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Abstract

Reconstructing the 3D geometry of objects from images is a fundamental problem in computer

vision. This thesis focuses on shape from polarisation where the goal is to reconstruct a dense

depth map from a sequence of polarisation images.

Firstly, we propose a linear differential constraints approach to depth estimation from po-

larisation images. We demonstrate that colour images can deliver more robust polarimetric

measurements compared to monochrome images. Then we explore different constraints by tak-

ing the polarisation images under two different light conditions with fixed view and show that

a dense depth map, albedo map and refractive index can be recovered.

Secondly, we propose a nonlinear method to reconstruct depth by an end-to-end method.

We re-parameterise a polarisation reflectance model with respect to the depth map, and predict

an optimum depth map by minimising an energy cost function between the prediction from the

reflectance model and observed data using nonlinear least squares.

Thirdly, we propose to enhance the polarisation camera with an additional RGB camera in

a second view. We construct a higher-order graphical model by utilising an initial rough depth

map estimated from the stereo views. The graphical model will correct the surface normal

ambiguity which arises from the polarisation reflectance model. We then build a linear system

to combine the corrected surface normal, polarimetric information and rough depth map to

produce an accurate and dense depth map.

Lastly, we derive a mixed polarisation model that describes specular and diffuse polarisation

as well as mixtures of the two. This model is more physically accurate and allows us to decompose

specular and diffuse reflectance from multiview images.
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Chapter 1

Introduction

1.1 Motivation

Retrieving 3D information about our surroundings is one of the fundamental problems in com-

puter vision. Objects with different shapes and appearances can be perceived by human and

animals easily, but it is a non-trivial task in computer vision. Over the last few decades, both

academic and industrial researchers have been inspired and dedicated to develop algorithms to

make machines able to perceive and produce a wide range of applications. For instance, creat-

ing robots that can replace humans in tedious and dangerous work such as autonomous driving

aims to manoeuvre vehicles safely while perceiving different traffic, road conditions etc. Rescue

robots can enter into dangerous and complex environments where humans cannot safely reach.

Logistics robots can manage warehouses and transfer goods to save a lot of human resources.

All these related tasks involve a fundamental problem: how to receive the data from our 3D

world. Several methods and sensors have been developed to tackle this problem.

This thesis focuses on reconstructing 3D shape from polarisation images. A polarisation im-

age records polarisation state at each pixel. Computational polarisation vision seeks to exploit

this additional information in order to tackle computer vision tasks. This is a disruptive tech-

nology, with the promise of providing new approaches to computer vision problems and broad

potential applications. On the other hand, we already see a wide range of applications utilising

polarisation in our daily life. You might experience that while walking or driving on a sunny

day, the glare illumination will blind your view. By wearing a pair of polarised sunglasses, glare

will be removed and your view will become clearer. Or you would like to take a photo of a scene
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under the river while you are resting ashore, and the scene under the river has been concealed

by the reflected light. By mounting a polarising filter on your camera, adjusting it then you can

capture a clear view under the water surface. An example has been shown in Figure 1.1. There

are many other critical applications developed by the use of polarisation such as Liquid Crystal

Display, 3D stereo movies etc.

The polarisation state of light reflected from a dielectric (i.e. non-metallic) object conveys

information about both the material properties and shape of the object [82]. The reason for this

phenomenon is that unpolarised light becomes partially polarised when it is reflected specularly

[64] or diffusely via subsurface scattering [6]. The degree of polarisation and the orientation

of the polarisation are related to local surface orientation, the refractive index of the material

and whether the reflection was diffuse or specular. Usually, this information is not visible in an

image captured by a conventional camera. However, using either a custom polarisation camera

(based on polarising beamsplitters or micropolarising filters on the sensor) or simply placing a

rotating linear polarising filter in front of a conventional camera, this rich source of additional

information becomes available.

A polarisation camera captures additional information about the surface orientation of ob-

jects. These surface features can greatly enhance methods which just use intensity information

alone. (a) It provides surface normal information on featureless regions where stereo matching

methods fail. (b) A proper formulation can achieve diffuse and specular separation in natural

illumination which will be addressed in this thesis. (c) Detailed reconstruction is possible on

pixels with high specularity and inter-reflection while multi-view stereo and shape from shading

completely fail.

1.2 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2. Background and Related work: We go through the basic theory of

polarisation and show the derivation of the polarisation reflectance model which is widely

used in computer vision. We then review the related work involved with polarisation.

• Chapter 3. Underpinning methods for shape-from-polarisation: In the first part,

we propose a multichannel estimation method that utilises chromatic polarimetric intensity

images to suppress noise in the polarisation decomposition. This improves the quality of
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the polarisation images and will better serve our depth estimation from polarisation images.

In the second part, we propose a linear least squares approach to formulate the surface

height from gradient. Moreover, we developed a 2D Savitzky-Golay filter which provides

a higher order surface derivative approximation that can be applied to arbitrary domains.

Dizhong Zhu, and William AP Smith. “Least squares surface reconstruction on

arbitrary domains.” Proc. ECCV (2020).

• Chapter 4. Monocular shape-from-polarisation: We propose two approaches with

active light sources to address the problems of depth estimation and albedo estimation

(a) source: https://www.misterspex.co.uk/sunglasses-guide/sunglasses-lenses

(b) source: http://www.paddling.net/sameboat/archives/sameboat496.html

Figure 1.1: (a) left image shows a scene under glare light without wearing sun glasses, right

image shows a similar scene wearing sun glasses. (b) left images shows the photo captured

without polarising filter, right image shows the photo captured with a polarising filter.
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under a monocular polarisation setup. (a) We first use a nonlinear approach to estimate

the object depth under one view with one light source. We re-parameterise the diffuse

polarisation reflectance function w.r.t depth. The optimum depth should minimise the

cost between predicted intensity and observed polarimetric images. (b) In the second

approach, we utilise two different light sources to build a linear system to reconstruct the

depth and achieve albedo estimation.

Tozza, Silvia, William AP Smith, Dizhong Zhu, Ravi Ramamoorthi, and Edwin R.

Hancock. “Linear differential constraints for photo-polarimetric height estimation.” In

Proceedings of the IEEE International Conference on Computer Vision, pp. 2279-2287.

2017.

Yu, Ye ∗, Dizhong Zhu∗, and William AP Smith. “Shape-from-polarisation: a non-

linear least squares approach.” Proceedings of the IEEE International Conference on Com-

puter Vision. 2017.∗ indicates equal contribution

• Chapter 5. Depth from a polarisation + RGB stereo pair: We propose a hybrid

depth imaging system in which a polarisation camera is augmented by a second image from

a standard digital camera. The method includes the following key steps: (a) A graphical

model to solve the normal ambiguity and label each pixel as diffuse or specular dominant

by minimising a novel energy. (b) With diffuse label and corrected normal we estimate

the albedo of the object. (c) Build a linear system to solve the depth under perspective

camera model.

Dizhong Zhu, and William AP Smith. “Depth from a polarisation+ RGB stereo

pair.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2019.

• Chapter 6. Mixed polarisation model with Multi-view stereo: We propose a

comprehensive mixed polarisation model of both specular and diffuse polarised reflectance.

We then propose a novel method for fitting this model to multi-view data. We emphasise

that this line of work is not yet complete but provides a first attempt in this direction

which shows promising results.

• Chapter 7. Conclusion and Future work: This chapter summarises the main contri-

butions from this thesis and suggests potential future works based on polarisation.
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Chapter 2

Background and Related Work

This chapter reviews the fundamental theory of the polarisation phenomenon and explains how

to derive the polarisation reflectance model which is widely used in shape-from-polarisation. We

then review some important papers that use polarisation images for different computer vision

tasks.

2.1 Background

2.1.1 Polarisation phenomenon

In 1669 Rasmus Bartholin discovered double refraction of a light ray. When a single ray of

natural incident light propagated through a calcite crystal it caused two rays to emerge, which

demonstrated that a single ray of light actually consists of two rays [11] as shown in Figure 2.1.

Christiaan Huygens further showed that by allowing these two emerged lights to pass through

a second calcite crystal, and rotating it, the intensity of one emerged ray was maxmised while

another vanished. At a 45◦ rotation degree, the intensities of these two rays were equal. They

observed this opposite behaviour of intensity and the two rays were said to be polarised. Until

in the early 19th century, Augustin-Jean Fresnel proposed his Fresnel’s wave theory to fully

explain this phenomena of light. Furthermore, Fresnel and Arago experimentally showed that

the optical field can be decomposed to two orthogonal components in the plane transverse to

the direction of propagation [18, 38]. The component of electronic wave perpendicular to the

incident plane is called s-polarised (or Transverse Electronic) while the one of magnetic wave

perpendicular to the incident plane is called p-polarised (or Transverse Magnetic) as shown as
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Ex, Ey respectively in Figure 2.2. The two optical components are waves that we can present

them in following forms:
−→
Ex(~r, t) = E0xe

j(~k·~r−ωt+δx)

−→
Ey(~r, t) = E0ye

j(~k·~r−ωt+δy)
(2.1)

where E0x, E0y are the maximum amplitudes of the two waves respectively, ~k is the direction of

propagation, ~r is a position vector, δx, δy are arbitrary phases.

Figure 2.1: Double refraction occurs in calcite because it is an anisotropic crystal and the o-ray

wave front propagates as a sphere, whereas the e-ray propagates as an ellipsoid [18].

Figure 2.2: Illustration of two orthogonal waves, assume the plane of our paper is incident plane,

then Ey is p-polarised component while Ex is s-polarised component.

Polarisation ellipse. A classical way to describe and visualise the polarisation state is to

use the polarisation ellipse [18]. It takes the real part of the equations in (2.1) with certain

computation that leads to an equation of an ellipse:

|
−→
Ex(~r, t)|2

E0x
2 +

|
−→
Ey(~r, t)|2

E0y
2 − 2

−→
Ex(~r, t)

E0x
·
−→
Ey(~r, t)

E0y
cos(δy − δx) = sin2(δy − δx) (2.2)
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Figure 2.3: An illustration of some polarisation states. Imagine that the instantaneous state of

a light wave will move along the arrow on the ellipse.

Proof. In detail, we take the real parts of the equation (2.1) and postulate that ν = ~k · ~r − ωt

then we have

−→
Ex(~r, t) = E0x cos (ν + δx)

−→
Ey(~r, t) = E0y cos (ν + δy)

1) Rearrange the above equations and expand them by trigonometric function, we get

−→
Ex(~r, t)

E0x
= cos ν cos δx − sin ν sin δx (2.3)

−→
Ey(~r, t)

E0y
= cos ν cos δy − sin ν sin δy (2.4)

2) We multiply sin δy with equation(2.3) and sin δx with equation(2.4), we have

−→
Ex(~r, t)

E0x
sin δy = cos ν cos δx sin δy − sin ν sin δx sin δy (2.5)

−→
Ey(~r, t)

E0y
sin δx = cos ν cos δy sin δx − sin ν sin δy sin δx (2.6)

3) By subtracting equation(2.5) and equation(2.6), we have

−→
Ex(~r, t)

E0x
sin δy −

−→
Ey(~r, t)

E0y
sin δx = cos ν sin(δy − δx) (2.7)

4) Similarly, we multiply cos δy with equation (2.3) and cos δx with equation (2.4), then

subtracting them we have:
−→
Ex(~r, t)

E0x
cos δy −

−→
Ey(~r, t)

E0y
cos δx = sin ν sin(δy − δx) (2.8)
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5) We square equations (2.7), (2.8) respectively and adding them, with some trigonometric

transformation we have got:

(

−→
Ex(~r, t)

E0x
sin δy −

−→
Ey(~r, t)

E0y
sin δx)2 + (

−→
Ex(~r, t)

E0x
cos δy −

−→
Ey(~r, t)

E0y
cos δx)2 = sin(δy − δx)

which is the same as equation (2.1).

�

The shape of the ellipse reveals the polarisation state of the optical field. There are special

combinations of amplitude and phase that are critically important. These are: 1) linear polari-

sation state of horizontal polarised light (LHP) and vertical polarised light (LVP). 2) Linearly

±45◦ polarised light (L+45P,L-45P). 3) Right and left circularly polarised light (RCP, LCP).

An example has been shown in Figure 2.5

Stokes parameters. The equation (2.2) of an ellipse only presents an instantaneous state of

polarised light, and cannot be measured directly. In order to measure the energy of the polarised

light, Sir George Stokes introduced Stokes polarisation parameters, by taking a time average of

the polarisation ellipse can lead to the following equation [36]

s0
2 = s1

2 + s2
2 + s3

2 (2.9)

where

s0 = E0x
2 + E0y

2

s1 = E0x
2 − E0y

2

s2 = 2E0xE0y cos(δy − δx)

s3 = 2E0xE0y sin(δy − δx)

For convenience, we rewrite the stokes parameters into a Stokes vector, and the parameters’

descriptions can be concluded as follows

s =


s0

s1

s2

s3


→

→

→

→

Intensity of optical ray

preponderance of LHP light over LVP light

preponderance of L+45P light over L-45P light

preponderance of RCP light over LCP light

(2.10)

The Degree of Polarisation ρ is defined by the equation

ρ =

√
s12 + s22 + s32

s0
, 0 ≤ ρ ≤ 1 (2.11)
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We can now model the change of polarisation state as a function s′ = F(s), where F is a series of

transformations that change the input polarisation state s to new state s′. The transformation

function F is actually a linear transformation that can be written as a 4× 4 matrix known as a

Muller Matrix [36]. We can model the change of polarisation state as follows:
s′0

s′1

s′2

s′3

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33




s0

s1

s2

s3

 (2.12)

Measuring polarisation state. With equation (2.12), we can measure the Stokes parameters

of incident light by using a phase retarder and a rotated linear polariser [18], which is shown in

Figure 2.4. The rotating linear polariser can be decomposed to linear polariser and optic rotator.

An ideal linear polariser only allows the light aligned with a certain direction to transmit through

it and absorbs the rest. The optic rotator allows the light to propagate through it and rotates

the polarisation ellipse. The Muller matrix of the rotated linear polariser is

MRPOL(ϑ) =
1

2


1 cos 2ϑ sin 2ϑ 0

cos 2ϑ cos2 2ϑ sin 2ϑ cos 2ϑ 0

sin 2ϑ sin 2ϑ cos 2ϑ sin2 2ϑ 0

0 0 0 0

 , (2.13)

where ϑ is the angle of rotation w.r.t to
−→
Ex, and the rotation plane is perpendicular to the

incident plane. A phase retarder is to shift phase between
−→
Ex and

−→
Ey. Concretely, a phase

retarder has a fast axis normally along the x axis, and slow axis along y axis, the light through

a retarder will shift phase by ϕ between the orthogonal components. The Muller matrix of the

phase retarder can be written as follows:

MPR(ϕ) =


1 0 0 0

0 1 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ

 . (2.14)

We can model this process by (2.12) that s is the light state in the light source, and s′ is the light

state received in the detector. This yields s′ = M(ϑ, ϕ)·s, where M(ϑ, ϕ) = MRPOL(ϑ)·MPR(ϕ),
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in detail:

M(ϑ, ϕ) =
1

2


1 cos 2ϑ sin 2ϑ cosϕ − sin 2ϑ sinϕ

cos 2ϑ cos2 2ϑ sin 2ϑ cos 2ϑ cosϕ − sin 2ϑ cos 2ϑ sinϕ

sin 2ϑ sin 2ϑ cos 2ϑ sin2 2ϑ cosϕ − sin2 2ϑ sinϕ

0 0 0 0

 . (2.15)

If the detector only measures the first component of s′, which is the intensity of light ray, it can

be simplified as the first row of the M(ϑ, ϕ) multiplied with Stokes vector s:

I(ϑ, ϕ) = (-M1(ϑ, ϕ)-) · s

=
1

2
(s0 + s1 cos 2ϑ+ s2 sin 2ϑ cosϕ− s3 sin 2ϑ sinϕ),

(2.16)

where I(ϑ, ϕ) is the intensity of received light ray. In order to compute the Stokes parameters,

we first removed the phase retarder, and record the intensity only by rotating the linear polariser

in ϑ = 0, π4 and π
2 angles which we denote the intensity as I(0, 0), I(π4 , 0), I(π2 , 0) respectively.

Then we insert a phase retarder as Figure 2.4 with ϕ = π
2 and rotated linear polariser in angle

π
4 , where denote as I(π4 ,

π
2 ):

s0 = I(0, 0) + I(
π

2
, 0)

s1 = I(0, 0)− I(
π

2
, 0)

s2 = 2I(
π

4
, 0)− S0

s3 = S0 − 2I(
π

4
,
π

2
)

. (2.17)

We utilise (2.16) to develop a more compact way to represent the (2.17), we write it in a matrix

form by stacking different polariser rotated angles and whether inserting a phase retarder as
I(ϑ1, 0)

...

I(ϑn, 0)

I(ϑ1,
π
2 )

 =


(-M1(ϑ1, 0)-)

...

(-M1(ϑn, 0)-)

(-M1(ϑ1,
π
2 )-)

 ·

s0

s1

s2

s3

 . (2.18)

This provides a closed from solution by linear least squares [74] and is more robust to noise

when n ≥ 3.

2.1.2 Polarisation reflectance model

The polarisation state of light will change when an optical ray interacts with a surface. This is

due to reflection and refraction caused by different refractive indices on two sides of the interface.

Where refractive index is defined by a ratio between light speed in vacuum and speed in the
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medium. To simplify our explanation, we first consider s-polarised optical ray whose electric field

is perpendicular to the incident plane as shown in Figure 2.6, where an optical ray propagates

from one medium to another medium.
−→
ki ,
−→
kr ,
−→
kt denotes the propagation directions of incident

ray, reflected ray and transmitted ray respectively. Assume the optical ray
−→
ki is oriented at

angle θi w.r.t the interface normal, the reflected ray will propagate at the same angle θi. While

the transmitted ray will propagate at angle θt which is determined by the refractive index of

medium 1 (ηi) and refractive index of medium 2 (ηt), which is known as Snell’s law [15]:

sin θi
sin θt

=
ηt
ηi
. (2.19)

As shown in Figure 2.6, an optical ray constitutes an electric field ~E and magnetic field ~B

due to electromagnetic property. The oscillation directions of ~B, ~E and propagation direction ~k

can be written as
~E ⊥ ~B ⊥ ~k

~E × ~B = ~k

The amplitude between electronic field and magnetic field has the relationship as follows

E =
cµ

η
B, (2.20)

where refractive index η and magnetic permeability µ depends on the property of the medium.

c represents the speed of light [59] in a vacuum. We can also write down the boundary condition

of the s-polarised ray in Figure 2.6 as

Ei + Er = Et

Bi cos θi −Br cos θi = Bt cos θt

. (2.21)

Figure 2.4: [18] Classical method to measure the Stoke parameters, imagine the Ex, Ey of

optical ray align with x, y axis respectively.
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We substitute equation (2.20) into equation (2.21) to obtain

Ei
ηi
cµi

cos θi − Er
ηi
cµi

cos θi = Et
ηt
cµt

cos θt

⇒Eicosθi − Ercosθi =
ηtµi
ηiµt

cos θt(Ei + Er)

⇒Er
Ei

=
cos θi − ηtµi

ηiµt
cos θt

cos θi + ηtµi
ηiµt

cos θt

.

Figure 2.5: The degenerate polarisation states and their corresponding Stokes vectors. The

linearly polarised lights are degenerates case of the ellipse equation.
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This gives the amplitude ratio of s-polarised optical rays between reflected ray and incident ray.

In this thesis we only consider non-magnetic medium so that µi = µt approximately, which leads

to
Er
Ei

=
cos θi − ηt

ηi
cos θt

cos θi + ηt
ηi

cos θt
.

An amplitude ratio between refractive/incident ray Er
Ei

can be calculated by following the same

process, substituting Et instead of Er. By substituting a variational form of equation (2.19)

that cos θt =
»

1− ( ηiηt )
2 sin2 θi, we arrive at the Fresnel equations of s-polarised ray

rs(θi, η) =
Er
Ei

=
cos θi −

√
η2 − sin2 θi

cos θi +
√
η2 − sin2 θi

(2.22)

ts(θi, η) =
Et
Ei

=
2 cos θi

cos θi +
√
η2 − sin2 θi

, (2.23)

where η = ηt
ηi

, similarly the Fresnel equation of p-polarised ray is

rp(θi, η) = −η
2 cos θi −

√
η2 − sin2 θi

η2 cos θi +
√
η2 − sin2 θi

(2.24)

tp(θi, η) =
2η cos θi

η2 cos θi +
√
η2 − sin2 θi

. (2.25)

Polarisation by reflection and transmission The polarisation state change between inci-

dent light and reflected light can be modelled by a Muller matrix as described in (2.12), denoted

by sr = MR(θi, η) · si where

MR(θi, η) =
1

2


Rs +Rp Rs −Rp 0 0

Rs −Rp Rs +Rp 0 0

0 0 2
√
RsRp 0

0 0 0 2
√
RsRp



where Rs = rs
2, Rp = rp

2

. (2.26)

The polarisation state change between incident light and refracted light can be modelled by

st = MT(θi, η) · si where

MT(θi, η) =
1

2


Ts + Tp Ts − Tp 0 0

Ts − Tp Ts + Tp 0 0

0 0 2
√
TsTp 0

0 0 0 2
√
TsTp



where Ts = ts
2, Tp = tp

2

. (2.27)
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2.1.3 Assumptions

We now have all the building blocks to construct the polarisation reflectance model. We made

these key assumptions on shape-from-polarisation method through this thesis.

