic loops P2 are larger than P1. Finally, it is

important to highlight the fact that all of these hysteretic behaviours come about

at D̄cyP values that are at least two and up to four orders of magnitude higher

than the initial D̄cyP value, the smallest difference being found in the logistic-RFO

model.
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(a) Hill-RSO

(b) Logistic-RSO

(c) Logistic-RFO

Figure 5.16: Two-dimensional bifurcation diagrams resulting from varying parameter D̄cyP in all
models, excluding Hill-RFO.
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5.3.6 Final remarks on the unequal-value alternatives anal-

ysis

Aside from the D̄cyP analyses, for every model, except the Hill-RFO, a single bifur-

cation diagram is presented. In them, a single solution is observed as its’ stability

changes from stable to unstable at extreme parameter values. In all cases this oc-

curs when one of the two parameters in the pair was approaching 0, e.g. in fig

5.14, the bifurcation appears as VG1 approaches 0. All bifurcation were found in

response to changes of either V̄G, Ȳ , or ∆VG. These parameters relate to the decay

of Si and its effects on G, Yi being the biomass yield and VGi the rate of conversion.

It is unlikely that such extreme values are found in a natural system. Moreover,

the Hill-RFO model yielded negative S2 and P2 values at it’s steady-state, which

could suggest that the parameterisation used is not ideal for this type of analy-

sis. This observation is particularly pertinent since the parameter set used is the

result of a parameterisation effort to simulate a batch culture (discussed in Chap-

ter 4), whereas the assumptions made to perform these dynamical systems analysis

replicate the conditions of a continuous culture.

In general, for almost all the parameters tested, except those mentioned above, in

every model analysed under unequal-value alternatives conditions, I did not find any

bifurcations. When analysed, almost all parameters presented a single stable solu-

tion. A particularity of this unique solution is that P1 is greater than P2, generally

speaking. Similarly, S1 is also greater than S2. This can be loosely interpreted as

the system’s preference for one sugar over the second sugar.

Due to the parameterisation used for all models, the alternative 1 is maltose. Aside

from the parameterisation itself which, as mentioned was derived from the experi-

mental data fitting results, described in Chapter 4, a potential reason for this ob-

served bias is the choice of N1 and N2 values, which correspond to the 0.5% maltose

and 0.25 % galactose condition in the experimental data. This difference in concen-

tration could certainly tilt the system toward solutions that favour the consumption
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of the alternative with the highest concentration.

Figure 5.17: Top: Two-dimensional diagram showing how the value of P1 is changed as a result
of varying ∆DcyP . Bottom: Two-dimensional diagram showing how the value of P2 is changed
as a result of varying ∆DcyP . This is a result from model Hill-RSO. As ∆DcyP changes from one
extreme to the other, it can be observed that the preference of the system changes from one sugar
to the other.

As discussed in Chapter 3, the models developed and analysed follow a global in-

hibition architecture. The effect of this inhibition is only present in the induction

terms of state variables P1 and P2, by decreasing the activating effect of S1 and S2

proportional to the value of state variable G. However, with the parameterisations

tested in the unequal-value alternatives case, our models did not present any change

in stability nor drastic change in preference between P1 and P2 as a response of

varying the strength of this inhibition. Similarly, the results of the analysis show
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no change in response to varying values of cross-interaction between the two al-

ternatives (mediated by parameters Ī and ∆I). We did, however, find changes in

preference in response to varying values of ∆DcyP , D̄cyP and ∆VP . Respectively,

these parameters relate to the rate of Pi decay, and the maximum rate of Pi syn-

thesis. The diagrams in figure 5.17 clearly show this change of preference in model

Hill-RSO under unequal-value alternative conditions. Although this diagram shows

no change in stability, this result does suggest that decay dynamics can have a

drastic effect on the system’s alternative preference.

5.4 Saturated model

Given the conditions being simulated by the dynamical systems analysis, one can

reduce the models by making assumptions of saturation wherever this assumption

is appropriate. As explained in subsection 5.1, in order to perform the dynamical

systems analysis the system needs to be able to reach a non-trivial steady-state,

which is impossible under batch growth conditions due to the fact that the sub-

strate concentration is always in decline. The only steady-state possible in such

growth conditions is zero. For these reasons, the extracellular sugar concentrations

Ni were considered to be constant. This setting resembles that of continuous growth

conditions, in which the substrate present in the media is constantly being replen-

ished as it is being consumed. Given this setting, one can assume that since Ni does

not change, neither does Si, nor G. The amount of biomass is equally considered

to be kept as constant. Similarly, the Hill functions that populate these equations

can be approximated to 1. The implementation of these assumptions results in the

reduction of dimensionality in the model, from six equations to just two: P1 and P2.

It becomes apparent that by doing this reduction, the structural differences between

the Hill and the logistic models disappears. Therefore, the four models are reduced

to two reduced models, differentiated by their induction terms. We analysed both

these reduced version RFO and RSO models. The equations that define these mod-
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els can be found in appendix B.4. Similarly, table B.13 shows the initial conditions

used in their analysis.

Both of these models are analysed under unequal-value alternatives. In order to

do this, I use the same parameterisations used for the analysis of the logistic-RSO

(table B.9) and logistic-RFO (table B.11) models in the unequal-value alternatives

case, for the saturated RSO and RFO model respectively. Also, I follow the same

procedure as that described in appendix B.3. The initial conditions and the steady-

state conditions that correspond to these parameterisations are found in table B.13.

All parameters were analysed, and in all of them the system presented a single stable

solution biased toward P1. Similarly to the non-saturated models, for most of the

parameters tested the system retains its bias toward P1. The exceptions to this

behaviour are parameter ∆DcyP RSO saturated model and parameters V̄P , ∆VP ,

D̄cyP , and ∆DcyP for the RFO saturated model.

Using an alternative parameterisation, specified in table B.14, the saturated RFO

model showed multistability. In response to varying values of ∆DcyP the system

shows a hysteresis loop, similar to the effect discussed in subsection 5.3.5. In this

case, it can be observed in figure 5.18 that the hysteresis loop occurs just as ∆DcyP

increases, going from the negative domain into the positive. The system presents

bistability at the point (and in the vicinity of) where DcyP1 and DcyP2 are equal. It

is important to note that, as can be seen in diagram 5.18, within the hysteretic region

the stable solution coming from the left, and the saddle solution in between the two

stable curves, are overlapping each other. This means that the saddle region of the

curve would most likely push any trajectory down to the bottom stable solution.

Finally, as the parameter ∆DcyP is increased, the stable solution coming from the

right initially presents a preference for P1, as is the case with other parameters.

However, right after the hysteresis loop, the second stable region of the solution

reverts this preference, as it can be noticed that P2 values increase whilst P1 values

decrease all the way down to zero. The initial conditions and the steady-state

conditions used can be found in table B.15.
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Figure 5.18: Bifurcation diagrams corresponding to parameter ∆DcyP . Top: Three-dimensional
view which shows the dynamics in the P1, P2 space. Bottom : Two-dimensional view focused on
P1. As ∆DcyP changes from one extreme to the other, a hysteresis loop is encountered which also
results in the preference of the system changing from one sugar to the other.

Comparing both the non-saturated models with the saturated models we find them

qualitatively similar, although this simplification does alter the dynamics observed

in the non-saturated models. The changes in stability found for some parameters in

the non-saturated models are lost in the saturated models, as well as the hysteretic

behaviour observed as parameter D̄cyP is increased. Some form of hysteresis loop

elicited by changes to the decay rates of P1 and P2 is recovered to some extent in the

saturated models, albeit with a different parameterisation. In this case, it is present

in the ∆DcyP diagram.
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5.5 Conclusions

In this chapter I have presented and discussed the results of the dynamical systems

analysis performed on the models presented in Chapter 3. Different settings were

investigated: the equal-value alternatives case, and unequal-value alternatives. The

analysis of the saturated models or the analysis with a single-parameter difference

can be considered variants of the unequal-value alternatives. For the unequal-value

case we have used the optimal parameterisation obtained by fitting to the binary-

sugar mixture experimental data set (PR1), discussed in Chapter 4.

As mentioned in section 5.3.6, the analysis under unequal-value alternatives con-

ditions presented a single stable solution with no bifurcations in almost every pa-

rameter, with the notable exception of V̄G, Ȳ , ¯DcyP , or ∆VG, the results of which

are discussed in their respective sections, and in general in section 5.3.6. Moreover,

the change in preference without change in stability observed in response to varying

parameter ∆DcyP , ¯DcyP and ∆VP , along with the lack of changes observed with

parameters ¯Kinh, ∆Kinh, Ī and ∆I, suggest that rate of Pi synthesis as well as

its decay dynamics should be further explored as factors that affect the systems

preferences, rather than inhibition or cross-induction, which do not seem to be an

essential factor within our system. These observations are mirrored by the results

of the saturated models’ analysis.

Future iteration of these models could implement a form of inhibition to the decay

dynamics. In yeast, the decay rate of membrane transporters is actively affected

by inhibition pathways triggered by specific sugars (discussed in detail in Chapter

2). Enacting such modifications would allow the study of a different mechanism

of inhibition (increasing membrane transporters’ decay rate) that potentially, could

affect the system’s preference to a higher extent than the one currently explored in

our models (reduced affinity for substrate), and reveal richer dynamics. Moreover,

decay dynamics might not be the only mechanism worth expanding. Dilution in

particular could potentially give rise to preference switching.
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This research is inspired by the results of Pais et al. (2013). In their bifurcation

analysis for the unequal-value case, their system presents multistability: as one of

their parameters is increased, a single stable solution which starts close to a state of

deadlock moves toward one of the alternatives, whilst from a critical point separated

from this solution, a second solution emerges which veers toward the second, less

valuable, alternative. In an attempt to exhibit such behaviour with these models, I

analysed them under single-parameter difference conditions, the results of which are

presented in appendix B.5. Under such conditions, a similar behaviour is presented

by the Hill-RFO model (figures B.9 and B.10). The parameterisation used does not

reflect any experimental data set. As such, it is unclear what experimental condi-

tions or set of sugars could be differentiated from one another by just one parameter,

making the relevance of this analytic approach (single-parameter difference) ques-

tionable.

When analysing the equal-value alternatives case, the models show an array of

complex behaviours and bifurcations that lend themselves to an interpretation from

a decision-making framework. As mentioned by Aidelberg et al. (2014), a cell that

finds itself in a binary-sugar solution has four different behaviours it can adopt: 1)

Consume both sugars simultaneously, 2) Consume one sugar exclusively, 3) Consume

the second sugar exclusively, or 4) not consume any sugar. Other authors such as

Beisel and Afroz (2015) and Koirala et al. (2016) have highlighted and explored

these phenotypes as well, particularly in relation to the difference between a single

cell versus the behaviour of the entire population. Most of the bifurcations found

under an equal-value alternatives setting show that these options are available to the

system. This is particularly evident in the phase portraits in figure 5.1. Although

the solutions available to the system are dependent on the parameterisation of the

model, they reflect the biological reality of a cell, or a cellular population.

Further efforts could be directed at not only different inhibition mechanism, but also

different parameterisations. I decided to analyse these models using the same param-

eterisations achieved in Chapter 4. However, as mentioned before, Chapter 4 and
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Chapter 5 should be considered separate studies that work with the same models.

Analysing the models with other parameterisation would be beneficial, especially if

the models were parameterised to simulate a continuous culture experiment, which is

the experimental conditions we are replicating by the unequal-value alternative case

by assuming that the extracellular nutrients are constant. The interest in analysing

other parameterisations is reinforced by the results obtained by the unequal-value

alternative case. Some state variables accumulated in vast amounts, whilst others

remain at values close to zero, and in one case depicted in section 5.3.2, turned nega-

tive. It could be argued that this indicates the unsuitability of the parameterisation

used for this analysis; Hence, the necessity to study other parameter sets.

Moreover, all our analyses were made by reparameterising the model to study the

mean and the difference between parameters pairs rather than individual absolute

values (section 5.1.1). As the mean or the difference of each pair of parameters

changes, the value of both parameters is affected (e.g. as K̄P is increased both KP1

and KP2 are increased in parallel). As mentioned before, this allows us to analyse

our models in the context of value-sensitive decision-making. However, analysing

the model’s behaviour in response to changes in the absolute value of parameters

could be worthwhile, as it could reveal different dynamics than the ones observed

here.

Finally, although the equal-value alternatives case has no experimental corollary in

the context of a yeast culture in a binary-mixture were the nutrients are homogenised

in the liquid media, a decision problem between two equally valuable options can be

experimentally realisable in other biological systems (Pais et al., 2013; Vogel et al.,

2018; Dussutour et al., 2019). Our models are general enough so that they could

be repurposed to study a different system in which the equal-value alternatives case

represents a possible natural setting.
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Chapter 6

Conclusions

Here I will present a summary of the results obtained by chapter in the thesis, as

well as a brief description of future directions to possibly explore further.

6.1 Work presented

In this thesis, I present different mathematical models that explore the decision-

making problem faced by a population of yeast cells that has two sugar sources

available in its environment. This problem is divided into three related tasks: 1)

model development, 2) fitting said model to experimental data, and 3) analysing the

resulting parameterised model as a dynamical system. For this purpose, a literature

review was conducted to properly understand the biology of yeast sugar preferences,

as well as its inhibitory metabolism. This is presented in Chapter 2. Several models

were developed and tested following the process presented and discussed in Chapter

3. From this process, a model with four variants was selected. In Chapter 4 these

models were subsequently parameterised to fit to experimental data of yeast cells

grown in maltose, galactose, and binary-sugar mixtures of maltose/galactose. In

Chapter 5, the models are analysed as dynamical systems under different conditions.

The results can be summarised as follows.
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6.1.1 Model development

In Chapter 3, I describe the approach taken to the development of the model. In

order to do this several models were built and tested, by following the mutual, feed-

forward and pooled inhibition model architectures as they are presented by Bogacz

et al. (2006). In accordance with the metabolic structure of yeast’s carbon catabolic

regulation network (as discussed in Chapter 2), the pooled inhibition architecture

was chosen as a basis for the model. Our work is also motivated by the mod-

elling approach presented by Pais et al. (2013), which focuses on concepts such as

value-sensitivity and cross-inhibition, as well as their significance in decision-making

dynamics. Both of these features are intrinsic properties of the cellular metabolism,

their consumption dynamics, and in particular the carbon catabolite repression net-

work in yeast (Horák, 2013).

