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Abstract In the Internet of Things (IoT) ubiquitous environment, a high vol-
ume of heterogeneous data and devices are produced in a quick span of time.
In all IoT applications, the quality of information plays an important role in
decision making, while providing reliable and accurate information becomes
critical for such applications. Making this data precise and highly accurate is
challenging an open research trend. Data fusion is one of the current trends
that is considered in this paper. We particularly consider typical IoT scenarios
where the source's measurements highly conflict, which makes intuitive fusions
prone to wrong and misleading results. This paper proposes a taxonomy of de-
cision fusion methods that rely on the theory of belief. It proposes a data fusion
method for the Internet of Things (DFIOT) based on Dempster-Shafer (D-S)
theory and an adaptive weighted fusion algorithm. It considers the reliability
of each device in the network and the conflicts between devices when fusing
data. This is while considering the information lifetime, the distance sepa-
rating sensors and entities, and reducing computation. The proposed method
uses a combination of rules based on the Basic Probability Assignment (BPA)
to represent uncertain information or to quantify the similarity between two
bodies of evidence. To investigate the effectiveness of the proposed method in
comparison with D-S, Murphy, Deng and Yuan, a comprehensive analysis is
provided using both benchmark data simulation and real dataset from a smart
building testbed. Results show that DFIOT outperforms all the above men-
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tioned methods in terms of reliability, accuracy and conflict management. The
accuracy of the system reached up to 99.18% on benchmark artificial datasets
and 98.87% on real datasets with a conflict of 0.58%. We also examine the
impact of this improvement from the application perspective (energy saving),
and the results show a gain of up to 90% when using DFIOT.

Keywords Wireless sensor networks · Dempster-Shafer theory · Conflict
management · Energy consumption · Basic Probability Assignment · Similarity
distance · Weighted evidences · Communication networks for data.

1 Introduction

IoT is considered as a global infrastructure for the information, where it is
expected that billions of devices or things that are able of sensing, commu-
nicating, computing, and potentially of actuation will be connected to the
Internet [1]. This includes sensors, Radio Frequency IDentification (RFID),
cell phones, smarter watches, smart glasses, etc. The vision of IoT is to allow
these things to be connected anytime, anywhere, with anything or anyone,
ideally using any path, any network and any service. This will generate a huge
amount of data coming from different sources, which arises the need for effec-
tive methods for processing such data [2]. Data fusion is defined as the theory,
techniques and tools which are used for combining sensor data, or data derived
from sensory data, into a common representational format [3]. It is also con-
sidered as the combination of information from different heterogeneous sources
of measurement [4–6]. The goal in data fusion is to improve the performance
of a given system by combining complementary or redundant information.
The combination of redundant information makes it possible to reduce the
uncertainty of the measurements, whereas the combination of complementary
information makes it possible to obtain information that cannot be perceived
by a single sensor. Data fusion is commonly used for detection and classifica-
tion in different application domains [7–9], such as military, robotics, medical,
earth sciences, and industrial applications.

Data fusion in distributed and heterogeneous environments such as IoT is
challenging. IoT consists of heterogeneous systems where data are generally
represented in several feature spaces. This makes it difficult to analyze rela-
tionships among different data, even when the datasets are related to each
other semantically [10]. Scalability is another challenge in IoT, due to the fre-
quent changes in the shape and size of the networks. Several formal fusion
methods may be found in the literature. We consider in this paper the deci-
sion fusion, in which the fusion allows to infer decisional information. Decision
fusion methods provide a formalism for combining evidence according to the
probability theory rules, where uncertainty is represented using the conditional
probability terms that describe beliefs.

The Dempster-Shafer (D-S) theory [11] is largely used for uncertainty rea-
soning, which allows processing uncertain or imprecise information without
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prior knowledge. This can be well used in IOT environment. It supports the
representation of both imprecision and uncertainty, and it allows deriving the
probabilities of a collection of hypothesis while dealing with missed informa-
tion. This can be helpful to process the heterogeneous IoT data. However,
under situations where the evidence highly conflicts, it may obtain counterin-
tuitive results. This problem is tackled in this paper in which we first present
the literature on decision fusion methods, and then propose a taxonomy of D-
S approaches. The most common methods are reviewed by exploring benefits
and challenges. A new efficient method is then developed, which emphasizes
the importance of reducing the uncertainty of the measurements and conflicts
in data fusion. It takes into consideration the contextual IoT parameters while
reducing the degree of uncertainty. It also enhance the entropy of Deng, by se-
lecting a sensor report which has a big information volume and well supported
by the others sensors. This by exploring similarity between evidence and en-
hancing credibility. Results show that the proposed solution outperforms all
the above mentioned methods in terms of reliability, accuracy, and conflict
management.