• The incident light is unpolarised light.

• We will not use the circular component when we measure the received optical ray.

• We only consider dielectric material objects.

Figure 2.6: An optical ray with direction
−→
ki propagates from medium 1 to medium 2, which

produces a reflected ray
−→
kr and a transmitted ray

−→
kt at the interface between medium 1 and

medium 2. The reflected angle θr = θi and the transmitted angle θt is determined by the Snell’s

law. E,B present the amplitudes of electronic field and magnetic field of optical ray respectively.

And direction of E is perpendicular to the incident plane while direction of B is coplanar with

incident plane.
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• The object surface is smooth and we do not consider the rough surface which might cause

depolarisation effects.

• We do not consider subsurface reflection and refraction.

2.1.4 Specular reflection polarisation model

We first derive the specular reflection component of our polarisation reflectance model. Figure

2.7 shows a typical setup to capture polarimetric intensity images. The polarisation state of

the optical ray emitted from light source until to camera follows the path: 1) Unpolarised when

emitted from light source. 2) Partially polarised when reflected from object surface. 3) Linearly

polarised after passing through a rotated linear polariser filter. This change of polarisation state

can be compactly written in Muller matrix with equations (2.13), (2.26) and (2.12) as

s′ = MRPOL(ϑ− φi +
π

2
)MR(θi, η)s, (2.28)

where the the unit surface normal is written in spherical coordinates such that the zenith angle

is equal to the incident ray angle θi, and the azimuth angle is φi. The rotation angle of the

polariser w.r.t x axis is denoted by ϑ, and the orientation between polariser w.r.t the reflected

ray now is ϑ− φi + π
2 as shown in Figure 2.8.

Figure 2.7: An experiment setup to capture polarimetric images. Compare to Figure 2.4, we

remove the phase retarder so that only linear polarisation information will be captured.
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Figure 2.8: The incident ray is coplanar with surface normal, while the most energy of reflected

ray is s-polarised which is perpendicular to the incident plane. The surface normal is oriented at

φi when mapped to the image plane, so the angle between polariser and reflected ray is ϑ−φi+ π
2 .

If the incident ray is unpolarised, the Stokes vector can be written as s = [s0 0 0 0]T . The Stokes

vector of reflected ray can be written as follows by substituting (2.26) in

sr = MR ·


s0

0

0

0

 =
1

2


s0(Rp +Rs)

s0(Rs −Rp)

0

0

 . (2.29)

In order to measure the Stokes parameters of the reflected ray sr, we adapt (2.16) without phase

retarder which leads to

I(ϑ) =
1

4
(s0(Rp +Rs) + s0(Rs −Rp) cos(2ϑ− 2φi + π)). (2.30)

Note that the first component of (2.29) is the intensity of the reflected ray by (2.10), and the

degree of polarisation is ρ =
Rs−Rp
Rs+Rp

by (2.11). We substitute equations (2.22) and (2.24) into

degree of polarisation such that

ρ(θi, η) =
2 sin2(θi) cos(θi)

»
η2 − sin2(θi)

η2 − sin2(θi)− η2 sin2(θi) + 2 sin4(θi)
. (2.31)

This is known as the DoP of the reflection polarisation reflectance model and we denote with

ρs. The 1
4s0(Rp + Rs) will be denoted as Is, it represents the unpolarised intensity when we

actually capture by a conventional camera. We finally arrive at a simplified version for reflection

polarisation reflectance model that is used in most of the state of the art methods [6, 69,70,77,

87,89]:

I(ϑ) = Is(1 + ρs · cos(2ϑ− 2φi + π)). (2.32)
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2.1.5 Diffuse polarisation model

The diffuse polarisation model is modelled by the light scattering inside the object and refracted

back out through the object surface. The diffuse polarisation reflectance model follows a similar

path as the specular reflection model, the difference is the incident light is emitted from the

inside of the object, and the detector is receiving its refracted light as shown in Figure 2.9. We

denote the Stokes vector of incident light from the object as so, the change of polarisation state

can be described by combining equations (2.13), (2.27) and (2.12) as

s′o = MRPOL(ϑ− φi)MT(θt,
1

η
)so. (2.33)

Since the incident ray comes from inside of an object is assumed to be unpolarised, the Stokes

vector can be written as so = [s0o 0 0 0]T . The Stokes vector of the refracted ray can be written

as follows by substituting (2.27) in

st = MT ·


s0o

0

0

0

 =
1

2


s0o(Tp + Ts)

s0o(Ts − Tp)

0

0

 . (2.34)

Notice that the incident ray angle is θt and refractive index is the reciprocal of η since the ray is

emitted from the medium of object. We can simply convert θt to zenith angle θi of surface normal

by Snell’s law (2.19). Compare this with Figure 2.7 in which the incident ray and reflected ray

all lay in the medium of air. The orientation between polariser w.r.t the refracted ray now is

ϑ− φi as shown in Figure 2.10.
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Figure 2.9: The optical ray emitted from a light source will bounce multiple times inside the

object which makes the optical ray remain unpolarised. Then the optical ray is transmitted out

from the object and received by the detector.

Figure 2.10: The incident ray is coplanar with surface normal and refracted ray, for the most

energy of refractive ray is p-polarised which is coplanar to the incident plane. The surface normal

is oriented at φi when mapped to the image plane, so the angle between polariser and refracted

ray is ϑ− φi.

Combining equations (2.16) (2.27) and (2.33) we get

I(ϑ) =
1

4
(s0o(Tp + Ts) + s0o(Ts − Tp) cos(2ϑ− 2φi)). (2.35)

The degree of polarisation is ρ =
Ts−Tp
Ts+Tp

by (2.11). We convert θt to θi by (2.19) and substitute
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1
η with equations (2.23) and (2.25) into degree of polarisation such that

ρ(θi, η) =
sin2(θi)(η − 1

η )2

4 cos(θi)
»
η2 − sin2(θi)− sin2(θi)(η + 1

η )2 + 2η2 + 2
. (2.36)

This is known as the DoP of the diffuse polarisation reflectance model and we denote with ρd.

The 1
4s0(Tp + Ts) will be denoted as Id, it represents the unpolarised intensity image when we

capture with a conventional camera. We finally arrive at a simplified version for the diffuse

polarisation reflectance model:

I(ϑ) = Id(1 + ρd · cos(2ϑ− 2φi)). (2.37)

2.1.6 Polarisation information from polarimetric image data

The first researcher that used a polarimetric approach to estimate shape can be traced back

to 1979 by Koshikawa [49] who took advantage of the reflected polarised light to estimate the

shape of glossy objects. Later Wolff [80, 82] proposed the Fresnel reflectance model that nicely

builds a bridge between physics constraints and the task of surface shape estimation in computer

vision. With a linear polariser placed in front of a normal camera (Fig 2.7 and Fig 2.9), and

by rotating the polariser, the intensity of each pixel in the captured images follows a sinusoidal

function w.r.t the polarising filter orientation as predicted by equations (2.37) and (2.32). While

in experiments we measure the image intensity I(ϑ) but it remains unknown which model each

pixel belongs to. For we have seen both the equations (2.37) and (2.32) form sinusoidal functions.

To simplify we denote the unit surface normal as θ, φ instead of θi, φi. And we merge these two

equations into one for a general presentation:

Iϑ(Iun, ρ, ϕ) = Iun(1 + ρ · cos(2ϑ− 2ϕ)), (2.38)

where

• Iun is the mean value of the sinusoid or can be presented as the intensity value captured

without a polarising filter. It encapsulates the surface reflectance properties of the object

and the illumination of the scene.

• ρ represents the degree of polarisation which measures the proportion of how much initially

unpolarised optical light ray becomes linearly polarised after reflection/refraction by the

surface.

• ϑ represents the polariser orientation w.r.t axis of image plane.
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• ϕ represents the phase angle that is related to the azimuth angle φ of the surface normal

projected to image plane, but the relationship depends on whether specular polarisation

model or diffuse polarisation model is used.

Notice that the experimental setup only uses a linear polariser which means the circular com-

ponent of the optical ray won’t be measured. The process is the same as (2.17) shows. Instead

of measuring the Stokes parameters directly, we are now interested in unknowns of Iun, ρ and

ϕ in (2.38) where we move the known polariser orientation to subscript, and unknowns to the

bracket. We expand (2.38) as

Iϑ(Iun, ρ, ϕ) = Iun + Iun · ρ · cos(2ϑ) cos(2ϕ) + Iun · ρ · sin(2ϑ) sin(2ϕ).

While the polariser orientation ϑ and intensity I are measured data, we can factor out the

unknowns to one side of above equation into a matrix form:

Iϑ(Iun, ρ, ϕ) =
[
1 cos(2ϑ) sin(2ϑ)

]
·


x

y

z

 where


x

y

z

 =


Iun

Iun · ρ · cos(2ϕ)

Iun · ρ · sin(2ϕ)

 . (2.39)

Theoretically we can solve the x, y, z by capturing N images where N ≥ 3 whose polariser is

oriented at different angles. By stacking (2.40) into matrix form as (2.18) suggests, we have
Iϑ1
...

IϑN

 =


1 cos(2ϑ1) sin(2ϑ1)
...

...
...

1 cos(2ϑN ) sin(2ϑN )


︸ ︷︷ ︸

A∈RN×3

·


x

y

z

 , (2.40)

where Iϑi represents the intensity under polariser orientation at angle ϑi|i ∈ [1 . . . N ]. Due to

the noise and model approximation error, the observed images Oϑ are not equal to the value Iϑ

that are predicted by the model. We represent the relationship between Iϑ and Oϑ as

Oϑ = Iϑ + ε. (2.41)

To estimate x, y, z, a robust solution is to minimise the following equation:

min
x,y,z
‖A · [x, y, z]T − [Oϑ1 , . . . , OϑN ]T ‖2. (2.42)

For example we can solve by taking three images with polariser oriented at 0, π4 ,
π
2 suggested

by [18,82]. Although three images are enough to solve the equation, in practice we would like to

capture more than three images for robust estimation. The observed images might not perfectly

fit the (2.40), but we can solve by linear least squares [74]. An example is shown in Figure 2.12
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where seven images are captured at polariser angles in radians of [0, π6 ,
π
3 ,

π
2 ,

2π
3 ,

5π
6 , π] which

gradually increase the angle by π
6 as suggested in [87]. Another choice is to use a polarisation

camera that embeds the polarising filters at sensor level developed by Sony [72]. This camera

has polariser orientations at four different angles on the sensor. In contrast to a normal camera

with a mounted polariser, this camera makes the application based on polarisation information

easy to deploy. For example in our scenario, we need to take at least three images with different

polariser orientations which takes at least three shots. But with the latest camera developed by

Sony, we can access polarisation information in a single shot. An illustration of Sony polarisation

camera is shown here:

Figure 2.11: Sony’s Polarsens 4 Pixel Block Polarizer Design. source:

https://thinklucid.com/tech-briefs/polarization-explained-sony-polarized-sensor/

As we see in Figure 2.12, the fitted curve with seven images is closer to the ground truth

in contrast to only using the first three images. We finally retrieve the unknowns by Iun = x,

ρ =

√
y2+z2

x |ρ ∈ [0, 1] and ϕ = 1
2 tan−1 zy as shown in Figure 2.13.
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Figure 2.12: The upper row shows input images that are captured by a camera with a mounted

linear polariser. The upper right numbers show the degree of angle rotated by the polariser. We

plot the samples by red cross and can see they are not a perfect sinusoidal curve due to noise.

But we show using more images is more robust to noise.

Figure 2.13: The 3 images show Iun, ρ, ϕ respectively solved by (2.40).

22



We have seen that (2.38) can be interpreted either as specular polarisation reflectance model

or diffuse polarisation reflectance model. In this stage, we postulate each pixel can only be either

specular dominant or diffuse dominant while in reality it is a superposition between these two

and we will model it later. We know that degree of polarisation ρ is dependent on the zenith

angle θ of the surface normal and the refractive index η of the material. While the phase angle

ϕ reveals the azimuth angle φ of the surface normal with ambiguity shift by π. This is because

the linear polariser will allow the incident ray both with azimuth angle φ and φ + π to pass

through. i.e. in 2.10, the incident plane flipped by π cannot be distinguished from which is not.

We have the following relationship for specular polarisation reflectance model

ρ(θ, η) =
2 sin2(θ) cos(θ)

»
η2 − sin2(θ)

η2 − sin2(θ)− η2 sin2(θ) + 2 sin4(θ)

φ =


ϕ+ π

2 or

ϕ− π
2

. (2.43)

For the diffuse polarisation reflectance model, we have

ρ(θ, η) =
sin2(θ)(η − 1

η )2

4 cos(θ)
»
η2 − sin2(θ)− sin2(θ)(η + 1

η )2 + 2η2 + 2

φ =


ϕ or

ϕ− π

. (2.44)

We plot the degree of polarisation for each model respectively in 2.14. We constrain θ to lie

in [0, π2 ] otherwise the surface cannot be visible in the image. We are only concerned about

dielectric materials in this thesis, whose refractive index lies between [1.3, 1.6] [6]. By observing

the curve of specular DoP, there are up to two possible answers for θ, while the diffuse DoP

yields a unique answer for θ. And each reflectance model has two possible solutions for φ. The

total possibility of the surface normal is therefore up to six, where four come from the specular

reflection model and two from the diffuse reflection model.

23



Figure 2.14: A plot shows the function of degree of polarisation w.r.t the zenith angle (θ) with

given refractive indices 1.3 and 1.6. (a) Left image presents the specular component, where we

can see there are two θ map to the same value of DoP (marked with red circles) except the peak.

(b) Right image presents the diffuse component, whose θ uniquely maps to one value of degree

of polarisation.

As we discussed previously, in order to recover the shape from polarisation images, we need

to address these problems:

• Disambiguate the surface normal from the polarisation model which contains up to six

possible solutions. We will get up to four surface normals from the specular polarisation

model and up to two from the diffuse polarisation model.

• Retrieve the refractive index η from degree of polarisation.

2.1.7 Multi-view stereo

Multi-view stereo is a classical method to reconstruct the 3D surface of an object. By capturing

an object in many different view angles, a dense surface can be reconstructed. The key obser-

vation is that some point in the object can be seen by at least two cameras. For simplicity, we

assume a point in 3D has been seen by two views. Then the 3D point, its corresponding pixel

locations in two images and their camera positions can construct an epipolar plane as shown

in Figure 2.15. If we can identify corresponding pixel locations which capture the same point

through the images, we can reconstruct its position in 3D (where assume we know the camera

parameters) [35].
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Figure 2.15: [35] Left image. The 3D point X and the corresponding image positions are

denoted by x and x′ where their camera centres are C and C ′. X, x, x′, C and C ′ lay on the

same plane called the epipolar plane. Right image. When we do not know the 3D position of

point X and only know its pixel location x in left image. The 3D position X must lie on the

ray that connects camera center C and x. The correspondences in the right image lie on this

epipolar line l′.

In [28], the author proposed a window based search method called Winner takes all. The

algorithm can be described as:

• Choose a reference image and a set of neighbour images. i.e. the neighbour images are

defined by the distances between the neighbour cameras and the reference camera smaller

than some threshold.

• Choose a pixel location in the reference image which corresponding 3D location can be

any depth in a ray that emit from camera centre and connected with the pixel location.

Iterate over possible depth values within a given a depth range, and back project the

corresponding 3D location to the epipolar line on their neighbor images. The algorithm

will try to find out a depth value where the intensity of reference pixel and correspondences

are closest, where the intensity similarity is measured by normalised cross correlation. An

example can be viewed in Figure 2.16.

• Merge the depth maps and produce a mesh.
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Figure 2.16: [24] ”Winner-takes-all” procedure, pick the depth value which has the highest

normalized cross correlation (NCC) Score.

A more sophisticated way to get an optimum depth is to use a graphical model. A graphical

model uses a graph-based representation [46] as its foundation. It is a powerful model which has

been widely and successfully applied in a range fields: robot localisation and mapping [73], speech

recognition [26] and neural networks [56] etc. In computer vision, the graphical representation

provides an intuitive and compact data structure on images. i.e. the nodes represent image

pixels and the edges represent the connection between pixels. The goal of depth reconstruction

is to determine a depth value in each pixel, this can be thought as each observed pixel has a

hidden state depth [23] that needs to be inferred. In [47], it proposed a Markov Random Field

(MRF) depth formulation which can be seen as an optimisation problem. The input depth range

is discretised into a finite set of depth values and the problem is to assign a proper depth value

zp from the set of values to each pixel p that minimises the following cost function

E(zp) =
∑
p

Φ(zp) +
∑

(p,q)∈N

Ψ(zp, zq). (2.45)

The term Φ is called a unary potential, it’s an energy cost to measure the photo-consistency

through all images by a given depth, which means an optimum depth projected into image space

should give a similar intensity. The term Ψ is called a pairwise potential that usually enforces

spatial regularisation which encourages depths at neighbouring pixels to have similar values

[22,39,78,83]. Although the minimisation problem is an NP-hard problem, the existing algorithm
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called alpha-expansion [48] showed that a good approximation can be obtained efficiently. In [16]

they take advantage of Winner takes all and combine it with a graphical model as shown in

2.17. Multiple NCC scores are combined by window-based search method on all images. The

multiple peaks on these curves generates a set of potential depth values, and one of it is the

optimum depth value we are looking for. They utilise (2.45) and applied the tree-reweighted

message passing [79] algorithm to infer the correct depth values.

Figure 2.17: [16] The NCC Peak are potential depth values (denoted by blue triangles), and

we are looking for an optimum depth to minimise the cost built by (2.45). After optimisation,

the depth value in the green box will be set as optimum.

2.2 Related work

2.2.1 Monocular polarisation

The degree to which light is linearly polarised and the orientation associated with maximum

reflection are related to the six degrees of freedom of surface orientation. In theory, this polar-

isation information alone restricts the surface normal at each pixel to two six directions. Two

pieces of work [6,52] assume the reflectance model is diffuse only. The diffuse model only allows

two possible normal directions for each pixel. They solve the problem by disambiguating these
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polarisation normals via propagation from the boundary under an assumption of global convex-

ity. Smith et al. [69, 70] utilised the shading cue and phase angle constraint to estimate shape.

The shading cue can be presented by the Blinn-Phong reflection model [13], where diffuse pixel

is Lambertian model which can be presented as

I = αl ·N, (2.46)

where the α represents the albedo of the object, l presents the light direction and N represents

the surface normal. The specular pixels are represented by half vectors. A precomputed mask is

applied to separate specular dominant or diffuse dominant pixels. The phase angle constraint is

the projection of the surface normal on the x-y plane which should be collinear with the phase

angle, presented as Nx

Ny

×
cosφ

sinφ

 = 0.

Another presentation for surface normal is to use the gradient of depth. Then linear equation

about depth can be represented as followssinφ − cosφ

−lx −ly

 ·
Dx

Dy

 · Z =

 0

Iun
cos θi

− lz

 ,
where depth Z is the depth vector we want to solve with length equal to the number of pixels.

[lx, ly, lz] presents the light source direction, Dx, Dy are matrices that approximate the x, y

gradients from height by finite difference. When the light source is unknown, it can be estimated

by alternative optimisation described in the paper. The final estimated depth will either end up

correct or subject to a convex/concave ambiguity. If the light source is known the depth can be

determined uniquely.

Figure 2.18: [70] Two ambiguity depth with estimated light source

We have seen the equations (2.43) and (2.44) are dependent on refractive index. In [40],

the authors proposed a method that recovered shape and refractive index simultaneously. They
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capture a sequence of multispectral images which depend on wavelength as well. By introduc-

ing Cauchy’s dispersion equation [15], the refractive index can be represented as a function of

wavelength as follows

η(λ) =

M∑
k=1

Ckλ
−2(k−1). (2.47)

Each image is captured under certain wavelength optics. i.e. the reflected/refracted rays from

the object are different wavelengths that can generate a multispectral image. As shown in (2.20),

the Fresnel equation is dependent on wavelength as well. Combined with the above equation,

a non-linear cost function can be built which depends on zenith angle θ and coefficients Ck

where K is the number of wavelengths. Since digital images captured are in RGB channels, the

number of wavelengths can be constrained on RGB only. Then the problem can be solved by

trust-region method.

Saman [66] made use of photometric stereo in conjunction with polarisation to estimate

refractive index. Photometric stereo was proposed by [84] and is based on Lambertian reflactance

model as shown in (2.46). The surface normal contains three unknowns, therefore three images

with three different light sources are sufficient to solve the surface normal. In order to get a

robust shape estimation, more than three images will be taken to ensure each pixel illuminated

at least by three different light sources. Moreover the redundant images make the result more

robust to the noise. Equipped with the knowledge of photometric stereo, [66] firstly recovered

the normals from photometric stereo. Secondly, computed the zenith angle from the normal.