One of our interests is to explore the effect of inhibition and alternative value in

the decision-making process. Therefore, special interest was put into the induction

terms and inhibition mechanism of the model, which takes cues from other mod-

elling efforts (Narang et al., 1997; Chu et al., 2016). The resulting model, as well

as its four variants, describe a system of eight ordinary differential equations. The

equations describe the sugar concentration inside and outside of the cell, the lumped

metabolic activity cognate to each sugar’s consumption, the biomass, and the global

inhibition signal. Unlike other ODE models similar to this, both sugars contribute

to the activity of each metabolic pathway (with a lessened inducing effect over the

competitor’s metabolism). The resulting model makes use of two different equations

for biomass, as well as two different induction terms (first- and second-order) in the

equations that describe the metabolic activity, hence, four variants. These models

are symmetric and non-specific such that the differences between the two alterna-

tives are expressed through parameter values rather than the equations’ structure.

We conclude that in order for the model to appropriately reproduce binary-sugar

mixture data, it requires a common resource term dependent on biomass as well
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as a positive inducing effect of both sugar alternatives on the activation of both

metabolic pathways.

6.1.2 Experimental data fit

In Chapter 4, the resulting models are parameterised in order to fit various ex-

perimental data sets, comprising cultures growing on single sugars (maltose and

galactose), as well as in a binary-sugar mixture (maltose/galactose). In order to do

this, I take parameter values from the literature as a starting point, and after some

manual tuning to these values, the model is parameterised through a fitting routine

that employs a weighted version of the RMSE formula as an objective function. A

wide array of weighting factors was used on all model variants.

Out of the four variant models tested, the two variants that implement a first-order

induction term, the logistic-RFO and the Hill-RFO models, present overall lower

RMSE scores, indicating smaller errors between data and model, under all exper-

imental conditions (single sugar and binary-sugar mixture). For both single sugar

data sets, a closer fit (low RMSE score) is achieved by the logistic-RFO model,

whereas the Hill-RFO model achieves the best fit to the binary-sugar mixture data

set, as well as the best fit to all data sets with a single parameterisation. As men-

tioned in Chapter 4, the curves that represent metabolic activity in the binary-sugar

mixture data display a particular group formation. With three different concentra-

tions of both maltose and galactose, there are nine combinations. The metabolic

activity shows that these nine curves arrange themselves in three groups of three

curves each, the position of the groups is proportional to the concentration of their

corresponding sugar, whilst the order of the curves within the groups is proportional

to the concentration of their competing sugar. With this in mind, a visual examina-

tion shows that the model with the lowest RMSE score struggles to reproduce this

grouping pattern. Actually, both the logistic-RFO and the Hill-RFO model variants

present issues in this regard, whereas both second-order induction term model vari-
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ants, logistic-RSO and Hill-RSO, are able to qualitatively reproduce this pattern,

despite having a larger RMSE score. The results from both the logistic-RSO and the

Hill-RSO models can be found in appendix A. Although, qualitatively these models

seem able to reproduce the patterns present in the data, the model does not appear

to be capable of refined numerical prediction. Additionally, it can be observed that

galactose metabolism exhibits decay dynamics that the model is unable to capture.

From these results it can be concluded that the logistic-RFO model fits the single

sugar data better (lower RMSE score), and, whilst the Hill-RFO model yields a lower

RMSE score for the binary-sugar mixture data, both of the second-order induction

models yield a better group separation. The model is successful in reproducing the

qualitative behaviour of all three experimental data sets with a single parameter

set. The lowest scoring model is the Hill-RFO. Model Hill-RSO, although scoring

slightly higher than its first-order counterpart, fits the single sugar data sets with

similar goodness, and maintains the group separation in the binary-sugar mixture

data.

The best fits still do not capture all the details observed in the experimental data. As

mentioned in section 4.3.4, the fits’ goodness could be improved by including in the

model elements that were left out: separation of timescales, fluorophore dynamics,

terms for dilution (similar to Narang et al. (1997)). Moreover, the equations that

define our system are not detailed representations of the specific pathways involved in

the internalisation and metabolism of the sugar alternatives. This lack of modelling

detail, whilst it simplifies the model and its analysis, hinders the fit’s performance.

It is reasonable to expect that a more detailed model, although potentially harder

to parameterise and analyse, would better replicate the experimental data.

6.1.3 Dynamical systems analysis

In Chapter 5, I perform dynamical systems analysis on the models. For this, two

decision problems were recreated: 1) Equal-value alternatives, and 2) Unequal-value

197



alternatives. In both scenarios, the system’s dynamics are examined in a situation in

which sugar sources are available to the cell population, and the system finds itself in

one of four different states: 1) the population consumes both sugars simultaneously,

2) and 3) it consumes either one of the sugar alternatives exclusively, and 4) it

consumes neither. It is important to highlight that in order to perform dynamical

systems analysis, it is assumed that the extracellular sugar concentration remains

constant. With this assumption we guarantee that the systems will reach a non-zero

steady-state, which is necessary to perform the dynamical systems analysis. These

analyses should be considered separate from the experimental data fits performed

in Chapter 4.

For this analysis, the models are reparameterised in such a way that the parameters

are described in terms of their mean value, and the difference between them, such

as is done in Pais et al. (2013). We are particularly interested in the dynamical

changes elicited by parameters within the induction term, such as KPi that describes

the affinity for the sugars; VPi which is the maximum Pi synthesis rate; Ii which

controls the induction strength of the competing sugar, and Kinhi which describes

the strength of the inhibition signal. Other parameters that we are interested in are

those that modulate each sugar’s contribution to the global inhibition signal, such

as VGi and Yi.

In the equal-value case, the Hill-RFO and the logistic RFO models are parame-

terised in such a way that the two alternatives represent the same sugar. We used

parameters that describe galactose. The experimental setup fitted in Chapter 4 is

not represented by this scenario. However, this case is similar to experimental se-

tups used in the study of slime mould by Vogel et al. (2018), where the alternatives

are spatially separated from one another. We find that parameters of interest do

elicit bifurcations that change the system’s preferences. Changes to parameters that

modulate the inhibition strength (Kinhi) and parameters that are closely related to

the value of the alternatives (KPi, VPi and Yi) bring about these changes and allow

for multistability. Similar to the symmetry-restoring bifurcations found by Zabzina
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et al. (2014) in their analysis of biomass allocation in slime mould, as the mean

of the parameters of interest is varied, two bifurcations appear: one breaking the

symmetry of the initial deadlock state, and subsequently, a second bifurcation which

restores the deadlock state. In these bifurcation diagrams, we find the four different

consumption states described above. It is notable that, for all parameters analysed,

the bifurcation region presents itself in a value range that does not coincide with the

parameter values used to fit the experimental data in Chapter 4, and in some cases,

it differs by several orders of magnitude. The analysis of both inhibition strength

and affinity, Kinhi and KPi respectively, reveals that the bifurcation region occurs at

high KPi values, which are inversely proportional to affinity. The lower the affinity

is, the higher the concentration of sugar is needed to induce a metabolic response.

Similarly, the bifurcation region is present at low Kinhi values. Kinhi values are in-

versely proportional to the inhibition strength. Together, these results suggest that

under the equal-value conditions, the multistability prompted by the bifurcation

region is present when the overall output of the induction term is lower than the

parameter values used in Chapter 4, be it by increasing the strength of inhibition,

or by decreasing the sugar’s inducing effects. We observe a similar outcome when

the maximum rate is decreased significantly.

In the unequal-value alternatives case, the system is parameterised with the param-

eters that reproduce the binary-sugar mixture data. Each one of the four models

was analysed twice; once in its regular form, and a second time in a saturated form,

which reduced the models’ dimensionality from eight, down to two. In this case, we

used the same parameterisation obtained in Chapter 4 from the binary-sugar mix-

ture experimental data fit. We find that changes to inhibition and the parameters

associated with the alternative’s value in the manner implemented by our mod-

els elicited no bifurcations. In fact, from these analyses we see that in response

to most parameters, the systems are mostly consistent in their output, which is a

single stable solution with a bias for maltose. In the equal-value case, the single

stable solution is described as a deadlock state in which P1 = P2. In this case,
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however, the single solution shows a preference for the maltose, which is expressed

by P1 � P2 and S1 � S2. However, the P1/P2 ratio does change in response to

parameter variation, in both the saturated and unsaturated forms of the models.

This bias is relatively robust, and there are few cases in which it is actually reversed,

meaning that P2 � P1. For instance, In the logistic-RFO model (both saturated

and not), changes to the mean and difference between VP1 and VP2 changes the bias

from maltose, to galactose as VP1 decreases in value towards 0. Furthermore, in the

unsaturated analysis, as parameter D̄cyP , which is the mean value of the Pi decay

rates, is varied, multistability is found as a consequence of a hysteresis loop. On

the other hand, whilst no such behaviour was found in the saturated version, an al-

ternative parameterisation shows a similar hysteresis loop as the difference between

the two parameters is varied (∆DcyP ). In both cases, this behaviour is present in

parameter value ranges which are distinct from those obtained in Chapter 4. In the

case of the D̄cyP parameter, the multistability is present at parameter values that

are orders of magnitude larger than the initial D̄cyP value.

The presence of such behaviour in the analysis of the Pi decay rate could indicate

that, by changing the decay rate of certain proteins, the system could exhibit mul-

tistability. This is supported by the literature that indicates that, in yeast, sugars

inhibit each other through different mechanisms, including degradation of membrane

transporters (Brondijk et al., 2001; Horak and Wolf, 1997; Horak et al., 2002; Jiang

et al., 2000; Medintz et al., 1996). In Chapter 3, it was mentioned that, despite this,

in the pursuit of simplicity the effects of inhibition in the models developed only

affect the induction of Pi by diminishing the inducing effects of the sugars. In our

models, inhibition does not target Pi decay rate. It is possible that, by restructuring

the models so that the effects of inhibition affect the Pi decay rates, multistability

would arise as a direct result of inhibitory mechanisms. Finally, with the param-

eters used in the unequal-value case, we do not see multistability emerging as a

result of varying the values of parameters of interest such as inhibition strength, or

sugar affinity and maximum rate of synthesis which can be seen as indicators of the
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alternative’s value.

In this chapter, I used the parameterisation obtained y the experimental data fit

in Chapter 4. However, it is possible that a different set of parameters which de-

scribe a continuous-culture experiment would yield different results, particularly in

the unequal-value case. Similarly, although the equal-value alternatives case does

not correspond to a biological system in the context of a culture in a liquid media

with homogenised sugar concentrations, this decision problem can be found in other

biological systems, and its subsequent analysis would entail a different parameteri-

sation.

Work by Pais et al. (2013) has explored and interpreted the multistability brought

about by bifurcations, as a system making an all-or-nothing decision. In the context

of house-hunting honeybees there is a concept called decision thresholds. If the

number of bees committed to either one of the alternatives crosses this threshold,

the decision is taken and the entire colony moves into this location to build their

new nest. However, the interpretation of our results is rather different and follows

more in line with that of Zabzina et al. (2014). Our system and its analysis do not

have decision thresholds, nor do they describe an all-or-nothing decision; instead,

the solutions to the system found in bifurcation analysis describe the state variables’

values and the consumption state of the system. For instance, a solution in which

P1 � P2 can be interpreted as preference or bias for maltose (S1 will similarly be

much larger than S2). Loosely speaking, one could say that the system is “choosing”

option 1 over option 2, even though both alternatives are being exploited at different

rates. This allows for gradual preference changes as the P1 and P2 values change

in response to varying certain parameters. Whereas other systems such as house

hunting honeybees or foraging ants, the decisions are all-or-nothing, in the case of

the yeast culture system we have modelled and studied, the decision is reflected in

the ratio in which the sugars available to the culture are consumed. To conclude

this point, the system we have studied here does not make decisions by “choosing”

an alternative over the other unambiguously, but rather it “chooses” a phenotype,
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which determines the ratio at which both alternatives are being consumed.

6.2 Future work

In this section, I will briefly touch upon two potential paths through which the

current work presented in this thesis could be expanded, and its subject further

explored.

6.2.1 Single-cell modelling

The experimental data sets used to parameterised the models correspond to studies

made in yeast cultures at the populational level. Recent studies have highlighted the

importance of carrying out single-cell investigations. The work of Beisel and Afroz

(2015); Koirala et al. (2016); Solopova et al. (2013) and Ozbudak et al. (2004a) show

that the behaviour and consumption dynamics observed in populations do not neces-

sarily mirror the behaviour of individual cells. Koirala et al. (2016) results show that,

when cultured in a binary-sugar mixture, individual cells can arrange themselves in

four different subpopulations: one that consumes neither, one that consumes both

sugars, and two subpopulations each committed to one of the two sugars available.

This individual behaviour might be lost in a population-level analysis. Solopova

et al. (2013) point to the fact that the concept of diauxic shift can be reinterpreted

as the individual behaviour is examined. The traditional interpretation of diauxic

shift is that a population of cells in a binary-sugar mixture will first consume their

preferred sugar exclusively until depletion, before consuming non-preferred sugars.

They do this by changing their molecular machinery, a process that creates a lag in

growth whilst they change their metabolism. However, Solopova et al. (2013) sug-

gest that individual cells vary in their response to the depletion of their preferred

sugar. Their results indicate that, only a subpopulation of cells continues to divide

on the second and less-preferred sugar, whilst the other remains inactive. Whilst the
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overall population dynamics are not in question, the single-cell experimental data

could prove useful in delivering more depth to the analysis of microbial consump-

tion dynamics at the level of the individual, rather than the population. Our models

are in principle, capable of describing an individual cell’s behaviour, although they

would need the implementation of a reproductive mechanism such as mitosis or in

the case of yeast, budding. Analysing our models with single-cell data could allow us

to validate this and contrast the results with population-level behaviour. Our mod-

els could be used for this purpose with some modifications, such as implementing

cellular division or budding. A similar approach to that of Chu and Barnes (2016)

could be particularly useful for this purpose.

6.2.2 Stochastic simulations

The models and their subsequent analysis presented in this thesis, have been en-

tirely deterministic, which leaves the analysis of stochastic behaviour unexplored.

