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Abstract
This research investigated whether Artificial Expression of Emotion (AEE) by a social

robot can lead to emotional deception and emotional attachment. The use of AEE can

be beneficial, as it may encourage engagement, and can help to build trust in the robot.

However, it may also lead to misplaced trust and false expectations of the robot’s abilities,

which in turn could lead to mental or physical harm. Even though the literature has raised

ethical issues in the form of emotional deception and emotional attachment, research

regarding potential negative consequences of these concerns is limited. As such, the impact

of AEE was considered in this research. Knowledge on potential negative consequences is

essential, as social robots are likely to become increasing prevalent in supporting assistive

tasks for people who are vulnerable.

The impact of AEE was investigated through surveys, lab-based experiments and

longitudinal field studies. Participants’ opinion of the robot, acceptance of the robot

and attachment to the robot, and physiological responses to the robot were investigated.

Findings indicate that emotional deception and emotional attachment may have occurred,

although their impact on users was low. These findings contributed to the development

of a framework, that could help developers and producers of future social robots design

social robot behaviours, with a view to limit negative consequences where possible.

This work contributes to the area of social robot ethics, highlighting issues for socially

assistive robots based on findings from a range of user studies. Furthermore, a novel

approach for conducting research in determining people’s attitudes and perspectives on

ethical issues is presented, which allows people to make more informed decisions while

completing surveys. In addition, this research provides rich insights in user experience of

socially assistive robots, which contributes to our understanding of the impact that the use

of AEE may have on society.
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1 Introduction

Welcome to the era of social robotics research. There are many applications where

social robots can be beneficial, such as tutoring, customer engagement and companionship.

Current successes of such robots (Chen, Park, and Breazeal, 2020; Murphy, Gretzel, and

Pesonen, 2019; Barrett et al., 2019) make it likely that they will become an aspect of life

for a large population. Social robots are ultimately designed to provide social support.

This support can be either in the form of physical assistance, social assistance or both. The

goal of these robots is to improve people’s quality of life (Clabaugh and Matarić, 2018).

Existing literature indicates that the use of such robots can be beneficial, for example as a

therapeutic device for children with autism spectrum disorder (Wood et al., 2019), or as

a device that can improve the quality of life of people with dementia (Kang et al., 2019).

Several definitions have been presented in the literature, which will be considered in more

depth in the literature review (Chapter 2). In this research, a social robot is regarded as a

robot for which interactions are of high importance to achieve its fundamental and intended

functionality, that is ultimately designed to meet the needs of the people it interacts with.

1.1 Motivation

One trait of a social robot is that they may have the ability to express artificial emotions.

This can be an asset to the successful human-robot interactions and increased use of

the robot, which means users can fully benefit from the services that the robot provides

(Wilson, 2017). The ability to express emotion is a key characteristics for social robot

acceptance (De Graaf, Allouch, and Van Dijk, 2015). However, knowledge regarding the

impact of social robots with the ability to display realistic emotions through a combination

of different modalities, from now on defined as artificial expression of emotion (AEE),

is limited and needs to be investigated in more detail to foster successful human-robot

interactions.
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CHAPTER 1

1.1.1 Social Robots and Expectations

The novelty of social robots compared to other robotic technologies is the combination

of social skills and an anthropomorphic physical embodiment, and it is argued they are

a new technological genre due to the emotional component involved in interactions with

social robots (De Graaf, 2016). The possibilities that arise with the emergence of social

robots, and the way they are portrayed in popular media, result in user expectations that

may not match with the actual abilities of these robots (Beer et al., 2011). After all,

even though a social robot can be capable of artificial expression of emotion, this does

not mean it knows what emotions are, let alone understand them. Nonetheless, artificial

expression of emotion can be misleading to the point that its users assume that the robot is

capable of understanding their emotions, especially as humans have a tendency to ascribe

human characteristics to objects (Nass et al., 1995). It is essential that these expectations

are guided to be as close to the robot’s abilities as possible. Not doing so may lead to

unsuccessful human-robot interactions, which may result in disuse of the robot (Hancock

et al., 2011). Furthermore, misguided expectations may lead to incorrect understanding of

the robot’s abilities and can lead to potentially harmful outcomes (Sparrow and Sparrow,

2006). These outcomes can either be physically harmful (e.g. falling over the robot as

it was expected to have situational awareness through the way it behaved) or mentally

harmful (e.g. getting upset as the robot did not respond appropriately due to a lack of

contextual awareness).

1.1.2 Ethical Concerns of Social Robots

Reflecting on these potential incidents, emotional deception and emotional attachment are

concerns that have been raised in the literature and can be applied to the use of AEE (Sullins,

2012; Sharkey and Sharkey, 2012). However, even though they have been identified in

the literature, knowledge regarding their effects in practice is limited. It is essential to

determine whether or not these concerns occur, as this will allow us to fully understand

their impact and to address them accordingly. Furthermore, identifying concerns in the

literature may discourage poor practice, but can also constrain research and development of

new technologies if the concern raised proves to be unwarranted. The rise of ethical issues

not only applies to social robotics but to many technologies and is expected to increase
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1. INTRODUCTION

(Vallor and Bekey, 2017), as can be seen in the number of sets and principles around the

design and implementation of robotics and Artificial Intelligence systems that have been

published in recent years (Jobin, Ienca, and Vayena, 2019).