Thirdly, substituted the zenith angle into Equation (2.44) to compute the refractive index.

Similarly, [58] proposed two constraints from photometric stereo and polarisation separately.

The photometric stereo constraint took the intensity ratio between two different images with

different light sources while the polarisation stereo constratin took the intensity ration between

two different images that under same illumination but with different polariser angles. With

these two constraints, a cost function was constructed that tried to find an optimum zenith

angle and refractive index pair to minimise it. The cost function was passed to a non-linear

solver and refractive index and normal were jointly estimated. Another paper [75] used a non-

linear approach to estimate mixed polarisation pixels as well as the refractive index.

2.2.2 Two view Polarisation

Recovering the shape of a transparent object merely by intensity is a challenge. Miyazaki et

al. [52] proposed a method to estimate transparent object surfaces by utilising the degree of
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polarisation from a polarisation reflection model with knowledge of refractive index. One of

the challenges we have seen in Figure 2.14 is that the DoP of the specular model produces two

zenith angle values. By observing the derivative of specular DoP shown in Figure 2.19, the

author concludes a way to disambiguate the zenith angle θ:

θ ∈


0◦ < θ < θB ρ′ > 0

θ = θB ρ′ = 0

θB < θ < 90◦ ρ′ < 0

. (2.48)

Figure 2.19: [52] The derivative of DoP gives a clue to disambiguate θ.

In order to compute the derivative of DoP, the author build up a two-view environment to

capture the same object from two slightly different angles. The DoP of a pixel in the first view is

represented by ρ(θ). And the corresponding pixel in the second view was presented by ρ(θ+∆θ)

who was slightly rotated by angle ∆θ. So the derivative of polarisation in a certain pixel ρ′ can

be computed by follows

ρ′ =
ρ(θ + ∆θ)− ρ(θ)

∆θ
.

After getting the derivative, the ambiguity of the value θi can be identified by the sign of

derivative according to (2.48). The phase angle is calculated then disambiguated by propagating

from the occluding boundary to the rest of the surface. Where the azimuth angle on the occluding
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boundary is assumed pointing vertically to the view direction. A similar boundary propagation

method has been used in paper [6], but the authors concentrated on dielectric objects and only

used diffuse polarisation reflectance model. By observing that dielectric objects illuminated

by a point light are diffuse dominant and their refractive indices normally fall between 1.4 to

1.6, so the zenith angle can be recovered directly from diffuse polarisation component without

further ambiguity resolution. From equation (2.44), the azimuth angle on each pixel has two

ambiguities, and image with N pixels has 2N different combinations of azimuth angles. In order

to disambiguate it, the paper made assumption that the normals of occluding contours were

always pointing away from the surface. By propagating from the occluding contour pixels to their

neighbours, the algorithm selected the azimuth angles that helped to preserve the smoothness

of the object. After obtaining the normals, a Graph-Spectral [65] method was applied to recover

the depth of the object.

In papers [3,5,8], the authors made use of the two-view shading cues and diffuse polarisation

to recover the shape of featureless objects. Firstly, taking polarimetric images from two views

separately, a unique zenith angle and ambiguous azimuth angles could be obtained. Secondly,

segmenting the images to patches which are established for correspondences searching. Thirdly,

using patch matching to optimise cost function in order to fully constrain the surface normal by

establishing correspondence. Lastly recovering depth from unambiguous normals.

A recent work [42] leveraged the Kinect which is equipped with an RGB-D sensor and

combined it with polarimetric information to recover a depth map. (1) The Kinect camera

produces a coarse depth map for an object but noisy on surface detail. (2) Polarimetric images

will give high resolution in detail per-pixel on normal map but with ambiguity. (3) Using coarse

depth map as a guidance to disambiguate the normal map from polarisation. (4) Make use of the

spanning tree and depth field constraints to enhance the coarse depth map with the corrected

normal map.
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Figure 2.20: [42] (a) The coarse depth map captured by Kinect. (b) Input polarimetric images.

(c) Recovered shape from polarisation images. (d) Using coarse depth map to disambiguate

result of (c). (e) Enhanced coarse depth map.

2.2.3 Multi-view Polarisation

The limitation of multi-view stereo is it cannot recover featureless regions due to the corre-

spondence search failing in this case. However, polarisation images still has surface orientation

information. In paper [19] the authors proposed a polarimetric multi-view stereo that utilises

a polarisation model to recover shape in the featureless areas. The depth map estimated from

multiveiw stereo gives a strong clue for the surface normal that is utilised as a guidance to

disambiguate the normals from polarisation. It observed that the phase angle should be either

flipped by π or π/2 which is unknown. This is a binary label problem which can be modelled by

(2.45) and solved. Then the holes in the depth map only contain polarisation information, it will

be estimated by propagating the surface normal from known area reconstructed by multi-view

stereo. Lastly using the depth map and corrected surface normals jointly to estimate depth

map [57]. The paper also mentioned about how to deal with the mixed polarisation pixels: find-

ing out the diffuse dominant pixels and treating the rest of pixels as specular pixels by image

intensity.
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Figure 2.21: a).The top left illustrate the setup of multi-view polarisation. b). The top right

shows the estimated azimuth angle of the car. c). The bottom left shows the reconstruction

from multi-view stereo. d). The bottom right shows the reconstruction result of multi-view

polarisation. [20]

Some of the earliest work on polarisation vision used a stereo pair of polarisation measure-

ments to determine the orientation of a plane [81]. Rahmann and Canterakis [64] combine a

specular polarisation model with stereo cues. Similarly, Atkinson and Hancock [8] use polari-

sation normals to segment an object into patches, simplifying stereo matching. Note however

that this method is restricted to the case of an object rotating on a turntable with known angle.

Stereo polarisation cues have also been used for transparent surface modelling [53]. Berger et

al. [12] use polarisation stereo for depth estimation of specular scenes. Chen et al. [17] provide

a theoretical treatment of constraints arising from three view polarisation. Yang et al. [86]

propose a variant of monocular SLAM using polarisation video. Cui et al. [21] use polarisa-

tion constraints to reduce the number of correspondences required for relative pose estimation.

While these methods all require multiple polarisation cameras or a moving camera, we focus on

a single viewpoint but with varying illumination direction. The two approaches are likely to be

complimentary.

2.2.4 Limitations

We have seen the previous works on shape-from-polarisation methods provides promising results.

With only polarisation images, it is possible to reconstruct a dense height map. The ambiguity
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was solved by boundary propagation and making an assumption that the reflectance model is

diffuse. With shading cues alone, one light source can recover an accurate and dense height map

with only concave and convex ambiguity. It provides an easier setup and solution compared to

shape from shading or photometric stereo. But these works are limited to uniform albedo object

and with prior of known refractive index. The work of polarimetric stereo and multi-view helps

to solve the ambiguity problem by using the depth reconstructed from stereo or multi-view as

a guidance. But these works did not fully explore the polarisation properties. And all these

methods make assumptions that a pixel is either diffuse or specular dominant. To conclude,

these methods have one or more of the following limitations:

• The albedo of object is uniform.

• The refractive index of the object is known.

• The shape reconstruction is not metric.

• The pixel is assumed either diffuse or specular dominant.

In this thesis, we take the common assumptions in Section 2.1.3, each method proposed in

this thesis are aiming to reconstruct the depth of the object while relaxing some of the limitations

above. This can be concluded in following table:

non-uniform albedo refractive index metric reconstruction Mixed reflectance

Photo-polarimetric stereo X

Non-linear approach X X

Polarisation enhanced by second camera X X

Mixed polarisation model X X X

Table 2.1: Each proposed method relaxes some of the limitations in previous work. (a) Non-

uniform albedo indicates the method is able to apply on the object where the albedo is non-

uniform. (b) Refractive index indicates the method do not need the pre-knowledge of the

refractive index value of the object, and the proposed method is able to estimate the refractive

index value instead. (c) Metric reconstruction indicates the method is able to reconstruct a

metrically accurate depth instead of height map up to unknown scale. (d) Mixed reflectance

indicates the method is able to deal with the pixel intensity mixed with diffuse and specular

reflectance. We do not need to make an assumption that the pixel is either diffuse or specular

dominant.
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2.3 Conclusion

In the first part of this chapter we reviewed the physics background of the polarisation phe-

nomenon and derived the polarisation reflectance models that are being widely used in the

Shape-from-Polarisation methods. In the second part we review some important research works

on Shape-from-Polarisation methods. In the next chapters, we start to propose different methods

in order to solve the limitations in previous works.

35



Chapter 3

Underpinning methods for

shape-from-polarisation

In this chapter, we propose two underpinning methods that are used throughout the rest of

the thesis in our various shape-from-polarisation formulations. We first propose a multichannel

estimation method to retrieve unpolarised intensity Iun, degree of polarisation ρ and phase angle

ϕ from polarimetric images. We have seen all previous shape-from-polarisation methods begin

by estimation of Iun, ρ, ϕ. This is usually done by linear least square [70] or nonlinear sinusoid

curve-fitting [6]. A major drawback of previous estimation methods [4, 6, 69, 70] is only one

colour channel has been taken into account, which does not exploit all possible constraints on

ρ, ϕ. By (2.43) and (2.44), ρ is determined by zenith angle and refractive index, ϕ is deter-

mined by azimuth angle. These are the properties independent on shading. In Section 3.1 we

utilise this observation that ρ, ϕ should be identical through all colour channels in chromatic

image (assuming refractive index does not vary with wavelength, because the refractive index

changes very small in visible spectrum [45]), a multichannel estimation version is developed.

Moreover in Section 3.2, we extend the multichannel estimation to multiple light scenario. For

the same object captured under different illumination conditions, ρ, ϕ should be identical, the

only difference is the unpolarised intensity.

In the second part we propose a least square approach to formulate the surface height from

gradient. Rather than integrating height from surface normal/gradient, the linear equation w.r.t

height provides a closed form solution and avoids the integrability problem. This formulation

relies on computing the surface gradient from height, hence, numerical surface derivative ap-

proximation is critical. In classical approach, only first order accurate (forward or backward
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finite difference) are used that make an implicit assumption of surface planarity and are highly

susceptible to noise. Occasionally, central difference (second order accurate) [29,62] or smoothed

central difference (increased robustness to noise) [57] kernels have been used but the only work

to consider kernels accurate to arbitrary order is that of Harker and O’Leary [31–34]. The devel-

oped 2D Savitzky-Golay kernel in Section 3.3 provides a higher order and weighted neighbours

for surface derivative approximation. Moreover, the Savitzky-Golay kernels can be used as a

smoothness regulariser. Unlike planar regularisers, such as a Laplacian filter [69] or zero surface

prior [62], we are able to use a high regularisation weight to cope with very significant noise, yet

still recover smooth curved surfaces without over flattening. Furthermore, we extend the kernel

domain to arbitrary by using K-nearest search to overcome the discontinuity in the domain.

3.1 Multichannel estimation

A polarisation image is usually computed by fitting (2.40) to observed data in a least squares

sense. Hence, from more than 3 measurements we estimate Iun, ρ and ϕ. In practice, we

may have access to multichannel measurements. For example, we may capture RGB images

(3 channels). Since ρ and φ depend only on surface geometry (in the case of colour images,

the refractive index changes very little in visible spectrum [45], we approximate the value of

refractive index is invariant through R, G, B channels), then we expect these quantities to be

constant over the channels. On the other hand, Iun will vary between channels either because of

a shading change caused by the different lighting or because the albedo or light source intensity

is different in the different colour channels. Hence, in a multichannel setting with C channels and

N polarisation images, we have C + 2 unknowns and C ·N observations. If we use information

across all channels simultaneously, the system is more constrained and the solution will be more

robust to noise. Moreover, we do not need to make an arbitrary choice about the channel from

which we estimate the polarisation image. This idea shares something in common with that of

Narasimhan [55], though their material/shape separation was not in the context of polarisation.

Specifically, we can express the multichannel observations of a single pixel in channel c with

polariser angle ϑj as

Iϑj
c = Iun

c(1 + ρ cos(2ϑj − 2ϕ)). (3.1)

The system of equations is linear in the unpolarised intensities and, by a change of variables, can

be made linear in ρ and ϕ [40]. Hence, we wish to solve a bilinear system and do so in a least

squares sense using interleaved alternating minimisation. Specifically, we a). fix ρ and ϕ and
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then solve linearly for the unpolarised intensity in each channel and b). then fix the unpolarised

intensities and solve linearly for ρ and ϕ using all channels simultaneously.

3.1.1 Solve unpolarised intensities

In order solve the unpolarised intensities across channels in a single pixel, we firstly factor out

the unknowns from the (3.1) under all N polariser angles. With (2.40) we have:
1 + ρ cos(2ϑ1 − 2ϕ)

...

1 + ρ cos(2ϑN − 2ϕ)


︸ ︷︷ ︸

Aρϕ∈RN

·
[
Iun

c
]

=


Iϑ1

c

...

IϑN
c

 (3.2)

We move the fix term into matrix Aρϕ as denoted in above equation. For we have C channels,

then we obtain the unpolarised intensities across channels by solving:

min
Iun1,...,IunC

∥∥∥∥CA ·
[
Iun

1 . . . Iun
C
]T
− o

∥∥∥∥2 , (3.3)

where CA ∈ RCN×C is given by

CA =


Aρϕ . . . 0

...
. . .

...

0 . . . Aρϕ

 , (3.4)

with Aρϕ in diagonal while rest are zero in matrix CA. And o ∈ RCN is the observed images

that given by

o =
î
Iϑ1

1 . . . IϑN
1, Iϑ1

2 . . . IϑN
2, . . . , Iϑ1

C . . . IϑN
C
óT
. (3.5)

3.1.2 Solve degree of polarisation and phase angle

We now fix the multichannel unpolarised intensity. In order to solve the degree of polarisation

and phase angle, first rearrange the (3.1) as

Iϑj
c − Iunc = Iun

c(ρ cos(2ϑj − 2ϕ)).

we then factor out ρ and ϕ to achieve:

Iϑj
c − Iunc =

[
Iun

c cos(2ϑj) Iun
c sin(2ϑj)

]
·

ρ cos(2ϕ)

ρ sin(2ϕ)


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With the unpolarised intensities fixed, we solve for ρ and ϕ using the following linearisation:

min
a,b

∥∥∥∥∥∥Cρϕ

a
b

− dρϕ

∥∥∥∥∥∥
2

, (3.6)

where [a b]T = [ρ cos(2ϕ), ρ sin(2ϕ)]T , and Cρϕ ∈ RCN×2 is given by

Cρϕ =



Iun
1 cos(2ϑ1) Iun

1 sin(2ϑ1)
...

...

Iun
1 cos(2ϑN ) Iun

1 sin(2ϑN )

Iun
2 cos(2ϑ1) Iun

2 sin(2ϑ1)
...

...

Iun
C cos(2ϑN ) Iun

C sin(2ϑN )


, (3.7)

and dρϕ ∈ RCN is given by:

dρφ =



Iϑ1
1 − Iun1

...

IϑN
1 − Iun1

Iϑ1
2 − Iun2

...

IϑN
C − IunC


. (3.8)

We estimate ρ and ϕ from the linear parameters using ϕ = 1
2atan2(b, a) and ρ =

√
a2 + b2.

3.1.3 Alternating optimisation

We initialise by computing a polarisation image from one channel using linear least squares, as

in [40], and then use the estimated ρ and ϕ to begin alternating interleaved optimisation by

solving for the unpolarised intensities across channels. We interleave and alternate the two steps

until convergence. In practice, we find that this approach not only dramatically reduces noise

in the polarisation images but also removes the ad hoc step of choosing an arbitrary channel to

process. We show an example of the results obtained in Figure 3.1. The multichannel result is

visibly less noisy than the single channel performance.
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Figure 3.1: Multichannel polarisation image estimation. Top row: the input image sequence;

Second row left: degree of polarisation (ρ) and right: phase angle (ϕ) estimated from a single

channel; Third row left: degree of polarisation (ρ) and right: phase angle (ϕ) estimated from

three colour channels and two light source directions.
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3.2 Polarisation image estimation with multiple light sources

In the scenario of multiple images, each with a different light source direction, degree of polari-

sation ρ and phase angle ϕ depend only on surface geometry, the unpolarised intensity Iun might

vary due to different light source. This hold true only while the pixel location through

all light sources are either all diffuse dominant or specular dominant. For example,

it cannot be applied when a pixel under first light is diffuse dominant while under second light

is specular dominant, for the ρ belongs to different polarisation model as showed in (2.44) and

(2.43), phase angle ϕ will flip by π
2 as well.

We postulate the pixel through all light sources are under same polarisation model in this

method. One way to estimate Iun, ρ, ϕ is to apply multichannel estimation to each light source

separately. i.e. estimate Iun1, ρ1, ϕ1 for first light, and Iun2, ρ2, ϕ2 for second light which leads

to ρ1 6= ρ2, ϕ1 6= ϕ2. The drawback of separated estimation is that we might get different value

for ρ, ϕ which theoretically are independent of the light sources. We are aiming to extend the

multichannel light estimation in Section 3.1 to multiple light sources while constraining ρ, ϕ to

be the same. We follow the same strategy as multichannel light estimation that a). fix ρ and ϕ

then solve linearly for the unpolarised intensity under different light sources. Assume we have

P light sources and the unpolarised intensity under kth light denoted as Iunk. b). Constrain the

ρ and ϕ under all light sources then fix the unpolarised intensity Iun1, . . . , IunP to solve linearly

for ρ and ϕ using all channel simultaneously.

Specifically, we can express the multichannel observations of a single pixel in channel c with

polariser angle ϑj under light l as

Iϑj
c
l

= Iun
c
l (1 + ρ cos(2ϑj − 2ϕ)). (3.9)

3.2.1 Solve unpolarised intensity

From (3.2) and (3.3) we have seen how to solve unpolarised intensity under one light source. For

multiple light sources, Aρϕ is fixed through all different light sources, to obtain the unpolarised

intensities across channels and light sources we can solve:

min
Iun1

1...Iun
C
1 ,...,Iun

1
P ...Iun

C
P

∥∥∥∥CAL ·
[
Iun

1
1 . . . Iun

C
1 . . . Iun

1
P . . . Iun

C
P

]T
− oL

∥∥∥∥2 (3.10)
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where CAL ∈ RCNP×CP is given by

CAL =


CA . . . 0

...
. . .

...

0 . . . CA

 , (3.11)

with CA denoted in (3.4) and oL ∈ RCNP is the observed images that given by

oL = [o1 . . .ok . . .oP ]T .

where ok is defined in (3.5) that presents intensities captured under kth light source.

3.2.2 Solve degree of polarisaiton and phase angle

We now fix the multichannel unpolarised intensity. We can use the same strategy in equation

(3.6) to solves ρ and ϕ. For Cρϕ and dρϕ contains unpolarised intensity that are light source

dependent. We rewrite them as a light source dependent equation as follows

Cρϕl =



Iun
1
l cos(2ϑ1) Iun

1
l sin(2ϑ1)

...
...

Iun
1
l cos(2ϑN ) Iun

1
l sin(2ϑN )

Iun
2
l cos(2ϑ1) Iun

2
l sin(2ϑ1)

...
...

Iun
C
l cos(2ϑN ) Iun

C
l sin(2ϑN )


, dρφl =



Iϑ1
1
l − Iun

1
l

...

IϑN
1
l − Iun

1
l

Iϑ1
2
l − Iun

2
l

...

IϑN
C
l − Iun

C
l


.

we solve for ρ and ϕ using the following linearisation:

min
a,b

∥∥∥∥∥∥Cρϕ
a
b

−Dρϕ

∥∥∥∥∥∥
2

, (3.12)

where [a b]T = [ρ cos(2ϕ), ρ sin(2ϕ)]T , and Cρϕ ∈ RCNP×2 is given by

Cρϕ =
[
Cρϕ1 . . . CρϕP

]T
(3.13)

and Dρϕ ∈ RCNP is given by

Dρϕ =
[
dρφ1 . . . dρφP

]T
(3.14)

We estimate ρ and ϕ from the linear parameters using ϕ = 1
2atan2(b, a) and ρ =

√
a2 + b2.

The solving tactic is similar as described in Section 3.1, the initialisation step can be set by

computing a polarisation image from one channel under one light source. Figure 3.2 shows an

example of using this method under two different light sources.
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3.3 Least square reconstruction of surface height

In this section, firstly, we propose a new method for computing numerical derivatives based on

2D Savitzky-Golay filters and K-nearest neighbour kernels. The resulting derivative matrices

can be used for least squares surface reconstruction (i.e. (4.40) and (4.19)) over arbitrary (even

disconnected) domains in the presence of large noise and allowing for higher order polynomial

local surface approximations. Secondly, the Savitzky-Golay filters can be used as a smoothness

regulariser as shows in (4.20). Unlike planar regularisers, such as a Laplacian filter [69] or zero

surface prior [62], we are able to use a high regularisation weight to cope with very significant

noise, yet still recover smooth curved surfaces without over flattening. Thirdly, our least squares

surface reconstruction approach is very general, allowing both orthographic and perspective

projection (without requiring a nonlinear change of variables [61]), and an optional depth prior.