The remainder of this paper is organized as follows. The related work is
given in Section 2. The proposed method is presented in Section 3. In Section
4, simulation based comparison is presented, where the proposed solution is
compared to state-of-the-art data fusion methods using benchmark datasets.
A comparison using testbed datasets is presented in Section 5. Finally, Section
6 draws the conclusion.

2 Related Work and Background

The basic concept of the D-S evidence theory was originally developed in
(1967) [12], and then evolved towards belief functions to model uncertain
knowledge on the basis of mathematical formulations [13]. In D-S reasoning
system, possible assumptions consist of all elements of indivisible hypothe-
sis that are mutually exclusive and comprehensive. This includes a frame of
discernment, denoted T , the space of inference system, θ, which includes all
possible subsets of T elements. The number of possible combination (including
the empty set) is 2n, where n is the number of elements in T . There are three
main functions in D-S theory, i) the basic belief mass function that specifies
the belief mass distribution (m-values) over all possible sub-sets of a frame of
discernment, ii) the Belief function, and iii) the Plausibility function.

The Mass function, which is also called a basic probability assignment,
associates for every element, E ∈ θ, m(E) that is the proportion to all available
evidence. The value of m(E) therefore concerns only the state E and brings
no credit to the subsets of E, which by definition have their own mass. The
mass of the empty set is null (m(∅) = 0), and the masses of θ’s subsets sum
up to 1, i.e.,

∑
E∈θm = 1. The belief of a set, A, to a node, i, say Beliefi(A),

is defined as the sum of the masses of all A’s subsets (Eq. 1).
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Beliefi(A) =
∑
Ek⊆A

mi(Ek). (1)

The plausibility measures the intensity with which the element, A, is found
(with no doubt). It can also be interpreted as the maximum belief in A, or the
sum of the evidence that is not against A. Plausibility(A) is defined as the
sum of the masses of all sets that intersects with A (Eq. 2).

Plausibilityi(A) =
∑

Ek∩A6=∅

mi(Ek). (2)

The procedure for fusing multiple evidence using the previously defined
mass functions is an important issue in the D-S theory, which provides a
method to compute the orthogonal sum (m = m1 ⊕ m2) of two bodies of
evidence according to Dempster's combination rule [14].

When there are multiple sources and the observations are assumed to be
independent of each other, the combination of evidence in D-S provides away
to combine these observations. For every proposition A in, θ, the combination
rule between an object with a mass, mi, and another object with a mass, mj ,
is given by Eq. 3,

m(A) =

∑
B∩C=A

mi(B)mj(C)

1−K
, (3)

where K is a measure of conflict between the sources, which is also called
inconsistency of the merger. It is given by Eq. 4.

K =
∑

B∩C=∅

mi(B)mj(C). (4)

The mass function obtained after combination tends to reinforce the belief
of decisions for which the sources are consistent. Note that this combination of
evidence rule is both associative and commutative. That is, the mass function
can be the result of a combination of evidence between two other objects.
The evidence of combination process for multiple sources can be chained, and
the order in which the sources are combined does not affect the final results.
The combination of conflicting evidence has always been challenging in D-S
evidence theory [15]. Many methods have been proposed to solve this problem
[14,16,17], but there is no universal solution thus far.

Several protocols have been proposed for data fusion in IoT that aims at
improving decision-making. Some of these protocols rely on the combination
rule, while some others are interested in the measurement of distance between
nodes (weight) or amount of information. The relevant literature is reviewed
in this section based on different categories of D-S approaches. We propose a
taxonomy of the state-of-the-art protocols that are based on D-S theory using
several criteria as shown in Fig. 1, and then we describe the most common
methods. Two main categories may be distinguished, 1) protocols based on
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modified models in which measure of conflict is modified in combined rules,
and 2) improved D-S based on modified methods in which a weight coefficient
is used in the calculation of BPA.

