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Abstract
This paper investigates the use of recurrent neural network to predict urban long-term traffic flows. A representation of the
long-term flows with related weather and contextual information is first introduced. A recurrent neural network approach,
named RNN-LF, is then proposed to predict the long-term of flows from multiple data sources. Moreover, a parallel
implementation on GPU of the proposed solution is developed (GRNN-LF), which allows to boost the performance of RNN-
LF. Several experiments have been carried out on real traffic flow including a small city (Odense, Denmark) and a very big
city (Beijing). The results reveal that the sequential version (RNN-LF) is capable of dealing effectively with traffic of small
cities. They also confirm the scalability of GRNN-LF compared to the most competitive GPU-based software tools when
dealing with big traffic flow such as Beijing urban data.

Keywords Learning long-term flows · Recurrent neural network · Weather information · Contextual information

1 Introduction

Recent advances in technologies and infrastructures, such
as high support GPS, mobile communications, wireless
sensing and internet of things, make our cities more and
more connected, digitalized, and thus smart. One of the
most attractive smart city applications is urban traffic flow
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analysis. The traffic flow is computed by counting the
number of objects (cars, passengers, cabs, buses, etc.)
that cross a given location during a time interval. In
the last few years, several learning algorithms have been
proposed for traffic flows forecasting [1–5]. However, these
algorithms are only able to predict short-term flow, i.e flows
represented by a single flow observation. That is, they are
only able to provide short-term flow forecasting, but not
long-term. Long-term flows, is defined by the set of flow
sequences captured during a specific time period [6, 7].
In the last decade, several works have been proposed for
sequence data forecasting. Zhao et al. [8] proposed the
global weighting algorithm for forecasting sequence data
retrieved from real image datasets. The sequence data is
constructed from the set of the training data, which is
viewed as basis function. Each sequence data is estimated
by weighting all the basis functions using the average
distance of all the training data. The results of the global
weighting approach are satisfactory when the training and
test data have high similarity values. However, the accuracy
of this approach tends to decrease when there is a high gap
between the training and the test images. Chen et al. [9]
developed the softmax regression approach by considering
the posterior emotion as a softmax transformation of
linear functions of the features of each sequence data.
The learning parameters are obtained by minimizing the
errors between the predicted results and their ground truth
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using the gradient descent method [10]. Chang et al. [11]
developed the shared sparse learning approach, with a
main assumption that the shared sparse coefficient is used
to match between each data sample and the remaining
training sequence data using the L − 1 norm. Lv et al. [12]
developed a hybrid supervised and unsupervised model to
automatically predict driver’s braking intensity in a smart
vehicle system environment. The cylinder brake pressure
data is fitted to the gaussian distribution and labeled to three
classes (low, moderate, and intensive) using the gaussian
mixture model. Random forests and the artificial neural
networks are then incorporated to predict braking intensity
using the generated labeled gaussian distribution and the
vehicle state information retrieved from the controller
area network bus signals. Most sequence data forecasting
apply optimization techniques. Obtaining the best fitting
parameters for these techniques is challenging, which
reduces the accuracy of the prediction process (noabely in
scenarios of heterogeneous data). Therefore, these methods
could not be applied for long-term traffic flow forecasting,
and new methods are needed.

1.1 Motivation

For illustration, let us consider a daily scheduler of a person
presented in Fig. 1. This person has some flexibility to
arrange his daily activities from 11:00 onward. His lunch
may be scheduled between 11:30 and 13:00, some personnel
business between 15:00 and 16:00, and he may return home
anytime from 17:00 to 20:00. Having an accurate long-term
traffic flow forecast will enable this person to make optimal
schedule of these activities (early morning or overnight)
while minimizing the wasted time on the traffic jam. The
existing models only allow to predict a short-term traffic
flow and not the flow over long interval, which is required
in this scenario. This motivates the need of models for long-
term flows in several time intervals and arises the following
questions:

1. How can we efficiently represent the long-term flow
values for different time intervals?

2. How can we predict a new long-term flows from
historical data?

3. How can we improve the accuracy of the existing
sequence data forecasting process?

4. How can we predict real long-term flows from the real
city data?

1.2 Contributions

In this work we consider the aforementioned questions
and propose a new framework for predicting long-term
traffic flows. To the best of our knowledge, we are the
first to predict the long-term traffic of flows. The main
contributions of the paper are summarized as follows:

1. We define an adequate representation of long-term
flow values based on sequence data. A new strategy
of constructing the historical traffic flow database is
then developed by taking into account the flow infor-
mation, the temporal information, and the contextual
information.