Stochasticity is an intrinsic part of the cell’s environment and their internal pro-

cesses and further studies should address how the dynamics change when noise is

added to the system (Perkins and Swain, 2009). Some stochastic simulations have

been made and included in appendix C figure C.1. These analyses add a degree of

noise to state variables B and Pi. However, the strength of these noise is arbitrary,

but further studies could address other mechanisms for the study of stochasticity in

the system such as by using the Gillespie algorithm, or with the master equation.

Such approaches would provide a path to study the effects of the internal noise of

the system.
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J. A. Marshall, A. Favreau-Peigné, L. Fromhage, J. M. McNamara, L. F. Meah, and

A. I. Houston. Cross inhibition improves activity selection when switching incurs

time costs. Current Zoology, 61(2):242–250, 2015. ISSN 16745507.

J. A. Marshall, R. H. Kurvers, J. Krause, and M. Wolf. Quorums enable optimal

pooling of independent judgements in biological systems. eLife, 8(i):1–14, 2019a.

ISSN 2050084X. doi: 10.7554/eLife.40368.

J. A. Marshall, A. Reina, and T. Bose. Multiscale modelling tool: Mathematical

modelling of collective behaviour without the maths. PLoS ONE, 14(9):1–16,

2019b. ISSN 19326203. doi: 10.1371/journal.pone.0222906.

J. A. R. Marshall. Comment on optimal policy for multi-alternative decisions. 2019.

J. A. R. Marshall, R. Bogacz, A. Dornhaus, R. Planqué, T. Kovacs, and N. R.
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Appendix A

Supplementary information for

Chapter 4

Here I present the results from the best fits to each data set by each one of the

four models. I only omit the results that are presented in Chapter 4. The results

are divided first by model and then by data set. In each model section I present a

table with the initial conditions used for the fits to the data sets, as well as a table

were I present the parameter sets that scored the lowest overall RMSE score in each

data set fit (all three data sets, maltose, galactose and PR1). In each subsection of

each model I present two tables; the first table displays the results of the different

fits. The fits differ only in the weighting factor used, and they are ranked based on

their overall RMSE score. Secondly, I include a table with the RMSE scores per data

type (fluorescence and optical density) and section of the curve, corresponding to the

lowest scoring (overall RMSE) fit. In the subsections “fits to all three data sets” and

“Fits to all three data sets with PR1 parameters”, in addition to the tables already

mentioned, I present a table with the RMSE scores per data set (PR1, maltose and

galactose) and section of the curve. Additionally, I present each a different table

with the RMSE scores per data type (fluorescence and optical density) and section

of the curve per data set (PR1, maltose and galactose). Finally, the subsection “Fits
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to all three data sets with PR1 parameters” of each model, includes a table with

the initial conditions yielded by applying a grid search with the lowest scoring PR1

parameters.

A.1 Hill function biomass model: RSO induction

term

Table A.1: Initial values of the state variables used.

B G S1 S2 P1 P2

PR1 0.1 0.3 1e−5 1e−5 1e−5 1e−5

Maltose 0.1 0.2 1e−4 0 5e−3 0
Galactose 0.1 0.1 0 1e−3 0 2e−3

Table A.2: Different parameterisations resulting from fitting the model to different experimental
data sets. These parameterisations correspond to those with the lowest overall RMSE score of
their corresponding experimental data set. On each row corresponding to the parameter values,
the lightest green indicates the lowest value, whereas the deepest green indicates the highest value
of that parameter out of all the different parameterisations. Likewise, a red-blue colormap is used
to differentiate between the highest and lowest normalised standard deviation, respectively.

Parameter
Normalised

std.
Mean All data Maltose Galactose PR1

Initial
Parameters

A1 1.03e+00 8.64e-03 1.48e-02 6.33e-05 2.02e-02 1.23e-04 8.02e-03
VS1 3.34e-04 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02
VP1 1.68e+00 8.32e-02 9.29e-03 3.32e-01 3.66e-02 3.30e-02 5.50e-03
VG1 7.44e-02 9.58e-01 9.15e-01 1.08e+00 9.30e-01 9.29e-01 9.30e-01
Kinh1 4.95e-03 3.14e+00 3.15e+00 3.12e+00 3.15e+00 3.15e+00 3.15e+00
KS1 1.54e+00 1.95e-01 6.06e-02 7.32e-01 6.00e-02 6.12e-02 6.00e-02
I1 2.03e-04 1.30e+00 1.30e+00 1.30e+00 1.30e+00 1.30e+00 1.30e+00

KP1 2.05e+00 6.70e-01 2.70e-02 3.13e+00 4.00e-02 1.15e-01 4.00e-02
DcyP1 2.22e+00 1.21e-04 1.00e-06 1.00e-06 1.01e-06 1.00e-06 6.00e-04

Y1 3.77e-01 1.24e-01 7.73e-02 6.87e-02 1.60e-01 1.54e-01 1.60e-01
A2 2.12e+00 3.77e-02 9.80e-05 1.80e-01 1.18e-06 1.00e-06 8.02e-03
VS2 4.33e-05 5.00e+02 5.00e+02 5.00e+02 5.00e+02 5.00e+02 5.00e+02
VP2 6.17e-01 9.64e-03 1.11e-02 1.15e-02 3.66e-03 1.79e-02 4.00e-03
VG2 5.63e-01 1.53e+00 1.13e+00 1.15e+00 3.07e+00 1.15e+00 1.15e+00
Kinh2 2.60e-02 2.10e+00 2.08e+00 2.08e+00 2.20e+00 2.08e+00 2.08e+00
KS2 1.46e-01 1.08e-01 1.10e-01 9.50e-02 1.34e-01 1.08e-01 9.50e-02
I2 9.90e-05 2.42e+00 2.42e+00 2.42e+00 2.42e+00 2.42e+00 2.42e+00

KP2 1.54e+00 1.58e-02 5.44e-04 1.00e-02 2.01e-06 5.84e-02 1.00e-02
DcyP2 2.18e+00 2.12e+00 1.98e-02 1.21e-01 1.04e+01 1.91e-02 6.00e-02

Y2 1.04e+00 3.02e-01 6.96e-02 2.00e-01 8.55e-01 1.83e-01 2.00e-01
VB 1.15e+00 1.47e+00 8.32e-01 2.96e-01 4.45e+00 8.56e-01 9.00e-01
KG 9.41e-01 3.49e+00 1.87e+00 2.52e+00 9.35e+00 1.87e+00 1.85e+00
M 2.11e+00 3.60e+00 2.15e-01 8.12e-02 1.72e+01 2.13e-01 3.00e-01

DcyB 9.85e-01 1.90e-02 1.00e-06 4.32e-02 1.19e-04 2.63e-02 2.52e-02
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Fits to all three data sets

Table A.3: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for all three
experimental data sets.

Weight factor 1.0 2.0 5.0 10.0 0.5 100.0 0.1 I.P. 0.01
Overall RMSE 0.104091 0.104123 0.107268 0.109684 0.110372 0.11147 0.134404 0.170686 0.248289
Lag RMSE 0.0555242 0.0464497 0.0570164 0.0528497 0.0636339 0.0489081 0.0871747 0.0913923 0.234673
Exponential RMSE 0.143232 0.144048 0.145867 0.147616 0.163536 0.148208 0.209096 0.232259 0.354643
Stationary RMSE 0.0943755 0.0980675 0.0999557 0.107275 0.0758468 0.11366 0.0536015 0.158442 0.0640245

Table A.4: RMSE scores divided by curve phase and experimental data set (single sugar and sugar
mixture). This parameterisation corresponds to the lowest overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.057467 0.135772 0.088307 0.099221
Maltose 0.050474 0.127136 0.062392 0.086802

Galactose 0.058299 0.164160 0.122594 0.122986
RMSE per phase 0.055524 0.143232 0.094376 0.104091 Total RMSE score

Table A.5: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.072323 0.152331 0.041313 0.100237
GFP 0.059821 0.144133 0.120683 0.113896
OD 0.033138 0.106408 0.084401 0.080714

RMSE per phase 0.057467 0.135772 0.088307 0.099221 Total RMSE score for the PR1 fit

Table A.6: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.058549 0.140384 0.043381 0.091319
OD 0.040832 0.112336 0.076835 0.082037

RMSE per phase 0.050474 0.127136 0.062392 0.086802 Total RMSE score for the maltose fit

Table A.7: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (galactose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.063330 0.163339 0.161337 0.137501
OD 0.052790 0.164978 0.063474 0.106511

RMSE per phase 0.058299 0.164160 0.122594 0.122986 Total RMSE score for the galactose fit
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Figure A.1: Fit to the single sugar experimental data sets. This corresponds to the parameterisa-
tion with the lowest overall RMSE score. Top: The maltose data set. Bottom: galactose data set.
Graphs to the left correspond to the fit to the fluorescence data (mCherry in the case of maltose,
GFP in the case of galactose), whilst the graphs to the right present the results of the fit to the
absorbance data (O.D.).
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Figure A.2: Fit to the binary-sugar mixture experimental data set PR1. This corresponds to
the parameterisation with the lowest overall RMSE score. Top: These graphs correspond to
the fit to the mCherry fluorescence data, which corresponds to the concentration of the Mal12p.
Middle: These graphs correspond to the fit to the GFP fluorescence data, which corresponds
to the concentration of the Gal10p. Bottom: These graphs present the results of the fit to the
absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs to the
right present the model results.
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Fits to the maltose data set

Table A.8: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for all the
maltose experimental data set.

Weight factor 1.0 10.0 0.5 5.0 0.01 2.0 0.1 100.0 I.P.
Overall RMSE 0.0474082 0.0519579 0.0756722 0.0763427 0.0785248 0.0896218 0.0942474 0.0977484 0.147893
Lag RMSE 0.0213322 0.0172972 0.0603167 0.0524435 0.0674931 0.0786919 0.0914635 0.0683482 0.0834327
Exponential RMSe 0.0687776 0.0631326 0.109674 0.0913211 0.114571 0.111905 0.130558 0.104573 0.235122
Stationary RMSE 0.0394613 0.0617572 0.0388902 0.0799671 0.0285774 0.0733556 0.0351678 0.114269 0.0580856

Table A.9: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.025416 0.067587 0.039177 0.047430
OD 0.016253 0.069948 0.039743 0.047386

RMSE per phase 0.021332 0.068778 0.039461 0.047408 Total RMSE score for the maltose fit

Figure A.3: Fit to the maltose experimental data set. This corresponds to the parameterisation
with the lowest overall RMSE score. The left graph to the correspond to the fit to the mCherry
fluorescence data, whilst the graph to the right presents the results of the fit to the absorbance
data (O.D.).

Fits to the galactose data set

Table A.10: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 10 for the
galactose experimental data set.

Weight factor 10.0 2.0 1.0 5.0 0.5 100.0 0.1 0.01 I.P.
Overall RMSE 0.0573314 0.0628947 0.0747704 0.0996862 0.106156 0.128901 0.16012 0.222813 0.235594
Lag RMSE 0.02382 0.0399613 0.0211453 0.0224111 0.0564365 0.0361024 0.11183 0.218037 0.125315
Exponential RMSE 0.0658191 0.0760077 0.0970452 0.11229 0.146283 0.135429 0.243411 0.312395 0.296449
Stationary RMSE 0.0704352 0.0670311 0.083108 0.129231 0.0960378 0.173788 0.0718323 0.061699 0.250855
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Table A.11: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 10).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.032834 0.074313 0.078624 0.065274
OD 0.007532 0.056053 0.061160 0.048094

RMSE per phase 0.023820 0.065819 0.070435 0.057331 Total RMSE score for the galactose fit

Figure A.4: Fit to the galactose experimental data set. This corresponds to the parameterisation
with the lowest overall RMSE score. The left graph to the correspond to the fit to the GFP
fluorescence data, whilst the graph to the right presents the results of the fit to the absorbance
data (O.D.).

Fits to the PR1 data set

Table A.12: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for the PR1
experimental data set.

Weight factor 1.0 2.0 0.1 5.0 10.0 0.5 100.0 I.P. 0.01
Overall RMSE 0.0574409 0.063546 0.0685307 0.0710509 0.0758844 0.0790331 0.0792223 0.100118 0.284653
Lag RMSE 0.011423 0.0173582 0.0439879 0.0231797 0.0208628 0.0402735 0.0197308 0.0489165 0.256925
Exponential RMSE 0.0797962 0.0861364 0.100539 0.0890029 0.0898743 0.113511 0.0904023 0.136631 0.419075
Stationary RMSE 0.0583136 0.0662835 0.0452363 0.0817672 0.0936092 0.0650541 0.101324 0.0949208 0.0380404

Table A.13: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.010859 0.106722 0.068294 0.073420
GFP 0.006505 0.059918 0.073036 0.054671
OD 0.015206 0.064207 0.014254 0.038974

RMSE per phase 0.011423 0.079796 0.058314 0.057441 Total RMSE score for the PR1 fit
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Figure A.5: Fit to binary-sugar mixture experimental data set PR1. This corresponds to the
parameterisation with the lowest overall RMSE score. Top: These graphs correspond to the fit to
the mCherry fluorescence data, which corresponds to the concentration of the Mal12p. Middle:
These graphs correspond to the fit to the GFP fluorescence data, which corresponds to the con-
centration of the Gal10p. Bottom: These graphs present the results of the fit to the absorbance
data (O.D.). Graphs to the left present the experimental data whilst graphs to the right present
the model results.
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Fits to all three data sets with PR1 parameters

Table A.14: Initial values of state variables resulting from the grid search performed with the
lowest overall RMSE PR1 parameterisation.

B G S1 S2 P1 P2

PR1 0.08 0.5 1e−6 1e−6 1e−6 5.5e−6

Maltose 0.55 0.325 7.75e−4 0 5.5e−6 0
Galactose 0.325 0.325 0 7.75e−4 0 5.5e−6

Table A.15: RMSE scores divided by curve phase for all three experimental data sets.