Finally, the proposed method provides an alternate formulation for height-from-normals that

uses surface normal components rather than implied surface gradients and is numerically more

stable.

Figure 3.2: An example shows multichannel estimation on snooker ball images.
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3.3.1 Linear least squares height-from-normals

We denote an image location in camera units (pixels) as (x, y) such that u = (x, y) is a pixel

location in the image. We parameterise the surface by the height or depth function z(u). In

normals-from-depth we are given a noisy observed depth map and wish to estimate the surface

normal map n(u) = [nx(u), ny(u), nz(u)]T with ‖n(u)‖= 1. In surface integration we are given

n(u) and wish to estimate z(u).

To the best of our knowledge, all existing surface integration methods compute height-from-

gradient, i.e. they transform the given surface normals into estimates of the gradient and solve

the following pair of PDEs, usually in a least squares sense:

∂z(u)

∂x
=
−nx(u)

nz(u)
,

∂z(u)

∂y
=
−ny(u)

nz(u)
. (3.15)

The problem with this approach is that close to the occluding boundary, nz gets very small

making the gradient very large. The squared errors in these pixels then dominate the least

squares solution. We propose an alternative formulation that is more natural, works with both

orthographic and perspective projections and, since it uses the components of the normals

directly, is best referred to as height-from-normals. The idea is that the surface normal should

be perpendicular to the tangent vectors. This leads to a pair of PDEs:

∂p(u)

∂x
· n(u) = 0,

∂p(u)

∂y
· n(u) = 0. (3.16)

We now consider how to formulate equations of this form in two different cases: orthographic

and perspective projection.

3.3.2 Linear equations

Orthographic case The 3D position, p(u), of the point on the surface that projects to pixel

position u and its derivatives are given by:

p(u) =


x

y

z(u)

 , ∂p(u)

∂x
=


1

0

∂z(u)
∂x

 , ∂p(u)

∂y
=


0

1

∂z(u)
∂y

 . (3.17)

Substituting these derivatives into (3.16) we obtain:

∂z(u)

∂x
nz(u) = −nx(u),

∂z(u)

∂y
nz(u) = −ny(u). (3.18)

Note that this leads to a simple rearrangement of (3.15) but which avoids division by nz.
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Perspective case In the perspective case, the 3D coordinate corresponding to the surface

point at u and its derivatives are given by:

p(u) =


x−cx
fx

z(u)

y−cy
fy

z(u)

z(u)

 (3.19)

where fx, fy is the focal length of the camera w.r.t x, y respectively, and (cx, cy) is the principal

point. The derivatives are given by:

∂p(u)

∂x
=


−1
fx

Ä
(x− cx)∂z(u)∂x + z(u)

ä
−1
fy

(y − cy)∂z(u)∂x

∂z(u)
∂x

, ∂p(u)

∂y
=


−1
fx

(x− cx)∂z(u)∂y

−1
fy

Ä
(y − cy)∂z(u)∂y + z(u)

ä
∂z(u)
∂y

 (3.20)

Again, these can be substituted into (3.16) to relate the derivatives of z to the surface normal

direction.

3.3.3 Discrete formulation

Assume that we are given a foreground mask comprising some subset of the discretised image

domain, F ⊆ {1, . . . ,W} × {1, . . . ,H} with |F|= n. The depth values for the n foreground

pixels are stored in a vector z ∈ Rn with arbitrary ordering. We make use of a pair of matrices,

Dx,Dy ∈ Rn×n, that compute discrete approximations to the partial derivative in the horizontal

and vertical directions respectively. The exact form of these matrices is discussed in the next

section. Once these discrete approximations are used, the PDEs in (3.16) become linear systems

of equations in z. This leads to a linear least squares formulation for the height-from-normals

problem.

Orthographic case In the orthographic case, we stack equations of the form (3.18):diag(nz)Dx

diag(nz)Dy

 z =

−nx

−ny

 (3.21)

where

nx =


nx(u1)

...

nx(un)

 , ny =


ny(u1)

...

ny(un)

 , nz =


nz(u1)

...

nz(un)

 . (3.22)
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Note that (3.21) is satisfied by any offset of the true z, corresponding to the unknown constant

of integration. This is reflected in the fact that:

rank

ÑDx

Dy

é = n− 1. (3.23)

So, in the orthographic case, we can only recover z up to an unknown offset.

Perspective case In the perspective case, we stack equations obtained by substituting (3.20)

in (3.16) to obtain: NTx

NTy

 z = 02n×1, (3.24)

where

Tx =


−1
fx

U −1
fx

I

−1
fy

V 0n×n

I 0n×n


Dx

I

 , Ty =


−1
fx

U 0n×n

−1
fy

V −1
fy

I

I 0n×n


Dy

I

 , N =


diag (nx)

diag (ny)

diag (nz)


T

, (3.25)

U = diag(x1 − cx, . . . , xn − cx) and V = diag(y1 − cy, . . . , yn − cy). Note that (3.24) is a

homogeneous linear system. This means that it is also satisfied by any scaling of the true z. So,

in the perspective case, we can only recover z up to an unknown scaling.

3.3.4 Numerical differentiation kernels

We now consider the precise form of Dx and Dy and propose a novel alternative with attractive

properties. Since the derivative matrices act linearly on z they can be viewed as 2D convolutions

over z(x, y). Note however that each row of Dx or Dy can be different - i.e. different convolution

kernels can be used at different spatial locations.

By far the most commonly used numerical differentiation kernels are forward (fw) and back-

ward (bw) difference, shown here for both the horizontal (h) and vertical (v) directions:

Kh
fw =


0 0 0

0 −1 1

0 0 0

 , Kv
fw =


0 0 0

0 −1 0

0 1 0

 , Kh
bw =


0 0 0

−1 1 0

0 0 0

 , Kv
bw =


0 −1 0

0 1 0

0 0 0

 . (3.26)

As resolution increases and the effective step size decreases, forward and backward differences

tend towards the exact derivatives. However, for finite step size they are only exact for order

one (planar) surfaces and highly sensitive to noise. Averaging forward and backward yields the

central difference (c) approximation, used for example by Quéau et al. [62]:

Kh
c =

1

2


0 0 0

−1 0 1

0 0 0

 , Kv
c =

1

2


0 −1 0

0 0 0

0 1 0

 . (3.27)
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This is order two accurate but still only uses two pixels per derivative and so is sensitive to

noise. One way to address this is to first smooth the z values with a smoothing kernel S and

then compute a finite difference approximation. By associativity of the convolution operator we

can combine the smoothing and finite difference kernels into a single kernel. For example, the

smoothed central difference (sc) approximation, as used by Nehab et al. [57] is given by:

Kh
sc = Kh

c ∗ S =
1

12


−1 0 1

−4 0 4

−1 0 1

 , Kv
sc = Kv

c ∗ S =
1

12


−1 −4 −1

0 0 0

1 4 1

 , (3.28)

where in this case S is a rounded approximation of a 3×3 Gaussian filter with standard deviation

0.6. A problem with both smoothed and unsmoothed central difference is that the derivatives and

therefore the linear equations for a given pixel do not depend on the height of that pixel. This lack

of dependence between adjacent pixels causes a severe “checkerboard” effect that necessitates the

use of an additional regulariser, often smoothness. Commonly, this is the discrete Laplacian [69].

However, a smoothness penalty based on this filter is minimised by a planar surface. So, as the

regularisation weight is increased, the surface becomes increasingly flattened until it approaches

a plane.

With all of these methods alternative kernels must be used at the boundary of the foreground

domain. For example, switching from central to backward differences. This means that the

numerical derivatives are not based on a consistent assumption.

3.3.5 2D Savitzky-Golay filters

We now show how to overcome the limitations of the common numerical differentiation and

smoothing kernels using 2D Savitzky-Golay filters.

The idea of a Savitzky-Golay filter [67,90] is to approximate a function in a local neighbour-

hood by a polynomial of chosen order. This polynomial is fitted to the observed (noisy) function

values in the local neighbourhood by linear least squares. Although the polynomial may be of

arbitrarily high order, the fit residuals are linear in the polynomial coefficients and so a closed

form solution can be found. This solution depends only on the relative coordinates of the pixels

in the local neighbourhood. So, it can be applied (linearly) to any data values meaning that

reconstruction with the arbitrary order polynomial can be accomplished with a straightforward

(linear) convolution.

The surface around a point (x0, y0) is approximated by the order k polynomial zx0,y0(x, y) :
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R2 7→ R with coefficients aij :

zx0,y0(u, v) =
k∑
i=0

k−i∑
j=0

aij(x− x0)i(y − y0)j . (3.29)

Assume we are given a set of pixel locations, Nx0,y0 = {(x1, y1), . . . , (xm, ym)}, forming a neigh-

bourhood around (x0, y0) and the corresponding Z values for those pixels. We can form a set

of linear equations
1, y1 − y0, (y1 − y0)2, . . . , (x1 − x0)k

...

1, ym − y0, (ym − y0)2, . . . , (xm − x0)k

a = CNx0,y0a = zNx0,y0 , (3.30)

where a = [a00, a01, a02, . . . , ak0]
T and zNx0,y0 = [z(x1, y1), . . . , z(xm, ym)]T . The least squares

solution for a is given by C+
Nx0,y0

zNx0,y0 where C+
Nx0,y0

is the pseudo inverse of CNx0,y0 . Note that

C+
Nx0,y0

depends only on the relative coordinates of the pixels chosen to lie in the neighbourhood

of the (x0, y0). Also note that zx0,y0(0, 0) is given simply by a00 which is the convolution between

the first row of C+
Nx0,y0

and the z values. This is a smoothed version of z(x0, y0) in which the

original surface is locally approximated by a best fit, order k polynomial. Similarly, the first

derivative of the fitted polynomial in the horizontal direction is given by a10 and in the vertical

direction by a01, corresponding to two other rows of C+
Nx0,y0

. Note that the order k is limited

by the size of the neighbourhood. Specifically, we require at least as many pixels as coefficients,

i.e. k ≤ m.

When Nx0,y0 is a square neighbourhood centred on (x0, y0) then the appropriate row of

C+
Nx0,y0

can be reshaped into a square convolution kernel. Convolving this with a z(x, y) map

with rectangular domain F amounts to locally fitting a polynomial of order k and either eval-

uating the polynomial at the central position, acting as a smoothing kernel, or evaluating the

derivative of the polynomial in either vertical or horizontal direction.

3.3.6 K-nearest pixels kernel

In general, the foreground domain will not be rectangular. Often, it corresponds to an object

mask or semantic segmentation of a scene. In this case, we need a strategy to deal with pixels

that do not have the neighbours required to use the square kernel. 2D Savitzky-Golay filters

are ideal for this because the method described above for constructing them can be used for

arbitrary local neighbourhoods. We propose to use the K-nearest pixels in F to a given pixel. In

practice, we compute the square d× d kernel once and use this for all pixels where the required

48



A

B
A

B

Background

Domain of kernel for

Domain of kernel for

KA =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −0.167 0 0.167 0 0

0 0 −0.167 0 0.167 0 0

0 0 −0.167 0 0.167 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, KB =



0 0 0 0 0 0 0

0 0.266 −0.255 0.249 0 0 0

0 −0.294 −0.487 0 0 0 0

0.4194 −0.4698 0 0.8313 0 0 0

0 −0.2603 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



Figure 3.3: An example of computing 2D Savitzky-Golay filters on an arbitrary domain. In this

example, we use a 3×3 kernel. For point A we can use the default square kernel. The order two

Savitzky-Golay filter for the horizontal derivative is shown below as KA. For point B we use

the 32 nearest pixels and build a custom order two Savitzky-Golay filter shown below as KB.

In practice, higher order kernels provide better performance.

neighbours lie in F . For those that do not, we find the d2 nearest neighbours in F (one of which

will be the pixel itself). Where tie-breaks are needed, we do so randomly, though we observed

no significant difference in performance if all tied pixels are included. In Figure 3.3 we show an

example of a standard and non-standard case. All non-white pixels lie in F . Pixel A has the

available neighbours to use the square kernel while B does not and uses a custom kernel.

Each element in a kernel for a pixel is copied to the appropriate entries in a row of Dx or

Dy. We similarly construct a matrix S ∈ Rn×n containing the a00 kernels, i.e. the smoothing

kernel. Each row of these three matrices has d2 non-zero entries.

3.3.7 3D K-nearest neighbours kernel

For normals-from-depth where a noisy depth map is provided, the K-nearest neighbours kernel

idea can be extended to 3D. The idea is to use the depth map with (3.19) to transform pixels

to 3D locations, then to perform the KNN search in 3D. The advantage of this is that kernels

will avoid sampling across depth discontinuities where the large change in depth will result in

adjacent pixels being far apart in 3D distance. This allows us to create large, robust kernels but
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without smoothing over depth discontinuities.

3.3.8 Implementation

For an efficient implementation, all pixel coordinates from F are placed in a KNN search tree

so that local neighbourhoods can be found quickly and pixels that can use the square mask are

identified by convolution of the mask with a square filter of ones.

To compute normals-from-depth, we use our proposed derivative matrices (with 3D KNN

search) to compute the partial derivatives of z, take the cross product between horizontal and

vertical derivatives (3.20) and normalise to give the unit surface normal.

To compute height-from-normals, we solve a system of the form of (3.21) (orthographic)

or (3.24) (perspective). We augment the system of equations with a smoothness penalty of the

form λ(S−I)z = 0, where λ is the regularisation weight. This encourages the difference between

the smoothed and reconstructed z values to be zero. For the orthographic system, we resolve

the unknown offset by solving for the minimum norm solution - equivalent to forcing the mean

z value to zero. For the perspective case, since the system is homogeneous in theory we could

solve for the ‖z‖= 1 solution by solving a minimum direction problem using the sparse SVD.

In practice, we find it is faster to add an additional equation forcing the solution at one pixel

to unity. Finally, we can optionally include a depth prior simply by adding the linear equation

ωIz = ωzprior, where ω is the prior weight.

3.4 Summary

In this chapter we first proposed a multichannel estimation to obtain Iun, ρ, ϕ. We demonstrate

this method on a input of RGB polarimetric images data, the quality of output significantly

improved compare with using only single channel. We then further extend this method to

a multilight scenario, that fixed a camera, captured the object under different illumination

conditions. By constraint ρ, ϕ are the same, the multilight estimation gives a more robust results.

In the second part, we formulate a linear equation of height from normal. And the proposed

2D Savitzky-Golay kernel can provide a numerical derivation approximation and smoothness

regulariser. These two method will be used in the following chapters in this thesis.
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Chapter 4

Monocular shape-from-polarisation

The intrinsic challenge to recover the shape from polarisation is an innately ambiguous shape

cue. In theory, this polarisation information alone restricts the surface normal at each pixel to

six possible directions. Previous approaches under one view solve the problem of disambiguating

these polarisaiton normals via propagation from the boundary under an assumption of global

convexity [6,54]. [40] also disambiguate polarisation normals with a global convexity assumption

but estimate refractive index in addition. These works rely on diffuse polarisation model and

known refractive index, the height map must be integrated from surface normal. A later method

[70] showed how to express polarisation and shading constraints directly in terms of surface

height, leading to a robust and efficient linear least squares solution. It show how to estimate

the illumination, up to a binary ambiguity, making the method uncalibrated. However, they

require known or uniform albedo.

In this chapter, we propose an alternative approach to the SfPol problem in Section 4.1.

Like [42, 70], we estimate surface height directly. However, unlike all previous methods, we do

not decompose the captured data into a polarisation image Iun, ρ, ϕ and then estimate shape

as an independent second step. This two step approach ignores potential uncertainty in the

estimated polarisation image. Instead, we take an energy minimisation approach and optimise

a nonlinear least squares cost that directly measures error between the observed data and that

predicted from the estimated surface height.

We then explore the combination of shape-from-polarisation constraints with photometric

constraints (i.e. photo polarimetric shape estimation) provided by two light sources in Section

4.2. Photometric stereo with three or more light sources is a very well studied problem with
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robust solutions available under a range of different assumptions. Two source photometric stereo

is still considered a difficult problem [63] even when the illumination is calibrated and albedo

is known. We show that various formulations of two source photo-polarimetric stereo lead to

the same general problem (in terms of surface height), that illumination can be estimated and

that certain combinations of constraints lead to an albedo invariant formulation. Moreover, the

refractive index can be estimated. Hence, with only modest additional data capture requirements

(a polarisation image rather than an intensity image), we arrive at an approach for uncalibrated

two source photometric stereo.

These two approaches are based on monocular setup and we evaluate these methods both

with synthetic and real data in Section 4.3.

4.1 Shape-from-polarisation by nonlinear least squares

The observed intensity captured by polarisation camera follows a sinusoid function w.r.t the

filter angle ϑj as shown in (2.38). In real data the captured polarimetric measurements always

carry some noise due to the uncertainties from environments (i.e images contain noise). We

assume the observed images are subject to additive Gaussian noise:

Iobsϑj
= Ipolϑj

(Iun, ρ, ϕ) + ε

where ε ∼ N (0, σ2) and σ2 is the unknown variance of the noise. Therefore, Iobsϑj
∼ N (Ipolϑj

, σ2)

is itself a normally distributed random variable. Hence, we can write a probabilistic polarisation

model as:

p(Iobsϑj
|Iun, ϕ, ρ) = C(σ2) exp

Ñ
−

[Iobsϑj
− Ipolϑj

(Iun, ϕ, ρ)]2

2σ2

é
, (4.1)

where C(σ2) is a normalising constant. The maximum likelihood solution to the SfPol problem is

therefore the surface that gives rise to model intensities that minimise the error to the observed

intensities in a least squares sense. This provides justification for our idea of posing the problem

as a nonlinear least squares optimisation over the unknown surface height. Note that all previous

work begins by estimating the maximum likelihood polarisation image (i.e. ρ, ϕ and Iun at each

pixel independently) and then computes surface normals [6] or surface height [42, 70] that is in

some sense optimal with respect to the polarisation image. The problem with this two stage

approach is that polarisation image quantities whose estimate is highly uncertain are relied upon

to the same degree as those with high certainty. A better way is to have an end-to-end method

that solve the surface height in one.

52



4.1.1 Shape-from-polarisation as analysis by synthesis

We now show how the components of a polarisation image can be derived from the gradient

of the surface height function and provide derivatives for each transformation. Subsequently,

this enables us to compute analytical derivatives directly relating surface height and sinusoidal

intensity, and hence to minimise residuals between observed and predicted intensities by non-

linear least squares. This provides an analysis by synthesis approach for SfPol. We assume that

a surface is being viewed orthographically so that it can be written as a height function z(x, y)

where (x, y) is a pixel coordinate. We define the gradient of the surface height at a pixel as the

vector ∇z ∈ R2 containing the partial derivatives: ∇z = [∂z/∂x ∂z/∂y]T .

From surface height to surface normal Surface normal from a height function z(x, y) can

be represented by its gradient. A tangent plane can be constructed at some surface point and

the surface normal is the vector which perpendicular to its tangent plane. Hence we take the

surface slope in x, y direction at a surface point P = [x, y, z(x, y)]T . We have

∂P

∂x
=


1

0

∂z/∂x

 ,
∂P

∂y
=


0

1

∂z/∂y


These two surface slopes construct a tangent plane at point P , hence the function n : R2 7→ R3

transform the surface gradient into surface normal vector by taking cross product of these two

vectors.

n(∇z) =
∂P

∂x
× ∂P

∂y
=


−∂z/∂x

−∂z/∂y

1

 =

−∇z
1

 (4.2)

The derivative of the function n w.r.t ∇z is a Jacobian matrix which given by

Jn(∇z) =


−1 0

0 −1

0 0

 (4.3)

Surface normal normalisation The function ñ : R3 7→ R3 normalise the vector to get a unit

length that ‖ñ‖ = 1, hence

ñ(n) =
n

‖n‖
(4.4)

The derivative of the function ñ w.r.t n can given by a Jacobian matrix

Jñ(n) =
I

‖n‖
− nnT

‖n‖
(4.5)
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Surface normal to spherical coordinates It is convenient to transform the surface normal

vector n̄ into spherical coordinates (φ, θ) in a viewer-centred coordinate system. We explicitly

present the unit surface normal as ñ = [ñ1, ñ2, ñ3]
T . The azimuth angle function φ : R3 7→ R1

is defined (along with its gradient) as follows:

φ(ñ) = atan2(ñ2, ñ1) (4.6)

The derivative of the function α w.r.t ñ can be presented as a vector as

∇φ(ñ) =


−ñ2

ñ2
1+ñ

2
2

ñ1

ñ2
1+ñ

2
2

0

 (4.7)

The zenith angle function θ : R3 7→ R1 is computed by

θ(ñ) = arccos(ñ3) (4.8)

The derivative of θ w.r.t ñ is

∇θ(ñ) =


0

0

−1√
1−ñ2

3

 (4.9)

Orientation to diffuse polarisation image The three quantities of polarisation images

Iun, ρ, ϕ can be computed from the spherical coordinates. For diffuse polarisation, the phase

angle function φ : R1 7→ R1 is

ϕ(φ) =


φ, if α ∈ [0, π)

φ− π, otherwise

(4.10)

The derivative of function ϕ w.r.t φ is
∂ϕ

∂φ
= 1 (4.11)

The unpolarised intensity is assumed to be Lambertian reflectance model that related to the

surface albedo kd, surface normal ñ and illumination s, it can be modelled by function Iun :

R3 7→ R1

Iun(ñ) = kdñ
T s (4.12)

The derivative of function Iun w.r.t ñ is

∇Iun(ñ) = kds (4.13)
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The degree of polarisation ρ can be computed by zenith angle θ and known refractive index η.