2. We propose a new framework called RNN-LF that uses
multiple data sources for predicting long-term traffic
flow data. The framework is based on a recurrent neural
network (RNNs) with the considered information
plugged as input (information on the weather, and the
context), and the historical long-term traffic flows as
output.

3. Motivated by the success of GPU (Graphical Processing
Units) in solving real world complex problems, we pro-
pose a GPU-based implementation called GRNN-LF,
which deals with big urban traffic flow data in rea-
sonable time. In this implementation, the initialization
of the weights is performed on CPU, where the two
most intensive-time (computing and updating weights)
benefits from the massively threaded GPU.

4. To demonstrate the usefulness of the proposed frame-
work, two use cases have been studied. The first case
study is a real Odense traffic flow, and the second one is
real big Beijing traffic flow data. The results show the

Fig. 1 Motivating example
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superiority of our solutions compared to the baseline
traffic-flow forecasting algorithms.

1.3 Outline

The paper is organized as follows: Section 2 relates
the existing traffic flow forecasting algorithms. Section 3
presents the proposed framework for long-term traffic flow
forecasting. Section 4 presents GPU implementation of
the framwork. Experimental analysis of the two real case
studies is shown in Section 5. Section 6 presents the main
findings of applying the proposed framework on urban
traffic data. Section 7 concludes the paper and previews
future work.

2 Literature review

In the last few years, several studies have been investigating
traffic flow prediction [1, 3, 13]. Yang et al. [2] used a state-
of-the-art deep learning model (auto-encoder Levenberg-
Marquardt) for improving the accuracy of traffic flow
forecasting. It was designed using the Taguchi method
to develop an optimized structure and learn traffic flow
features. A layer-by-layer feature granulation was used with
a greedy layer wise unsupervised learning algorithm. Huang
et al. [4] proposed a hybrid model, which incorporates the
online seasonal adjustment factors and adaptive Kalman
filter to model the high traffic flow rate in a seasonal period.
Four seasonal adjustment factors (daily, weekly, long daily,
and long weekly) are first determined using online seasonal
adjustment factors. The adaptive Kalman filter is then
established to estimate high traffic flow rate upon a
normality assumption. Zhang et al. [14] proposed the use of
machine learning and evolutionary computation to predict
flow rate. The most relevant features are first selected using
both random forest and the genetic algorithm. The best
features are then plugged into a support vector machine for

learning and predicting new flow rates. Daraghmi et al. [15]
used negative binomial model to smooth both spatial and
temporal variables in the traffic flow forecasting. Chen et al.
[5] proposed an ensemble learning approach represented by
multiple non-linear least squares support vector regression
models for predicting traffic flow. To adjust the parameters
of such models, a heuristic harmony search approach has
been applied. Chan et al. [16] treated the problem of time-
variation between the historical flows and the new flow.
They integrated the particle swarm optimization on the
fuzzy neural network for predicting short-term traffic flow.
We conclude from this review that solutions of traffic flow
prediction (including those based on deep leaning) are
restricted to a short-term flows, in which only a single value
of flow is observed. To the best of our knowledge, there is
no work related to long-term flows in the context of urban
traffic forecasting. The remaining of this paper addresses
this by proposing a novel framework that integrates an
RNN for long-term traffic flow forecasting based on the
weather information, the historical traffic flow data, and the
contextual information.

3 Proposed approach

Figure 2 presents the general predictive long-term traffic
flow framework. It includes three steps:

1. Data Collection: Urban sensing and data acquisition
technologies are used to collect urban traffic data. Each
row data represents one observation defining the date,
the time, and the type of objects (vehicles or bikes)
that pass through the given location. Table 1 gives an
example of data collection obtained in Gronlandsgade,
Odense (Denmark).

2. Extraction and Merging: First, the long-term traffic
flows are extracted from the urban traffic data obtained
in the previous step, and then the flows are merged with

Fig. 2 General framework
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Table 1 Data collection: Example of gronlandsgade location in
Odense (Denmark)

Date Time Type

2017-01-23 14:17:20 Vehicle

2017-01-23 14:17:21 Vehicle

2017-01-23 14:17:25 Vehicle

2017-01-23 14:17:27 Vehicle

2017-01-23 14:17:29 Vehicle

2017-01-23 14:17:31 Vehicle

2017-01-23 14:17:34 Vehicle

2017-01-23 14:17:42 Vehicle

the weather information and the contextual information
to build the long-term traffic flow database.