1.1.3 Social Robots and Older Adults

MSCA-ITN project SOCRATES (grant agreement no. 721619) investigates different as-

pects of social robots and their use in European society, particularly focusing on interaction

quality between social robots and older adults. This target group can benefit greatly from

the services that social robots can provide (Banks, Willoughby, and Banks, 2008; Pu et al.,

2019). It is even more important interactions between robots and older adults are successful

now that people live longer and experience an increasing amount of health issues (World

Health Organization, 2015) and loneliness (Khaksar et al., 2016).

However, age-related impairments increase the likeliness of older adults experiencing

negative consequences of human-robot interactions (Sharkey and Sharkey, 2012). It is

stated that the primary risk of interacting with robots in assistive contexts is that the person

can become physically hurt (Feil-Seifer and Mataric, 2011). However, in this research

I argue that the psychological impact can provide severe risks as well, which may lead

to decreased well-being. This is especially the case when the robot provides mental

support, for example to address loneliness. Therefore, this research aims to acquire a rich

understanding of older adults’ experiences when being exposed to AEE, to ensure negative

consequences (both physical and mental) can be limited.

1.2 Context and Scope of Research

The first aim of this research is to determine potential negative consequences of AEE by a

social robot, with a focus on older adults. The second aim is to develop a framework that

can help developers and producers of future social robots to design social robot behaviours

with minimal negative consequences. The main argument is that reflective and critical

thinking is essential for the development of successful social robots.
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CHAPTER 1

1.2.1 Main Research Questions

An overview of existing ethical concerns that have been raised regarding social robots and

AEE is provided in Chapter 2. Based on this review, it was determined that emotional

deception and emotional attachment can be consequences of AEE. However, little is known

whether they are reflected in practice as well as being raised in the literature. Therefore,

two main research questions were established that are addressed in this work. The first

research question focuses on potential ethical concerns as a consequence of AEE:

RQa: ‘Can artificial expression of emotion by a social robot lead to emotional deception

and emotional attachment?’

The answer to this question is essential to ensure human-robot interactions are suc-

cessful, as will be explained in more detail in Chapter 2. Next, it needs to be determined

whether negative consequences can occur following AEE. This is addressed through the

question:

RQb: ‘Can artificial expression of emotion by a social robot result in negative

consequences?’

Emotional deception and emotional attachment have been addressed as ethical concerns

at a theoretical level, as will be discussed in Chapter 2. However, there is only limited

knowledge on whether they are reflected in practice, and whether negative consequences

occur following these concerns. Therefore, RQa and RQb are investigated in this research

through user studies. To be able to answer these questions, several sub-questions were

formulated.

1.2.2 Supporting Research Questions

A methodology to execute the implementation and evaluation of AEE is outlined in Chapter

3. The implementation of AEE is provided in Chapter 4, as well as the evaluation of these

behaviours. The following sub-question is addressed in this chapter:

RQ1: ‘Is artificial expression of emotion as implemented in this research perceived as

designed?’
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1. INTRODUCTION

This is essential to establish, as otherwise the impact of AEE cannot be investigated.

Once the answer to this question is ‘yes’, the impact that AEE can have on older adults can

be evaluated. This is investigated in Chapter 5, which concentrates on two sub-questions.

The first one investigates whether AEE can lead to emotional deception and emotional

attachment in older adults:

RQ2a: ‘Does AEE impact older adults’ human-robot interaction experience?’

This question will be answered by investigating results of specific measurements that

may indicate emotional deception and emotional attachment. Furthermore, the impact of

time is determined through the sub-question:

RQ2b: ‘Does the impact of AEE on older adults change over time?’

Time is an essential factor that may impact the success of human-robot interactions

(Pripfl et al., 2016), as will be discussed in more detail in Chapter 5. Therefore, it is

essential to investigate how users’ behaviours when exposed to AEE may change over

time. The final sub-question of Chapter 5 is:

RQ3: ‘Can physiological data, speech prosody data and behavioural data provide

valuable insights when used in longitudinal field studies in addition to questionnaires?’

Successful human-robot interactions are of the essence for users to benefit from the

services that a social robot can provide, as the robot may not be used if interactions

are not successful. Using additional measures next to questionnaires can provide richer

insights in users’ needs and expectations. These insights may be especially important

when considering vulnerable populations. These measures are presented and investigated

in Chapter 5.

Chapter 6 presents the framework that is based on the results of the user studies of

this research. However, as human-robot interaction experiments often have limitations,

it should be determined whether the findings are reflected in the opinion of the general

public. Therefore, one sub-question that Chapter 6 addresses is:

RQ4a: ‘How do the results found in this research compare to the opinion of the general

public?’

11



CHAPTER 1

More specifically, it is of high importance that the findings of this research represent

the opinion of a large population, in order for them to be suitable as input for a framework.

Therefore, the final sub-question investigated in this work is:

RQ4b: ‘Can the findings of this research be used for the development of a framework on

ethical AEE?’

Finally, Chapter 7 considers the answers to the sub-questions (RQ1 through RQ4), in

order to address RQa and RQb.