Assuming this as a diffuse polarisation model, the function ρ : R1 7→ R1 is given by

ρ(θ) =
sin2(θ)(η − 1

η )2

4 cos(θ)
»
η2 − sin2(θ)− sin2(θ)(η + 1

η )2 + 2η2 + 2
(4.14)

The derivative of function ρ w.r.t θ is given by

∂ρ

∂θ
=

2 cos(θ) sin(θ)
Ä
η − 1

η

ä2
4 cos(θ)

»
η2 − sin(θ)2 − sin(θ)2

Ä
η + 1

η

ä2
+ 2 η2 + 2

+

sin(θ)2
Ä
η − 1

η

ä2(
4 cos(θ)

»
η2 − sin(θ)2 − sin(θ)2

Ä
η + 1

η

ä2
+ 2 η2 + 2

)2 ·Ñ
4 sin(θ)

»
η2 − sin(θ)2 + 2 cos(θ) sin(θ)

Å
η +

1

η

ã2
+

4 cos(θ)2 sin(θ)»
η2 − sin(θ)2

é
Orientation to specular polarisation image In specular polarisation reflectance model,

the three quantities of polarisation images Iun, ρ, ϕ are computed differently. In particular, if

we assume (as in previous work [70]) that pixels are labelled as diffuse or specular dominant,

then we can use a specular polarisation model for specular pixels without assuming a particular

specular reflectance model. The phase angle function ϕ : R1 7→ R1 is given by

ϕ(φ) =


φ+ π

2 , if α ∈ [0, π)

φ− π
2 , otherwise

(4.15)

The derivative of function ϕ w.r.t φ is
∂ϕ

∂φ
= 1 (4.16)

The specular DOP is given by function ρ : R1 7→ R1 with known refractive index η:

ρ(θ) =
2 sin(θ)2 cos(θ)

»
η2−sin(θ)2

η2−sin(θ)2−η2 sin(θ)2+2 sin(θ)4
. (4.17)

The derivative of function ρ w.r.t θ is given by

∂ρ

∂θ
=

2sin(θ)3
»
η2 − sin(θ)2

η2 sin(θ)2 − η2 − 2sin(θ)4 + sin(θ)2
−

4 cos(θ)2 sin(θ)
»
η2 − sin(θ)2

η2 sin(θ)2 − η2 − 2 sin(θ)4 + sin(θ)2

+
2cos(θ)2sin(θ)3»

η2−sin(θ)2
Ä
η2sin(θ)2−η2−2sin(θ)4+sin(θ)2

ä
+

2 cos(θ) sin(θ)2
»
η2 − sin(θ)2Ä

η2 sin(θ)2 − η2 − 2sin(θ)4 + sin(θ)2
ä2

·
Ä
2 cos(θ) η2 sin(θ)−8 cos(θ) sin(θ)3+2 cos(θ) sin(θ)

ä
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4.1.2 Nonlinear least squares

We can now build an equation of the polarisation reflectance model in terms of surface gradient

from above. Assume that the surface height values for an image with N foreground pixels are

stored in the vector z ∈ RN . The gradient of the surface height function at every pixel can be

approximated using finite differences or higher order kernel described in Section 3.3 which can

be expressed as a matrix multiplication. We write this as a function G : RN 7→ R2N :

G(z) =

Dx

Dy

 z, JG(z) =

Dx

Dy

 , (4.18)

where Dx ∈ RN×N and Dy ∈ RN×N evaluate the surface gradient in the horizontal and

vertical directions respectively and are sparse as described in Section 3.3.3. Using the derivation

in Sections 4.1.1 we can construct a function Ipolϑ : R2N 7→ RN that computes the predicted

intensities for all pixels with polariser angle ϑ from the surface gradient at every pixel. The

derivatives of this function are stored in the Jacobian matrix J
I
pol
ϑ

(G) ∈ RN×2N which is con-

structed using the chain rule applied to the appropriate sequence of derivatives given previously.

We can now compute a vector of residuals r ∈ RNP and the Jacobian of the residual function:

r(z)=


Iobsϑ1
− Imod

ϑ1
(G(z))

...

IobsϑP
− Imod

ϑP
(G(z))

 , Jr(z)=


J
Imod
ϑ1

(G(z))

...

J
Imod
ϑP

(G(z))

JG(z),

where Iobsϑj
∈ RN is the vector of observed intensities with the jth polariser orientation. Finally,

we can solve the following nonlinear least squares problem:

min
z

r(z)T r(z). (4.19)

We emphasise that, under the assumption of the probabilistic model, this is the maximum

likelihood solution for z given the observed intensities. In practice, we minimise (4.19) using

the trust-region-reflective algorithm, as implemented in the Matlab lsqnonlin function. We

initialise with a plane, i.e. z = 0.

4.1.3 Priors

The basic framework described above can be unstable when to applied to real data (for example

introducing spikes into the estimated height map) and sometimes converges on local minima.

For this reason, we introduce two additional priors.
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Smoothness We compute residuals to measure smoothness via convolution of the height map

with a Laplacian of Gaussian filter:

rsmooth(z) =
√
wsmoothLz, Jrsmooth

(z) =
√
wsmoothL, (4.20)

where L ∈ RM×N has five non-zero entries per row and M is the number of pixels with 4

neighbours. Each row of L evaluates the convolution of the LoG kernel with the neighbourhood

around one pixel. The residuals are zero for planar regions of the surface. wsmooth controls the

weight of the smoothness prior. If we measure the numerical derivative by Savitzky golay filter

described in Section 3.3. We can use the corresponding regulariser to replace the Laplacian filter

L. Which prevents overflat the surface while smooth the noise at same time.

Convexity To encourage global convexity, we compute residuals between the azimuth angles

given by the estimated height and that of outward facing normals along the boundary:

rconvex(z) =
√
wconvex

sin(Sboundaryα(z))− sin(αboundary)

cos(Sboundaryα(z))− cos(αboundary)

 , (4.21)

where Sboundary ∈ {0, 1}B×N is a selection matrix that selects the B pixels lying on the boundary

of the object, α(z) is a vector of the azimuth angles for all pixels computed by the series of

transformations given above and αboundary ∈ RB is the vector of azimuth angles of the outward

facing vectors to the boundary of the foreground mask. We measure the angular difference in

Cartesian coordinates to avoid wrap-around issues.

4.1.4 Hierarchical estimation

To ensure globally consistent resolution of convex/concave ambiguities, we propose to solve the

optimisation in a hierarchical setting. Within this setting, we also automatically adjust the

weights of the priors such that finescale details can still be recovered at the highest resolution

without the smoothness term dominating. From the initial input images, we construct an image

pyramid. We initialise at the lowest resolution using a plane and then use the result of each

optimisation to initialise the optimisation at the next finer scale by interpolation.

The weights for the two prior constraints are reduced during the optimisation process so that

it is initially dominated by the priors and gradually relies more upon the polarisation information.

We propose to update wsmooth and wconvex according to the current ratio model error in the first

equation of (4.24). The initialisation of two weights are calculated by multiplication between
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two empirically chosen constants and initial mean value of polarisation intensity error vector.

Then the weights are updated every 10 iterations during optimisation according to recalculated

mean ratio-residual cost.

Observed images Estimated Shape

Initialisation Shape

Figure 4.1: An illustration on how the hierarchical estimation works. We start from the lowest

resolution with a plane as initailisation. The result from each layer will rescale to a proper

resolution as an initialisation to the next optimisation. The final shape estimation will produce

by the last layer which keep the original resolution.

4.1.5 Ratio-based formulation

(2.38) requires known albedo and lighting and assumes diffuse reflectance and diffuse polar-

isation. Alternatively, we proposed an equation by taking ratios between different polariser

orientations:
Ipolϑj

(Iun, ϕ, ρ)

Ipolϑk
(Iun, ϕ, ρ)

= fϑj ,ϑk(ϕ, ρ) =
1 + ρ cos[2ϑj − 2ϕ]

1 + ρ cos[2ϑk − 2ϕ]
(4.22)

This has the effect of removing any dependency on Iun and hence on any assumed reflectance

model, material properties or illumination. Hence, using only this ratio expression eliminates

the need to estimate albedo and lighting and to assume an underlying reflectance model. By

using this ratio formulation, we can avoid these requirements and derive an uncalibrated method.

Moreover, we can use the ratio-based formulation as initialisation, use the estimated height map

to estimate lighting and albedo and then run the full optimisation to further refine the solution.

Note however that (4.22) depends only on the DoP and phase angle. This means that this

58



information alone could only recover the surface up to a binary convex/concave ambiguity [70].

In practice, we find that convex/concave ambiguities can be inconsistently resolved so we propose

a hierarchical scheme and automatically adjust prior weights appropriately.

The derivatives of the ratio function fϑj ,ϑk : R2 7→ R in (4.22) are given by:

∇fϑj ,ϑk(ϕ, ρ) =


2ρ sin(2ϕ−2ϑk)(ρ cos(2ϕ−2ϑj)+1)

(ρ cos(2ϕ−2ϑk)+1)2
− 2ρ sin(2ϕ−2ϑj)

ρ cos(2ϕ−2ϑk)+1

cos(2ϕ−2ϑj)−cos(2ϕ−2ϑk)
(ρ cos(2ϕ−2ϑk)+1)2

 (4.23)

We extend the ratio function to all pixels via the function Fmod
ϑj ,ϑk

: R2N 7→ RN that computes

the predicted ratios for all pixels from the surface gradient at every pixel. The derivatives of

this function J
Fmod
ϑj,ϑk

(G) ∈ RN×2N can again be computed by the appropriate combination of

derivatives from Section 4.1.1. We can now compute a vector of residuals r ∈ RN(P−1) by taking

ratios between each pair of consecutive polariser angles:

r(z) =


Fobs
ϑ1,ϑ2

− Fmod
ϑ1,ϑ2

(G(z))
...

Fobs
ϑP−1,ϑP

− Fmod
ϑP−1,ϑP

(G(z))

 ,

Jr(z) =


J
Fmod
ϑ1,ϑ2

(G)

...

J
Fmod
ϑP−1,ϑP

(G)

JG(z),

(4.24)

where Fobs
ϑj ,ϑk

= Iobsϑj
/Iobsϑk

is a vector of ratios between observed intensities with polariser angles

ϑj and ϑk.

4.2 Photo-polarimetric stereo

We now consider a different scenario in which multiple polarisation images are captured with

the camera and object fixed but the direction of a point light source being varied. We propose

different possible constraints that derive from photo-polarimetric information. We then show

how to combine these constraints with polarisation to achieve linear equations w.r.t unknown

surface height.
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4.2.1 Photo-polarimetric height constraints

Degree of polarisation constraint A polarisation image provides a constraint on the surface

normal direction at each pixel. The exact nature of the constraint depends on the polarisation

model used. In here we will consider diffuse polarisation, due to subsurface scattering (see [7] for

more details). The degree of diffuse polarisation ρd at a pixel point u = (x, y) can be expressed

in terms of the refractive index η and the surface zenith angle θ ∈ [0, π2 ] as (2.44) (Cf. [7]):

Recall that the zenith angle is the angle between the unit surface normal vector n(u) and the

viewing direction v shows in Figure 4.2. If we know the degree of polarisation ρd(u) and the

refractive index η (or have good estimates of them at hand), (2.44) can be rewritten w.r.t the

cosine of the zenith angle, and expressed in terms of the function, f(ρd(u), η), that depends on

the measured degree of polarisation and the refractive index:

cos(θ(u)) = n(u) · v = f(ρd(u), η) = (4.25)Ã
η4(1−ρ2d)+2η2(2ρ2d+ρd−1)+ρ2d+2ρd−4η3ρd

»
1−ρ2d+1

(ρd + 1)2 (η4 + 1) + 2η2(3ρ2d + 2ρd − 1)

where we drop the dependency of ρd on (u) for brevity.

Figure 4.2: The zenith angle θ is just the angle between the surface normal and the viewer. For

an orthographic camera, v is constant across the image.

60



Shading constraint The unpolarised intensity provides an additional constraint on the sur-

face normal direction via an appropriate reflectance model. We assume that pixels have been

labelled as diffuse or specular dominant and restrict consideration to diffuse shading. In prac-

tice, we deal with specular pixels in the same way as [71] and simply assume that they point in

the direction of the halfway vector between light source s and view direction v. For the diffuse

pixels, we therefore assume that light is reflected according to the Lambert’s law. Hence, the

unpolarised intensity is related to the surface normal by:

Iun(u) = α(u) cos(θi) = α(u)n(u) · s, (4.26)

where α(u) is the albedo. Writing n(u) in terms of the gradient of z as reported in equations

(4.2) and (4.4) that

n(u) =
»

1 + |∇Z(u)|2

∇Z(u)

1

 (4.27)

then (4.26) can be rewritten as follows:

Iun(u) = α(u)
−∇Z(u) · s̃ + s3√

1 + |∇Z(u)|2
, (4.28)

with s̃ = (s1, s2). This is a non-linear equation, but we will see in Sec. 4.2.1 and 4.2.1 how it is

possible to remove the non-linearity by using the ratios technique.

Phase angle constraint An additional constraint comes from the phase angle, which deter-

mines the azimuth angle of the surface normal φ(u) ∈ [0, 2π] up to a 180◦ ambiguity. This

constraint can be rewritten as a collinearity condition [71], that is satisfied by either of the

two possible azimuth angles implied by the phase angle measurement. Specifically, for diffuse

pixels we require the projection of the surface normal into the x-y plane, [nx ny], and a vector

in the image plane pointing in the phase angle direction, [cos(ϕ) sin(ϕ)], to be collinear. This

corresponds to requiring a cross product between these twonx(u)

ny(u)

×
cos(ϕ(u))

sin(ϕ(u)

 = 0 (4.29)

In terms of the surface gradient, using (4.27), it is equivalent to

[− cos(ϕ(u)) sin(ϕ(u))] · ∇z(u) = 0 (4.30)

A similar expression can be obtained for specular pixels, substituting in the π
2 -shifted phase

angles. The advantage of doing this will become clear in Sec. 4.2.2.

61



Degree of polarisation ratio constraint Combining the two constraints illustrated in

Sec. 4.2.1 and 4.2.1, we can arrive at a linear equation, that we refer to as the DOP ratio

constraint. Recall that cos(θ(u)) = n(u) · v and that we can express n in terms of the gradient

of z by using (4.27), then isolating the non-linear term in (4.25) we obtain»
1 + |∇z(u)|2 =

−∇z(u) · ṽ + v3
cos(θ(u))

, (4.31)

where ṽ = (v1, v2). On the other hand, considering the shading information contained in (4.28),

and again isolating the non-linearity we arrive at the following»
1 + |∇z(u)|2 = α(u)

−∇z(u) · s̃ + s3
Iun(u)

. (4.32)

Note that we are supposing s 6= v, and Iun(u) 6= 0, f(ρd(u), η) 6= 0. Inspecting Eqs. (4.31) and

(4.32) we obtain
−∇z(u) · ṽ + v3

cos(θ(u))
= α(u)

−∇z(u) · s̃ + s3
Iun(u)

. (4.33)

We thus arrive at the following partial differential equation (PDE):

b(u) · ∇z(u) = h(u), (4.34)

where

b(u) := b(f,Iun) = Iun(u)ṽ − α(u) cos(θ(u)) s̃, (4.35)

and

h(u) := h(f,Iun) = Iun(u)v3 − α(u) cos(θ(u)) s3. (4.36)

Intensity ratio constraint Finally, we construct an intensity ratio constraint by considering

two unpolarised images, Iun,1, Iun,2, taken from two different light source directions, s, t. We

construct our constraint equation by applying (4.26) twice, once for each light source. We can

remove the non-linearity as before and take a ratio, arriving at the following equation:

Iun,2(−∇z(u) · s̃ + s3) = Iun,1(−∇z(u) · t̃ + t3). (4.37)

The above equation is independent of albedo, light source intensity and non-linear normalisation

term. Again as before, we can rewrite (4.37) as a PDE in the form of (4.34) with

b(u) := b(Iun,1,Iun,2) = Iun,2(u)s̃− Iun,1(u) t̃, (4.38)

where t̃ = (t1, t2), and

h(u) := h(Iun,1,Iun,2) = Iun,2(u)s3 − Iun,1(u) t3. (4.39)
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Phase DOP Intensity

Method angle ratio ratio

[71] X X

Proposed 1 X X

Proposed 2 X X

Proposed 3 X X X

Table 4.1: Summary of the different formulations

4.2.2 A unified PDE formulation

Commencing from the constraints introduced in Sec. 4.2.1. In this section we show how to solve

several different problems in photo-polarimetric shape estimation. The common feature is that

these are all linear in the unknown height, and are expressed in a unified formulation in terms

of a system of PDEs in the same general form:

B(u)∇z(u) = h(u), (4.40)

where B : Ω̄ → RJ×2, h : Ω̄ → RJ×1, denoting by Ω the reconstruction domain and being

J = 2, 3 or 4 depending on the cases. (4.40) is a compact and general equation, suitable for

describing several cases in a unified differential formulation that solves directly for surface height.

Different combinations of the three constraints that are linear in the surface gradient can

be combined in the formulation of (4.40). Each corresponds to different assumptions and have

different pros and cons. We explore three variants and show that [71] is a special case of our

formulation. We summarise the alternative formulations in Tab. 4.1.

Single light and polarisation formulation This case has been studied in [71]. It uses

a single polarisation image, requires known illumination (though [71] show how this can be

estimated if unknown) and assumes that albedo is known or uniform. This last assumption is

quite restrictive, since it can only be applied to objects with homogeneous surfaces. With just

a single illumination condition, only the phase angle and DOP ratio constraints are available.

This thus becomes a special case of our general unified formulation (4.40), where B and h are

defined as

B =

b(f,Iun)1 b
(f,Iun)
2

− cosϕ sinϕ

 , h = [h(f,Iun), 0]T , (4.41)

with b(f,Iun) and h(f,Iun) defined by (4.35) and (4.36), with uniform γ(u) and v = [0, 0, 1]T .
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Proposed 1: Albedo invariant formulation Our first proposed method uses the phase

angle constraint (4.30) and two unpolarised images, taken from two different light source direc-

tions, obtained through (4.28) and combined as in (4.37). In this case the problem studied is

described by the system of PDEs (4.40) with

B(u) =

b(Iun,1,Iun,2)1 b
(Iun,1,Iun,2)
2

− cosϕ sinϕ

 ,h(u) =

h(Iun,1,Iun,2)
0

 , (4.42)

where b(Iun,1,Iun,2) and h(Iun,1,Iun,2) defined as in (4.38) and (4.39). The phase angle does not

depend on albedo and the intensity ratio constraint is invariant to albedo. As a result, this for-

mulation is particularly powerful because it allows albedo invariant height estimation. Moreover,

the light source directions in the two images can be estimated (again, in an albedo invariant

manner) using the method in Sec. 4.2.5.

Once surface height has been estimated, we can compute the surface normal at each pixel and

it is then straightforward to estimate an albedo map using (4.26). Where we have two diffuse

observations, we can compute albedo from two equations of the form of (4.26) in a least squares

sense. In real data, where we have specular pixel labels, we use only the diffuse observations

at each pixel. To avoid artifacts at the boundary of specular regions, we introduce a gradient

consistency term into the albedo estimation. We encourage the gradient of the albedo map to

match the gradients of the intensity image for diffuse pixels.

Proposed 2: Phase invariant formulation Our second proposed method uses only the

DOP ratio and the intensity ratio constraints. This means that phase angle estimates are not

used. The advantage of this is that phase angles are subject to a shift of π2 at specular reflections

when compared to diffuse reflections. So, the phase angle constraint relies upon having accurate

per-pixel specularity labels, which classify reflections as either dominantly specular or diffuse

(or alternatively use a mixed polarisation model [75] with a four way ambiguity). In this case

we need a) two unpolarised intensity images, taken with two different light source directions,

s and t, obtained through (4.28), b) polarisation information from the function f(ρ, η) and c)

knowledge of the albedo map. We need s, t,v non-coplanar in order to have the matrix field B

not singular. Note that the function f , obtained from polarization information (as in (4.25)), is

the same for the two required images. The reason for this is that it does not depend on the light

source directions but only on the viewer direction v which does not change. This formulation

can be deduced starting from (4.37) and (4.33), arriving at a PDE system as in (4.40) with

B = [b(f,Iun,1),b(f,Iun,2),b(Iun,1,Iun,2)]T , (4.43)

64



andh = [h(f,Iun,1), h(f,Iun,2), h(Iun,1,Iun,2)]T , using (4.35), (4.36), (4.38), (4.39) to define the vector

fields b and the scalar fields h that appear in B and h.