3. Learning: Machine learning and high performance
computing (HPC) tools are used to process the input
data, as well as the historical long-term traffic flow
database designed in the previous step. The output data
is the long-term traffic flows of the new observation.

The detail explanation of the main steps of this
framework is given in the following.

3.1 Extraction andmerging step

A long-term traffic flow database is created in this step.
The long-term traffic flows are first extracted from the
urban traffic data obtained in the data collection step. The
daily long-term traffic flows are then merged with the daily
weather information, and the daily contextual information.

Extraction A traffic flow is defined as the number of
vehicles passing through a location in the road network
during a given time interval. A long-term traffic flow (DF )

links flow values to their likelihood of occurrence during a
given period of time. We estimate the probability of each
DF on the basis of their empirical counterparts based on
real-life measurements. Let I be the set of time instants
at regular time intervals at which flow measurements are
collected in a specific location, and let X = {x1, ..., x|I |} be
the set of corresponding flow values. Let λ be the duration
of the time interval between two succesive measurement
instants, and μ the duration to be considered by each flow
measurement x ∈ X. For example, X can be the set of
number of vehicles or bikes passed through a location in the
previous hour measured every 5 minutes, collected during
a period of one month (30 days). In this case, λ = 5
minutes, μ = 60 minutes and the number of measurements
is |I | = 43200/5 = 8640. From I we can extract a
collection T = {T1, . . . , Tr} of non-intersecting subsets of
τ consecutive time instants. For a subset Tj , j = 1, . . . , r ,
we identify the time instant when the subset starts with

ι(Tj ). That is, Tj = {ι(Tj ), ι(Tj ) + 1, . . . , ι(Tj ) + τ }.
To each Tj , j = 1, . . . , r , it corresponds a set of flow
measurements XTj

. For example, each XTj
, j = 1..7 can

contain the flow measurements between 7:00 and 9:00 for
each day of a week. The flow measurements in each setXTj

,
j = 1, . . . , r , can be represented as continuous random
variables Yj ∈ N0 to capture the uncertainty related to those
measurements. Consequently, each Yj can be described by
its probability mass function fYj

: N0 → [0, 1] defined
as fYj

(y) = Pr(Yj = [a, b]), a ∈ N0, b ∈ N0 and
b ≥ a. To estimate fYj

= fj , we use the empirical density

function f̂j of the flow given by the relative frequency of
the measurements in XTj

, i.e.,

f̂j ([a, b]) = |{x ∈ [a, b] | x ∈ XTj
}|/|XTj

|, (1)

where, a ∈ N0, b ∈ N0, b ≥ a, j = 1, . . . , r .

Example 1 Table 2 illustrats how to extract the long-term
traffic flows from real traffic data of the week days retrieved
from Gronlandsgade, located at Odense city in Denmark.
We an interval size of 20, which allows to generate the
following intervals: {[0-20], [21-40], [41-60], [61-80], [81-
100], [101-120], [121-140]}. For instance, to build long-
term traffic flows of Monday, we have to compute the
number of possible flow values of all intervals of this day.
In this example we have the following results:
f̂1([0, 20]) = 8/12 (i.e., there are 8 flow values between 0
to 20 that equal to 0 for Mondays from 9:00 to 12:00.

Similarly, we have

f̂1([21, 40]) = 1/12, f̂1([41, 60]) = 0,
f̂1([61, 80]) = 2/12, f̂1([81, 100]) = 1/12.
f̂2([101, 120]) = f̂2([121, 140]) = 0.

The final long-term traffic flows is given as follows:

f̂1={8/12, 1/12, 0, 2/12, 1/12, 0, 0}, f̂2 = {3/12, 0, 2/12, 5/12, 2/12, 0, 0},
f̂3={5/12, 1/12, 4/12, 2/12, 0, 0, 0}, f̂4 = {4/12, 1/12, 3/12, 4/12, 0, 0, 0},
f̂5={3/12, 3/12, 2/12, 1/12, 1/12, 1/12, 1/12}.

Merging The long-term traffic flows extracted in the
previous step are merged with the weather informa-
tion/contextual information. The weather information is
composed with several features. In this paper, we are limited
to the following three features:

– Conditioning: It includes three possible values (over-
cast, scatter, and part).

– The average wind temperature: It represents the average
temperature of the wind given in degree celcius.

– The wind speed: It determines the wind speed in
kilometre per hour.