Overall RMSE 0.0633421
Lag RMSE 0.0172272
Exponential RMSE 0.0885707
Stationary RMSE 0.0624110

Table A.16: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.025838 0.073945 0.058022 0.056279
Maltose 0.009002 0.102244 0.059507 0.068498

Galactose 0.011904 0.087251 0.069121 0.064633
RMSE per phase 0.017227 0.088571 0.062411 0.063342 Total RMSE score

Table A.17: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.015178 0.098711 0.069259 0.070169
GFP 0.011111 0.053398 0.072158 0.052222
OD 0.040608 0.061714 0.009808 0.043026

RMSE per phase 0.025838 0.073945 0.058022 0.056279 Total RMSE score for the PR1 fit

Table A.18: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.010847 0.105891 0.061434 0.070957
OD 0.006664 0.098462 0.057516 0.065947

RMSE per phase 0.009002 0.102244 0.059507 0.068498 Total RMSE score for the maltose fit

Table A.19: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (galactose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.006547 0.075090 0.094461 0.069772
OD 0.015509 0.097913 0.025152 0.059048

RMSE per phase 0.011904 0.087251 0.069121 0.064633 Total RMSE score for the galactose fit
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Figure A.6: Fit to the single sugar experimental data sets with the PR1 parameterisation with the
lowest overall RMSE score after performing a grid search for new initial state variables values (table
A.14). Top: The maltose data set. Bottom: galactose data set. Graphs to the left correspond
to the fit to the fluorescence data (mCherry in the case of maltose, GFP in the case of galactose),
whilst the graphs to the right present the results of the fit to the absorbance data (O.D.).
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Figure A.7: Fit to the binary-sugar mixture experimental data set PR1 with the PR1 parame-
terisation with the lowest overall RMSE score after performing a grid search for new initial state
variables values (table A.14). Top: These graphs correspond to the fit to the mCherry fluorescence
data, which corresponds to the concentration of the Mal12p. Middle: These graphs correspond
to the fit to the GFP fluorescence data, which corresponds to the concentration of the Gal10p.
Bottom: These graphs present the results of the fit to the absorbance data (O.D.). Graphs to
the left present the experimental data whilst graphs to the right present the model results.
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A.2 Hill function biomass model: RFO induction

term

Table A.20: Initial values of the state variables used.

B G S1 S2 P1 P2

PR1 0.1 0.3 1e−5 1e−5 1e−5 1e−5

Maltose 0.1 0.1 1e−4 0 1.5e−3 0
Galactose 0.1 0.1 0 1e−4 0 1.5e−3

Table A.21: Different parameterisations resulting from fitting the model to different experimental
data sets. These parameterisations correspond to those with the lowest overall RMSE score of
their corresponding experimental data set. On each row corresponding to the parameter values,
the lightest green indicates the lowest value, whereas the deepest green indicates the highest value
of that parameter out of all the different parameterisations. Likewise, a red-blue colormap is used
to differentiate between the highest and lowest normalised standard deviation, respectively.

Parameter
Normalised

std.
Mean All data Maltose Galactose PR1

Initial
Parameters

A1 8.48e-01 1.01e-02 2.03e-02 7.47e-03 3.62e-05 1.24e-02 8.02e-03
VS1 9.42e-06 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02
VP1 1.38e+00 1.18e-02 5.18e-03 3.58e-02 3.62e-05 6.15e-03 6.50e-03
VG1 3.11e-02 9.18e-01 8.93e-01 8.97e-01 9.30e-01 9.53e-01 9.30e-01
Kinh1 1.17e-01 6.88e-01 7.77e-01 5.83e-01 6.80e-01 7.13e-01 6.80e-01
KS1 3.58e-01 9.19e-02 1.09e-01 1.30e-01 6.00e-02 6.91e-02 6.00e-02
I1 6.92e-01 3.67e-01 6.79e-01 1.60e-01 1.60e-01 4.70e-01 1.60e-01

KP1 9.14e-01 2.75e-01 1.39e-01 6.49e-01 2.00e-01 1.14e-01 2.00e-01
DcyP1 1.94e+00 1.53e-03 1.00e-06 1.26e-04 5.99e-03 1.00e-06 6.00e-04

Y1 7.33e-01 3.01e-01 6.14e-01 1.31e-01 1.60e-01 3.00e-01 1.60e-01
A2 1.24e+00 3.15e-03 4.38e-03 8.13e-03 9.63e-05 1.00e-06 8.02e-03
VS2 1.07e-01 5.28e+02 5.00e+02 5.00e+02 6.13e+02 5.00e+02 5.00e+02
VP2 9.03e-01 5.49e-03 1.15e-02 1.15e-04 3.11e-03 7.23e-03 4.00e-03
VG2 1.25e+00 3.02e+00 1.12e+00 1.15e+00 8.66e+00 1.15e+00 1.15e+00
Kinh2 9.68e-02 8.01e-01 9.14e-01 7.50e-01 7.93e-01 7.49e-01 7.50e-01
KS2 1.09e+00 3.67e-01 3.19e-01 9.50e-02 9.50e-01 1.06e-01 9.50e-02
I2 1.37e+00 3.26e-01 9.83e-01 4.00e-02 4.00e-02 2.43e-01 4.00e-02

KP2 1.43e+00 3.72e-01 1.15e+00 8.00e-02 1.33e-04 2.53e-01 8.00e-02
DcyP2 1.70e+00 1.70e-01 1.00e-06 6.03e-02 6.00e-01 1.85e-02 6.00e-02

Y2 3.88e-01 1.58e-01 1.01e-01 2.00e-01 1.09e-01 2.20e-01 2.00e-01
VB 1.01e+00 1.27e+00 6.53e-01 3.63e-01 3.16e+00 9.08e-01 9.00e-01
KG 1.28e+00 5.28e+00 1.95e+00 1.95e+00 1.54e+01 1.81e+00 1.85e+00
M 1.47e+00 9.38e-01 2.32e-01 2.32e-01 3.00e+00 2.87e-01 3.00e-01

DcyB 3.84e-01 2.49e-02 1.37e-02 3.71e-02 2.52e-02 2.38e-02 2.52e-02

Fits to all three data sets

Table A.22: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 0.5 for all
three experimental data sets.

Weight factor 0.5 10.0 1.0 2.0 5.0 0.1 100.0 I.P. 0.01
Overall RMSE 0.0824604 0.0848835 0.0885277 0.0928857 0.0976105 0.0989113 0.135942 0.155876 0.287217
Lag RMSE 0.0559184 0.0372071 0.0622602 0.0558478 0.0550506 0.0755177 0.0672058 0.0941286 0.24625
Exponential RMSE 0.113987 0.0994875 0.118751 0.120908 0.127754 0.147645 0.162968 0.19334 0.429766
Stationary RMSE 0.0654159 0.101654 0.0743863 0.0902524 0.0960818 0.0429933 0.156094 0.163253 0.0462863

245



Table A.23: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture). This parameterisation corresponds to the lowest overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.023059 0.077660 0.064785 0.059889
Maltose 0.040313 0.099202 0.035992 0.065221

Galactose 0.084993 0.152010 0.085704 0.112066
RMSE per phase 0.055918 0.113987 0.065416 0.082460 Total RMSE score

Table A.24: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.027131 0.064641 0.031381 0.044345
GFP 0.027954 0.096470 0.095392 0.079974
OD 0.008811 0.067886 0.050069 0.048966

RMSE per phase 0.023059 0.077660 0.064785 0.059889 Total RMSE score for the PR1 fit

Table A.25: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.049503 0.096209 0.039322 0.066465
OD 0.028279 0.102106 0.032320 0.063953

RMSE per phase 0.040313 0.099202 0.035992 0.065221 Total RMSE score for the maltose fit

Table A.26: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.114152 0.181384 0.109105 0.138846
OD 0.037641 0.115386 0.052789 0.076414

RMSE per phase 0.084993 0.152010 0.085704 0.112066 Total RMSE score for the galactose fit
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Figure A.8: Fit to the single sugar experimental data sets. This corresponds to the parameterisa-
tion with the lowest overall RMSE score. Top: The maltose data set. Bottom: galactose data set.
Graphs to the left correspond to the fit to the fluorescence data (mCherry in the case of maltose,
GFP in the case of galactose), whilst the graphs to the right present the results of the fit to the
absorbance data (O.D.).
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Figure A.9: Fit to the binary-sugar mixture experimental data set PR1. This corresponds to
the parameterisation with the lowest overall RMSE score. Top: These graphs correspond to
the fit to the mCherry fluorescence data, which corresponds to the concentration of the Mal12p.
Middle: These graphs correspond to the fit to the GFP fluorescence data, which corresponds
to the concentration of the Gal10p. Bottom: These graphs present the results of the fit to the
absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs to the
right present the model results.
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Fits to the maltose data set

Table A.27: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for the
maltose experimental data set.

Weight factor 1.0 2.0 0.5 0.1 5.0 10.0 I.P.
Overall RMSE 0.0513405 0.0515411 0.0518283 0.0539392 0.0605028 0.0629165 0.090673
Lag RMSE 0.0458228 0.0443715 0.0445128 0.0390225 0.0411822 0.0431632 0.0418205
Exponential RMSe 0.0662702 0.0646254 0.0696765 0.0783662 0.0750381 0.0723548 0.145038
Stationary RMSE 0.037631 0.0427105 0.0349616 0.0326237 0.0604571 0.0691171 0.0433554

Table A.28: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.064566 0.074782 0.038295 0.061176
OD 0.005543 0.056490 0.036955 0.039105

RMSE per phase 0.045823 0.066270 0.037631 0.051341 Total RMSE score for the maltose fit

Figure A.10: Fit to the maltose experimental data set. This corresponds to the parameterisation
with the lowest overall RMSE score. The left graph to the correspond to the fit to the mCherry
fluorescence data, whilst the graph to the right presents the results of the fit to the absorbance
data (O.D.).

Fits to the galactose data set

Table A.29: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 5 for the
galactose experimental data set.

Weight factor 5.0 10.0 1.0 2.0 0.5 0.1 I.P.
Overall RMSE 0.0695431 0.0810662 0.103317 0.110676 0.118912 0.149314 0.237659
Lag RMSE 0.0181446 0.027247 0.0617838 0.0623169 0.0789625 0.127269 0.155669
Exponential RMSE 0.0860465 0.0952593 0.137743 0.134135 0.163249 0.219433 0.275898
Stationary RMSE 0.0823134 0.099491 0.0960887 0.121949 0.0976452 0.0503557 0.262856
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Table A.30: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.013162 0.091231 0.099043 0.078115
OD 0.022027 0.080528 0.061168 0.059754

RMSE per phase 0.018145 0.086047 0.082313 0.069543 Total RMSE score for the galactose fit

Figure A.11: Fit to the galactose experimental data set. This corresponds to the parameterisation
with the lowest overall RMSE score. The left graph to the correspond to the fit to the GFP
fluorescence data, whilst the graph to the right presents the results of the fit to the absorbance
data (O.D.).

Fits to the PR1 data set

Results in section 4.3.1 of the main text.

Fits to all three data sets with PR1 parameters

Results in section 4.3.2 of the main text.
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A.3 Logistic equation biomass model: RSO in-

duction term

Table A.31: Initial values of the state variables used.

B G S1 S2 P1 P2

PR1 0.3 0.3 1e−7 1e−7 5.5e−6 5e−6

Maltose 0.3 0.3 1e−7 0 5.5e−4 0
Galactose 0.3 0.3 0 1e−7 0 5.5e−6

Table A.32: Different parameterisations resulting from fitting the model to different experimental
data sets. These parameterisations correspond to those with the lowest overall RMSE score of
their corresponding experimental data set. On each row corresponding to the parameter values,
the lightest green indicates the lowest value, whereas the deepest green indicates the highest value
of that parameter out of all the different parameterisations. Likewise, a red-blue colormap is used
to differentiate between the highest and lowest normalised standard deviation, respectively.

Parameter
Normalised

std.
Mean All data Maltose Galactose PR1

Initial
Parameters

A1 1.07e+00 4.03e-02 1.00e-06 8.18e-02 6.37e-03 7.32e-02 8.02e-03
VS1 1.13e-05 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02
VP1 1.57e+00 1.66e-02 6.42e-03 5.58e-02 3.19e-03 1.22e-03 5.50e-03
VG1 2.15e-03 3.99e+00 3.98e+00 3.98e+00 3.98e+00 4.00e+00 3.98e+00
Kinh1 2.17e-04 3.50e+00 3.50e+00 3.50e+00 3.50e+00 3.50e+00 3.50e+00
KS1 5.26e-02 6.09e-02 6.54e-02 6.05e-02 6.00e-02 5.78e-02 6.00e-02
I1 6.30e-04 1.72e+00 1.71e+00 1.72e+00 1.72e+00 1.72e+00 1.72e+00

KP1 4.46e-01 4.79e-02 7.36e-02 4.68e-02 5.00e-02 2.14e-02 5.00e-02
DcyP1 1.99e+00 1.61e-04 1.00e-06 1.00e-06 6.39e-04 1.00e-06 6.00e-04

Y1 2.92e-01 1.34e-01 1.47e-01 7.57e-02 1.60e-01 1.52e-01 1.60e-01
A2 2.00e+00 1.88e-03 1.00e-06 7.52e-03 1.00e-06 8.90e-06 8.02e-03
VS2 3.81e-07 5.00e+02 5.00e+02 5.00e+02 5.00e+02 5.00e+02 5.00e+02
VP2 6.79e-01 3.78e-03 6.51e-03 2.96e-03 5.03e-03 6.09e-04 2.00e-03
VG2 2.23e-01 3.38e+00 3.00e+00 3.00e+00 3.00e+00 4.51e+00 4.50e+00
Kinh2 3.73e-01 4.23e-01 5.01e-01 5.00e-01 5.04e-01 1.86e-01 2.00e-01
KS2 3.63e-02 9.70e-02 9.42e-02 9.50e-02 1.02e-01 9.66e-02 9.50e-02
I2 3.21e-02 5.53e+00 5.45e+00 5.45e+00 5.45e+00 5.80e+00 5.80e+00

KP2 1.78e-01 5.16e-02 5.48e-02 5.00e-02 3.99e-02 6.17e-02 5.00e-02
DcyP2 7.88e-01 2.76e-02 2.03e-02 6.00e-02 1.32e-02 1.70e-02 6.00e-02

Y2 1.90e-01 1.04e-01 9.63e-02 1.10e-01 1.27e-01 8.09e-02 1.10e-01
VB 2.30e-01 4.04e-01 3.86e-01 3.20e-01 3.75e-01 5.36e-01 4.00e-01
KG 1.76e-04 1.00e+01 1.00e+01 1.00e+01 1.00e+01 1.00e+01 1.00e+01
M 1.21e-01 3.17e-01 2.88e-01 3.22e-01 2.90e-01 3.70e-01 3.00e-01

DcyB 1.66e+00 2.41e-04 8.34e-04 1.00e-06 1.00e-06 1.28e-04 1.00e-04

Fits to all three data sets

Table A.33: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 0.5 for all
three experimental data sets.