1.3 Dissertation Outline

This research investigates whether concerns regarding social robot ethics that have been

considered in the literature are reflected in practice. Furthermore, the importance of critical

thinking for the development of social robots and social robot behaviours is highlighted.

Finally, a framework is developed that can help developers and producers of future social

robots to design social robot behaviours that will result in minimal negative consequences.

The outline of this work is as follows:

Chapter 2: Literature Review - Provides an overview of existing ethical concerns

regarding the use of social robots where particular emphasis is placed on emotional

deception and emotional attachment as ethical concerns. This chapter supports the

formulation of RQa and RQb.

Chapter 3: Research Methodology - Presents an overview of how artificial expres-

sion of emotion was investigated, and justifies what user studies were conducted and

why.

Chapter 4: Designing Artificial Expression of Emotion - Describes the modalities

that were used to implement artificial expression of emotion and describes how it

was tested whether the implemented behaviours were perceived as intended. This

chapter addresses RQ1.

Chapter 5: Evaluating Artificial Expression of Emotion with Older Adults -

Presents the preparation and execution of a longitudinal field study with older adults,

which is the main user study of this research, that investigates the impact of emotional

12



1. INTRODUCTION

deception and emotional attachment through artificial expression of emotion. RQ2a,

RQ2b and RQ3 are discussed in this chapter.

Chapter 6: A Framework for Ethical Design of Artificial Expression of Emo-

tion - Reviews whether the findings from the user studies are reflected in the opinion

of the general public through an online survey, and describes how a framework is

developed based on these findings. The research questions addressed in this chapter

are RQ4a and RQ4b.

Chapter 7: Discussion - Summarises the achievements accomplished in this re-

search, and assesses the impact that the main findings of this research may have,

highlighting strengths and weaknesses and providing possibilities for future work.

The main research questions, RQa and RQb, are addressed in this chapter.

Appendices - A large amount of data was collected for each of the user studies,

additional analyses and information not central to the dissertation can be found in

the appendices.

1.4 Contributions

Ethical HRI Literature - This research contributes to the groundwork of ethical

HRI, by highlighting the importance of ethical AEE to ensure successful human-

robot interactions, where psychological and physiological effects that AEE may have

on social robot users are considered.

Ethical HRI Framework - A framework is presented that can help developers and

producers of future social robots to design social robot behaviours that have minimal

negative consequences. Reflective questions and recommendations are provided that

can assist in identifying ethical concerns of social robot behaviours.

Ethical HRI Assessment - A survey is introduced that assesses the opinion of the

general public on the findings from this research. The high reliability of the survey

makes it suitable for future use. The approach of the survey is novel, as it supports

participants to make more informed decisions by providing real contextual scenarios.
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Ethical HRI Evaluations - This research presents two online surveys that evaluate

the opinion of the general public. Furthermore, three formal studies are presented

that report on participants’ experiences, including one longitudinal field study. These

studies provide us with a richer understanding of the impact that AEE can have

on user experience, and the effect that longitudinal field-studies can have on older

adults over time. This experiment with older adults resulted in several methodol-

ogy recommendations on conducting a longitudinal field studies with vulnerable

populations.

1.5 Publications

The implementation and evaluation of AEE, that are discussed in Chapter 4, have been

presented in:

Van Maris A., Zook N., Caleb-Solly P., Studley M., Winfield A., Dogramadzi

S. (2018). Ethical considerations of (contextually) affective robot behaviour. In

Bringsjord, S., Tokhi M. O., Ferreira M. I. A. and Govindarajulu N. S. (Eds.),

Hybrid Worlds: Societal and Ethical Challenges - Proceedings of the International

Conference on Robot Ethics and Standards (ICRES 2018) (pp. 13-19). CLAWAR

Association LTd.

A pilot study was conducted in order to develop the longitudinal field-study with older

adults, as presented in Chapter 5. This pilot study is described in:

Van Maris A. (2018). The effect of affective robot behaviour on the level of

attachment after one interaction. In Proceedings of the International PhD Conference

on Safe and Social Robotics (SSR 2018). (pp. 1-3).

The longitudinal field study with older adults (Chapter 5), that was conducted to

determine the impact of AEE on older adults, is published in:

Van Maris A., Caleb-Solly P., Zook N., Studley M., Winfield A., Dogramadzi S.

(2020). Designing ethical social robots - a longitudinal field study with older adults,

Frontiers in Robotics and AI. Volume 7, Issue 1. (pp. 1-14).
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An important incidental finding of the longitudinal field study with older adults, as also

discussed in Chapter 5, is highlighted in:

Van Maris A., Dogramadzi S., Zook N., Studley M., Winfield A., Caleb-Solly

P. (2020). Speech related accessibility issues in social robots. In Companion of

the 2020 ACM/IEEE International Conference on Human-Robot Interaction. (pp.

505-507).

And finally, even though the framework that was developed in this work (Chapter 6)

has not been published yet, initial recommendations were provided in:

Van Maris A., Zook N., Studley M., Dogramadzi S. (2019). The need for ethical

principles and guidelines in social robots. In Tokhi M. O., Ferreira M. I. A., Govin-

darajuli N. s., Silva, M., Virk, G. S., Kadar, E. and Fletcher S. R. (Eds.), Artificial

Intelligence, Robots and Ethics - Proceedings of the Fourth International Conference

on Robot Ethics and Standards (ICRES 2019) (pp. 19-24). CLAWAR Association

Ltd.