Proposed 3: Most constrained formulation Our final proposed method combines all of

the previous constraints, leading to a problem of the form (4.40) with

B=


b
(f,Iun,1)
1 b

(f,Iun,1)
2

b
(f,Iun,2)
1 b

(f,Iun,2)
2

b
(Iun,1,Iun,2)
1 b

(Iun,1,Iun,2)
2

− cosϕ sinϕ

 , h =


h(f,Iun,1)

h(f,Iun,2)

h(Iun,1,iun,2)

0

 . (4.44)

This formulation uses the most information and so is potentially the most robust method.

However, it requires known albedo in order to use the DOP ratio constraint. Nevertheless, it

is possible to first apply proposed method 1, estimate the albedo and then re-estimate surface

height using the maximally constrained formulation and the estimated albedo map. In fact, the

best performance is obtained by iterating these two steps, alternately using the surface height

estimate to compute albedo and then using the updated albedo to re-compute surface height.

Extension to colour images We now consider how to extend the above systems of equations

when colour information is available. If a surface is lit by a coloured point source, then each

pixel provides three equations of the form in (4.26). In principle, this provides no more informa-

tion than a grayscale observation since the surface normal and light source direction are fixed

across colour channels. However, in the presence of noise using all three observations improves

robustness. In particular, if the albedo value at a pixel is lower in one colour channel, the signal

to noise ratio will be worse in that channel than the others. For a multicoloured object, it is

impossible to choose a single colour channel that provides the best signal to noise ratio across

the whole object. For this reason, we propose to use information from all colour channels where

available.

We already exploit colour information in the estimation of the polarisation image in Sec. 3.1.

Hence, the phase angle estimates have already benefited from the improved robustness. Both

the DOP ratio and intensity ratio constraints can also exploit colour information by repeating

each constraint three times, once for each colour channel. In the case of the intensity ratio, the

colour albedo once again cancels if ratios are taken between the same colour channels under

different light source directions.
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4.2.3 Height estimation via linear least squares

We have seen that each of the variants illustrated in the previous section, each with different

advantages, can be written as a PDE system (4.40). Denoting by M the number of pixels, we

discretise the gradient in (4.40) via finite differences, arriving at the following linear system in z

Az = h̄, (4.45)

where A = B̄G, with G ∈ R2M×M the matrix of derivative described in (4.18). B̄ ∈ RJM×2M

is the discrete per-pixel version of the matrix B(x), hence A ∈ RJM×M , where J depends on

the various proposed cases reported in Sec. 4.2.2 (J = 2 for (4.41) and (4.42), J = 3 for (4.43)

and J = 4 for (4.44)). h̄ is the discrete per-pixel version of the function h(x), h̄ ∈ RJM×1, and

z ∈ RM×1 the vector of the unknown height values. The resulting discrete system is large, since

we have JM linear equations in M unknowns, but sparse, since A has few non-zero values for

each row, and has as unknowns the height values. The per-pixel matrix A is a full-rank matrix,

for each choice of B̄ that comes from the proposed formulations in Sec. 4.2.2, under the different

assumptions specified for each case. The per-pixel matrix A related to [71] is full-rank except

in one case: when the first two components of the light vector s are non-zero and s1 = −s2

and it happens that the phase angle is ϕ = π/4 at least in one pixel. In that case, the matrix

has a rank-deficiency (though in practice ϕ assuming a value of exactly π/4, up to numerical

tolerance, is unlikely).

We want to find a solution of (4.45) in the least-squares sense, i.e find a vector z ∈ RM such

that

||Az− h̄||22≤ ||Ay − h̄||22, ∀y ∈ RM . (4.46)

Considering the associated system of normal equations

AT (Az− h̄) = 0, (4.47)

it is well-known that if there exists z ∈ RM that satisfies (4.47), then z is also solution of the

least-squares problem, i.e. z satisfies (4.46). Since A is a full-rank matrix, then the matrix

ATA is not singular, hence there exists a unique solution z of (4.47) for each data term h̄.

Since neither B nor h depend on z in (4.40), the solution can be computed only up to an

additive constant (which is consistent with the orthographic projection assumption). To resolve

the unknown constant, knowledge of z at just one pixel is sufficient. In our implementation, we

remove the height of one pixel from the variables and substitute its zero value elsewhere.
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4.2.4 Refractive index estimation

Since proposed 2 method only consider the shading cue and phase cue, it is enough to estimate

the surface height by the method describe in Section 4.2.3. We go through the equations (4.2),

(4.4) and (4.8) to retrieve the zenith angle value from the surface height. And estimated degree

of polarisation denoted by ρest can be computed by the method described in Sec. 3.2. The

DoP (2.44) models its relationship with θ and η. So with the known degree of polarisation

ρ and zenith angle θ, an optimum refractive index can be estimated by solving the following

minimisation problem

min
η

∑
u

‖ρest(u)− ρd(θ(u), η)||2. (4.48)

Where we assume the refractive index is uniform of target object. The estimated refractive

index can be substituted back to proposed 3 method for more accurate height reconstruction.

4.2.5 Two source lighting estimation

Our three proposed shape estimation methods require knowledge of the two light source di-

rections. Previously, Smith et al. [71] showed that a single polarisation image can be used to

estimate illumination conditions up to a binary ambiguity. However, to do so, they assumed

that the albedo was known or uniform, and they also worked only with a single colour channel.

In a two source setting, we show that it is possible to estimate both light source directions

simultaneously, and do so in an albedo invariant manner. Moreover, we can exploit information

across different colour channels to improve robustness to noise. Hence, our three methods can

be used in an uncalibrated setting.

The intensity ratio (4.37) provides one equation per pixel relating unpolarised intensities,

surface gradient and light source directions. Given two polarisation images with different light

directions, we have one such equation per pixel and six unknowns in total. Weassume that

ambiguous surface gradient estimates are known from ρ and ϕ, and then use (4.37) to estimate

the light source directions.

The intensity ratio (4.37) is homogeneous in s and t and so has a trivial solution s =

t = [0 0 0]T . If we assume that the intensity of the light source remains constant in each

colour channel across the two images, then this intensity divides out when taking an inten-

sity ratio and so the length of the light source vectors is arbitrary. We therefore constrain

them to unit length (avoiding the trivial solution), and represent them by spherical coordinates
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(θs, αs) and (θt, αt), such that [s1, s2, s3] = [cosαs sin θs, sinαs sin θs, cos θs] and [t1, t2, t3] =

[cosαt sin θt, sinαt sin θt, cos θt].

This reduces the number of unknowns to four. We can now write the residual at each pixel

given an estimate of the light source directions. There are two possible residuals, depending

on which of the two ambiguous polarisation normals we use. From the phase angle and the

zenith angle estimated from the degree of polarisation using (4.25), we have two possible surface

normal directions at each pixel and therefore two possible gradients: zx(u) ≈ ± cosφ(u) tan θ(u),

zy(u) ≈ ± sinφ(u) tan θ(u). Hence, the residuals at pixel uj in channel c are given by either:

rj,c(θs, αs, θt, αt) =Icun,1(uj)(−zx(uj)t1 − zy(uj)t2 + t3)−

Icun,2(uj)(−zx(uj)s1 − zy(uj)s2 + s3),

or

qj,c(θs, αs, θt, αt) =Icun,1(uj)(zx(uj)t1 + zy(uj)t2 + t3)−

Icun,2(uj)(zx(uj)s1 + zy(uj)s2 + s3).

We can now write a minimisation problem for light source direction estimation by summing the

minimum of the two residuals over all pixels and colour channels:

min
θs,αs,θt,αt

∑
j,c

min[r2j,c(θs, αs, θt, αt), q
2
j,c(θs, αs, θt, αt)].

The minimum of two convex functions is not itself convex and so this optimisation is non-

convex. However, we find that, even with a random initialisation, it almost always converges

to the global minimum. As in [71], the solution is still subject to a binary ambiguity, in that if

(s, t) is a solution then (Ts,Tt) is also a solution (with T = diag([−1,−1, 1])), corresponding to

the convex/concave ambiguity. We resolve this simply by choosing the maximal solution when

surface height is later recovered.

4.3 Experiments and evaluation

We present experimental results on both synthetic and real data for above two approaches.

For nonlinear least square method, we compare the two proposed methods (the ratio-based

formulation and the full optimisation) to both classical [6] and state-of-the-art [70] methods.

For photo-polarimetric stereo we are focusing on evaluating object with varying albedo , and

compare with [70] method.
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4.3.1 Evaluating nonlinear square method

Synthetic data We use the Stanford Bunny height map and render unpolarised intensity

images with light source s = [sin(15◦), 0, cos(15◦)]T and the Blinn-Phong model. We experiment

with both uniform albedo and varying albedo (for which we use the Lena image).

We simulate polarisation using (2.38) and vary the polariser angle from 0◦ to 180◦ in 30◦

increments. Finally, we corrupt the data by adding Gaussian noise with zero mean and varying

standard deviation, saturate and quantise to 8 bits. We use these noisy synthetic images as

input.

We report the RMS errors of the surface height and mean angular errors of the surface

normal in Tab. 4.2. The ratio-based method offers good performance and is relatively unaffected

by varying albedo. The subsequent refinement using the full optimisation further improves

performance and always outperforms the comparison methods. Qualitatively, the ratio method

sometimes makes convex/concave errors (like flipping the bunny ear to a convex shape) that are

partially corrected by the full optimisation.

The visual result of synthetic data is shown in Fig. 4.3 and 4.4. Normal maps are visualised

as R = (nx + 1)/2, G = (ny + 1)/2 and B = (nz + 1)/2. For comparison method [6], surface

normals are estimated directly. For the proposed method and comparison method [70], surface

height is estimated and we compute surface normals using finite difference approximations of

the gradient of the recovered surface. Comparing the estimated normal maps, we can see that

our full optimisation method can recover more fine details than the ratio method and is still

able to recover lots of details under significant noise. With varying albedo, the results of both

our proposed methods are much better than the two comparison methods [6, 70]. With a good

initial shape estimation from the ratio method, the full optimisation method can calculate a

varying albedo map as long as light source direction is known, and add details beyond the

result of the ratio method. The boundary propogation method [6] can handle varying albedo

but is extremely sensitive to noise and incorrectly resolves convex/concave interpretations in

some places. The linear method [70] degrades less gracefully with noise, with the Laplacian

smoothness term dominating and the resulting surface being very flat. Since it is not invariant

to albedo, this method fails completely for the varying albedo case.
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σ = 0% σ = 0.5% σ = 1% σ = 2%

Setting Method
Height Normal Height Normal Height Normal Height Normal

(pix) (deg) (pix) (deg) (pix) (deg) (pix) (deg)

Uniform

albedo

Prop. Ratio 7.89 8.82 8.86 11.16 9.77 12.78 9.89 18.92

Prop. Full 7.70 7.12 7.70 7.16 7.72 7.27 7.61 7.56

[70] 13.47 8.60 8.10 10.18 18.51 16.30 19.00 29.76

[6] 37.25 42.02 34.56 40.31 36.01 42.47 35.84 44.01

Varying

albedo

Prop. Ratio 9.81 13.59 11.90 17.79 10.92 17.58 10.43 21.14

Prop. Full 7.61 7.31 7.62 7.41 7.59 7.77 7.60 8.69

[70] 10.42 15.64 11.17 15.39 13.36 17.27 17.35 22.39

[6] 36.68 42.14 42.81 43.34 34.96 44.17 42.33 46.52

Table 4.2: Height and surface normal errors on synthetic data. Results shown for proposed ratio

and full optimisation method and two comparison methods.

(a) (b) (c) (d) (e) (f)

Figure 4.3: Qualitative results on synthetic Blinn-Phong bunny with varying albedo. The

four rows are synthetic data with Gaussian noise of standard deviation σ = 0%, 0.5%, 1%, 2%

respectively. (a) Input; (b) normal map derived from height recovered by proposed ratio method;

(c) normal map from full optimisation method; (d) normal map from [6]; (e) normal map

from [70]; (f) ground truth.
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Real data We show qualitative results on real images in Figures 4.5, 4.7 and 4.9 (zoom for

detail). In each case (a) shows an input image, (b)-(d) show estimated depth and normal

maps for the ratio-based method, the full optimisation and [70] respectively, (e) and (f) show

re-renderings of the surfaces recovered by the ratio-based method and the full optimisation

respectively. In general, the results of [70] suffer from flattening in specular regions since they

assume the normals in specular pixels all point in the halfway direction. Our ratio method

avoids this assumption. Our full optimisation result is initialised by the ratio method and is

able to improve fine details. Note particularly in 4.9(f) that our method is able to recover the

fine detail in the writing on the handle of the watergun. The object in Figure 4.8 contains

varying albedo. This causes [70] to fail completely while the ratio method is invariant to these

variations and the initialisation of the full optimisation using the albedo and depth estimated

by the ratio method remains stable.

(a) (b) (c) (d) (e) (f)

Figure 4.4: Qualitative results on synthetic Blinn-Phong bunny with varying albedo. The

four rows are synthetic data with Gaussian noise of standard deviation σ = 0%, 0.5%, 1%, 2%

respectively. (a) Input; (b) normal map derived from height recovered by proposed ratio method;

(c) normal map from full optimisation method; (d) normal map from [6]; (e) normal map

from [70]; (f) ground truth.
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(a) (b) (c) (d) (e) (f)

Figure 4.5: Qualitative results on porcelain vase. See Fig. 4.9 caption for details.

(a) (b) (c) (d) (e) (f)

Figure 4.6: Qualitative results on porcelain angel statue. See Fig. 4.9 caption for details.

(a) (b) (c) (d) (e) (f)

Figure 4.7: Qualitative results on porcelain bear. See Fig. 4.9 caption for details.
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(a) (b) (c) (d) (e) (f)

Figure 4.8: Qualitative results on color porcelain teapot. See Fig. 4.9 caption for details.

(a) (b) (c) (d) (e) (f)

Figure 4.9: Qualitative results on plastic watergun: (a) Input grayscale image; (b) Recovered

depth map and normal map from ratio method; (c) Recovered depth and normal map by full

polarisation model and estimated light source; (d) Recovered depth map and normal map from

[70] (e) a new pose of object estimated from ratio method. (f) a new pose of captured object

calculated from full polarisation model.

4.3.2 Evaluating photo-polarimetric stereo method

We begin by using synthetic data generated from the 3DRFE dataset (Fig. 4.10). We differ-

entiate to obtain surface normals and compute unpolarised intensities by rendering the surface

using light sources s = [−50, 0, 104]T and t = [0,−50, 104]T according to (4.26). We simulate

the effect of polarisation according to (2.38), varying the polariser angle between 0◦ and 180◦

in 10◦ increments. Next, we corrupt this data by adding Gaussian noise with zero mean and

standard deviation σ, saturate and quantise to 8 bits. This noisy data provides the input to our

reconstruction. First, we estimate a polarisation image using the method in Sec. 3.1, then apply

each of the proposed methods or the state-of-the-art comparison method [10, 51, 69] to recover

the height map and light estimation.

Fig. 4.10 show the estimated normal, depth and normal error against ground truth by our

proposed method. We also estimate real images of snooker ball where we have a ground truth

with same light conditions as 3DRFE dataset. Depth estimation qualitative result shows in

73



Fig. 4.11 and albedo estimation qualitative result shows in Fig. 4.12. We report the light

estimation results by our proposed method, [69] and [10] in Tab. 4.3, and quantitative comparison

on depth estimation, albedo estimation in Tab. 4.4. We do show our method outperformed

others.

Input Estimated  Normal Normal error Estimated Depth

Figure 4.10: Estimation on synthetic data of 3DRFE dataset
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Prop Mecca2017 SIRFS Smith2018

Figure 4.11: We show our depth reconstruction and surface normal error with our proposed

method, Mecca2017 [51], SIRFS [10] and Smith2018 [69]. And the light estimation has been

showned in Table 4.3
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smith2018Prop SIRFSGround TruthInput

Figure 4.12: We show albedo estimation comparison with different methods, from left to right

which are proposed, Mecca2017 [10], and Smith2018 [69].
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image
prop smith2018height [69] SIRFS [10]

Light RME Light RME Light RME

snooker 1

−0.42

−0.07

0.91

0.125

−0.40

−0.03

0.92

0.129

−0.67

−0.06

0.74

0.212

snooker 2

−0.05

−0.44

0.90

0.090

−0.06

−0.37

0.93

0.172

−0.67

−0.06

0.74

0.821

3DRFE 1

−0.41

−0.13

0.90

0.176

−0.48

−0.19

0.86

0.192

−0.61

0.54

0.58

0.673

3DRFE 2

−0.04

−0.50

0.87

0.038

−0.02

−0.57

0.82

0.072

−0.62

0.54

0.57

1.253

Table 4.3: Light estimation on snooker ball image and 3DRFE image.While the ground truth

are [−0.51, 0, 0.86], [0,−0.51, 0.86] respectively.

Method

Snooker ball 3DRFE

Albedo Normals Albedo Normals

AME STD MAE STD AME STD MAE STD

ours 0.114 0.097 0.094 0.057 0.0367 0.045 0.222 0.151

Mecca2017 N/A N/A 0.133 0.143 N/A N/A 0.253 0.309

SIRFS 0.119 0.090 0.500 0.425 0.207 0.198 0.846 0.467

Smith2018 0.258 0.199 0.209 0.183 0.108 0.127 0.850 0.501

Table 4.4: We compare albedo absolute mean error + standard deviation and compare shape

mean angular error + standard deviation for Figure 4.11 with different method.

In Fig. 4.13 we show qualitative results on four real objects with spatially varying albedo.

From left to right we show: an image from the input sequence; the surface normals of the

estimated height map (inset sphere shows how orientation is visualised as colour); the estimated

albedo map; a re-rendering of the estimated surface and albedo map under novel lighting with

Blinn-Phong reflectance [14]; a rotated view of the estimated surface; and, for comparison,

reconstructions of the same surfaces using [71]. The results of [71] are highly distorted in the
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presence of varying albedo. Our approach avoids transfer of albedo details into the recovered

shape, leading to convincing relighting results. we evaluate performance on refractive index

estimation. The synthetic 3DRFE data are rendered with a chosen refractive index of η = 1.5.

The real objects are either made of porcelain (ground truth refractive index reported in [1])

or phenol formaldehyde resin (ground truth refractive index reported in [76]). We show our

estimates and the ground truth values in Tab. 4.5.

Input Estimated Normal Reillumination Estimated Surface

Figure 4.13: Qualitative results on real objects with varying albedo obtained by using Prop. 1+3

and comparison to [71] (zoom for detail).
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smith2018Prop SIRFSInput

Figure 4.14: Albedo estimation on real data with different methods from left to right which are

proposed, Mecca2017 [51], and Smith2018 [69].

Snooker Bear Hand Cup Teapot 3DRFE

ours 1.591 1.543 1.423 1.522 1.602 1.583

Ground Truth 1.63 [1] 1.504 [1] 1.5

Table 4.5: We estimate the refractive index of different objects that in our dataset.

4.4 Summary

We first approach a general method that uses nonlinear least squares to obtain the surface

height from polarimetric images data. This method is able to obtain a competitive shape from a

planar initialisation. Moreover it is optimal w.r.t to an explicit noise model. For previous work

[6,41,42,50,52,70] implicitly assumes Gaussian noise when estimating a polarisation image using

least squares. However uncertainty in the estimated quantities is ignored in the subsequent shape

estimation, so the reconstructed shape is not optimal w.r.t the assumed noise model. The second

approach introduced a unifying formuation for recovering height from photo-polarimetric stereo
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data and proposed a variety of methods that use different combinations of linear constraints. We

also provide uncalibrated, albedo invariant shape estimation with only two light sources. This

relieves several constraints that were required in previous works. [6, 70]. Both of the methods

recover the surface height directly to avoid explicitly surface normal disambiguation step and

integration problems.