Weight factor 0.5 1.0 2.0 0.1 100.0 5.0 10.0 0.01 I.P.
Overall RMSE 0.0700731 0.0711117 0.0774554 0.0779319 0.0807847 0.0808747 0.0896994 0.101845 0.174922
Lag RMSE 0.0230377 0.0243795 0.0226798 0.0234285 0.0246538 0.0231814 0.0229863 0.0205467 0.064793
Exponential RMSE 0.100332 0.0995365 0.1049 0.117285 0.09711 0.101458 0.104677 0.165633 0.266981
Stationary RMSE 0.0642922 0.0683282 0.0804955 0.0625743 0.0976748 0.0937602 0.112482 0.0571047 0.127736
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Table A.34: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture). This parameterisation corresponds to the lowest overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.016241 0.116814 0.061921 0.076906
Maltose 0.031759 0.112664 0.064012 0.077027

Galactose 0.017883 0.062134 0.066848 0.053694
RMSE per phase 0.023038 0.100332 0.064292 0.070073 Total RMSE score

Table A.35: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.014191 0.105792 0.069524 0.073545
GFP 0.017085 0.129994 0.067308 0.085089
OD 0.017264 0.113343 0.046248 0.071376

RMSE per phase 0.016241 0.116814 0.061921 0.076906 Total RMSE score for the PR1 fit

Table A.36: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.039467 0.135369 0.067403 0.090232
OD 0.021440 0.084034 0.060431 0.061028

RMSE per phase 0.031759 0.112664 0.064012 0.077027 Total RMSE score for the maltose fit

Table A.37: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.004835 0.070446 0.082793 0.062825
OD 0.024824 0.052521 0.045636 0.042651

RMSE per phase 0.017883 0.062134 0.066848 0.053694 Total RMSE score for the galactose fit
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Figure A.12: Fit to the single sugar experimental data sets. This corresponds to the parameter-
isation with the lowest overall RMSE score. Top: The maltose data set. Bottom: galactose
data set. Graphs to the left correspond to the fit to the fluorescence data (mCherry in the case of
maltose, GFP in the case of galactose), whilst the graphs to the right present the results of the fit
to the absorbance data (O.D.).
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Figure A.13: Fit to the binary-sugar mixture experimental data set PR1. This corresponds to
the parameterisation with the lowest overall RMSE score. Top: These graphs correspond to
the fit to the mCherry fluorescence data, which corresponds to the concentration of the Mal12p.
Middle: These graphs correspond to the fit to the GFP fluorescence data, which corresponds
to the concentration of the Gal10p. Bottom: These graphs present the results of the fit to the
absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs to the
right present the model results.
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Fits to the maltose data set

Table A.38: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 0.5 for the
maltose experimental data set.

Weight factor 0.5 2.0 5.0 10.0 0.01 0.1 1.0 100.0 I.P.
Overall RMSE 0.0517957 0.0518281 0.0519836 0.0520779 0.0530163 0.0558257 0.0608989 0.0662226 0.0766771
Lag RMSE 0.043115 0.042923 0.042909 0.0425437 0.0456995 0.0448849 0.0364798 0.0455448 0.0310459
Exponential RMSe 0.0665231 0.0668665 0.0672306 0.0676755 0.0672777 0.0737522 0.0863293 0.081199 0.110037
Stationary RMSE 0.0420018 0.0417725 0.0417822 0.0417898 0.0426315 0.0435372 0.0483994 0.0669976 0.0675734

Table A.39: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.052800 0.065888 0.036870 0.053193
OD 0.030495 0.067152 0.046572 0.050360

RMSE per phase 0.043115 0.066523 0.042002 0.051796 Total RMSE score for the maltose fit

Figure A.14: Fit to the maltose experimental data set. This corresponds to the parameterisation
with the lowest overall RMSE score. The left graph to the correspond to the fit to the mCherry
fluorescence data, whilst the graph to the right presents the results of the fit to the absorbance
data (O.D.).

Fits to the galactose data set

Table A.40: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 0.5 for the
galactose experimental data set.

Weight factor 0.5 1.0 2.0 5.0 0.1 100.0 10.0 0.01 I.P.
Overall RMSE 0.0479797 0.0481152 0.0483163 0.0487317 0.0488931 0.0563953 0.0638978 0.0725844 0.155268
Lag RMSE 0.0148418 0.0145023 0.0144722 0.0164732 0.0166365 0.0160247 0.0169648 0.0235385 0.0461846
Exponential RMSE 0.0498682 0.0497496 0.0498035 0.0496689 0.0543969 0.0498804 0.0512135 0.106848 0.228695
Stationary RMSE 0.0647999 0.0652679 0.0656778 0.0662266 0.0627361 0.0824406 0.0966342 0.061926 0.133754
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Table A.41: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.005494 0.051674 0.079010 0.054598
OD 0.020258 0.047995 0.046428 0.040288

RMSE per phase 0.014842 0.049868 0.064800 0.047980 Total RMSE score for the galactose fit

Figure A.15: Fit to the galactose experimental data sets. This corresponds to the parameterisation
with the lowest overall RMSE score. The left graph to the correspond to the fit to the GFP
fluorescence data, whilst the graph to the right presents the results of the fit to the absorbance
data (O.D.).

Fits to the PR1 data set

This fit used a different set of initial conditions.

Table A.42: Initial values of the state variables used for the fit to sugar mixture experimental data
set.

B G S1 S2 P1 P2

PR1 0.1 0.3 1e−5 1e−5 1e−5 1e−5

Table A.43: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for the PR1
experimental data set.

Weight factor 1.0 0.5 2.0 5.0 0.1 10.0 I.P.
Overall RMSE 0.0521534 0.0542894 0.0550929 0.0578383 0.0626128 0.0924664 0.146682
Lag RMSE 0.0138483 0.0120577 0.0112981 0.0118762 0.0118577 0.0134769 0.037723
Exponential RMSE 0.0719791 0.0750445 0.0738379 0.0789274 0.0921208 0.0919895 0.213429
Stationary RMSE 0.0527937 0.0553619 0.0593801 0.0605412 0.0559841 0.130409 0.132559
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Table A.44: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.015839 0.107109 0.059013 0.071194
GFP 0.013273 0.043842 0.066223 0.046490
OD 0.012177 0.046353 0.022214 0.030498

RMSE per phase 0.013848 0.071979 0.052794 0.052153 Total RMSE score for the PR1 fit

Figure A.16: Fit to the binary-sugar mixture experimental data set PR1. This corresponds to
the parameterisation with the lowest overall RMSE score. Top: These graphs correspond to
the fit to the mCherry fluorescence data, which corresponds to the concentration of the Mal12p.
Middle: These graphs correspond to the fit to the GFP fluorescence data, which corresponds
to the concentration of the Gal10p. Bottom: These graphs present the results of the fit to the
absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs to the
right present the model results.
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Figure A.16: (cont.)

Fits to all three data sets with PR1 parameters

Table A.45: Initial values of state variables resulting from the grid search performed with the
lowest overall RMSE PR1 parameterisation.

B G S1 S2 P1 P2

PR1 0.15 0.08 1e−6 1e−6 1e−6 1e−5

Maltose 1.0 0.325 1e−6 0 1e−6 0
Galactose 1.0 0.775 0 5.5e−4 0 7.75e−5

Table A.46: RMSE scores divided by curve phase.

Overall RMSE 0.0739507
Lag RMSE 0.0350063
Exponential RMSE 0.1055864
Stationary RMSE 0.0634996

Table A.47: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.014150 0.072923 0.052939 0.052664
Maltose 0.025482 0.142677 0.063864 0.091442

Galactose 0.053167 0.088153 0.072218 0.072602
RMSE per phase 0.035006 0.105586 0.063500 0.073951 Total RMSE score

Table A.48: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.016552 0.107505 0.059104 0.071471
GFP 0.012756 0.046925 0.066139 0.047396
OD 0.012807 0.046843 0.023241 0.031083

RMSE per phase 0.014150 0.072923 0.052939 0.052664 Total RMSE score for the PR1 fit
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Table A.49: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.023087 0.158615 0.054423 0.097730
OD 0.027671 0.124719 0.072079 0.084688

RMSE per phase 0.025482 0.142677 0.063864 0.091442 Total RMSE score for the maltose fit

Table A.50: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (galactose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.011590 0.076873 0.084857 0.066444
OD 0.074291 0.098145 0.056834 0.078277

RMSE per phase 0.053167 0.088153 0.072218 0.072602 Total RMSE score for the galactose fit

Figure A.17: Fit to the single sugar experimental data sets with the PR1 parameterisation with the
lowest overall RMSE score after performing a grid search for new initial state variables values (table
A.45). Top: The maltose data set. Bottom: galactose data set. Graphs to the left correspond
to the fit to the fluorescence data (mCherry in the case of maltose, GFP in the case of galactose),
whilst the graphs to the right present the results of the fit to the absorbance data (O.D.).
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Figure A.18: Fit to the binary-sugar mixture experimental data set PR1 with the PR1 parame-
terisation with the lowest overall RMSE score after performing a grid search for new initial state
variables values (table A.45). Top: These graphs correspond to the fit to the mCherry fluorescence
data, which corresponds to the concentration of the Mal12p. Middle: These graphs correspond
to the fit to the GFP fluorescence data, which corresponds to the concentration of the Gal10p.
Bottom: These graphs present the results of the fit to the absorbance data (O.D.). Graphs to
the left present the experimental data whilst graphs to the right present the model results.
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A.4 Logistic equation biomass model: RFO in-

duction term

With this model I present two sets of results: 1) The fitting algorithm has lower

bounds of 0 for all parameters and upper bounds of 1 to Ii parameters, 2) and all

parameters (except Ii have an upper bound equal to ten times the initial parameter

value. The reason is that in the first set of fitting routines, for some weights factors,

some parameters were optimised to more than 300 times the initial parameter value.

Additionally, for the second set of results, when fitting to single sugar data sets,

the parameters corresponding to the absent sugar were explicitly ignored by the

optimisation algorithm. When this metabolic branch was not ignored (as it was the

case for the first set of results presented), the parameters were changed drastically.

This stands in contrast to the other models, in which the parameters corresponding

to the absent sugar were hardly affected.

Table A.51: Initial values of the state variables used.

B G S1 S2 P1 P2

PR1 0.1 0.1 1e−5 1e−5 1e−5 1e−5

Maltose 0.1 0.1 1e−4 0 3e−3 0
Galactose 0.05 0.1 0 1e−4 0 2.5e−3
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Table A.52: Different parameterisations resulting from fitting the model to different experimental
data sets. These parameterisations correspond to those with the lowest overall RMSE score of
their corresponding experimental data set. On each row corresponding to the parameter values,
the lightest green indicates the lowest value, whereas the deepest green indicates the highest value
of that parameter out of all the different parameterisations. Likewise, a red-blue colormap is used
to differentiate between the highest and lowest normalised standard deviation, respectively. The
parameterisations presented here are all resulting from fittings routines which are lower bounded
to 0 with no upper bounds except for parameter Ii, which has a upper bound equal to 1.

Parameter
Normalised

std.
Mean All data Maltose Galactose PR1

Initial
Parameters

A1 1.78e+00 3.01e-01 1.00e-06 8.56e-02 1.10e+00 1.78e-02 8.02e-03
VS1 1.06e-05 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02
VP1 1.63e+00 3.17e-01 1.71e-01 4.61e-03 1.08e+00 7.46e-03 9.00e-03
VG1 1.77e-01 8.69e-01 9.34e-01 6.40e-01 9.30e-01 9.72e-01 9.30e-01
Kinh1 6.26e-01 6.15e-01 8.03e-01 3.74e-02 8.00e-01 8.18e-01 8.00e-01
KS1 6.49e-01 2.84e+00 1.91e+00 5.60e+00 1.90e+00 1.95e+00 1.90e+00
I1 2.49e-01 1.96e-01 2.02e-01 1.60e-01 1.60e-01 2.64e-01 1.60e-01

KP1 4.78e-01 1.00e-01 1.18e-01 4.96e-02 7.50e-02 1.58e-01 7.50e-02
DcyP1 2.00e+00 7.72e-01 1.00e-06 1.00e-06 3.09e+00 1.00e-06 6.00e-04

Y1 1.87e-01 1.31e-01 1.44e-01 1.25e-01 1.00e-01 1.56e-01 1.00e-01
A2 1.80e+00 2.17e-02 1.00e-06 4.18e-03 8.04e-02 2.38e-03 8.02e-03
VS2 1.44e-06 7.00e+02 7.00e+02 7.00e+02 7.00e+02 7.00e+02 7.00e+02
VP2 1.00e+00 6.56e-03 1.57e-02 2.40e-03 1.30e-03 6.82e-03 7.50e-03
VG2 2.48e-01 7.16e-01 8.12e-01 8.00e-01 4.50e-01 8.02e-01 8.00e-01
Kinh2 5.09e-01 9.33e-01 6.91e-01 7.00e-01 1.65e+00 6.95e-01 7.00e-01
KS2 5.83e-01 1.38e+00 1.00e+00 9.50e-01 2.59e+00 9.80e-01 9.50e-01
I2 1.37e+00 8.39e-02 2.54e-01 1.50e-02 1.50e-02 5.16e-02 1.50e-02

KP2 1.13e+00 1.35e-01 3.77e-02 2.00e-02 1.29e-01 3.53e-01 2.00e-02
DcyP2 1.38e+00 5.52e-02 1.00e-06 1.68e-01 2.80e-02 2.46e-02 6.00e-02

Y2 4.59e-01 3.37e-01 2.78e-01 2.40e-01 5.68e-01 2.63e-01 2.40e-01
VB 3.06e-01 3.84e-01 2.82e-01 3.70e-01 3.33e-01 5.52e-01 4.00e-01
KG 7.35e-01 4.45e+00 2.03e+00 4.88e+00 8.93e+00 1.99e+00 2.00e+00
M 9.31e-01 1.34e+00 3.38e-01 1.94e+00 2.80e+00 2.68e-01 3.00e-01

DcyB 5.31e-01 1.71e-03 2.87e-03 1.31e-03 7.49e-04 1.92e-03 2.50e-03
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Table A.53: Different parameterisations resulting from fitting the model to different experimental
data sets. These parameterisations correspond to those with the lowest overall RMSE score of
their corresponding experimental data set. On each row corresponding to the parameter values,
the lightest green indicates the lowest value, whereas the deepest green indicates the highest value
of that parameter out of all the different parameterisations. Likewise, a red-blue colormap is used
to differentiate between the highest and lowest normalised standard deviation, respectively. The
parameterisations presented here are all resulting from fittings routines which are lower bounded
to 0 and upper bounded to ten times the initial value.