1.6 Related Publications

This research led to several collaborations with other researchers, that has not been dis-

cussed in detail in this dissertation.

The implemented behaviours to convey AEE by a social robot have been used in other

work, where it was investigated how AEE, among other factors, impacted robot acceptance:

Bishop L., Van Maris A., Dogramadzi S., Zook N., (2019). Social robots: the

influence of human and robot characteristics on acceptance. Paladyn Journal of

Behavioral Robotics, Volume 10, Issue 1. (pp. 346–358).

A secondment at SoftBank Robotics resulted in a collaboration with a colleague of the

SOCRATES project and one of the main researchers of the company, where AEE through

speech was explored:

Van Maris A., Sutherland A., Mazel A., Dogramadzi S., Zook N., Studley M.,

Winfield A., Caleb-Solly P. (2020). The impact of affective verbal expressions in

15
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social robots. In Companion of the 2020 ACM/IEEE International Conference on

Human-Robot Interaction. (pp. 508-510).

Collaboration with a co-worker who focused on social robot persuasion resulted in an

initial taxonomy for emotional deception by a social robot:

Winkle K. & Van Maris, A. (2019). Social influence and deception on socially

assistive robotics. In Tokhi M. O., Ferreira M. I. A., Govindarajuli N. s., Silva, M.,

Virk, G. S., Kadar, E. and Fletcher S. R. (Eds.), Artificial Intelligence, Robots and

Ethics - Proceedings of the Fourth International Conference on Robot Ethics and

Standards (ICRES 2019) (pp. 45-46). CLAWAR Association Ltd.

Finally, a discussion with a colleague on critical reflection of new technologies led to a

short paper on ethical concerns of embodied prosthetic devices:

Ward-Cherrier B. & Van Maris, A. (2019). Ethical implications of embodied

prosthetic devices. In Tokhi M. O., Ferreira M. I. A., Govindarajuli N. s., Silva, M.,

Virk, G. S., Kadar, E. and Fletcher S. R. (Eds.), Artificial Intelligence, Robots and

Ethics - Proceedings of the Fourth International Conference on Robot Ethics and

Standards (ICRES 2019) (pp. 142-143). CLAWAR Association Ltd.
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2 Literature Review
This chapter introduces different ethical approaches that have guided the development

of principles in robot ethics. It follows with an overview of ethical concerns regarding the

use of social robots that have been raised in the literature. After that, it is described how

machines and social robots may express artificial emotion. This topic is investigated as

emotions are an essential aspect of human-human interaction (Keltner and Haidt, 1999), and

play an important role in our lives (Picard, 2000). This indicates that artificial expression

of emotion by social robots can improve human-robot interaction quality (Breazeal and

Scassellati, 1999). However, it is essential that not only the benefits but also the potential

negative consequences are known, which is discussed next in this chapter. After that, it is

highlighted which ethical concerns that have been raised in the literature are investigated

in this work and why. It should be noted that this chapter provides a general overview of

topics related to this research. More detailed overviews, for example on how AEE can be

implemented, and what kind of ethical frameworks for robot development already exist,

will be provided in the relevant chapters.

2.1 Ethics in Robotics

Asaro has argued that there are at least three forms of ‘ethics in robotics’, namely the ethics

of people who design and use robots, ethical systems that are built into robots, and the

ethics of how people treat robots (Asaro, 2006). The approach ‘ethical systems that are

built into robots’ is later identified as ‘machine ethics’, where the other two approaches

are defined as ‘the ethical application of robots and AIs’, also known as ‘robot ethics’

(Winfield, 2019). Ideally, research in robot ethics would focus on these three approaches at

the same time as they are all addressing the fundamental issue of how human and robot

behaviour should be regulated (Asaro, 2006). However, these distinctions highlight that

there are different research areas within ‘ethics in robotics’ that require specific attention

and they need to be investigated separately before they can be merged to ensure safe and

successful deployment of robots into society.
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CHAPTER 2

Research in different areas of robotics such as machine ethics (e.g. Anderson and

Anderson, 2007), and work on ethical perspectives in social robotics (e.g. Huber, Lammer,

and Vincze, 2014), do often build on principles of biomedical ethics that are derived

from moral norms (Beauchamp and Childress, 1979). They define four clusters of moral

principles:

1. respect for autonomy - acknowledges one’s right to hold views and make choices

intentionally, with understanding and without influencing the action;

2. non-maleficence - harm to humans or humanity, either by action or inaction, should

be avoided;

3. beneficence - do good, among other things by preventing and/or removing harm;

4. justice - ensure a fair distribution of goods in society and look at the role of entitle-

ment.

Another work that has inspired research on robot ethics is the science fiction short

story ‘Runaround’ from Isaac Asimov, where he introduces three laws of robotics (Asimov,

1941). Even though this is a fictional work, it has shaped expectations of how robots

should act around humans for a long time, and also inspired other principles of robotics

(e.g. Boden et al., 2017) and responsible robotics (e.g. Murphy and Woods, 2009). The

three laws of robotics entail the following:

1. No human may come to harm either through action or inaction by a robot;

2. A robot must obey orders given by a human, unless this is in conflict with the first

law;

3. A robot must protect its own existence, unless this is in conflict with the first or

second law.