However, these two approaches based on polarisation and shading cue do not provide any

direct constraints on metric depth, only on local surface orientation. Hence, the surface recovered

by these methods are globally inaccurate and subject to low frequency distortion. And the

orthographic camera model assumption is practically limiting. Also we manually label the pixel

is either diffuse or specular by intensity threshold which is not reliable. ”In the next chapter we

will introduce a second camera to recover metric depth and automatically differentiate whether

the pixel is either diffuse dominant or specular dominant.
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Chapter 5

Depth from a polarisation + RGB

stereo pair

In this chapter, we propose a hybrid depth imaging system in which a polarisation camera

is augmented by a second image from a standard digital camera. For this modest increase in

equipment complexity over conventional shape-from-polarisation, we obtain a number of benefits

that enable us to overcome longstanding problems with the polarisation shape cue. The stereo

cue provides a depth map which, although coarse, is metrically accurate. This is used as a guide

surface for disambiguation of the polarisation surface normal estimates using a higher order

graphical model. In turn, these are used to estimate diffuse albedo. By extending a previous

shape-from-polarisation method to the perspective case, we show how to compute dense, detailed

maps of absolute depth, while retaining a linear formulation. We make a number of novel

contributions:

1. Use a higher order graphical model to capture integrability constraints during disambiguation

2. Show how to automatically label pixels as diffuse or specular dominant via our graphical

model

3. Show how to incorporate gradient-consistency constraints into albedo estimation

4. Extend the linear formulation of Smith et al. [70] to the perspective case, retaining linearity

and also including the stereo depth map as a guide surface

Our approach has a number of practical advantages over recent state-of-the-art. Unlike Smith

et al. [70] we do not assume uniform albedo. Unlike Kadambi et al. [42, 43], we do not use

a depth (kinect) camera and so our capture environment is not restricted. We compare to
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these and other relevant state-of-the-art methods and obtain better reconstructions. Compared

to [12,17,20,86], we only require a single polarisation image.

Overview of method

1. Estimate the disparity from stereo images and reconstruct a coarse depth map by known

camera matrix.

2. Compute guide surface normals by taking the gradient of the coarse depth map.

3. Use guide surface normal to disambiguate the polarisation normals via a higher order graphical

model.

4. Estimate diffuse albedo from disambiguated polarisation normals.

5. Linearly estimate perspective depth from polarisation using coarse depth map as a constraint.

Our pipeline is illustrated in Fig. 5.1 and each step is described in detail in the following sections.

[H]
Estimated 

specular mask

Corrected normal

Depth from stereo

(a) Setup and Input (b) Local disambiguation

Estimated Albedo Estimated Shape

(c) Output 

Section 4 Section 5 Section 6

Figure 5.1: Overview: From a stereo pair of one polarisation image and one RGB image (a) we

merge stereo depth with polarisation normals using a higher order graphical model (b) before

estimating an albedo map and the final geometry (c).

5.1 Perspective depth representation

Our setup consists of a polarisation camera and an RGB camera. We work in the coordinate

system of the polarisation camera and parameterise the surface by the unknown depth function

z(u), where u = (x, y) is a location in the polarisation image. The 3D coordinate at u is given by

(3.19), and the direction of the outward pointing surface normal is defined as the cross product
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of the partial derivatives with respect to x and y in (3.20) [30] that yields:

n(u) =


− z(u)·zx(u)

fy

− z(u)·zy(u)
fx

x−x0
fx

z(u)·zx(u)
fy

+ y−y0
fy

z(u)·zy(u)
fx

+ z(u)2

fxfy

 (5.1)

where zx = ∂z(u)
∂x , zy = ∂z(u)

∂y denotes the partial derivative of z(u) w.r.t. x and y. Note that the

magnitude of n(u) is arbitrary, only its direction is important. For this reason, we can cancel

any common factors. In particular, we can divide through by z(u) to remove quadratic terms

and multiply through by fxfy to avoid numerical instability caused by division by fxfy (which

is potentially very large):

n(u) =


−fyzx(u)

−fxzy(u)

(x− x0)zx(u) + (y − y0)zy(u) + z(u)

 (5.2)

We denote by n̄(u) = n(u)/‖n(u)‖, the unit length surface normal.

The vector pointing towards the viewer from a point on the surface is given by:

v(u) = −
[
x−x0
fx

y−y0
fy

1
]T
/
∥∥∥[x−x0

fx
y−y0
fy

1
]∥∥∥ . (5.3)

Note that this is independent of surface depth.

5.2 Integrability-based disambiguation with a higher order graph-

ical model

Due to the pixel remains unknown to whether diffuse or specular, it restricts the surface normal

at a pixel to six possible directions. If the pixel is diffuse dominant, then the viewing angle

is uniquely determined by the degree of polarisation and the azimuth angle restricted to two

possibilities by the phase angle, leading to two possible normal directions. If the pixel is specular

dominant, the degree of polarisation restricts the viewing angle to two possibilities, with the

azimuth again also restricted to two, given four possible normal directions in total. Previous

work [42, 70] assumes that the labelling of pixels as specular or diffuse dominant is known in

advance. We do not assume that the labels are known and propose an initial resolution of this

six-way ambiguity using a higher order graphical model. The motivation for using a higher order

model is that a ternary potential can measure deviation from integrability.
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We set up an energy cost function to be mimised w.r.t. the surface normal as follows:

E(n(u)) =
∑
u∈ν

Φ(n(u)) +
∑

(u,v)∈N

ϕ(L(u), L(v)) +
∑

(u,v,w)∈T

Ψ(n(u),n(v),n(w)) (5.4)

Here ν corresponds to all foreground pixels, N is the set of adjacent pixels and T is the set

of pixel triplets (u,v,w) where u = (x, y), v = (x + 1, y) and w = (x, y + 1). Before further

explaining the energy terms, let us clarify two important elements that will be used in following.

1). The stereo setup produces a coarse depth map by computing the disparity from the camera

pair. We use the semi-global matching method [37] to compute the disparity and reconstruct

a depth map with the camera matrices, as displayed in Figure 5.2(a). Thus its surface normal

can be computed by simply taking the forward difference on the coarse depth map. We denote

these surface normal by n̂ which are noisy as shown in Figure 5.2(b). 2). We make a rough

initial estimate of the specular/diffuse dominant pixel labelling, L. We simply set L(u) = 1

if the measured intensity is saturated (Figure 5.2(c)). L will be subsequently updated (Figure

5.2(f)).

5.2.1 Unary cost

The unary term aims to minimise the angle between n(u) and n̂(u), where n(u) has up to six

solutions. We denote the first two solutions from diffuse component in D and the rest from

specular component in S . We also take account the initial specular mask L i.e. Where the

diffuse normal will be assigned to low probability if its corresponding specular mask equal to

one. The unary cost can be written as

Φ(n(u)) =


k · f(u) if (L(u) = 1,n(u) ∈ D) or (L(u) = 0,n(u) ∈ S)

f(u) if (L(u) = 0,n(u) ∈ D) or (L(u) = 1,n(u) ∈ S)

(5.5)

where f(u) depends on the cosine of the angle between n(u) and n̂(u) and is defined as

f(u) = exp(−n(u) · n̂(u)). (5.6)

The parameter k < 1 penalises surface normal disambiguations that are not consistent with the

corresponding specular mask. We set k = 0.1 in our experiments.
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5.2.2 Pairwise cost

We encourage pairwise pixels in N to have similar diffuse or specular labels and penalise where

the labels changed. We define

ϕ(L(u), L(v)) = |L(u)− L(v)|. (5.7)

5.2.3 Ternary cost

In order to encourage the disambiguated surface normals to satisfy the integrability constraint,

we use a ternary cost to measure deviation from integrability. For an integrable surface, the

mixed second order partial derivatives on the gradient field should be equal [60]. Specifically,

∂p
∂y = ∂q

∂x . Where p, q are the partial derivatives in the x and y direction respectively. The surface

gradient is directly linked to the surface normal by

p(u) = −nx(u)/nz(u) and q(u) = −ny(u)/nz(u) (5.8)

We take three-pixel neighbourhoods (u,v,w) to compute the gradient of p, q, where

∂p(u)

∂y
= p(w)− p(u) ,

∂q(u)

∂x
= q(v)− q(u) (5.9)

In reality, due to noise and the discretisation to the pixel grid, the gradient field may not have

exactly zero curl, but we seek the surface normals that give minimum curl values. Hence, the

ternary cost is defined by:

Ψ(n(u),n(v),n(w)) = ‖p(w)− p(u)− (q(v)− q(u))‖ . (5.10)

5.2.4 Graphical model optimisation

We use higher order belief-propagation to minimise (5.4) as implemented in the OpenGM toolbox

[2]. The optimum surface normal n′ will be labeled as one of the six possible disambiguations

and we update our specular mask L according to:

L(u) =


0 if n(u) ∈ D

1 if n(u) ∈ S
. (5.11)

The surface normals that result from this disambiguation process are still noisy (they use only

local information) and may be subject to low frequency bias meaning that integrating them into

a depth map does not yield good results. Hence, in Section 5.4 we solve globally for depth, using

the stereo depth map as a guide to remove low frequency bias.
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(a)

(d)(c)

(b) (e)

(f)

Figure 5.2: (a) Depth map from disparity map. (b) Guide surface normal from stereo depth

map. (c) Preset specular mask. (d) One possible polarisation normal. (e) The corrected normal

via our graphical model. (f) The updated specular mask via graphical model.

5.3 Albedo estimation with gradient consistency

We now use the surface normals estimated by the graphical model optimisation to compute an

albedo map. In principal, the albedo can be computed from these normals and the unpolarised

intensity simply by rearranging (4.26). However, this purely local estimation is unstable and

noise in the normals leads to artefacts in the estimated albedo map. We propose a simple but

very effective regularisation to resolve this problem. We encourage the gradient of the estimated

albedo map to be similar to the gradient of the unpolarised intensities at points where the

intensity gradient is above a threshold and zero elsewhere. In other words, we encourage the

albedo gradients to be sparse and hence the albedo piecewise uniform.

The estimated albedo minimises the following energy function

E(u) = ELamb(u) + λIEsmooth(u). (5.12)
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The first term penalises the difference between rendered Lambertian intensity and estimated

unpolarised intensity:

ELamb(u) =
∥∥a(u)n′ · (u)s− Id(u)

∥∥2
2

(5.13)

where Id is diffuse dominant pixels from the estimated unpolarisation intensity, α represents a

pixel-wise albedo map, n′ is the optimum surface normal map from the previous section and s

the light source. We can easily choose the diffuse pixels by excluding the specular mask where

L(u) = 1.

The second term penalises the difference between the estimated albedo gradient and the

sparsified unpolarised intensity gradient. We denote the neighbour of u in x direction with v

and y direction with w, thus the smooth term can be written as

Esmooth(u) = ‖a(u)− a(v)− g(Id(u)− Id(v))‖+ ‖a(u)− a(w)− g(Id(u)− Id(w))‖ (5.14)

where g(.) is a threshold function that returns 0 if the input is < t, otherwise it returns the input

albedo map only contains values on the diffuse pixels, we fill the hole on specular pixels with

nearest neighbour method. In Figure 5.3 we see how the smoothness term affects the estimated

albedo map and depth.

5.4 Linear perspective depth from polarisation

Finally, with albedo known and coarse depth values from two view stereo, we are ready to

estimate dense depth from polarisation. We generalise a perspective camera model from Smith

et al. [70], note that it differs via the use of the coarse depth values and optimum normal from

Section 5.2. The fact that we estimate metric depth rather than relative height. As in [70],

we express polarisation and shading constraints in the form of a large, sparse linear system in

the unknown depth values, meaning the method is very efficient and guaranteed to attain the

globally optimal solution.

5.4.1 Phase angle constraint.

The first constraint encourages the recovered surface normal to satisfy (4.30). Following [70],

the projection of the surface normal into the image plane (nx, ny) should be collinear with the

phase angle vector. We seperate pixels into diffuse dominant and specular dominant with the

help of specular mask L. The phase angle constraint for diffuse dominant pixels and specular
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dominant pixels are represented in first row and second row respectively in this matrix form:

 cos(φ(u)) − sin(φ(u)) 0

cos(φ(u) + π
2 ) − sin(φ(u) + π

2 ) 0



nx(u)

ny(u)

nz(u)

 = 0 (5.15)

(c) (d)

(a) (b)

Figure 5.3: (a)/(c) Estimated albedo (b)/(d) Estimated geometry. First row: λI = 0, second

row: λI = 3. Comparing (a) and (c), the albedo map becomes smoother. Comparing (b) and

(d), the red rectangle region becomes smoother but while fine detailis largely preserved.
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5.4.2 Shading/polarisation ratio constraint.

Recall that the viewing angle is the angle between the surface normal and the viewer direction

describe in (4.33). However the view direction is different in each pixel location. Making the

normalisation factor of the surface normal explicit, we can write cos(θr(u)) = n(u)·v(u)
‖n(u)‖ . By

isolating the normalisation factor we arrive at:

‖n(u)‖ =
n(u) · v(u)

cos(θr(u))
. (5.16)

Substituting this into (4.26) we obtain:

n(u) · v(u)

cos(θr(u))
=
a(u)n(u) · s
iun(u)

(5.17)

Notice that our shading constraint only submit on the diffuse pixels. So we choose the pixels

u ∈ D where L(u) = 0. Unlike [70], the perspective model means that the view vectors depend

on pixel locations. Now we can reformulate the equation into a compact matrix form with

respect to the surface normal:
sx · a(u) cos θ(u)− iun(u)vx(u)

sy · a(u) cos θ(u)− iun(u)vy(u)

sz · a(u) cos θ(u)− iun(u)vz(u)


T 

nx(u)

ny(u)

nz(u)

 = 0 (5.18)

5.4.3 Surface normal constraint.

We also encourage our recovered surface normal should be co-linear with the optimised normal

n′ from Section 5.2 where their cross product is a zero vector. It can be formalised in following

manner 
0 −n′z(u) n′y(u)

n′z(u) 0 −n′x(u)

−n′y(u) n′x(u) 0



nx(u)

ny(u)

nz(u)

 =


0

0

0

 (5.19)

5.4.4 Global linear depth estimation.

The relationship between the surface normal and depth under perspective viewing is given by

(5.2). We can arrive at a linear relationship between the constraints described above and the

unknown depth.

We first extend (5.2) to the whole image. Consider an image with N foreground pixels whose

unknown depth values are vectorised in z ∈ RN . The surface normal direction (unnormalised)
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can be computed for all pixels with:

Nz =



nx(u1)

. . .

nx(uN )

ny(u1)

. . .

ny(uN )

nz(u1)

. . .

nz(uN )



, N =


−fyI 0 0

0 −fxI 0

X Y I




Dx

Dy

I

 (5.20)

where X = diag(x1 − x0, . . . , xN − x0) and Y = diag(y1 − y0, . . . , yN − y0). Dx,Dy ∈ RN×N

compute finite difference approximations to the derivative of Z in the x and y directions re-

spectively. In practice, we use Savitzky-Golay filters to compute the derivative matrix that only

search the nearest neighbours where are available. Hence Dx,Dy are sparse with values only

index by nearest neighbours.

Combining (5.20) with (5.15), (5.18) and (5.19) leads to equations that are linear in depth.

We now combine these equations into a large linear system of equations for the whole image. Of

the N foreground pixels we divide these into diffuse and specular pixels according to the mask

L. We denote the number of diffuse pixels with ND and specular with NS . We now form a

linear system in the vector of unknown depth values, z:

λAN

W

 z =


04N+ND

zguide(u1)
...

zguide(uN )

 (5.21)

where zguide(ui) are the stereo depth values from Section 5.2 and W ∈ RK×N performs a sparse

indices matrix of z at positions (x1, y1), . . . , (xK , yK). IN ∈ RN×N is the identity matrix and

04N+ND is the zero vector of length 4N +ND. A has 4N +ND rows, 3N columns and is sparse.

Each row evaluates one equation of the form of (5.15), (5.18) and (5.19). λ > 0 is a weight

which trades off the influence of the guide depth values against satisfaction of the polarisation

constraints. We then solve (5.21) in a least squares sense using sparse linear least squares.
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5.5 Experimental results

We present experimental results on both synthetic and real data. We compare our method

against [37,42,69,70,85], the differences are summarised in Table 5.1. We set λI = 1, λ = 1 and

t = 0.01 through our experiments. Note that the source code for [42] is not available so we are

only able to compare against a single result provided by the authors. Similarly, real image results

for [85] were provided by the author running the implementation for us. Whereas [37, 69, 70]

are open sourced and we compare quantitatively. For synthetic data, we render images of the

Stanford bunny with Blinn-Phong reflectance with varying albedo texture using the pinhole

camera model, as shown in Figure 5.4 (left). The texture map is from [88]. We simulate the

effect of polarisation according to (2.38) by setting refractive index value to 1.4 and corrupt the

polarisation image and second camera intensity by adding Gaussian noise with zero mean and

standard deviation σ. The metric ground truth of the depth map is range between 72.33mm to

90.09mm.

Coarse depth Shading Polarisation

Stereo [37] X

Smith-2016 [70] X X

Smith-2018 [69] X X

Polarised 3D [42] X X

Wu-2014 [85] X X

Proposed X X X

Table 5.1: Summary of the different method

σ = 0% σ = 0.5% σ = 1%

Method
Depth Normal Depth Normal Depth Normal

(mm) (deg) (mm) (deg) (mm) (deg)

[37] 0.49 38.151 0.49 39.78 0.49 39.67

[70] 10.68 30.38 85.91 29.966 113.80 32.03

[69] 12.02 22.53 36.08 26.54 40.88 28.54

Prop 0.29 9.799 0.30 9.86 0.31 14.03

Table 5.2: Mean absolute difference in depth and mean angular surface normal errors on syn-

thetic data. For [69,70] methods reconstructed the depth up to scale we compute the optimum

scale to align with the ground truth depth map.
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In Figure 5.4 we show the estimated albedo map of the synthetic data and compare with

[69]. In Table 5.2 we show the mean absolute error in the surface depth (in millimetre) and

mean angular error (in degrees) in the surface normals. We include comparison with the initial

stereo depth [37] and state-of-the-art polarisation methods [69,70]. In Figure 5.5 we display the

qualitative results of this experiment.

[Proposed]Input [Smith-2018]Ground truth

Figure 5.4: Albedo estimates on synthetic data.

[Proposed] [Smith-2016]Ground truth depth [Stereo] [Smith-2018]

Figure 5.5: Qualitative shape estimation results on synthetic data with comparison with [70]
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Input Depth [Stereo] Albedo [Proposed] Depth [Proposed] Depth [Wu-2014]

Figure 5.6: We show our results on complex object. From left to right we show an image from

the input sequence; Depth from stereo reconstruction [37]; Our proposed estimated albedo map

and the estimated depth. Depth estimation by [85].

93



[Polarised 3D]

Input: Polarisation image and depth map [Proposed]

[Wu-2014]

Figure 5.7: Comparison on [42] dataset. Top-left: One of the polarisation intensity images and

Kinect depth map. Top-right: our result. Bottom-Left: [42]. Bottom-Right: [85].

Next we show results on a dataset of real images. The first dataset is from [42]. Although

the depth here is provided by a Kinect sensor, not stereo, our graphical model optimisation in

Section 5.2 can take any source of depth map. In this case we replace the depth map with the

Kinect one and keep the rest of the process identical when we evaluate the data. The comparison

can be viewed in Figure 5.7 where we show that our proposed result can give more details on

the reconstruction. In this experiment, we estimate the light source direction using [70].

We then show results on our own collected data. We place the polarisation and RGB cameras

with parallel image planes and the RGB camera shifted 5cm along the x axis relative to the

polarisation camera as illustrated in Figure 5.1. We compare our method with [85] directly

performed by the author. In Figure 5.6 we show qualitative results for three objects with glossy

reflectance and varying albedo. Our method gives improved detail (see insets) but also more
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stable overall shape (see third row). Notice that in this experiment we calibrated the light source

in advance with a uniform albedo sphere using method in [70].

5.6 Summary

We proposed a method for estimating dense depth and albedo maps for glossy, dielectric objects

with varying albedo. We do so using a hybrid imaging system in which a polarisation image is

augmented by a second view from a standard RGB camera. This provides us with a conventional

stereo cue from which we can compute coarse but metrically accurate depth estimates. It can be

used to disambiguate the surface normal and label the diffuse/specular pixel by graphical model.

We avoid assumptions common to recent methods (constant albedo, orthographic projection)

and reduce low frequency distortion in the recovered depth maps through the stereo cue.

Since we rely on stereo, our method does not work well on textureless objects. However,

note that our method works equally well with a Kinect depth map as the result shows in Figure

5.7. We also assume the refractive index is known in our framework. It could be potentially

measured given a sufficiently accurate guide depth map as describe in Section 4.2.4. Another

limitation is we assume the pixel intensity is either diffuse or specular while this approximation

might introduce unknown estimation error. In particular, a more comprehensive model of mixed

specular/diffuse reflectance and polarisation would be beneficial. In the next chapter we will

introduce mixed polarisation model to bring up a more accurate physical model to approximate

the polarisation reflectance model.
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Chapter 6

Mixed polarisation model with

Multi-view stereo

6.1 Mixed Polarisation Model

In this chapter we take some first steps towards a comprehensive mixed model of both specular

and diffuse polarised reflectance. This model is more physically accurate and avoids many

assumptions made in previous work and earlier chapters in this thesis. We present both a mixed

model and a method for fitting the model to multiview data. We emphasise that this line of

work is not yet complete but provides a first attempt in this direction which shows promising

results.