Parameter
Normalised

std.
Mean All data Maltose Galactose PR1

Initial
Parameters

A1 1.80e+00 1.50e-02 3.96e-05 6.27e-02 8.02e-03 4.11e-03 8.02e-03
VS1 9.90e-05 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02 6.00e+02
VP1 9.05e-01 2.17e-02 5.27e-03 8.55e-03 9.00e-03 3.83e-02 9.00e-03
VG1 2.49e-01 8.54e-01 1.02e+00 4.81e-01 9.30e-01 9.04e-01 9.30e-01
Kinh1 5.10e-01 6.75e-01 8.59e-01 6.15e-02 8.00e-01 8.56e-01 8.00e-01
KS1 7.66e-01 2.95e+00 2.03e+00 6.99e+00 1.90e+00 1.93e+00 1.90e+00
I1 8.71e-01 3.50e-01 8.63e-01 1.60e-01 1.60e-01 3.98e-01 1.60e-01

KP1 7.14e-01 9.50e-02 1.02e-02 1.22e-01 7.50e-02 1.93e-01 7.50e-02
DcyP1 2.22e+00 1.21e-04 1.00e-06 1.00e-06 6.00e-04 1.00e-06 6.00e-04

Y1 1.19e+00 2.61e-01 8.17e-01 9.78e-02 1.00e-01 1.65e-01 1.00e-01
A2 1.78e+00 9.97e-03 1.00e-06 8.02e-03 4.11e-02 3.26e-04 8.02e-03
VS2 2.93e-06 7.00e+02 7.00e+02 7.00e+02 7.00e+02 7.00e+02 7.00e+02
VP2 1.67e+00 2.14e-02 8.96e-04 7.50e-03 2.03e-03 8.47e-02 7.50e-03
VG2 1.51e-01 8.34e-01 1.04e+00 8.00e-01 6.95e-01 8.28e-01 8.00e-01
Kinh2 4.11e-01 7.77e-01 5.06e-01 7.00e-01 1.33e+00 6.52e-01 7.00e-01
KS2 7.36e-01 1.79e+00 1.86e+00 9.50e-01 4.06e+00 1.15e+00 9.50e-01
I2 1.99e+00 2.19e-01 1.00e+00 1.50e-02 1.50e-02 6.68e-02 1.50e-02

KP2 1.36e+00 1.50e-01 7.61e-03 2.00e-02 7.21e-02 5.00e-01 2.00e-02
DcyP2 3.62e-01 3.89e-02 4.13e-02 6.00e-02 4.11e-02 2.74e-02 6.00e-02

Y2 7.25e-01 5.49e-01 7.59e-01 2.40e-01 1.15e+00 3.29e-01 2.40e-01
VB 4.69e-01 4.62e-01 3.13e-01 3.53e-01 3.81e-01 8.43e-01 4.00e-01
KG 6.65e-01 3.93e+00 2.19e+00 6.13e+00 7.38e+00 1.97e+00 2.00e+00
M 1.09e+00 7.33e-01 1.24e+00 1.90e+00 1.90e-01 3.19e-02 3.00e-01

DcyB 1.21e+00 1.15e-03 3.52e-03 4.40e-04 1.21e-03 1.00e-06 2.50e-03

Fits to all three data sets (no upper bounds)

Table A.54: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 1 for all three
experimental data sets.

Weight factor 1.0 2.0 0.5 5.0 10.0 0.1 100.0 I.P. 0.01
Overall RMSE 0.0852884 0.0870618 0.0874275 0.0875585 0.0981708 0.101973 0.110603 0.144765 0.163771
Lag RMSE 0.0495467 0.0484387 0.0491397 0.0469312 0.0470977 0.0557761 0.0432063 0.0621095 0.146924
Exponential RMSE 0.121136 0.123927 0.126303 0.12343 0.122437 0.15617 0.123805 0.215953 0.239346
Stationary RMSE 0.0685087 0.0709585 0.0675532 0.0745783 0.108183 0.0607889 0.13966 0.111255 0.0398685

Table A.55: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture). This parameterisation corresponds to the lowest overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.046325 0.115046 0.074548 0.083545
Maltose 0.042104 0.099994 0.051518 0.069344

Galactose 0.058702 0.144179 0.076608 0.100171
RMSE per phase 0.049547 0.121136 0.068509 0.085288 Total RMSE score
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Table A.56: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.057969 0.148525 0.051466 0.096728
GFP 0.054157 0.124138 0.109543 0.100570
OD 0.012023 0.047297 0.044989 0.038321

RMSE per phase 0.046325 0.115046 0.074548 0.083545 Total RMSE score for the PR1 fit

Table A.57: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.050497 0.113174 0.050094 0.077175
OD 0.031552 0.084789 0.052903 0.060507

RMSE per phase 0.042104 0.099994 0.051518 0.069344 Total RMSE score for the maltose fit

Table A.58: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.055632 0.127003 0.096582 0.097558
OD 0.061620 0.159517 0.049086 0.102716

RMSE per phase 0.058702 0.144179 0.076608 0.100171 Total RMSE score for the galactose fit

Figure A.19: Fit to the single sugar experimental data sets with no upper bounds. This corresponds
to the parameterisation with the lowest overall RMSE score. Top: The maltose data set. Bottom:
galactose data set. Graphs to the left correspond to the fit to the fluorescence data (mCherry in
the case of maltose, GFP in the case of galactose), whilst the graphs to the right present the results
of the fit to the absorbance data (O.D.).
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Figure A.19: (cont.)

Figure A.20: Fit to the binary-sugar mixture experimental data set PR1 with no upper bounds.
This corresponds to the parameterisation with the lowest overall RMSE score. Top: These graphs
correspond to the fit to the mCherry fluorescence data, which corresponds to the concentration
of the Mal12p. Middle: These graphs correspond to the fit to the GFP fluorescence data, which
corresponds to the concentration of the Gal10p. Bottom: These graphs present the results of the
fit to the absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs
to the right present the model results.
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Figure A.20: (cont.)

Fits to all three data sets (with upper bounds)

Table A.59: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 2 for all three
experimental data sets.

Weight factor 2.0 1.0 0.5 5.0 10.0 0.1 100.0 I.P. 0.01
Overall RMSE 0.0656933 0.0830956 0.0854282 0.0951636 0.0988267 0.105845 0.108844 0.144765 0.16949
Lag RMSE 0.0334793 0.0445871 0.0479708 0.0428837 0.0433451 0.057687 0.0457757 0.0621095 0.091811
Exponential RMSE 0.0946766 0.119079 0.123844 0.126856 0.122703 0.163006 0.117856 0.215953 0.27357
Stationary RMSE 0.0535004 0.0674304 0.0652329 0.096108 0.1112 0.0609151 0.139842 0.111255 0.0539529

Table A.60: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture). This parameterisation corresponds to the lowest overall RMSE score (w.f. 2).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.030208 0.085525 0.048399 0.059356
Maltose 0.032359 0.090614 0.054547 0.063858

Galactose 0.037456 0.106609 0.057176 0.073115
RMSE per phase 0.033479 0.094677 0.053500 0.065693 Total RMSE score

Table A.61: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 2).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.021212 0.091252 0.045950 0.060245
GFP 0.046229 0.110615 0.066741 0.079220
OD 0.012270 0.037160 0.021485 0.025775

RMSE per phase 0.030208 0.085525 0.048399 0.059356 Total RMSE score for the PR1 fit
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Table A.62: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 2).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.037664 0.075433 0.056387 0.058561
OD 0.025994 0.103595 0.052642 0.068748

RMSE per phase 0.032359 0.090614 0.054547 0.063858 Total RMSE score for the maltose fit

Table A.63: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 2).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.010987 0.054111 0.069390 0.051198
OD 0.051818 0.140723 0.041511 0.089836

RMSE per phase 0.037456 0.106609 0.057176 0.073115 Total RMSE score for the galactose fit

Figure A.21: Fit to the single sugar experimental data sets with upper bounds. This corresponds
to the parameterisation with the lowest overall RMSE score. Top: The maltose data set. Bottom:
galactose data set. Graphs to the left correspond to the fit to the fluorescence data (mCherry in
the case of maltose, GFP in the case of galactose), whilst the graphs to the right present the results
of the fit to the absorbance data (O.D.).
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Figure A.22: Fit to the binary-sugar mixture experimental data set PR1 with upper bounds. This
corresponds to the parameterisation with the lowest overall RMSE score. Top: These graphs
correspond to the fit to the mCherry fluorescence data, which corresponds to the concentration
of the Mal12p. Middle: These graphs correspond to the fit to the GFP fluorescence data, which
corresponds to the concentration of the Gal10p. Bottom: These graphs present the results of the
fit to the absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs
to the right present the model results.
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Fits to the maltose data set (no upper bounds)

Results in section 4.3.3 of the main text.

Fits to the maltose data set (with upper bounds)

Table A.64: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 5 for the
maltose experimental data set.

Weight factor 5.0 10.0 1.0 2.0 0.5 0.1 I.P.
Overall RMSE 0.0473648 0.0480467 0.0533344 0.0583014 0.078906 0.0810948 0.138003
Lag RMSE 0.0346402 0.033034 0.0486252 0.0525427 0.0471886 0.0466653 0.034953
Exponential RMSe 0.062299 0.0586447 0.0682538 0.0723451 0.120404 0.125454 0.208984
Stationary RMSE 0.0406098 0.0489389 0.0388675 0.046932 0.0442107 0.042577 0.110625

Table A.65: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.040470 0.062286 0.038680 0.048351
OD 0.027606 0.062312 0.042452 0.046357

RMSE per phase 0.034640 0.062299 0.040610 0.047365 Total RMSE score for the maltose fit

Figure A.23: Fit to the maltose experimental data set with upper bounds. This corresponds to
the parameterisation with the lowest overall RMSE score. The left graph to the correspond to the
fit to the mCherry fluorescence data, whilst the graph to the right presents the results of the fit to
the absorbance data (O.D.).
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Fits to the galactose data set (no upper bounds)

Table A.66: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 2 for the
galactose experimental data set.

Weight factor 2.0 0.5 10.0 1.0 5.0 0.1 I.P.
Overall RMSE 0.050985 0.0510049 0.0624103 0.0676757 0.0759149 0.144894 0.18801
Lag RMSE 0.0130053 0.0100429 0.0298011 0.0393954 0.0475509 0.12114 0.0915962
Exponential RMSE 0.0585971 0.0657933 0.0852746 0.0827782 0.092109 0.210811 0.281049
Stationary RMSE 0.064774 0.0580936 0.0593742 0.0730463 0.0808952 0.0621815 0.136618

Table A.67: RMSE scores divided by curve phase and data type (fluorescence and absorbance)
for the single sugar experimental data set (galactose). This parameterisation corresponds to the
lowest overall RMSE score (w.f. 2).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.005219 0.063293 0.081499 0.059652
OD 0.017636 0.053491 0.041825 0.040504

RMSE per phase 0.013005 0.058597 0.064774 0.050985 Total RMSE score for the galactose fit

Figure A.24: Fit to the galactose experimental data set with no bounds. This corresponds to the
parameterisation with the lowest overall RMSE score. The left graph to the correspond to the fit
to the GFP fluorescence data, whilst the graph to the right presents the results of the fit to the
absorbance data (O.D.).

Fits to the galactose data set (with upper bounds)

Results in section 4.3.3 of the main text.
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Fits to the PR1 data set (no upper bounds)

Table A.68: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 0.5 for the
PR1 experimental data set.

Weight factor 0.5 1.0 10.0 2.0 0.1 5.0 I.P.
Overall RMSE 0.0707121 0.072789 0.0736088 0.0793648 0.0919703 0.0943464 0.11541
Lag RMSE 0.0300851 0.0206366 0.0239096 0.0241216 0.0418072 0.0236257 0.0607717
Exponential RMSE 0.109127 0.111356 0.108792 0.124801 0.14648 0.147441 0.173592
Stationary RMSE 0.0467634 0.0553964 0.0620278 0.0523383 0.0465972 0.0663834 0.0783027

Table A.69: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.5).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.041650 0.090394 0.045144 0.063097
GFP 0.007429 0.137492 0.062350 0.087267
OD 0.030421 0.093011 0.025198 0.058342

RMSE per phase 0.030085 0.109127 0.046763 0.070712 Total RMSE score for the PR1 fit

Figure A.25: Fit to binary-sugar mixture experimental data set PR1 with no upper bounds. This
corresponds to the parameterisation with the lowest overall RMSE score. Top: These graphs
correspond to the fit to the mCherry fluorescence data, which corresponds to the concentration
of the Mal12p. Middle: These graphs correspond to the fit to the GFP fluorescence data, which
corresponds to the concentration of the Gal10p. Bottom: These graphs present the results of the
fit to the absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs
to the right present the model results.
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Figure A.25: (cont.)

Fits to the PR1 data set (with upper bounds)

Table A.70: RMSE scores divided by curve phase. The columns are sorted based on the overall
RMSE score. The lowest scoring parameterisation corresponds to a weight factor of 0.1 for the
PR1 experimental data set.

Weight factor 0.1 1.0 0.5 10.0 2.0 5.0 I.P.
Overall RMSE 0.0706632 0.0745766 0.075937 0.0871117 0.0882881 0.0887117 0.11541
Lag RMSE 0.0446738 0.0221325 0.0232154 0.0335581 0.042087 0.0369106 0.0607717
Exponential RMSE 0.107124 0.115066 0.117568 0.121824 0.127927 0.12786 0.173592
Stationary RMSE 0.0388413 0.0543603 0.0542034 0.0824509 0.0724402 0.0768033 0.0783027

Table A.71: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1). This parameterisation corresponds to the lowest
overall RMSE score (w.f. 0.1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.058842 0.100880 0.029550 0.069552
GFP 0.025154 0.122642 0.055837 0.079145
OD 0.043499 0.095960 0.023129 0.062277

RMSE per phase 0.044674 0.107124 0.038841 0.070663 Total RMSE score for the PR1 fit

272



Figure A.26: Fit to binary-sugar mixture experimental data set PR1 with upper bounds. This
corresponds to the parameterisation with the lowest overall RMSE score. Top: These graphs
correspond to the fit to the mCherry fluorescence data, which corresponds to the concentration
of the Mal12p. Middle: These graphs correspond to the fit to the GFP fluorescence data, which
corresponds to the concentration of the Gal10p. Bottom: These graphs present the results of the
fit to the absorbance data (O.D.). Graphs to the left present the experimental data whilst graphs
to the right present the model results.
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Fits to all three data sets with PR1 parameters (with upper bounds)

This results correspond to the lowest overall RMSE PR1 parameterisation with the

lower and upper bounds.