Fig. 1: Taxonomy of data fusion solutions

Starting with the first category, Yager [18,19] suggested that all conflicting
evidence is unable to provide effective information, so he assigned all conflicts
to unknowns m(θ). The improved formula can be used in high conflicting
evidence combination, but the irrational distribution will lead to unreason-
able results for assigning all conflicting evidence to the unknown. Smets [20]
considers that the data sources are reliable. Based on this assumption, the
conflict can only come from an ill-posed problem, i.e., the non-inclusion of
one or several assumptions in the frame of discernment. Therefore, the author
recommends redistributing the conflict mass K, but only on the empty set.
Dubois and Prade [21] consider that the data sources are the unreliable part
and assume that when a conflict exists between two data sources, at least one
of the two sources is reliable. Given the impossibility of identifying the reliable
source, they opted for redistributing the conflicting mass on the union of the
two sources. Dubois and Prades rule doesnt work for dynamic fusion problems
when a singleton or a union of singletons becomes empty. This problem is fixed
by the sum S2 in the general D-S rule of combination. Murphy's [22] averaging
approach suggested that if all the evidence are available at the same time, the
average of evidence masses is calculated and then combined N time using D-S
theory, where N is the Number total of evidence. However, this approach does
not consider the association relationship and difference among the evidence.

The second category is further divided into two classes, reliability meth-
ods vs. the amount of information based methods. In reliability methods, the
evidence distance of Jousselme [23] is used. The distance between two bodies
of evidence, dBOE(m1,m2), is defined in Eq. 5.
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dBOE(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2). (5)

where −→m1 and −→m2 are the vector forms of the evidence bodies. The size of
each body is 2θ. D is a 2θ ∗ 2θ matrix, whose elements are given by Eq. 6,

D(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

, s1, s2 ∈ 2θ. (6)

Yong [24] applied the evidence distance to obtain a weighted average com-
bination and thus measure the conflict degree among evidence. The higher
the distance between two bodies of evidence is, the less these two bodies of
evidence support each other. If evidence conflicts highly with others, it will
have less effect on the final combination result. The support degree and the
credibility degree of each evidence are defined, respectively, with Eq. 7 and
Eq. 8.

Sup(mi) =

N∑
j=1,j 6=i

(1− d(mi,mj)). (7)

Crdi =
Sup(mi)∑k
j=1 Sup(mj)

. (8)

The credibility degree represents how reliable evidence is. The higher the
credibility degree is, the more effective the evidence will have on the final com-
bination result. Zhang [25] proposed a new method of combining conflicting
evidence based on average. This method considered the association relation-
ship among the evidence collected from multi-sources, and it weighs the ev-
idence based on the distance of evidence. Zhu [26] proposed a new method
for weighting evidence using PSO (Particle Swarm Optimization) algorithm
to optimize the calculation of sources weight.

Context-aware data fusion [27–29] is employed in the basic concepts of
IOT. The amount of information based methods use efficient tools to quantify
information. These approaches can be applied in evidence theory where the
uncertain information is represented by BPA. Deng entropy [30] is one of these
methods and a generalization of Shannon entropy [31]. It is an efficient way
to measure uncertainty, not only under the situation where the uncertainty is
represented by a probability distribution, but also in the situation where the
uncertainty is represented by BPA. This enabled its wide application in D-S
evidence theory. When the uncertainty is expressed in the form of a probability
distribution, Deng entropy degenerates to Shannon entropy.

The related concepts are given in the following. Let Ai be a proposition of
BPA m; the cardinality of the set Ai is denoted by |Ai|. Deng entropy Ed of
the set Ai is defined by Eq. 9

Ed = −
∑
i

m(Ai)log
m(Ai)

2|Ai| − 1
. (9)
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Tzu [32] proposes another method to calculate information volume, which
reapportions the mass in the null set among the other subsets that are origi-
nally assigned to the null set. This is using Eq. 10.

Iev =

n(Ai)∑
i=1,Ai 6=∅

m(Ai)

|Ai|
. (10)

Yuan [33] combines the weighted credibility method in [24] to reduce con-
flict between evidence, and Deng entropy when calculating information vol-
ume.

Contrary to most of the previous methods that are pointed to only one
parameter to calculate the weighted evidence, the one proposed in this article
improves the credibility degree by considering the evidence relationships, and
enhancing the uncertainty degree using inner properties of evidence. We are
particularly interested in the reliability of a sensor which is determined by the
distance between the sensor and the entity in question, as well as the time
validity of the information (lifetime).

3 Solution Description

In this paper, a weighted evidence combination method is used. It is based on
weight which represents the degree of confidence that is given to a data source.
The method is largely used for uncertainty measure [33] to handle conflicting
evidence combination and to take into consideration heterogeneous data in
IoT [25,26]. Our solution addresses the features of IoT data fusion which are: 1)
the uncertainty, as data provided by sensors, is always subjected to some level
of uncertainty and inconsistency. Data fusion algorithms reduce uncertainty
by combining data from several sources. 2) Conflicts to present quality data to
users, which is critical to resolve conflicts and discover parameters’ values that
reflect the real world. 3) Energy consumption has always been challenging in
wireless sensors networks, and consequently in IoT. To justify the choice of the
weighted method upon which we rely for developing the proposed solution, a
comparison between several state-of-the-art methods in each subcategory has
been carried out. The results are presented in the following.