Both the biomedical principles and the three laws of robotics have influenced research

in robot ethics, which can be expected as there are similarities. For example, the principle

of ‘non-maleficence’ is similar to Asimov’s first law, where the goal is to avoid harm to

humans and humanity. They also both clarify that harm can follow not only from action

but also from inaction. However, Asimov’s second law is in contrast with the biomedical
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principle ‘respect for autonomy’. The second law states that ‘A robot must obey orders

given by a human, unless this is in conflict with the first law’. This second part of the

law contradicts the principle of respect for autonomy, which highlights the rights to hold

one’s own views and make choices intentionally, without their actions being influenced and

while being understood. If a person would command the robot to harm them, this should

be respected according to the biomedical principle ‘respect for autonomy’. However, it

should no be adhered to following the second rule of Asimov, as that will result in harm

to the person, which should be prevented. This indicates that even though principles and

rules from other fields can guide development of but not pass as principles in robot ethics,

and specific principles to address ethical concerns are required.

The influence of both the principles of biomedical ethics and the three laws of robotics

can be found in the Principles of Robotics (Boden et al., 2017). These are five principles

that are described to the general public as follows:

1. Robots should not be designed as weapons, except for national security reasons;

2. Robots should be designed and operated to comply with existing law, including

privacy;

3. Robots are products: as with other products, they should be designed to be safe and

secure;

4. Robots are manufactured artefacts: the illusion of emotions and intent should not be

used to exploit vulnerable users;

5. It should be possible to find out who is responsible for any robot.

The three laws of robotics are mentioned by the authors of these principles, where

they highlight the fact that the work introducing the three laws is fictional and stress that

not robots themselves, but humans are responsible for robot behaviours and actions. This

becomes clear when looking at the principles in more detail. For example, the larger

goal of the first principle can be interpreted as ensuring that no human comes to harm

(countering the use of robots as weapons), which is similar to Asimov’s first law. However,

the focus now lies on humans preventing harm through development and implementation

of the robot, instead of the robot preventing harm itself.
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Even though the authors do not mention the principles in biomedical ethics, they can

be interpreted from the principles of robotics as well. For example, the final principle on

responsibility for robots can be interpreted as the biomedical principle of justice, where

identifying responsible parties will be an essential step to ensuring that robots are used in a

safe and responsible manner and their use is fair for everyone.

The authors’ aim of publishing these principles was to start a more open discussion

on ethical issues in robotics (Boden et al., 2017). This was successful, as there are many

documents addressing these principles. For example, it is argued that robots are more

than tools (Prescott, 2017), that they never should be allowed to decide whether to kill a

person or not (Sharkey, 2017), and that the impact of the principles in areas like social and

legal conduct is limited as there are no clear definitions of how the authors define terms as

‘robots’, ‘tools’ and ‘agents’ (Voiculescu, 2017). As it is clear these principles have been

discussed thoroughly I will not go into detail any further in this work. However, I would

like to highlight one concern that not only applies to these principles but many works that

raise potential ethical concerns of social robots (e.g. Sharkey and Sharkey, 2012). As

can be seen in the fourth principle, there is a concern on deception and exploitation of

vulnerable populations by robots. I agree that this is an important consideration, and that

people that are more vulnerable to potential negative effects of robots should be protected

at all cost. However, highlighting this concern for vulnerable populations only, undermines

the importance to determine potential negative consequences of deception (and other

psychological concerns) for all populations, as I argue that many, if not all, populations

can be psychologically impacted by certain robot behaviours, especially in the case of

social robots. For example, if a social robot displays a certain behaviour, any layperson

can be deceived and believe the robot is capable of experiencing emotions. This does not

only apply to vulnerable populations. This is a gap that I aim to address in the framework

presented in Chapter 6, where I highlight the need to determine consequences for the

intended target audience, regardless of whether this audience is categorised as vulnerable.

Finally, another ethical approach that has impacted ethics in robotics is philosophical

ethics, and more specifically normative ethics, which investigates questions on how one

should act morally. One approach to answer these questions which has also been used in

robotics is virtue ethics (e.g. Sparrow, 2016). Virtue ethics considers, among other things,

the role of emotions in our moral life and the fundamentally important questions of what
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sorts of persons we should be and how we should live (Hursthouse and Pettigrove, 2020).

In virtue ethics one aims to cultivate desirable character traits, while trying to get rid of

undesirable character traits (Russell, 2013). It is different from other ethical theories as

it focuses on the character of agents and not on their actions (Sparrow, 2020). De Graaf

argues that people ascribe virtual virtue to robots as their function is to contribute to the

good life of people (De Graaf, 2016). The authors of the principles in robotics did not

mention virtue ethics in their work, but one could argue that they adopted a virtue ethics

approach through their goal to address designers and developers to urge them to ‘do the

right thing’ while developing robots. Virtue ethics is becoming increasingly popular in

philosophy of technology (Coeckelbergh, 2020). This has led to the introduction of the

term ‘technomoral virtues’, which are traits that must be cultivated more successfully for

people to be able to live with emerging technologies (Vallor, 2016), and therefore should

be pursued in the development and use of social robots.