The previous works on shape-from-polarisation heavily rely on the assumption that pixels

can be classified as either diffuse dominant or specular dominant and one of the two models

used per-pixel [20, 42, 70, 77, 89]. This assumption is not accurate due to light emitted from

some points on the surface being a mix of reflected and refracted (subsurface scattered) light

rays. The emitted ray from the surface can be modelled as a superposition of reflected ray and

refracted ray as shown in Figure 6.1. The Stokes vector of reflected ray comes from incident ray

s can be written as (2.29): sr = MR · s. The Stokes vector of refracted ray comes from incident

ray so can be written as (2.34): so = MT ·s. So the emitted ray from the surface can be written
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as sm = sr + st, where

sm =
1

2


s0o(Tp + Ts) + s0(Rp +Rs)

s0o(Ts − Tp) + s0(Rs −Rp)

0

0


The degree of polarisation now is ρ =

s0o (Ts−Tp)+s0(Rs−Rp)
s0o (Tp+Ts)+s0(Rp+Rs)

. After transmission through a rotated

linear polariser, the Stokes vector of the ray is MRPOL · sm, concretely, we separate it by linear

algebra rules [74] that

MRPOL · sm =
1

2
MRPOL


s0(Rp +Rs)

s0(Rs −Rp)

0

0

+
1

2
MRPOL


s0o(Tp + Ts)

s0o(Ts − Tp)

0

0



Figure 6.1: An experiment setup to capture the polarimetric images. Compare to Figure 2.4,

we remove the phase retarder so that only linearly polarisation information will be captured.

As it shows the intensity captured by the camera is exactly a superposition of (2.37) and

(2.32).

Iϑ = Id(1 + ρd · cos(2ϑ− 2φ)) + Is(1 + ρs · cos(2ϑ− 2φ+ π))

Remove the π in specular component and merge into one:

Iϑ = (Id + Is) + (Idρd − Isρs) cos(2ϑ− 2φ) (6.1)

97



We can see the diffuse polarisation model is an approximation of (6.1) where Is = 0, while the

specular polarisation is Id = 0.

The ambiguity The (6.1) now contains five unknowns that are Id, Is, ρd, ρs, φ. Compare to

(2.38), it still remains a sinusoid function so we can use the same method as described in (2.40),

but now the Iun = Id+Is, ρ = Idρd−Isρs
Id+Is

and ϕ contains four ambiguities as described in equations

(2.43), (2.44) depending on whether the pixel is specular dominant or diffuse dominant (defined

below). In order to clarify the ambiguity problem in mixed polarisation model, we plot its degree

of polarisation in Figure 6.2. We pick two different values for specular intensities.

In the figure (a), when Is = 0.01 which means the specular intensity is small enough to be

ignored, this model can be approximated as diffuse polarisation model. Otherwise when Is = 0.1

the ρ can be divided into two region: a specular dominant region is when Isρs > Idρd, a diffuse

dominant region is when Isρs < Idρd. We can see it in the figure (a) where ρ < 0 is the specular

dominant region. By definition in (2.11), DoP is in the value between [0, 1], so we take the

absolute value from figure (a) to make a figure (b). In figure (b) we can see when the pixel

intensity mixed with diffuse and specular, the zenith angle might have up to three solutions

(The dashed line cross with the DoP curve in figure (b)). That is intuitive for we have two

solutions in specular polarisation model and one from diffuse polarisation model. In figure (b)

we can also see if we estimate the zenith angle by approximation to a diffuse polarisation model,

the zenith angle estimation will be far away from the ground truth. As the dashed line intersects

with the two curves showed in figure (b). Assume the curve Is = 0.1 is the ground truth curve

and Is = 0.01 is an approximation of the diffuse polarisation model. We can see the same DoP

value interpreted by diffuse polarisation model will lead its estimated zenith angle about 0.8,

but the ground truth can only be one of in 0.5, 1.15, 1.25.
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Figure 6.2: We set Id = 0.5 with two different specular intensity of the mixed polarisation model.

(a) The curves shows the value of Idρd−Isρs
Id+Is

.(b) The curves shows the value of | Idρd−IsρsId+Is
|.

To conclude, the surface normal ambiguity is determined by whether the pixel is diffuse or

specular dominant. 1). Specular dominant is when Isρs > Idρd, it has four possible normals. 2).

Diffuse dominant is when Isρs < Idρd which contains two possible normals. This observation

follows same rule as described in Section 2.1.6. To determine whether a pixel is diffuse or

specular dominant we require estimates of the value of Id, Is, ρd, ρs.

6.2 Multi-view constraint

Although the mixed polarisation model presents the physical model more accurately, to solve the

five unknowns directly is challenging. We see the captured pixels’ intensity forms a sinusoidal

function which only determines three unknowns as the method described in (2.40). In order to

tackle this problem, we utilise the multi-view constraint. We have seen in Ch 5, an additional

camera provides a coarse depth map that provides a strong constraint on surface normal. The

multi-view stereo can provide an even better shape estimation [24,25,68] and the surface normal

can be retrieved from multi-view stereo shape estimation. Unlike previous chapters that works

on a depth map, we work on the 3D space, which mean the unknowns are estimated per vertex.

We rewrite the equation 6.5 and adapt the surface normal in to estimate the Id, Is with known

refractive index. We show this method provides a state-of-art diffuse and specular separation in

uncontrolled illumination.
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6.2.1 Polarisation model under camera coordinate

We denote a 3D point in world coordinate as x = (X,Y, Z) and the surface normal in world

coordinate of it is denoted as n(x) = [nx(x), ny(x), nz(x)]T with ‖n(x)‖= 1. For the polarisaiton

model is measured under camera coordinate as show in Figure 2.10 and fig 2.8, we need to

determined the θ, φ under camera coordinate. To clarify we represent them as θl, φl which mean

in local camera coordinate. Under perspective camera model, the surface normal w.r.t certain

camera is determined by the view direction and orientation of a camera which can be represented

by the extrinsic camera parameters [35]. We denote the camera orientation with a 3× 3 matrix

R and camera position w.r.t world coordinate as C. The view direction w.r.t a 3D point in

world coordinate is given by

v(x) = C − x (6.2)

θl is determined by the surface normal in world coordinate and view direction of a certain camera

as show in Figure 4.2 that cos(θl(x)) = n(x)·v(x)
‖n(x)‖ , where

θl(x) = arccos(
n(x) · v(x)

‖n(x)‖
) (6.3)

To compute φl we should transform the surface normal to camera coordinate by nl(x) = R· n(x)
‖n(x)‖ ,

then we get tan(φl(x)) =
nl,y(x)
nl,x(x)

. So we have

φl(x) = atan2(
nl,y(x)

nl,x(x)
) (6.4)

In equations (2.44) and (2.43), the degree of polarisation(DoP) depends on surface geometry

and refractive index. Here we assume the refractive index is known. Instead using two separate

value ρs, ρd, we can rewrite the diffuse and specular DoP w.r.t θl as ρs(θl) and ρd(θl), and the

equation 6.1 can be presented as

Iϑ = (Id + Is) + (Idρd(θl)− Isρs(θl)) cos(2ϕ− 2φl) (6.5)

6.2.2 Reformulation under Multi-view stereo

Assume we have M polarisation images capture by M polarisation cameras with different views.

The extrinsic camera parameters (Rk, Ck) denote the orientation and location of the kth camera.

We can see the minimum parameters of (6.5) constitutes four unknowns which are: Id, Is, θl, φl.

A sequence of polarimetric image data by one camera can only provide 3 linear independent

equations which is not enough to solve 4 unknowns. By adding more views we can add more
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equations in order to solve it. Concretely, under multi-view constraint, where the polarimetric

images from different view are all captured simultaneously. By the assumption of Lambertian

reflectance model as (4.26), the diffuse intensity is independent on view direction, so we expect

a vertex in image space will have same diffuse intensity but different specular intensity under

different views. Where I1d(x) = I2d(x) = · · · = INd (x) and I1s (x) 6= I2s (x) 6= . . . 6= INs (x).

θl(x), φl(x) are related to surface normal at point x that transformed to the camera coordinate.

Explicitly, for θkl (x), φkl (x) in kth camera,

θkl (x) = arccos(
n(x) · vk(x)

‖n(x)‖
) where vk(x) = Ck − x (6.6)

φkl (x) = arctan(
nkl,y(x)

nkl,x(x)
) where nkl (x) = Rk · n(x)

‖n(x)‖
(6.7)

Rather use local coordinate to present (6.5), we use a global surface normal n(x) with camera

parameters to replace θl, φl. Moreover, the surface normal can be rewritten with spherical

coordinate where

n(x) =


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 (6.8)

The θ, φ are the zenith angle and azimuth angle of the surface normal in world coordinate

respectively, so a minimum parametrisation of (6.5) in kth can be written as

Ikϑ(Id, I
k
s , θ, φ) = (Id + Iks ) + (Idρd(θ

k
l (θ))− Isρs(θkl (θ))cos(2ϕ− 2φkl (φ)) (6.9)

Where we drop x for simplicity. With M views we have total M + 3 unknowns in the mean

while we 3M linear independent equations. Once M > 2 the unknowns can be solved.

6.3 Estimation of mixed polarisation model

The multi-view stereo method provides a dense shape estimation and camera parameter esti-

mation simultaneously [24, 25, 35]. This provides us a 3D point cloud of the object, surface

normal of each vertex and intrinsic/extrinsic parameters of all cameras. We will utilise these

information to estimate the mixed polarisation model.

6.3.1 Extract correspondences in image space

A key step to utilise the multi-view constraint is to locate the correspondences in image space

across all camera of a vertex x. Rather search in the image space, we utilise the point cloud
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reconstructed by multi-view stereo and back project the point with camera parameters into image

space [35]. The intensities of a vertex x in all cameras can be written as I1ϑ(x), . . . , IMϑ (x), these

intensities across image spaces are related to the same vertex in 3D space. The projections may

not be to integer positions within the image, in which case we can use bilinear interpolation into

the polarimetric images.

6.3.2 Optimisation strategy

The observed image intensity of a certain 3D point x in kth camera with polariser orientation

ϑj is denoted as Iobs,kϑj
. The corresponding intensity from mixed polarisation model is denoted

as Imod,k
ϑj

where we drop x for simplicity. Now we can compute a vector of residual between the

observed intensity and theoretical intensity through all polariser angle and all view, a solution

can be computed by nonlinear least squares as described in Section 4.1.2. We find a better way

to solve this equation by using (alternating optimisation). Specifically, we a). fix θ, φ that solve

linear for diffuse intensity and specular intensities for all views. b). Then fix diffuse intensity

and specular intensities to find an optimum θ, φ that minimise the residual between observed

intensity and theoretical intensity compute from mixed polarisation model.

Solve diffuse and specular intensity We first factor out the diffuse intensity and specular

intensity from (6.9) that [
Ak Bk

]Id
Iks

 = Ik (6.10)

where Ak ∈ RN ,Bk ∈ RN are

Ak =


1 + ρd(θ

k
l (θ))cos(2ϑ1 − 2φkl (φ))

...

1 + ρd(θ
k
l (θ))cos(2ϑN − 2φkl (φ))

 , Bk =


1− ρs(θkl (θ))cos(2ϑ1 − 2φkl (φ))

...

1− ρs(θkl (θ))cos(2ϑN − 2φkl (φ))


Ik ∈ RN is given by

Ik =


Ikϑ1
...

IkϑN


To solve the diffuse intensity and specular intensities through all M views, we now combine all

the corresponding image intensity for a certain point the we solve:

min
Id,I1s ,...,I

M
s

‖AB ·
[
Id I1s . . . IMs

]T
− o‖2 (6.11)
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where AB ∈ RNM×(M+1),o ∈ RNM are

AB =


A1 B1 0 . . . 0

A2 0 B2 . . . 0
...

...
...

. . .
...

AM 0 0 . . . BM

 , o =


I1

I2

...

IM

 (6.12)

These equation will be solved with monochromatic images, it can be easily adapt to chromatic

images by stack all colour channels.

Solve θ and φ We now fix the diffuse intensity and specular intensity, we substitute them to

(6.9) and compute a vector of residuals rk ∈ RN that

rk(θ, φ) =


Iobs,kϑ1

− Imod,k
ϑ1

(θ, φ)
...

Iobs,kϑN
− Imod,k

ϑN
(θ, φ)

 (6.13)

We can get θ, φ by solving the following nonlinear least square problem

min
θ,φ

M∑
k=1

(rk(θ, φ)T rk(θ, φ) (6.14)

We initialise θ, φ by using the mesh reconstructed from multiple-view stereo and camera

parameters as in [25] to estimate the diffuse intensity Id and specular intensities I1s . . . I
M
s ,

where we put a constraint that Id ≤ 0, I1s ≤ 0, . . . , IMs ≤ 0. We then use the estimated diffuse

and specular intensities to refine θ, φ by nonlinear least square approach described in Section

4.1.2. We interleave and alternate the two steps until convergence. We present experimental

results on both synthetic data and real data. For this is ongoing research, we only show diffuse

and specular separation results.

6.4 Summary

We propose and derive a mixed polarisation model in this chapter in order to improve the

previous method that only consider either diffuse or specular in pixel domain. We utilise the

multi-view prior to initialise the mixed polarisation model and achieving diffuse and specular

polarisation by interleaving between linear least square and nonlinear least square. We also show

the experiments results on synthetic and real captured polarimetric images, it gives a state-of-art

result.
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Figure 6.3: We simulate the Stanford bunny in two different views, we add noise to the ground

truth mesh which provides a initialisation for θ and φ. The first row shows two view images.

The second row shows our diffuse intensity, and specular intensities in two views(from left to

right). The third row shows the ground truth of the diffuse and specular intensities.

The limitation of this method is we assume the refractive index is known, and multi-view

might not work on featureless object. The 3D sensor now are more mature, that we can utilise

3D camera like Kinect instead of relying multi-view stereo, so we can extend our method to

featureless object or scene as well. For this is on going research, we need to make more effort to

relieve the refractive index and how to refine the surface normal.
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Figure 6.4: We shows real data images that capture under natural environment, we capture each

images in four different views. Column a).Original images captured under nature illumination.

b).Diffuse intensity per vertex. c).Specular intensity per vertex.
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Chapter 7

Conclusion and Future work

7.1 Summary

This thesis develops several methods based on shape-from-polarisation. In Chapter 3, we de-

velop two underpinning methods serving for shape-from-polarisation in later chapters. 1) Most

of the shape-from-polarisation methods rely on the quality of estimated polarisation images

which includes unpolarised intensity image, degree of polarisation image and phase angle image.

By assuming the refractive index does not vary with wavelength we can constrain the degree of

polarisation and phase angle to be only geometry dependent. We therefore propose a multichan-

nel polarisation images estimation method that fully utilises all colour channels to estimate a

polarisation image. This significantly improves the quality of the estimation results. We then ex-

tend it to a multi-light environment in Section 3.2 that fixes the camera, the polarimetric images

dataset are captured under different illumination conditions. This provides more constraints to

improve the estimation results. 2) We explore the height-from-normal method, especially using

Savitzky-Golay filters. The proposed 2D Savitzky-Golay kernel can provide a robust numeri-

cal derivation approximation. Moreover compared to Laplacian smoothness regulariser, it can

de-noise the height reconstruction without over-flatting the surface.

In Chapter 4, we propose two novel shape estimation methods for a monocular polarisation

camera. In Section 4.1 we propose an energy minimisation approach and optimise a nonlinear

least squares cost that estimate surface height directly. This avoids polarisation image estima-

tion and normal disambiguation steps, allowing us to optimise the depth directly. The second

approach in Section 4.2 described a photo-polarimetric stereo method. The key advantage is
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that the method works well on non-uniform albedo objects while previous methods are mainly

focussed on uniform albedo objects. Moreover, it provides a way to estimate the refractive index

of the object while previous methods make an assumption of fixed or known refractive index.

We developed different constraints in Section4.2.1 which allow us to directly estimate the height

by linear least squares. These two approaches, limited under the orthographic camera model,

do not provide metric depth estimation, only local surface orientation or relative height.

In Chapter 5, we propose a polarisation camera + RGB camera setup. We move on from

orthographic camera model to perspective model, which builds a linear system in which metric

depth can be solved by linear least squares. The stereo setup allows us to get a coarse depth

map that is used for disambiguating the surface normal. We construct a higher-order graphical

model to disambiguate the surface normal and label whether the pixel belongs to diffuse or

specular dominant reflectance. We then estimate the albedo by the shading cue with corrected

normal and finally obtain a metric depth with all these constraints. We show a state-of-art

quality results that obtain a dense and accurate metric depth estimation.

Chapter 6 described a mixed polarisation model. The previous polarisation methods only

consider the dominant component on the pixel that assume a pixel is either diffuse or specular

dominant. We propose a multi-view stereo setup to fit and solve the mixed polarisation model.

This delivers a way on separating diffuse, specular intensities and estimation of polarisation

images in a single model. This method makes a first step towards a comprehensive mixed model

of both specular and diffuse polarised reflectance which shows promising results.

7.2 Overarching conclusions

Taking the work in this thesis as a whole, we can draw a number of quite general, overarching

conclusions that may be useful as a guide to future research directions. In this thesis, we propose

different approaches to explore the methods of shape-from-polarisation. Especially we enhance

the existing methods by polarisation cue. Our photo-polarimetric stereo method using two light

source and polarisation cue allow us to reconstruct object with non-uniform albedo and unknown

refractive index. While the previous work makes strong assumptions of known refractive index

and uniform albedo [6, 70]. We combine stereo and polarisation, find out the stereo can be

in used to correct the ambiguity from polarisation cue. On the other hand, enhancing by the

polarisation cue which provides a high frequency signal that allow us to reconstruct a dense and

detail metric depth. We also find out the our mixed polarisation model and proposed multi-view
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solution gives a general approach to solve the polarisation images, while previous methods has

to make assumption that each pixel is either diffuse or specular. And we show promising results

in real data. We summarise our key conclusions as follows:

• Polarisation always helps. In this thesis we have added polarisation information to

classical shape-from-x problems including shape-from-shading (Section 4.1), (2 source)

photometric stereo (Section 4.2) and binocular stereo (Section 5). In each case, the geo-

metric information we are able to recover is significantly better than using the other cue

alone, in some cases making an ill-posed problem well posed. Specifically, polarisation

helps recovery of finescale surface detail and resolves local ambiguities due to the phase

information.

• Shape from a single polarisation image alone is saturated. We may have reached a

point where improving the shape we can recover from a single polarisation image is highly

challenging, i.e. performance on this task has saturated. Adding a second light source aids

polarisation image recovery (Section 3.2) and photo-polarimetric shape estimation (Section

4.2). Adding a second viewpoint aids shape recovery (Section 5) and diffuse/specular

separation (Section 6). This may be the most promising direction for future work.

• We need to look beyond classical optimisation-based approaches. In this thesis

we focussed on expressing shape-from-polarisation as an optimisation problem that can

be solved using classical methods. These include linear least squares (Sections 4.2.3, 5.4),

nonlinear least squares (Section 4.1) and graphical models (Section 5.2). In all of these ap-

proaches, we only make use of the information in a single dataset (monocular or multiview

images of a single object) and rely on our physical models to provide sufficient constraint.

There is likely to be a significant performance gain by exploiting the power of statistical

learning in modern deep learning methods. By training a deep network on large datasets,

we can begin to exploit contextual cues that arise from understanding the distribution of

commonly encountered local and global shape structures. Recent work [9, 44] shows that

problems that are highly ill-posed for a single dataset (e.g. monocular depth estimation,

inverse rendering, intrinsic image decomposition etc) can be robustly solved by training

on large, representative datasets.
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7.3 Future work

Mixed polarisation model We propose a multi-view stereo approach to solve the mixed

polarisation model while assuming the refractive index is known. We do show in experimental

results that the proposed model can achieve a good separation on diffuse and specular inten-

sity. In the future we will combine 3D camera with multiple polarisation cameras, for depth

camera can work on featureless object and provide a coarse metric depth directly. And multiple

polarisation cameras can constrain the mixed polarisation model, we will adapt patch-based

reconstruction [25] method to refine the shape estimation. We believe such a setup has the

possibility to extend state-of-the-art polarised multiview stereo [27] to a single shot setup not

requiring polarised light.

Deep neural network with polarisation We have shown a nonlinear approach to obtain

the shape from polarimetric image data. Similarly we can build a deep network and use the

polarisation reflectance model as constraints to optimise the network that given the polarimetric

image data as input and output a predict depth map. The key idea is that the nonlinear

optimisation for a single image is highly challenging with many local minima. Exploiting large

datasets, the objective can be optimised in aggregate and using stochastic methods such that

data-driven statistical priors are implicitly learnt to combine with the polarisation cue. Similar

successes on related tasks such as monodepth estimation and inverse rendering suggest that such

an approach is likely to be successful.

Loosen the constraints on the incident light Almost all previous works assume the in-

cident light is unpolarised light, and the diffuse, specular polarisation reflectance models are

derived from that. But actually the light could be in any polarisation state. We would like

to explore more about how different polarised incident light will affect polarisation reflectance

model. This will help by using the light stage, that we can control the light source polarisation

states. In a similar direction, we have largely assumed a single point light source. General-

ising to arbitrary environment lighting conditions would extend our methods into conditions

experienced outside of a lab setting.
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