3.1 Comparison Between Weighted Methods

We implemented and compared the methods based on reliability, which are
all based on jousselme distance. A benchmark numerical example has been
used [25]. The results are given in Fig. 2a and Fig. 2b. They show that both
Yong and Zhang methods give approximately the same BPA of hypothesis
A (up to 98%). Yong method, however, has less conflict and increases its
performance as the number of evidence goes up.
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Fig. 2: Comparison between weighted data fusion methods based on reliability

We implement also the second category of data fusion methods based on
the amount of information, and compare them using a benchmark numerical
example [30]. The results are depicted in Fig. 3a and Fig. 3b. Deng entropy
has clearly the best results in terms of accuracy (BPA) and reaches up to 98%,
while D-S's BPA is equal to 0. Deng also has the best performance in terms,
e.g., it remains at 0.32 for 5 bodies of evidence while the other solutions exceed
0.50. Based on these results, we use Yong method to calculate the credibility of
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evidence and Deng entropy to capture the information volume when combining
evidence.
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Fig. 3: Comparison between weighted data fusion methods based on amount
of information

The aim is to select the best improved method and use it to calculate the
credibility degree of evidence in the first category and the uncertainty degree
in the second one. The simulation results justify our choice of Yong and Deng
entropy.
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3.2 DFIOT Steps

DFIOT is based on D-S theory and Deng entropy. It proposes three methods
IDeng, WDST and WDSD, to improve the information processing. IDeng is an
improved Deng method that gives more importance to a sensor which has low
uncertainty, i.e., more volume of information, and less evidence distance vs.
other sensors. That is, if a sensor report has a big information volume and a
less evidence distance, it will be well supported by other sensors and thus will
have a higher weight proportion. Otherwise, a small weight proportion will be
assigned to sensors with conflicting readings (having high evidence distance) or
with a low volume of information. The contextual parameters used in DFIOT
are, 1) the lifetime of sensed data, which is represented by Weighted Dempster
Shafer method based on Time (WDST), and 2) the distance between sensors
and the entity which is represented by Weighted Dempster Shafer method
based on Distance (WDSD). DFIOT includes four steps as illustrated in Fig.
4, and detailed in the following:

Fig. 4: The flowchart of DFIOT method

3.2.1 Calculate the Credibility Degree of Evidence:

For every piece of data collected by sensors, Eq. 5 is used to calculate the
distance between every two bodies of evidence, and Eq. 7 to obtain the support
degree of each evidence. Algorithm. 1 describes the calculation of evidence
credibility.

3.2.2 Calculation of the Uncertainty Degree of Evidence:

We propose an Improved Deng method (IDeng) to calculate the information
volume (degree of uncertainty) associated with each evidence. The Deng en-
tropy presented in Section 2 is used. In fact, each evidence suffers from a
degree of uncertainty that influences on the degree of its involvement in the
final combination.

Three cases can be identified: 1) Evidence has a high degree of uncertainty
(low information volume); its weight must be set to a small value (case of
uncertainty). 2) Evidence has a low degree of uncertainty and significant evi-
dence distance with the other evidence; its weight must be set to a small value
(case of negative certainty). 3) Evidence has a low degree of uncertainty and
low evidence distance; its weight must be set to a high value (case of positive
certainty). The information volume of sensed data I(SD) will be calculated
for each evidence in two steps as follows:
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Algorithm 1: Credibility computation of each evidence

Input : <m1,m2,m3,.> [vector of evidences]
N: number of evidence
T = h1, h2, h3, ...... frame of discernment.

Output: CRD vector
1 CRD = zeros(N) : Initialization
2 Sum=0;
3 SumCRD=0
4 Begin
5 z for i = 1 to N do
6 for j = 1 to N do
7 if i 6= j then
8 Sum = Sum + 1− dBPA(mi,mj)
9 end if

10 endfor

11 CRD[i]=Sum;
12 SumCrd=SumCrd+CRD[i];
13 Sum=0;
14 endfor

15 for i = 1; i <= N ; i + + do
16 CRD[i] = CRD[i]/SumCrd
17 endfor

18 Return CRD vector
19 End

First, the entropy of each evidence is calculated with Eq. 9. Second, the
distance of evidence is verified in terms of decision with other bodies of ev-
idence. To determine if the certainty is positive or negative, the sum of the
distance is calculated and the farthest evidence is ignored. If the sum reaches
a certain threshold then the certainty is considered negative, otherwise it is
considered positive. This is explained in Algorithm. 2. The final weight for
each evidence is calculated using Eq. 11.