A recurrent neural network for urban long-term traffic flow forecasting 3255



Table 2 Odense (Gronlandsgade Location) Traffic data on Week days captured from 9:00 to 12:00

Time Monday Tuesday Wednesday Thursday Friday

9:01-9:15 79 71 44 34 0

9:16-9:30 0 93 10 0 13

9:31-9:45 0 16 7 8 22

9:46-10:00 0 72 68 70 87

10:01-10:16 0 81 49 59 76

10:16-10:30 0 73 5 65 29

10:31-10:45 0 11 15 8 43

10:46-11:00 0 52 62 66 126

11:01-11:15 0 58 32 52 0

11:16-11:30 75 76 40 75 39

11:31-11:45 87 3 3 5 47

11:46-12:00 37 63 43 57 116

The contextual information is also composed with several
features, which represents the profiling of the day. In this
paper, we are limited to the following two features.

– (Weekend end vs regular) day: It includes the type of
the day in the observation, 0 for weekend day, 1 for the
regular day.

– Event day: It indicates if the day includes specific
events such as new year day, national celebration day,
or others. We set 0 for event day, 1 for non-event day.

In the long-term traffic flows database DB =
{DB1, DB2...DBr} , each row DBi is composed by a tuple
< Fi, Wi, Ci >. Fi = {Fi1, Fi2...Fik} is its long-term
traffic flows, while k is the number of all possible flow
intervals. Wi = {Wi1, Wi2...Wip} is its related weather
information, while p is all possible weather features. Ci =
{Ci1, Ci2...Cin} is the set of contextual features, n is all pos-
sible contextual features. Table 3 presents an example of the
long-term traffic flows database by considering 5 long-term
traffic flows, 4 intervals, 3 weather features including con-
ditioning: CD, average wind temperature degree: AWT, and
windy speed: WS, and 2 pieces of contextual information,
weekend vs. regular days: WR, and the whether it is an event
day: E.

3.2 Learning step

The long-term traffic flows of the new observation is
predicted in this step using recurrent neural network (many-
to-many) architecture. As sketched in Fig. 3, the input data
consists of the flow information, the weather information,
and the contextual information of the current day, while
the output data is a long-term traffic flow for the next day.
We applied a multilayer feedforward neural network. Each
neuron in layer l is linked with all neurons of the layer
(l − 1) using different weight values. The neurons of the
input layer is associated to each input data Fi−1 (k possible
intervals),Wi−1 (p features of the weather information), and
Ci−1 (n features of the contextual information). The number
of neurons in the input layer is k + p + n. The neurons of
the output layer are connected to the output of the network
(F̂i1, F̂i2...F̂ik). The aim is to minimize the error between
the output data of the network and the long-term traffic
flows Fi such that,

err =
r∑

i=1

√√√√
k∑

j=1

(Fij − F̂ij )2 + (F̄i − ¯̂
Fi) + (sd(F − i) − sd((̂Fi))).

(2)

Table 3 Long-term traffic flows database example

Long-term traffic floas Weather information Contextual information

(CWD, CD, AWT) (WR, E)

(0.1:[1-10], 0.4:[11-20], 0.5:[21-30]) (Scatter, 10.0, 5.0) (0, 0)

(0.3:[1-10], 0.5:[11-20], 0.2:[21-30]) (Overcast, 8.0, 12.0) (0, 1)

(0.0:[1-10], 0.5:[11-20], 0.5:[21-30]) (Part, 12.0, 9.0) (0, 0)

(0.5:[1-10], 0.1:[11-20], 0.4:[21-30]) (Overcast, 8.2, 8.5) (1, 1)

(0.6:[1-10], 0.4:[11-20], 0.0:[21-30]) (Overcast, 12.0, 12.0) (0, 1)
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Fig. 3 RNN-LF framework

The output of the mth neuron in the layer l, noted sm
l , is

given by (3). Note that the sum of the outputs of all neurons
in the given layer should be equal to 1. This simulates the
output of the long-term traffic flows.

sm
l = σ

⎛

⎝
|l−1|∑

j=1

s
j

l−1ω
mj

l−1 + bm
l

⎞

⎠ , (3)

with

|l|∑

m=1

sm
l = 1

, where

σ(.) is the activation function.
|l| is the number of neurons in the layer l.
s
j

l−1 is the output of the j th neuron in the l-1 layer.

ω
mj

l−1 is the weight value that connects the neurons sm
l and

s
j

l−1.
bm
l is the bias value associated to the neuron sm

l .