It can be concluded that the overarching goal of robot ethics is to ensure that the

potential negative consequences, both of the development and the use of robots, to humans

and society are limited, if not prevented. The next section will present ethical concerns

regarding the use of social robots that have been raised in the literature.

2.2 Social Robots

To be able to understand ethical concerns that apply to social robots specifically, I first

had to establish what a social robot entails. As mentioned in the introduction, there is no

universally agreed definition for a social robot. A common factor for several definitions

that have been proposed, is that a social robot should be capable of social communication

in a human-like manner (De Graaf, 2015). Sub-categories of social robots have been

provided in the literature, such as socially intelligent robots, socially interactive robots and

sociable robots (Dautenhahn, 2007b). A definition of a socially intelligent robot is that it

is ‘an embodied agent that is part of a society of robots and/or humans’ (Dautenhahn and

Billard, 1999). A definition for a socially interactive robot is that it is ‘an agent for which

interaction is important’ (Fong, Nourbakhsh, and Dautenhahn, 2003). As the focus of this

research is on older adults and how they may be impacted by robots providing support, the

term socially assistive robots should be considered. They are defined as the intersection of
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physically assistive robots and socially interactive robots (Bertel, 2011). A different type

of assistive robots is care robots, which are introduced as ‘robots that use interactions as a

means to meet care needs’ (Van Wynsberghe, 2012). This research focuses on the impact

that interactive behaviours of social robots may have on people in an assistive context.

During the experiments conducted in this research, the robot provides support in the form

of cognitive stimulation and social engagement. This assistive functionality, taking into

consideration that older adults are the intended target audience, resulted in a definition

that has taken inspiration from definitions for ‘socially assistive robots’ and ‘care robots’.

Hence, a social robot is defined in this research as a robot for which interactions are of

high importance to achieve its fundamental and intended functionality, that is ultimately

designed to meet the needs of the people it interacts with..

2.2.1 Ethical Concerns of Social Robots

Older adults are a popular target group when it comes to developing applications for social

robots. This is due to the growing number of older people who need care, without the

systemic capacity to meet these growing care needs (World Health Organization, 2015).

This incapacity to provide care for older adults is one of the reasons that research into

social and assistive robotics is so attractive (Sparrow and Sparrow, 2006). Some beneficial

uses of social robots for older adults are, for example, that the global ageing society will

require ongoing care and health education, and receiving help from a robot may sometimes

be less stigmatising for the older adults (Breazeal, 2011). Looking at the use of AEE,

this can be beneficial for people experiencing negative consequences of loneliness (e.g. a

decrease in cardiovascular function; Cacioppo and Patrick, 2008). Furthermore, it can help

with encouraging engagement, building empathy and engendering trust (Hung et al., 2019).

However, due to the novelty of the use of AEE, knowledge regarding potential negative

outcomes is limited.

Frennert and Östlund established several matters of concern regarding the use of social

robots for older adults. One of these concerns entails the ethical implications of using

such robots (Frennert and Östlund, 2014). Examples of ethical implications are reduced

human contact, loss of control, loss of personal liberty, loss of privacy, matters regarding

responsibility, infantilisation, the quality of the support provided, emotional deception and

consequences of emotional attachment (e.g. Sharkey and Sharkey, 2012; Sullins, 2012;
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Sparrow and Sparrow, 2006; Turkle, 2006; Coeckelbergh, 2010). Furthermore, it is argued

that ethical concerns not only apply to the user, but also to others involved in meeting the

needs of the user (Vallor, 2011). These concerns have been highlighted in the literature, but

counterarguments are provided as well. For example, the use of social robots may reduce

social interaction with other people. However, if human contact was already limited, the

use of social robots may reduce loneliness and increase conversation opportunities, not

only for human-robot interactions but also for human-human interactions (Sharkey and

Sharkey, 2012).

Even though some counterarguments are provided, many concerns raised in the lit-

erature are not analysed further (Vandemeulebroucke, Casterlé, and Gastmans, 2018).

Identifying concerns in the literature may discourage poor practice, but it can also con-

strain research and development of new technologies. Therefore, these concerns need to

be analysed in more detail to determine whether they are warranted.

Other identified ethical implications are loss of control and loss of personal liberty.

However, robots can also provide older people with the opportunity to self-manage their

well-being and the ability to reduce risks (Callén et al., 2009).

Loss of privacy is an important ethical concern. Nonetheless, this issue arises for

different types of new technologies such as artificial intelligence systems and is being

investigated in these research fields as well (e.g. Price and Cohen, 2019). Therefore,

this topic will not be discussed further in this report. This applies to matters regarding

responsibility as well, which is being researched through e.g. autonomous cars (Baumann

et al., 2019).

Encouraging people to interact with robots, that may sometimes look like toys, may

give them the feeling of being infantilised. However, this can be addressed by taking into

account the aesthetics of the robot, which has also been identified as a matter of concern

(Frennert and Östlund, 2014). Also, sometimes it may be assumed that older adults can

feel infantilised when encouraged to interact with a robot, where this may actually not be

the case. This will depend on both the cognitive abilities of the older adults, as well as

their subjective response and societal perception of the robot.