ED = 1− ED

sum(ED)
, (11)

where sum(ED) is the sum of all evidence.

3.2.3 Addition of Contextual Parameters:

In IoT applications, a large collection of sensors, devices, and users provide
a large amount of information in different contexts. This information is usu-
ally prone to errors and lacks reliability and credibility. The information to
be used must be analyzed, substantiated and motivated. Therefore, merging
contexts while increasing the confidence to bring new information, and giving
a complete view of the environment is important when fusing data in IoT.

To enhance the quality of data fusion in large heterogeneous and dis-
tributed wireless sensors networks used in IoT applications, we consider con-
textual parameters that are essential for any type of IoT application. These
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Algorithm 2: Information volume computation of each evidence

Input : <m1,m2,m3,.> [vector of evidences]
N: evidence number
T = h1, h2, h3, · · · frame of discernment.

Output: ED vector; information volume of sensors
1 ED= zeros(N); NC= zeros(N); booleen , NC:Negative Certainty
2 SumDisatance = 0; MaxDistance = 0;
3 Begin for i = 1 to N do
4 SumDistance=<Sum of evidences>
5 MaxDistance=<the largest distance between evidence i and the others>
6 ED[i]=DengEntropy(mi);
7 if SumDistance−MaxDistance) > 0.5(N − 2) then
8 NC[i] = true;

9 endif
10 done

11 for each evidence i do
12 ED = ED ∗N/Sum of ED
13 if NC[i] = true then
14 RetunED = ED/2;

15 endif
16 endfor

17 Return the vector ED

parameters measure the degree of conformity of the IoT environment as per-
ceived by the measuring device. The first parameter is sensor confidence dis-
tance, which is a quality parameter that measures the accuracy of the infor-
mation in a context object. The quality of the decision made by a sensor is
strongly affected by the resolution of the space, namely, the distance between
the sensor and the entity in question. The second parameter that has been
taken into account is the time validity or lifetime of the information. In fact,
the information taken at time t is more important than information taken at
t−1. Furthermore, the information becomes invalid after a certain time, which
depends on the context of the application.

Lifetime of sensed data: A new parameter is added into WDST that measures
the validity of contextual information. The lifetime of sensed data(SD) is
normalized by Eq. 12

Lifetime(SD) = 1− Age(SD)

∆Tmax
. (12)

where ∆Tmax, the maximum lifetime or total duration of the information
when we recover all sensed data, Age(SD) represents the lifetime of the obser-
vation, which is given by Eq. 13 :

Age(SD) = T − Tmes(SD) (13)

where T is the current time and Tmes(SD) the time when SD was collected.
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Distance between sensors and the entity: In the WDSD, the quality of the
decision−making is strongly affected by the resolution of the space, i.e., the
distance between the sensor and the monitored entity. The normalized function
is given in Eq. 14 is used. The following function:

Dis(S) = 1− D(S,E)

Dmax
∗ δ. (14)

where D(S,E) denotes the distance between the sensor S and the entity
E, Dmax the maximum distance upon which the sensors observation can be
trusted, and δ the accuracy of a sensor measured on the basis of statistical
estimation.

3.2.4 Normalization of the weights and data fusion combination:

For each evidence, i, the weight Wi is defined with Eq. 15,

Wi = CRD(i) ∗ ED(i) ∗ Lifetime(i) ∗Dis(i). (15)

Assume there are k bodies of evidence; the normalized weight is given by
Eq. 16.

W̃i =
Wi∑k
j=1Wj

(i = 1, 2, ..., k). (16)

We use the weights obtained in Eq. 16 to calculate the BPA. The weighted
bodies of evidence are then combined using orthogonal (Eq. 17). Notice that
the Dempster's rule of combination has the attractive property of commuta-
tivity and associativity [34].

M = m1 ⊕m2 ⊕ ...⊕mk. (17)

4 Simulation and Comparative Analysis

A numerical analysis with MATLAB [35] is presented in this section. The
proposed solution is compared with five state-of-the-art methods, including
D-S [16], Murphy [22], Yong [24], Deng [30], and Yuan [33]. These methods
are the most efficient from the literature for conflict management, and thus the
most relevant for comparison. A benchmark numerical example [25] has been
used. In a system of automatic target recognition {A,B,C} based on different
types of sensors (CCD, sound, infrared, radar and ESM), assume that the
current target is A and the number of sensors is five. The system has collected
five bodies of evidence, the results obtained are shown in Table. 1.