At each iteration i, the updating weight rule is given as
follows,

ω
mj

l−1(i) = ω
mj

l−1(i − 1) − μ × Fi × 2 × Ei (4)

Where
μ is the learning parameter rate, and

Ei =
k∑

j=1

(Fij − F̂ij )
2 (5)

Algorithm 1 presents the pseudo-code of the RNN-
LF algorithm. It starts by initializing weight values. The
function GenerateRandomValue generates random values
between 0 and 1. At each iteration, i, the neurons of the
input layer receives the input data consisting of the flow
information, the weather information, and the contextual
information. This input is explored by all neurons of the
network using the Computing function, which is calculated
by (3). The output of the network is compared to the output
data, and the error is determined using (5). This error value
is propagated across the network to update the weight value
as illustrated in (4). This process is repeated until all the
input data is processed. This allows to minimize the error
function shown in (2).

3.3 Complexity analysis

The theoretical complexity cost of the proposed framework
is divided into the following costs:

1. Long-term traffic flow database construction cost: The
long-term traffic flow database is built from the traffic
flow. This operation requires |DBi | scans of the ith

A recurrent neural network for urban long-term traffic flow forecasting 3257



long-term traffic flow. Therefore, this operation needs
t∑

i=1
|DBi | scans.

2. Learning cost: The complexity cost of the recurrent
neural network is O(L), where L is the number of
layers.

The complexity cost of the proposed framework is

O(
r∑

i=1
((|DBi |) + (L)).

4 GRNN-LF

Generally speaking, the recurrent neural network models
need massive training data in the learning process.
This requires high computational time in a single CPU
machine. The emergence of HPC tools such as CPU multi
cores, GPU, and cluster computing allows to boost the
performance of such models. We are interested in this paper
by GPU computing. Several GPU-based software (including
machine learning algorithms) have been developed for real
world applications, e.g., [17–20]. However, these tools
are limited, i.e, they come with predefined parameters
and do not provide flexibility for users. For instance, a
user cannot specify which tasks should be performed in
parallel in GPU, how to distribute tasks to the GPU blocks,
event to the threads-block, how to manage the shared
memories of GPU blocks. To address such limitation, we
need to deeply understand GPU computing and goes with
more low level tools such as CUDA libraries,1 which
directly communicates with the hardware GPU components.
In this section, we follow this approach and propose
a new algorithm (GRNN-LF) that deals with efficient
implementation of RNN-LF on GPU.

4.1 RNN-LF asnalysis

To design an efficient GPU-based approach, the most time
consuming tasks for RNN-LF version should be determined.
Algorithm 1, RNN-LF is divided into three steps: i)
Initialization of weights (from line 3 to 9), ii) Computing
outputs (from line 10 to 20), and iii) Updating weights
(line 21). Flags are available after and before each of the
three steps of RNN-LF mentioned above. Table 4 presents
the experimental results for every step of the RNN-LF
algorithm separately using different number of training data.
Notice that by increasing the training data size from 1,000
to 10,000, the computing outputs and updating weights are
clearly the most consuming tasks; The computing outputs
task exceeds 77%, whereas the updating weights does not
exceed 26% for the overall RNN-LF process. This explaines

1https://developer.nvidia.com/

Table 4 Ratio of CPU time (%) of the main RNN-LF tasks on different
training data size

|DB| Init. Computing Updating

(*1,000) Outputs Weights

1 15 60 25

2 14 60 26

3 14 62 24

4 14 66 20

5 12 66 22

6 11 72 17

7 8 73 19

8 5 74 11

9 4 76 10

10 2 77 11

our choice for parallelizing this type of tasks. Motivated by
the success of GPU in speeding up several real complex
problems [21–23], we propose in the next section GRNN-
LF, a GPU-version of RNN-LF.

4.2 Principle

GPUs (Graphic Processing Units) are graphical cards
initially developed for video games, but their use as a
powerful computing tool is now gaining field at many
software application domains. The GPU hardware is
composed of two hosts, i) the CPU and, ii) the GPU
hosts. The former contains one processor and one main
memory. The latter is a multi-threading system that consists
of multiple computing cores, each core executes a block of
threads. Threads of a block in the same core communicate
with one another using a shared memory, whereas the
communication between blocks relies on a global memory.
The CPU/GPU communication is made possible by some
hardware buses.