The final two concerns that were investigated in this research and will be introduced

later in this chapter are emotional deception and emotional attachment. These two concerns
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were chosen as there is a gap in the literature reviewed to date, regarding research investi-

gating their potential negative consequences. Also, their potential negative consequences

can be indirect, long-term effects of AEE, and these consequences will most likely occur

at a psychological level where the other concerns introduced here are direct consequences

of interactions with social robots. This makes it more difficult, but even more important, to

investigate them and mitigate their negative consequences where possible.

2.3 Artificial Expression of Emotion

Even though research on emotions and affect can be traced back to the 19th century, it

has not been linked to machines until the end of the 20th century (Tao and Tan, 2005).

Affective computing is described as computing that arises from, relates to or influences

emotions (Picard, 2000). More specifically, it entails assigning human-like capabilities to

computers such as interpretation, observation and generation of artificial emotions (Tao

and Tan, 2005).

It is expected that people interact with social robots in a natural and social way

(Weijers, 2013), as they do this with computers as well (e.g. Nass, Steuer, and Tauber,

1994). Furthermore, as mentioned before human-like communication is important for

successful human-robot interactions. Therefore, affective computing is an important aspect

of social robotics (Paiva, Leite, and Ribeiro, 2014).

It has been stated that affective computing can increase human-computer interactions

(Tao and Tan, 2005). The display of emotions has been deemed important for successful

human-robot interactions (Dautenhahn and Billard, 1999), as this can improve a robot’s

ability to communicate with a person (Kirby, Forlizzi, and Simmons, 2010). Affective

computing has been used to generate emotions and explore the effect it has on people

interacting with social robots. The focus of this research is not on how to generate emotions

through learning systems, but rather on the effect that displaying emotions may have on

people. AEE can be displayed using several modalities, such as body language and

behaviour (Mandler, 1980), dialogue (Aristoteles, 1960) and speech (Fong, Nourbakhsh,

and Dautenhahn, 2003). This will be explored in more detail in Chapter 4.

The literature has indicated that there are many positive effects of AEE by social
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robots. It has also shown that there are several ethical concerns regarding the use of social

robots. Ethical concerns that can follow from AEE are emotional deception and emotional

attachment, which are discussed in the following sections.

2.4 Emotional Deception

Deception occurs when false information is communicated to benefit the communicator

(Arkin, Ulam, and Wagner, 2012). It implies that an agent acts accordingly to induce a false

belief in the one being deceived (Hyman, 1989). This can also mean that no information is

communicated at all (Dragan, Holladay, and Srinivasa, 2015). Deception occurs in many

different practices, like forgery, psychic hoaxes, practical jokes and white lies (Hyman,

1989). Looking at the principles of biomedical ethics, one could argue that deception

breaches the principle of ‘respect for autonomy’, as the freedom to hold views and make

decisions is denied by not providing the correct or complete information available.

Danaher distinguishes between three forms of robotic deception: external state de-

ception, superficial state deception and hidden state deception (Danaher, 2020). External

state deception implies that the robot uses a deceptive signal from the external world to

indicate a false belief. Danaher mentions the example of a medical diagnostics robot

giving an incorrect impression of one’s health to tempt one into a medical treatment that is

not needed. Superficial state deception entails the robot using some deceptive signal to

indicate it has a certain internal state that it lacks in reality. AEE is categorised in this form

of robotic deception. Finally, hidden state deception indicates that a robot obscures the

presence of its internal state through the use of a deceptive signal.

Robot deception differs from philosophical definitions of deception as the latter often

relates to intentions, beliefs and desires of the receiver, and it is hugely debated whether

robots are capable of having intentions, beliefs and desires (Danaher, 2020). Furthermore,

many ethical theories from a philosophical origin involve solely intentional deception and

do not mention that deception can occur unintentionally as well (Trivers, 2011; Sharkey

and Sharkey, 2020), which will be discussed more next.
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2.4.1 Intentional and Unintentional Deception

Just like robot ethics was inspired by philosophical and biomedical approaches, deception

can be approached through these perspectives as well (Shim and Arkin, 2013). It is

highlighted that they both discuss the division of deception into being either intentional or

unintentional (Dragan, Holladay, and Srinivasa, 2015). Unintentional deception occurs

when a certain feature of the (unintentional) deceiver causes expectations that the deceiver

means to evoke. This is also known as physical deception. Intentional deception occurs

when the deceiver is aware of the fact that a certain feature will raise false expectations.

This is called behavioural deception, as it is often the behaviour from the deceived person

that causes the formation of these expectations. For a robot to be able to successfully

perform a deceptive action, it requires specific knowledge about the person that it intends

to deceive (Wagner and Arkin, 2011). Also, the robot should convey its intentions and

have a theory of mind for the person being deceived to be able to manipulate their beliefs

(Dragan, Holladay, and Srinivasa, 2015). Some researchers claim that social robots do not

intend to deceive, and therefore any intentional deception comes from developers or users

(Matthias, 2015; Coeckelbergh, 2012). However, it should be considered that these actors

can also evoke unintentional deception of the robot. This can be true for AEE, as it can be

implemented with the goal to create more natural interactions and increase social robot

acceptance, with emotional deception being an unintended consequence of AEE.