Table A.72: Initial values of state variables resulting from the grid search performed with the
lowest overall RMSE PR1 parameterisation.

B G S1 S2 P1 P2

PR1 0.15 0.08 1e−6 1e−6 1e−6 5.5e−6

Maltose 1.0 0.55 1e−2 0 1e−5 0
Galactose 0.55 0.1 0 1e−6 0 1e−4

Table A.73: RMSE scores divided by curve phase.

Overall RMSE 0.05244491
Lag RMSE 0.0292053
Exponential RMSE 0.0734784
Stationary RMSE 0.0447143

Table A.74: RMSE scores divided by curve phase and experimental data set (single sugar and
sugar mixture).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
experiment

PR1 0.031965 0.061611 0.035447 0.044997
Maltose 0.030500 0.093019 0.045807 0.062399

Galactose 0.024634 0.061228 0.051413 0.048301
RMSE per phase 0.029205 0.073478 0.044714 0.052445 Total RMSE score

Table A.75: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the sugar mixture experimental data set (PR1).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.049485 0.068934 0.024907 0.051059
GFP 0.022634 0.070588 0.055080 0.053319
OD 0.010207 0.040661 0.010741 0.024986

RMSE per phase 0.031965 0.061611 0.035447 0.044997 Total RMSE score for the PR1 fit

Table A.76: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (maltose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

mCherry 0.038634 0.097107 0.036106 0.063839
OD 0.019182 0.088742 0.053787 0.060926

RMSE per phase 0.030500 0.093019 0.045807 0.062399 Total RMSE score for the maltose fit

Table A.77: RMSE scores divided by curve phase and data type (fluorescence and absorbance) for
the single sugar experimental data set (galactose).

Lag phase
Exponential

phase
Stationary

phase
RMSE per
data type

GFP 0.023005 0.068413 0.062065 0.054959
OD 0.026161 0.053080 0.037875 0.040564

RMSE per phase 0.024634 0.061228 0.051413 0.048301 Total RMSE score for the galactose fit
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Figure A.27: Fit to the single sugar experimental data sets with the PR1 parameterisation (with
upper bounds) with the lowest overall RMSE score after performing a grid search for new initial
state variables values (table A.72). Top: The maltose data set. Bottom: galactose data set.
Graphs to the left correspond to the fit to the fluorescence data (mCherry in the case of maltose,
GFP in the case of galactose), whilst the graphs to the right present the results of the fit to the
absorbance data (O.D.).
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Figure A.28: Fit to the binary-sugar mixture experimental data set PR1 with the PR1 parame-
terisation (with upper bounds) with the lowest overall RMSE score after performing a grid search
for new initial state variables values (table A.72). Top: These graphs correspond to the fit to the
mCherry fluorescence data, which corresponds to the concentration of the Mal12p. Middle: These
graphs correspond to the fit to the GFP fluorescence data, which corresponds to the concentration
of the Gal10p. Bottom: These graphs present the results of the fit to the absorbance data (O.D.).
Graphs to the left present the experimental data whilst graphs to the right present the model
results.
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Appendix B

Supplementary information for

Chapter 5

B.1 Supplementary bifurcation diagrams under equal-

value alternatives conditions

B.1.1 Hill-RFO model

Figure B.1: Three-dimensional bifurcation diagram resulting from varying the V̄G parameter in
the P1, P2 space.
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Figure B.2: Three-dimensional bifurcation diagram resulting from varying the V̄P parameter in
the P1, P2 space.

Figure B.3: Three-dimensional bifurcation diagram resulting from varying the V̄S parameter in the
P1, P2 space.
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Figure B.4: Three-dimensional bifurcation diagram resulting from varying the Ȳ parameter in the
P1, P2 space.

B.1.2 Logistic-RFO model

Figure B.5: Three-dimensional bifurcation diagram resulting from varying the K̄G parameter in
the P1, P2 space. In this diagram, the small black section of the solution that is near the first
bifurcation point is an unstable region in which three eigenvalues have a positive real component.
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Figure B.6: Three-dimensional bifurcation diagram resulting from varying the K̄S parameter in
the P1, P2 space.

Figure B.7: Three-dimensional bifurcation diagram resulting from varying the V̄S parameter in the
P1, P2 space.
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Figure B.8: Three-dimensional bifurcation diagram resulting from varying the N̄ parameter in the
P1, P2 space.

B.2 Parameters and initial conditions used in the

dynamical systems analysis

B.2.1 Equal-value alternatives

Hill-RFO model

Table B.1: Mean and difference per parameter used for the analysis in MatConT for the Hill-RFO
model under equal-value alternatives conditions.

Parameter Value Parameter Value Parameter Value
Ā 8.02e-3 ∆A 0.00e+0 VB 9.00e-1
V̄S 5.00e+2 ∆VS 0.00e+0 KG 1.85e+0
V̄P 4.00e-3 ∆VP 0.00e+0 M 3.00e-1
V̄G 1.15e+0 ∆VG 0.00e+0 DcyB 2.52e-2
K̄inh 7.50e-1 ∆Kinh 0.00e+0
K̄S 9.50e-2 ∆KS 0.00e+0
Ī 4.00e-2 ∆I 0.00e+0
K̄P 8.00e-2 ∆KP 0.00e+0
D̄cyP 6.00e-2 ∆DcyP 0.00e+0
Ȳ 2.00e-1 ∆Y 0.00e+0
N̄ 1.47e+1 ∆N 0.00e+0
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Table B.2: Values of state variables used for the analysis of the Hill-RFO model under equal-value
alternatives conditions. The first row shows the initial values of the variables, which were taken
from the grid search process in order to perform the fit to the experimental data. The second row
shows the values of the state variables in the steady-state.

B G S1 S2 P1 P2

Initial conditions 0.1 0.3 1e−5 1e−5 1e−5 1e−5

steady-state 35.70825 142.28717 278.34088 278.34088 0.62908 0.62908

Logistic-RFO model

Table B.3: Mean and difference per parameter used for the analysis in MatConT for the logistic-
RFO model under equal-value alternatives conditions.

Parameter Value Parameter Value Parameter Value
Ā 8.02e-3 ∆A 0.00e+0 VB 4.00e-1
V̄S 7.00e+2 ∆VS 0.00e+0 KG 2.00e+0
V̄P 7.50e-3 ∆VP 0.00e+0 M 3.00e-1
V̄G 8.00e-1 ∆VG 0.00e+0 DcyB 2.50e-3
K̄inh 7.00e-1 ∆Kinh 0.00e+0
K̄S 9.50e-1 ∆KS 0.00e+0
Ī 1.50e-2 ∆I 0.00e+0
K̄P 2.00e-2 ∆KP 0.00e+0
D̄cyP 6.00e-2 ∆DcyP 0.00e+0
Ȳ 2.40e-1 ∆Y 0.00e+0
N̄ 1.47e+1 ∆N 0.00e+0

Table B.4: Values of state variables used for the analysis of the logistic-RFO model under equal-
value alternatives conditions. The first row shows the initial values of the variables, which were
taken from the grid search process in order to perform the fit to the experimental data. The second
row shows the values of the state variables in the steady-state.

B G S1 S2 P1 P2

Initial conditions 0.1 0.1 1e−5 1e−5 1e−5 1e−5

steady-state 157.6747 5423.6589 5567.5225 5567.5225 4.7281985 4.7281985
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B.2.2 Unequal-value alternatives

Hill-RSO model

Table B.5: Mean and difference per parameter used for the analysis in MatConT for the Hill-RSO
model under unequal-value alternative conditions.

Parameter Value Parameter Value Parameter Value
Ā 6.1908e-5 ∆A 1.2182e-4 VB 8.5639e-1
V̄S 5.5000e+2 ∆VS 1.0000e+2 KG 1.8664e+0
V̄P 2.5431e-2 ∆VP 1.5063e-2 M 2.1275e-1
V̄G 1.0376e+0 ∆VG -2.1788e-1 DcyB 2.6292e-2
K̄inh 2.6151e+0 ∆Kinh 1.0697e+0
K̄S 8.4670e-2 ∆KS -4.6961e-2
Ī 1.8581e+0 ∆I -1.1250e+0
K̄P 8.6509e-2 ∆KP 5.6145e-2
D̄cyP 9.5517e-3 ∆DcyP -1.9101e-2
Ȳ 1.6872e-1 ∆Y -2.8588e-2
N̄ 1.1050e+1 ∆N 7.3000e+0

Table B.6: Values of state variables used for the analysis of the Hill-RSO model under unequal-
value alternative conditions. The first row shows the initial values of the variables, which were
taken from the grid search process in order to perform the fit to the experimental data. The second
row shows the values of the state variables in the steady-state.

B G S1 S2 P1 P2

Initial conditions 0.1 0.3 1e−5 1e−5 1e−5 1e−5

steady-state 32.57154 696.38876 4158.4934 0.038559146 6.9295177 8.2242453e-05

Hill-RFO model

Table B.7: Mean and difference per parameter used for the analysis in MatConT for the Hill-RFO
model under unequal-value alternative conditions.

Parameter Value Parameter Value Parameter Value
Ā 6.1917e-3 ∆A 1.2381e-2 VB 9.0752e-1
V̄S 5.4999e+2 ∆VS 9.9992e+1 KG 1.8099e+0
V̄P 6.6902e-3 ∆VP -1.0803e-3 M 2.8695e-1
V̄G 1.0514e+0 ∆VG -1.9686e-1 DcyB 2.3757e-2
K̄inh 7.3118e-1 ∆Kinh -3.5450e-2
K̄S 8.7456e-2 ∆KS -3.6700e-2
Ī 3.5629e-1 ∆I 2.2703e-1
K̄P 1.8322e-1 ∆KP -1.3914e-1
D̄cyP 9.2341e-3 ∆DcyP -1.8466e-2
Ȳ 2.6010e-1 ∆Y 8.0364e-2
N̄ 1.1050e+1 ∆N 7.3000e+0
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Table B.8: Values of state variables used for the analysis of the Hill-RFO model under unequal-
value alternative conditions. The first row shows the initial values of the variables, which were
taken from the grid search process in order to perform the fit to the experimental data. The second
row shows the values of the state variables in the steady-state.

B G S1 S2 P1 P2

Initial conditions 0.1 0.3 1e−5 1e−5 1e−5 1e−5

steady-state 38.2009 1739.0998 5516.7008 -1.5023 10.9757 -0.0035

Logistic-RSO model

Table B.9: Mean and difference per parameter used for the analysis in MatConT for the logistic-
RSO model under unequal-value alternative conditions.

Parameter Value Parameter Value Parameter Value
Ā 3.6596e-2 ∆A 7.3174e-2 VB 5.3641e-1
V̄S 5.5000e+2 ∆VS 9.9996e+1 KG 9.9963e+0
V̄P 9.1238e-4 ∆VP 6.0746e-4 M 3.6981e-1
V̄G 4.2518e+0 ∆VG -5.0795e-1 DcyB 1.2799e-4
K̄inh 1.8428e+0 ∆Kinh 3.3137e+0
K̄S 7.7228e-2 ∆KS -3.8841e-2
Ī 3.7582e+0 ∆I -4.0833e+0
K̄P 4.1544e-2 ∆KP -4.0356e-2
D̄cyP 8.5129e-3 ∆DcyP -1.7024e-2
Ȳ 1.1633e-1 ∆Y 7.0900e-2
N̄ 1.1050e+1 ∆N 7.3000e+0

Table B.10: Values of state variables used for the analysis of the logistic-RSO model under unequal-
value alternative conditions. The first row shows the initial values of the variables, which were
taken from the grid search process in order to perform the fit to the experimental data. The second
row shows the values of the state variables in the steady-state.

B G S1 S2 P1 P2

Initial conditions 0.3 0.3 1e−7 1e−7 5.5e−6 5e−6

steady-state 4189.2964 919463.07 812454.33 23.752262 1548.02 0.042800646
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Logistic-RFO model

Table B.11: Mean and difference per parameter used for the analysis in MatConT for the logistic-
RFO model under unequal-value alternative conditions.

Parameter Value Parameter Value Parameter Value
Ā 2.2173e-3 ∆A 3.7817e-3 VB 8.4318e-1
V̄S 6.5000e+2 ∆VS -1.0001e+2 KG 1.9716e+0
V̄P 6.1516e-2 ∆VP -4.6423e-2 M 3.1884e-2
V̄G 8.6622e-1 ∆VG 7.5877e-2 DcyB 1e-06
K̄inh 7.5400e-1 ∆Kinh 2.0428e-1
K̄S 1.5378e+0 ∆KS 7.8130e-1
Ī 2.3219e-1 ∆I 3.3081e-1
K̄P 3.4649e-1 ∆KP -3.0702e-1
D̄cyP 1.3686e-2 ∆DcyP -2.7371e-2
Ȳ 2.4716e-1 ∆Y -1.6411e-1
N̄ 1.1050e+1 ∆N 7.3000e+0

Table B.12: Values of state variables used for the analysis of the logistic-RFO model under unequal-
value alternative conditions. The first row shows the initial values of the variables, which were
taken from the grid search process in order to perform the fit to the experimental data. The second
row shows the values of the state variables in the steady-state.

B G S1 S2 P1 P2

Initial conditions 0.1 0.1 1e−5 1e−5 1e−5 1e−5

steady-state 732442.75 2828779.8 13879005 179.149 23352.507 0.29244092

B.3 Bifurcation analysis in MatCont

The process followed in order to perform a bifurcation analysis in MatCont is as

follows: We start by defining the dynamic system in MatCont. In order to do

this, one must initialise MatCont in the MATLAB command window, which will

cause several windows will emerge. The main window, labelled MatCont has a

drop-down menu labelled Select, among the options one must chose System, and

furthermore select either New or Edit/Load, depending on whether or not the system

has been previously defined. We define the model as defined in Chapter 3, leaving

the Ni equations out since the extracellular sugar concentration is considered to be

constant. Following this we find the steady-state of the system. This was done by

integrating over time until the state variable values no longer change significantly.