In the following, GRNN-LF is introduced as an adap-
tation of RNN-LF on GPU architectures for boosting the
runtime performance. The most time-intensive operations
are sent for GPU processing, whereas the less time con-
suming tasks are kept in CPU. The initialization of weights
is first performed on CPU, and then the training data is
then transmitted to the GPU that is used to update wrights
and compute the outputs. Two main operations are distin-
guished:

1. Computing outputs: The process starts by handling the
second layer using the output of the first layer, and
so forth with the next layers until all layers have been
processed. The process takes L iterations, where L is
the number of layers in the neural network. At each
iteration i, each block bj is mapped onto the neuron s

j
i ,

Asma Belhadi et al.3258
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and every thread tht
j is charged to compute the output of

the connection between the neurons s
j
i and st

i−1. With, n
neurons of each layer, n blocks, and n threads per block
are required to compute the outputs of the given neural
network. GNN-LF defines a local table, say tablej , for

computing the weights of the neuron s
j
i .

2. Updating weights: Each block of threads is mapped
onto one neuron, and every thread is charged to update
the connection between the neuron of its block and one
neuron situated in the previous layer. With, L, layers
and, n neurons of each layer, L × n blocks, and n

threads per block are required to compute and update
all weights of the given neural network. GRNN-LF also
defines a local table (tablei), for updating the weights
of the ith neuron of the neural network. This table is
allocated in the shared memory of each block.

Algorithm 2 presents the pseudo-code of GRNN-LF
using standard CUDA operations.

From a theoretical standpoint, GRNN-LF improves the
sequential version of RNN-LF by exploiting the massively
threaded computing of GPUs while computing outputs and
updating weights. GRNN-LF also minimizes the CPU/GPU
communication, by defining only two points of CPU/GPU
communication. The first one takes place when the training
database is loaded into the GPU unit, and the second when
the final weight values are returned to the CPU. Moreover,
GRNN-LF does not suffer from any threads divergence,
because each thread deals with one multiplication for both
computing outputs and updating weights steps. It also
provides an efficient memory management, which explores
the different shared memories of the blocks. However,
synchronization between threads is needed at each step.

Three synchronization points are then required at each
iteration. The first point is when computing the output
of each neuron, the second is observed when switching
between layers for computing outputs. The last point of
synchronization is needed when passing to another entry in
the training data.

5 Performance evaluation

A number of experiments have been carried out using real
traffic flow datasets from two different cities, Odense and
Beijing. In the following, we first test RNN-LF approach
on Odense urban traffic data using several configuration
(location, number of hidden layers, and the learning
rate) and compare it with the baseline data sequence
forecasting algorithms. The ability of predicting real long-
term traffic flows is also demonstrated. GRNN-LF is then
evaluated using both Odense and Beijing traffic datasets
and compared with the baseline GPU machine learning
approaches. In the following, the interval time used for
determining each flow value is fixed to 5 minutes, and
each long-term traffic flows is measured within 4 hours
(from 8 to 12) of each day. To ensure fair comparison
between the proposed solution and the baseline algorithms,
the experimentation has been carried out in the same
environment and the same operating system. The results
obtained are the average of 100 different tests. To prevent
overfitting, we used the well-known dropout function
available in Keras. We also used a high number of epochs
values to prevent the underfitting (100 for sequential
version, 1000, and 2000 for GPU-based version).

5.1 Data description

Two kinds of data have been used:

1. The first is a real urban traffic data from Odense
Kommune (Denmark).2 The data is a set of rows,
where each row contains information related to the
cars detected at specific locations such as the gap,
length, location, date time, speed, class, as well as the
weather data. The location is represented by lattitude
and longtitude dimensions, the speed is calculated in
km/h, and the date time (in the format YYYY-MM-
DD hh:mm:ss) represents the year, the month, the
day, the hour, the minute and the second that the car
is passed by the given location. The most important
information of each car is given as follows: The class is
an integer that defines the type of the vehicle or the bike,
e.g., 2 represents a passenger car. Tempm computes

2https://www.odense.dk/
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Table 5 Odense location description

ID Type Name (Latitude, # (Cars or

Longtitude) Bikes)

L1 Cars Anderupvej (55.4383, 10.3896) 16.932

L2 Cars Falen (55.3868, 10.3569) 25.310

L3 Cars Aløkke Alle (55.4036, 10.3682) 238.775

L4 Bike Thriges (55.4011, 10.3908) 46.978

L5 Bike N. Bohrs Alle (55.3753, 10.4570) 445.883

L6 Bike Rodegadesvej (55.3854, 10.4168) 575.089

L7 Cars Rugardsvej (55.3990, 10.3634) 2.318.852

L8 Cars Nyborgvej (55.3940, 10.4079) 2.352.930

L9 Cars Gronlandsgade (55.4009, 10.4020) 2.955.464

L10 Cars Odins Bro (55.4222, 10.3803) 3.921.746

the average daily temp in C, Wspdm determines the
wind speed in km/h, and Conds defines a description
of conditions weather. In this study, we focus on ten
locations described in Table 5. The traffic data input is
obtained from Odense flow that are observed between
1st January 2017 and 30th April 2018.