Notice for the BPAs given above that the detection of S2 is abnormal. This
may lead to a contradictory result after fusion. As the information concerning
the lifetime of sensed data, and the distance between sensor and entity are
required in the benchmark example, we used our solution without considering
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Table 1: BPAs of the example

A B C A,C
S1:m1(.) 0.41 0.29 0.3 0
S2:m2(.) 0 0.9 0.1 0
S3:m3(.) 0.58 0.07 0 0.35
S4:m4(.) 0.55 0.1 0 0.35
S5:m5(.) 0.6 0.1 0 0.3

contextual parameters. Two metrics are used in the simulation, 1) certainty
in the decision (BPA), and 2) the conflict between bodies evidence. Table. 2
depicts the fusion results when varying the combination rules and the number
of bodies of evidence. The calculation process about the last column of the
proposed method is given.

Table 2: The results of different combination rules

Method Fusion Results
m1,m2 m1,m2,m3 m1,...,m4 m1,...,m5

D-S m(A)=0 m(A)=0 m(A)=0 m(A)=0
m(B)=0.8969 m(B)=0.6575 m(B)=0.3323 m(B)=0.1422
m(C)=0.1031 m(C)=0.3425 m(C)=0.6679 m(C)=0.8578

Murphy m(A)=0.0964 m(A)=0.4619 m(A)=0.8362 m(A)=0.9620
m(B)=0.8119 m(B)=0.4498 m(B)=0.1147 m(B)=0.0210
m(C)=0.0917 m(C)=0.0792 m(C)=0.0410 m(C)=0.0138
m(AC)=0 m(AC)=0.0090 m(AC)=0.0081 m(AC)=0.0032

Yong m(A)=0.1463 m(A)=0.6021 m(A)=0.9330 m(A)=0.9851
m(B)=0.7620 m(B)=0.2907 m(B)=0.0225 m(B)=0.0017
m(C)=0.0917 m(C)=0.0990 m(C)=0.0353 m(C)=0.0096
m(AC)=0 m(AC)=0.0082 m(AC)=0.0092 m(AC)=0.0035

Deng m(A)=0.0964 m(A)=0.4674 m(A)=0.9089 m(A)=0.9820
m(B)=0.8119 m(B)=0.4054 m(B)=0.0444 m(B)=0.0008
m(C)=0.0917 m(C)=0.0888 m(C)=0.0379 m(C)=0.0089
m(AC)=0 m(AC)=0.0084 m(AC)=0.0089 m(AC)=0.0036

Yuan m(A)=0.2849 m(A)=0.8274 m(A)=0.9596 m(A)=0.9886
m(B)=0.5306 m(B)=0.0609 m(B)=0.0032 m(B)=0.0002
m(C)=0.1845 m(C)=0.0986 m(C)=0.0267 m(C)=0.0072
m(AC)=0 m(AC)=0.0131 m(AC)=0.0106 m(AC)=0.0039

DFIOT m(A)=0.3178 m(A)=0.9134 m(A)=0.9748 m(A)=0.9918
m(B)=0.5233 m(B)=0.0039 m(B)=0.0002 m(B)=0.0001
m(C)=0.1589 m(C)=0.0395 m(C)=0.0066 m(C)=0.0061
m(AC)=0 m(AC)=0.0333 m(AC)=0.0183 m(AC)=0.0020

Fig. 5a shows the evolution of belief’s value assigned to the target A (the
right decision) after each combination of five bodies of evidence for the com-
pared methods. Fig 5a shows that the accuracy (BPA) of the proposed solution
is always superior to all the other solutions and reaches up to 99.18%. More
importantly, while all solutions converge to BPA values beyond 95%, DFIOT
grows very fast. It exceeds 90% with only three bodies of evidence, while
Yuan's method reaches about 82% and the others remain below 60%. DFIOT
also provides the best performance for conflict that was smoothly increasing
between 0.058 and 0.170 as shown in Fig 5b, while all the other solutions
exceed 0.29 for five bodies of evidence (some go up to 0.9). These results con-
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(b) The value of conflict between evidences
::::::
evidence

Fig. 5: The fusion results comparison between DFIOT and different rules

firm the efficiency of the proposed method and the effectiveness of considering
conflict, information volume.