This is evaluated manually.
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In order to do this, once the system has been loaded, one selects the option Initial

point −→ Point, in the sub-menu Type, found in the MatCont window. The Integrator

window allows us to specify different hyper-parameters such as the maximum step

size, the number of steps, as well as integrating method to be used, among others.

As mentioned before, we used method ode15s. The number of steps is not necessarily

relevant, as long as we choose an amount large enough for the system to reach a

steady-state. The Starter window allows us to specify the value of the parameters

of the system, as well as the initial value of the state variables and the time. For the

results presented here we have chosen the initial parameterisation obtained through

manual visualisation before performing the parameter optimisation, as well as the

initial conditions for the state variables, all specified in the previous chapter.

Once the steady-state is found, we select this set of state variable values by choosing

the last point of the time series that has just been integrated. We find this in the

Initial point option from the Select drop-down menu in the MatCont window. We

use this to analyse how this solution changes as the value of one parameter of interest

is either increased or decreased. In order to do this, and once we have selected the

steady-state as the initial point, we select the option Initial point −→ Equilibrum,

found in the sub-menu Type, in the MatCont window. Subsequently, we select the

parameter that we wish to change in the Starter window. In order to start the

integration, in the MatCont window, we select either Forward or Backward in the

Compute menu, depending on the direction that we wish to change the selected

parameter. The Continuer window allows us to specify different hyper-parameters

such as the maximum and minimum step size and the number of steps.

Once we have integrated over the parameter value range of interest, if our curve

contains any critical points such as a Branching point or a Limit Point for instance,

we can select for them in the Initial point option from the Select drop-down menu

in the MatCont window, where one can find the first and last points of the series

one has just integrated, as well as any critical points that have been detected during

the computation. The bifurcations diagrams presented here, were obtained by first
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selecting the critical point found during the integration of our steady-state solution.

Then we choose the option Curve −→ Equilibrium, found in the sub-menu Type, in

the MatCont window. This allows us to explore the different solutions that emerge

from this point. Similarly, if the point to explore is a Limit Point, we can explore

it by choosing the option Curve −→ Equilibrium, found in the sub-menu Type, in

the MatCont window. In some cases, the solution yielded a Hopf Point, which

usually leads to oscillatory behaviour. In order to analyse this, one can select this

point, which automatically changes the type of curve, from Curve −→ Equilibrium to

Limit Cycle. The analysis and interpretation of the bifurcation diagrams obtained

is greatly informed by Strogatz (1994) and Seydel (1988).

B.4 Saturated model supplementary material

The reduced RFO (eq. B.1) and reduced RSO (eq. B.2) models read

dP1

dt
= VP1A1 −DcyP1 P1+

VP1 (Ω− P1 − P2) (Λ1 P1 + Λ2 P2 I1)
2

(Λ1 P1 + Λ2 P2 I1)2 + (KP1 (1 +
Υ1 Λ1 P1 + Υ2 Λ2 P2

Kinh1
))2

dP2

dt
= VP2A2 −DcyP2 P2+

VP2 (Ω− P1 − P2) (Λ2 P2 + Λ1 P1 I2)
2

(Λ2 P2 + Λ1 P1 I2)2 + (KP2 (1 +
Υ2 Λ2 P2 + Υ1 Λ1 P1

Kinh2
))2

(B.1)

287



dP1

dt
= VP1A1 −DcyP1 P1+

VP1 (Ω− P1 − P2) (Λ1 P1 + Λ1 P1 Λ2 P2 I1)
2

(Λ1 P1 + Λ1 P1 Λ2 P2 I1)2 + (KP1 (1 +
Υ1 Λ1 P1 + Υ2 Λ2 P2

Kinh1
))2

dP2

dt
= VP2A2 −DcyP2 P2+

VP2 (Ω− P1 − P2) (Λ2 P2 + Λ2 P2 Λ1 P1 I2)
2

(Λ2 P2 + Λ2 P2 Λ1 P1 I2)2 + (KP2 (1 +
Υ2 Λ2 P2 + Υ1 Λ1 P1

Kinh2
))2
,

(B.2)

where

Ω =
M VB
DcyB

, Λi =
VSi

(Yi VGi + VB)
, Υi =

VGi Yi
VB

. (B.3)

Table B.13: Values of state variables used in the analysis of the saturated models under unequal-
value alternative conditions. These values correspond to the test with the logistic-RFO (B.11) and
the logistic-RSO (B.9) parameterisations. The first row shows the initial values of the variables,
which were taken from the grid search process in order to perform the fit to the experimental data.
The second row shows the values of the state variables in the steady-state.

RFO RSO
P1 P2 P1 P2

Initial conditions 1e−5 1e−5 5.5e−6 5e−6

steady-state 26882.909 0.42258 1548.7232 0.042904
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Table B.14: Mean and difference per parameter used for the analysis in MatConT for the saturated
RFO model under unequal-value alternative conditions.

Parameter Value Parameter Value Parameter Value
Ā 2.2372e-4 ∆A -4.4543e-4 VB 4.1891e-1
V̄S 6.5000e+2 ∆VS -1.0000e+2 KG 2.0013e+0
V̄P 2.9657e-2 ∆VP 3.5750e-2 M 3.0898e-1
V̄G 8.6980e-1 ∆VG 1.2583e-1 DcyB 5.8852e-4
K̄inh 7.4811e-1 ∆Kinh 1.0572e-1
K̄S 1.4259e+0 ∆KS 9.5087e-1
Ī 8.3883e-2 ∆I 1.6776e-1
K̄P 1.1110e-1 ∆KP -7.3583e-2
D̄cyP 1.2307e-2 ∆DcyP -2.4612e-2
Ȳ 1.9533e-1 ∆Y -1.3558e-1
N̄ 1.4700e+1 ∆N 0.0000e+0

Table B.15: Values of state variables used in the analysis of the saturated RFO model under
unequal-value alternative conditions with the alternative parameterisation shown in table B.14.
The first row shows the initial values of the variables, which were taken from the grid search
process in order to perform the fit to the experimental data. The second row shows the values of
the state variables in the steady-state.

RFO
P1 P2

Initial conditions 1e−5 1e−5

steady-state 219.92639 2.1349e-4

B.5 Analysis under single-parameter difference con-

ditions

In this section I show the results from the single-parameter difference analysis. For

this we have taken the same setup used in the equal-value alternatives case, then,

one parameter tuple from the branches of the model was selected, and given the

value from the unequal-value alternatives case. This produces a model in which

only one of the parameter tuples has different values. With this setup, I proceed to

analyse the model following the procedure described in appendix B.3. Additionally,

the Mathematica package Dynamica was used in order to refine the search for all

the system’s solutions. As it was explained in the section 5.1.2, once a system is

declared and parameterised in Dynamica, the bifurcation analysis does an search
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for solutions through out the entire parameter space that was specified by the user.

This contrasts with the procedure used in MatCont, where the starting point needs

to be specified by the user before the system can be analysed. The system was

analysed in Dynamica in order to discover the solutions that are disconnected from

the initial steady-state solution. these solutions emerge from the appearance of a

Limit point completely separated from the initial solution. The coordinates of this

point can then be used as input in MatCont in order to numerically integrate that

solution.

I present this analysis as a different kind of exploration of the models dynamics. This

particular approach to the parameterisation of the model does not represent any one

of the experimental conditions discussed in the previous chapter. For this, I have

used the Hill-RFO model. All parameters of the model were analysed under different

parameterisations. All parameterisations tested have one single non-zero difference

parameter: ∆Kinh, ∆I, ∆KP , ∆N , ∆VP and ∆Y . In the case presented here, the

non-zero difference parameter is ∆VP , which is set to 2.50e−3. This makes VP1 =

6.50e−3, and VP1 = 4.0e−3. Tables B.16 and B.17 show the parameterisation and the

initial conditions used for these analysis, respectively. With this parameterisation,

we encountered bifurcations and multistable behaviour in parameters DcyB, V̄S,

K̄inh, ∆Kinh, K̄P and N̄ .

Table B.16: Mean and difference per parameter used for the analysis in MatConT for the analysis
of the Hill-RFO model with an equal-value alternatives parameterisation with non-zero valued
∆VP parameter.

Parameter Value Parameter Value Parameter Value
Ā 8.02e-3 ∆A 0.00e+0 VB 9.00e-1
V̄S 5.00e+2 ∆VS 0.00e+0 KG 1.85e+0
V̄P 5.25e-3 ∆VP 2.50e-3 M 3.00e-1
V̄G 1.15e+0 ∆VG 0.00e+0 DcyB 2.52e-2
K̄inh 7.50e-1 ∆Kinh 0.00e+0
K̄S 9.50e-2 ∆KS 0.00e+0
Ī 4.00e-2 ∆I 0.00e+0
K̄P 8.00e-2 ∆KP 0.00e+0
D̄cyP 6.00e-2 ∆DcyP 0.00e+0
Ȳ 2.00e-1 ∆Y 0.00e+0
N̄ 1.47e+1 ∆N 0.00e+0

290



Table B.17: Values of state variables used for the analysis of the Hill-RFO model with an equal-
value alternatives parameterisation with non-zero valued ∆VP parameter. The first row shows the
initial values of the variables, which were taken from the grid search process in order to perform
the fit to the experimental data. The second row shows the values of the state variables in the
steady-state.

B G S1 S2 P1 P2

Initial conditions 0.1 0.3 1e−5 1e−5 1e−5 1e−5

steady-state 35.710519 180.12817 436.73731 268.03771 0.98706754 0.60579053

The diagrams in figures B.9 and B.10 showcase the bifurcations yielded by varying

parameters K̄inh and K̄P , respectively. Similarly to the results from the equal-value

alternatives case, these bifurcation portraits show a pattern that is maintained by

the results corresponding to other parameters, which are not shown. In the case of

K̄inh, as the value of the parameter is increased from zero, the unique stable solution

solution, which can be defined as a deadlock state, reaches a critical point at which

its stability changes briefly to an unstable or a saddle solution (in the Pi, P2 space).

There is an observable but relatively small region where this solution presents an

S-shaped curve, moving backward until another critical point is found upon which

the solution turns stable again. This also forces it to changes its direction back to

the original orientation. The diagrams in figure B.9 show how at this point the

original stable solution continues to grow in the direction of P1, whilst the P2 values

of this solution remain close to zero. This can be seen as a commitment to the first

alternative whilst ignoring the second one.
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Figure B.9: Top: Three-dimensional diagram resulting from varying the K̄inh parameter in the P1,
P2 space. Middle and Bottom: Two-dimensional diagrams showing the same solution, focusing
on the value of P1 and P2, respectively, as K̄inh is changed.
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Close to this unstable region, a second solution emerges. This solution has two main

parts: 1) A stable part in which the values of P2 increase, whilst the values of P1

remain close to zero. Similar to the original solution, this stable region represents

commitment to the second alternative. 2) A saddle solution which sits in between

the two stable solutions. This secondary solution is circular in its overall shape.

The stable and saddle parts of the curve emerge at a critical point from which the

separate from one another before meeting again at a second critical point. In this

interval of K̄inh values, the system is multistable, as it has two available stable

states: commitment to alternative one, and commitment to the second alternative.

Since saddle attractor is closer to the latter, it is more likely that a randomly chosen

set of state variables would converge toward the solution committed to alternative

one. After this multistable region comes to an end, as K̄inh continues to increase,

the secondary solution is left behind, leaving the system only one solution available,

which represents commitment to alternative one. Finally, the solution presents a

second hysteresis loop, in the middle of which the stability changes briefly. For any

larger values of K̄inh, there is only one stable solution in which the system maintains

its commitment to alternative one.
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Figure B.10: Top: Three-dimensional diagram resulting from varying the K̄P parameter in the P1,
P2 space. Middle and Bottom: Two-dimensional diagrams showing the same solution, focusing
on the value of P1 and P2, respectively, as K̄P is changed.

294



The diagrams cognate to the analysis of parameter K̄P show a similar pattern of

bifurcations. And the relation between parameter value and Pi value is reversed

from proportional, in the case of K̄inh to inversely proportional.

It can be seen that with this parameterisation the system presents a bias toward P1.

This bias can be understood by observing that VP1 > VP2. VPi is the maximum rate

at which Pi is produced by the induction term. The larger the difference between

these rates, the larger the difference in concentration between P1 and P2, since P1

is being produced at a higher rate.
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Appendix C

Stochastic simulations

In order to perform stochastic simulations a noise component was added to each

equation of the Hill-RSO model. For the simulations shown in figure C.1 the noise

parameter ηi at the end of each equation was arbitrarily selected.

dB = (VB
G2

K2
G +G2

−DcyB B ) dt + ηB dW

dG = (Y1 VG1 S1 + Y2 VG2 S2 − VB G
G2

K2
G +G2

) dt + ηG dW

dNi = (−VSi Pi
N2

i

K2
Si +N2

i

) dt + ηNi
dW

dSi = (VSi Pi
N2

i

K2
Si +N2

i

− Yi VGi Si − VB Si ) dt + ηSi
dW

dPi = (VPiAi −DcyPi Pi + VPi (M B − P1 − P2)RSOi ) dt + ηPi
dW.

(C.1)
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Figure C.1: Stochastic Hill-RSO model simulations. The parameterisation used here corresponds to
the PR1 parameterisation shown in table A.2. Each row portrays a different data type (fluorescence
and optical density), along with its corresponding model state variable. Each columns displays the
results of using a different set of noise parameters: (Left) B′ → 0.005, P ′

1 → 0.00025, P ′
2 → 0.00025,

(Middle) B′ → 0.005, P ′
1 → 0.0005, P ′

2 → 0.0005, (Right) B′ → 0.01, G′ → 0.05, S′
1 → 0.05, S′

2 →
0.05, P ′

1 → 0.0001, P ′
2 → 0.0001. All other noise parameters are = 0. Each parameterisation was

simulated 1000 times. Each plot shows data curves from experimental data set PR1 as well as the
mean of the 1000 stochastic simulations with error bars the length of a standard deviation. For
visual clarity, only three out of the nine experimental conditions are being shown.
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