2. The second is a real urban traffic data from Beijing
traffic flow 3. It consists of more than 900 million traffic
flow entries during a two-months time period in one
location. The most important information of each car is
given as follows: The Class in this dataset defines the
type of vehicle or bus.

5.2 RNN-LF vs. sequence data prediction algorithms

The Odense dataset is used in this part of the experiments.
The predictive rate is defined as the number of long-term
traffic flows that are correctely predicted over the tested
all long-term traffic flow. The first part of this experiment
is to tune the RNN-LF parameters. Figure 4 presents the
predictive rate of the RNN-LF algorithm using different
locations in the city, different number of hidden levels
(3, 5, 10), and different learning rate values (0.2, 0.5,
0.8, and 1.0). By varying the number of learning rate
values from 0.2 to 0.8, and the number of hidden levels
from 3 to 5, the predictive rate increases for locations.
When the learning rate set is to 1.0 and the number of
hidden to 10, the predictive rate decreases. The Gaussian
function is used as it simulates a sequence much better
than the other activity functions (e.g., Sinc function). In
conclusion of this experiment, we set i) the number of
hidden levels to 5, and ii) the learning rate to 0.8, as the
best fitting parameters of RNN-LF. The next experiment
investigate how RNN-LF can predict new long-term traffic
flows. Figure 5 shows the long-term traffic flows predicted

3https://www.beijingcitylab.com/

by RNN-LF compared to the real long-term traffic flows
that uses the global weighting algorithm on Anderupvej
location. This figure shows correlation between the result
returned by RNN-LF and those for real long-term traffic
flows. This result confirms the superiority of the proposed
framework as compared to other existing algorithms. The
following features contributed into this performance:

– The integration of several sources of data; flow infor-
mation, the weather, and the contextual information.

– The recurrent neural network approach that allows to
learn multiple output form multiple input of different
sizes.

– The configuration used in the recurrent neural network
that uses the best fitting values for the parameters (the
number of hidden layers, and the learning rate).

5.3 GRNN-LF performance

The performance of GRNN-LF using different dataset sizes
is tested in this part. Figure 6 shows the speed up of GRNN-
LF compared to the sequential version using Odense traffic
data. The speed-up metric is calculated as λ1

λb
, where λb is

the runtime using b GPU blocks. By varying the location
used, the speed up of GRNN-LF is more than 50 for non-
dense location (low traffic flows) and reaches 160 for dense
location (high traffic flows). The last experiment considers
big databases (Beijing traffic flow data) and compares
GRNN-LF to some state-of-the-art GPU-based recurrent
neural network software tools such as Agib‘s work [17], and
Du‘s work [18]. Table 6 presents the runtime by varying
the number of flows in million from 100 to 900. The results
show that GRNN-LF outperforms all the other GPU-based
algorithms. GRNN-LF deals with Beijing traffic flow in
less than 3300 seconds, while the best performing GPU-
based recurrent neural network software takes about 4000
seconds. These results confirm the effectiveness of GRNN-
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Fig. 4 Predictive rate (%) of the
RNN-LF algorithm using
different number of hidden
layers (3, 5, 10), Gaussian
function as activity function,
and different learning rate
values (0.2, 0.5, 0.8, 1.0)
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LF that performs intelligent mapping between the training
data and the GPU massively threaded. However, the other
GPU-based software tools are not flexible and proposed a
general mapping without any deep analysis of the problem
to be solved in GPU.

6 Discussions

This section discusses the main findings and limits from the
application of our approach to both Odense and Beijing real
traffic data.
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Fig. 5 The Original and the
predicted long-term traffic flow
by RNN-LF and the global
weighting algorithm

– The first finding is that the proposed framework has
the ability to integrate different data sources includ-
ing urban data, weather information, and contextual
information in the learning process. It is also flexible
for integrating other data sources that can improve the
accuracy of the learning model.

– The second finding is that the proposed framework
outperforms the state-of-the-art traffic flow forecasting
and has the ability to predict new patterns represented
by long-term traffic flows. Moreover, the parallel

implementation is able to deal with big traffic flow such
as the Beijing dataset contains more than 900 million of
flow entires.