5 Experimental Performance Evaluation

The model is evaluated through an extensive set of experiments realized in
(CERIST-ALGERIA) research center lab in the context of IoT and smart
building project. In addition to the simulation study presented in the previous
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section. A real dataset collected from a testbed has been used for further in-
vestigation on the performance of DFIOT in comparison with state-of-the-art
solutions. An IoT based building automation application has been considered
in the office scenario, where presence and ambient light are permanently moni-
tored with IoT enabled wireless sensors to optimize lighting and energy control
of appliances and HVAC systems. 4 sensors have been placed on the ceiling
of an office, including 3 PIR sensors and a light sensor. The reason behind
using three sensors is the need to detect even small movements when the office
is occupied (e.g., typesetting on the keyboard, head movements, etc.), which
usually occur at the desk space. No placement of a single sensor can guar-
antee total coverage of this space. Optimal positions of the PIR sensors have
been calculated using an integer linear programming (ILP) model and CPLEX
solver, where the space has been uniformly split into equal distance grids. The
outcome for a 30cm granularity unit provides optimal number of sensors that
cover the whole office space (centers of cells in the space) to be four, with the
positions depicted in Fig. 6.

Fig. 6: Deployment of sensors in office

A handy device at the entrance has been added as a ground truth sensor
for the presence, with buttons the occupants are asked to push on for every
entrance/exit during the experiment. Every node acts as a source and sends
data periodically to the central station that stores the data in a dataset. We
define 4 hypothesis (H1, H2, H3, H4) as follows. H1: office occupied and light
value is more than 580lux, H2: office empty and light value is more than
580lux, H3: office occupied and light value is not exceeding 580lux. H4: office
empty and light value is not exceeding 580lux. The frame of discernment is
o = H1, H2, H3, H4. Without loss of generality, we use a simple scenario;
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light control, where the data fusion method is applied to make a decision of
switching on/off the light. The BPA has been calculated using the mean values
in each state and the environment has been simulated with a standard error
and confidence interval of 98%. In the following, we consider the situations
when hypothesis H1 and H2 are verified. The ground truth has been used to
filter out entries in the dataset where each hypothesis is verified. In Table. 3,
the system has collected bodies of evidence when hypothesis H1 is verified.
This includes PIR sensors, light sensor, and a ground truth sensor:

Table 3: BPAs of the solution

H1 H2 H3 H4
S1:m1(.) 0.72 0.17 0.10 0
S2:m2(.) 0.69 0.08 0.22 0.01
S3:m3(.) 0.81 0.06 0.11 0.02
S4:m4(.) 0.83 0.07 0.09 0

The BPA of Hypothesis
::
To

::::::::
evaluate

::::
the

:::::::::::
performance

:::
of

:::
our

:::::::::
solution,

:::
we

::::::
present

::::
the

::::
BPA

:
and the conflict degree are presented

:
of
:::::

both
::::::::::
Hypothesis

::::
H1

:::
and

:::
H2

:
vs. the variation of evidence numbers.

5.1 BPA/Conflict of Hypothesis H1

We illustrate the three proposed methods (IDeng, WDST and WDSD) sepa-
rately to investigate the efficiency of each method of DFIOT.

::
We
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compare

::::
the

::::::
results
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with

::::
five

::::::::::::::
state-of-the-art

::::::::
methods
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::::::
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:::
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Fig
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7a
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and
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Fig
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7b.
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(b) Conflict of Hypothesis H1

Fig. 7: The fusion results for Hypothesis H1

In D-S evidence theory, the BBA of H1 is 87%, and it decreases gradu-
ally with the increase of evidence. The conflict hugely increases and reaches
0.92. In Yuan method, the belief degree of H1 is 98%, while the new method
has a higher belief degree of 99.18%. The main reason is that the proposed
method takes into consideration the dynamic reliability measured by evidence
distance and entropy while adding new parameters that enhances the Deng
entropy. This decreases the conflict to less than 0.6.

These results improve accuracy and confirm the efficiency of DFIOT. Each
parameter added considerably increases the BPA. The results presented in
Fig 7a and Fig 7b confirm those presented in the previous section and the
superiority of the proposed solutions. Similarly, BPA of DFIOT and all its
versions grows much faster than the other solutions, and have lower conflict
values.