– This work is an example of the application of a
generic machine learning technique (a recurrent neural
network) to a specific context. The literature calls for
this type of research, particularly with the emergence
of massive spatio-temporal data that becomes data
are available in different locations and at different
times. As in many other cases, porting a pure machine

Fig. 6 Speedup of GRNN-LF
algorithm for different Odense
locations
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Table 6 Runtime (seconds) of GRNN-LF and baseline GPU algorithms for Beijing traffic flow data

# Flows (in million) GRNN-LF Agib‘s work [17] Du‘s work [18]

100 1574 1748 1847

200 2001 2341 2594

300 2214 2745 2847

400 2470 2945 3067

500 2684 3147 3349

600 2814 3341 3674

700 3004 3541 3978

800 3145 3748 4179

900 3247 4017 4426

learning technique into a specific application domain
requires methodological refinement and adaptation. In
this context, we argue that our approach benefits from
the knowledge extracted in the refinement step that
shifts the intelligence required for predicting the long-
term traffic flows.

However, there are some limitations of the application of
our approach such as,

– The prediction model is based on three dimension
(flow information, weather information, and contextual
information) of one location. In contrast, the flow could
be influenced by other information of other locations.
Therefore, spatial information could also be used for the
long-term traffic flow forecasting. Further, studying the
different correlations among different long-term traffic
flows allows to better understand the urban traffic data,
and consequently increas the long-term traffic flow
forecasting.

– In this research study, the considered contextual infor-
mation could be coarse-grained for some applications.
For instance, regular urban traffic data might be sim-
ilar both in weekdays or weekends in some areas in
a big smart city, where any difference of traffic could
be identified for both weekdays or weekends. Thinking
about other contextual information for some speci-
fied scenarios may improve the long-term traffic flow
forecasting.

– The prediction model is based on the database of entire
long-term traffic flows. This gives satisfactory results
for datasets of small and medium size. However, the
accuracy decreases for large and big datasets. e.g.,
Beijing traffic data. One direction to solve this is to
study the correlation between long-term traffic flows.
For instance, by grouping the long-term traffic flows
into similar clusters and applying the learning model
on these clusters separately. Another way to address
this issue is to preprocess the data, by ignoring noise

(detecting outliers), and/or extract relevant features
(feature selection and extraction).

7 Conclusions and perspectives

A novel traffic flow prediction framework has been
proposed in this paper. It aims to learn long-term traffic
flows from multiple data sources. In this framework, the
set of long-term traffic flows with weather and contextual
information is first generated. The RNN-LF algorithm is
then used to predict new long-term traffic flows. The
scalability of the proposed framework has been investigated,
and the results show that RNN-LF outperforms the state-
of-the-art learning models for predicting sequence data.
In addition, RNN-LF could predict long-term traffic flows
from real case of Odense traffic flow data. To deal with big
traffic flow data in real time, HPC-based version of RNN-
LF has been developed. The approach called GRNN-LF
has been implemented on GPU by developing an efficient
mapping between the threads-block and the training data,
and memory management optimization between different
level of GPU memories. The less time-intensive task
(initialization of weights) is performed on CPU, while
the two most intensive-time tasks (computing outputs and
the updating weights) benefit from the massively GPU
threaded. In the computing outputs task, each block is
mapped onto one neurone, and every thread is charged
to compute the output of the connection between this
neurone and one neurone of the previous layer. For the
update of weights task, each block of threads is mapped
onto one neurone, and every thread is charged to update
the connection between the neurone of its block and one
neurone situated in the previous layer. The results reveal
that the GPU-based approach reach more than 160 speed
up compared to the sequential RNN-LF when dealing with
Odense traffic data. The results also show the superiority of
the parallel version of GRNN-LF compared to the existing
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GPU-based solutions for neural network learning when
dealing with big Beijing traffic data.

Motivated by the promising results reported in this paper,
we plan to investigate the following:

1. Extend RNN-LF for predicting urban trajectories
data[24–26]. This aims to predict trajectory flows using
multiple data sources.

2. Integrate deep learning and computational intelligence
approaches [27–30] in the RNN-LF to improve again
the accuracy of such approach.

3. Predicting other sequence data in real world applica-
tions such as Data Driven [31, 32], Image Processing
[8, 9] and others.

4. Apply other hybrid GPU hardwares such as MultiCore
GPU [33], and Clusters of GPUs [34].
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