5.2 BPA/Conflict of Hypothesis H2

The hypothesis, in this case, is H2 that is when we have no presence detection
(empty office) and light exceeding 580lux. The results are depicted in Fig
8a and Fig 8b and confirm the superiority of our method. The results are
very similar to those obtained for hypothesis H1, except that Yuan provides
a bit better performance in terms of BPA (compared to its performance in
hypothesis H1), but still clearly lower than DFIOT.
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Fig. 8: The fusion results comparison with Hypothesis H2

A sensor may be misled by many factors and provide wrong evidence,
and such abnormal measurement can generate a conflicting mass during the
evidence combination which leads to the conflict. As shown in the simulation
section, the classical Dempster's rule cannot support the correct hypothesis
H1 and cannot eliminate the conflict between bodies of evidence. and a wrong
final result. With incremental evidence, our solution provides better results.
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5.3 Impact of Data Fusion Period

5.3.1 Impact on BPA

We investigated the impact of the data fusion period on the BPA. Results in
Fig. 9a shows that the proposed solution provides the best values and is less
affected by increasing this period compared to the other solutions. It remains
beyond 90% even for as a high period as 60min.
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Similarly in Fig. 9b, when Hypothesis H2 has applied the results show the
effectiveness of our method when reducing the period of data fusion. While the
other solutions are influenced considerably by the increase of the data fusion
period, especially in D-S method where the BPA is less than 50% in both cases
of H1 and H2, which leads to a wrong decision (switching on/off the light).

Hypothesis H1 Hypothesis H2 Data fusion period

5.3.2 Energy Gain

We investigated the impact of this data fusion on the application performance,
in our case energy gain is used as the application related metric. It is defined
in Eq. 18.

Gain(A) =

∑n
i=1 αi∑k
j=1 γj

, (18)

where αi represents the total period when the office is unoccupied (hypoth-
esis H2 and hypothesis H4 are verified.), and γj represents the total period of
data fusion in a day. As shown in Fig. 10, the gain increases with the increase
of the fusion frequency (decreasing the period). The increase is fast for values
bellow 30min and reaches up to 90% for a data fusion period of 5min, which
is a reasonable period.
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Fig. 10: Gain in energy consumption

Contrary to the previous weighted methods that either calculate the weight
of each evidence based on similarity distance to enhance credibility degree, or
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take into consideration the information volume to upgrade the uncertainty de-
gree of evidence. DFIOT takes into consideration several parameters when cal-
culating the mass function. DFIOT has several advantages: First, It improves
the Deng entropy in uncertainty degree of evidence by giving more importance
to sensors which have low uncertainty, i.e., more volume of information and
less evidence distance vs. other sensors and by eliminating the evidence with
the farthest distances when making decisions. It applies evidence distance in
measuring conflict degree and credibility. The second advantage that has been
considered is the contextual parameters, which assures accuracy of the infor-
mation affected by the resolution of the space. It focuses on the most recent
information and avoids invalid information using the lifetime of sensed data.
Another critical advantage of our method is that it helps to take the right
decision when fusing the critical information. Examples of this include crit-
ical medical areas that need the lifetime of measurements to make sensitive
decisions, in military applications that take the distance between entity and
sensors as essential parameters, and in smart buildings that help to combine
measurements and take optimal actions.

6 Conclusion

A novel data fusion method for the Internet of Things, we called DFIOT, has
been proposed in this paper. This method uses an adaptive weighted fusion
algorithm based on D-S theory. The reliability of devices in the network and
the conflicts between devices are considered in DFIOT. This by considering the
information lifetime, the distance separating sensors and entities, reducing the
computation and by using combination rules based on the Basic Probability
Assignment, which allows to represent uncertain information or to quantify the
similarity between two bodies of evidence. We compared the proposed solution
with some state-of-the-art data fusion methods, including D-S, Murphy, Deng
and Yuan, and using both benchmark data simulation and real dataset from a
smart building testbed. Results show that DFIOT outperforms all the above
mentioned methods in terms of reliability, accuracy and conflict management.
The impact of this improvement from the application performance perspective
has also been investigated, and the results show a gain of up to 90% in energy
saving when using DFIOT.

This solution opens perspectives for the application of our method in the
emerging IoT applications. Integrating a virtual assistant to facilitate inter-
action with the system is a possible perspective. As the second perspective,
the realized method can be combined with approaches implementing the data
analysis techniques to exploit the saved data. The third perspective is the in-
tegration of machine learning to allow the system to learn habits of users and
plan actions. The last perspective in our agenda is the integration of artifi-
cial intelligence algorithms to enable the system making autonomous decisions
when necessary. A typical example of this (on which we are currently working)
is the use of augmented and virtual reality based to develop mobile interfaces
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for IoT application system. The data fusion framework proposed in this paper
facilitates the development of these solutions.
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