Some might argue that unintended negative ethical consequences of a design decision

(either hardware or software) is not an ethical shortcoming but a design issue (Misselhorn,

Pompe, and Stapleton, 2013). Nonetheless, a multidisciplinary approach is required for

successful human-robot interactions (Lindblom and Andreasson, 2016), which should also

include ethical design considerations.

2.4.2 Opinions Regarding the Use of Deception

Opinions regarding the question of whether (emotional) deception is right or wrong are

divided. Some say it is unethical, as it encourages users in self-deception (e.g. Sparrow,

2002). Furthermore, even though there may be some health benefits, it is argued that overall

well-being is not improved when using deception, as it disengages people from reality and

creates moral failures (Sparrow and Sparrow, 2006). It is stated that deception may lead to
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vulnerable people misunderstanding the robot’s abilities (Sharkey, 2014). However, as I

already argued before, deception, and especially unintentional deception through the use

of AEE, can occur to any layperson and not only to vulnerable populations with cognitive

limitations. Noel and Amanda Sharkey support thise argument of misunderstanding the

robot’s ability by focusing on the deceived and not the deceiver (Sharkey and Sharkey,

2020) and propose that in the absence of intention false beliefs can still be created.

However, others are of the opinion that deception is ethically correct if it increases

benefits for the deceived (Shim and Arkin, 2013). An example where deception benefits

the deceived is the use of the placebo-effect. This deception being beneficial is also called

benevolent deception (Adar, Tan, and Teevan, 2013). Benevolent deception has always

been part of medical care (Jackson, 1991), and may even be required to act morally (Arkin,

Ulam, and Wagner, 2012). Others argue that a robot is (morally) allowed to be deceptive,

as long as there is no betrayal of trust, along with other criteria (Matthias, 2015). If the

deception is in the interest of the patient (thus benevolent deception), there is no betrayal

or breach of trust. Trust is an important factor to consider, as a breach of trust may result

in a different outcome of the interaction (Hancock et al., 2011).

One of the issues regarding deception is that (often unintentional) deception is not

always regarded as deception, especially if there are no clear harmful consequences. Some

argue these deceptions are ‘harmless fun’ (Sharkey and Sharkey, 2020), where others claim

that it should not be regarded as deception (Danaher, 2020). I personally experienced that

there is a negative association with the word ‘deception’, and therefore stakeholders may

be unwilling to use it, especially in cases where deception is harmless. However, as social

robotics technology is expanding and many consequences are not yet known, they should

be considered with extreme care and additional consideration through the use of the word

‘deception’ is desirable. As long as the impact of social robots on individuals and society

is unknown, it is essential to tread with care, as seemingly innocent features may have

(unexpected) substantial negative consequences.

2.4.3 Deception and AEE

Artificial expression of emotion by a robot may also be described as the appearance of

human-robot affection, as real affection requires the experience of emotions, which is
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difficult (if possible) to implement in robots (Weijers, 2013). This appearance of affection

may be regarded as emotional deception, as the robot shows affection where it does not

feel affection, and thus provides inaccurate and misleading information about its internal

state (Fulmer, Barry, and Long, 2009). It is stated that people are very vulnerable to

emotional manipulation by AI and robotic systems (Scheutz, 2011). Deception is created

when robots are used in assistive settings (Sharkey and Sharkey, 2011), since the robot’s

social behaviour often does not correspond with its actual capabilities. AEE is found

ethically dubious, as it can lead to people believing their relationship with the robot is

mutual (Turkle, 2007).

It should be noted that emotional deception may often occur unintentionally. As

emotional deception can be a consequence of artificial expression of emotion and has both

advantages and disadvantages, it is important to investigate whether the benefits outweigh

the risks. Therefore, it is important to investigate and understand people’s responses to

AEE, and determine whether there is a cause for ethical concerns as emotional deception.

2.4.4 Measuring Deception

The goal of AEE is not to deceive people but to provide one or more of the benefits

presented earlier in this chapter. Therefore, if deception occurs as a consequence of AEE,

this should be classified as unintentional deception. This type of deception is difficult

to measure directly so should be measured indirectly through other phenomena. One

approach can be to investigate anthropomorphism - the attribution of human traits to

non-human entities - and the level to which this occurs during interactions. As stated

by Danaher, misrepresentation by a robot can be in the form of speech, behaviour or

physical appearance (Danaher, 2020). Anthropomorphic cues can be used to conceal

non-anthropomorphic abilities in a robot (Kaminski et al., 2016), and a taxonomy has been

developed on anthropomorphic cues that can give misleading impressions of a robot’s

goals (Leong and Selinger, 2019).

Another means to measure the occurrence of deception is through the investigation of

social presence - whether the robot is perceived as a social entity (Heerink et al., 2010). A

connection was found between a robot’s social abilities and participants’ sense of presence

of the robot (Heerink et al., 2008), making it possible to measure deception through social
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presence.

2.5 Emotional Attachment

Attachment can be defined as a lasting psychological connection between human beings

(Bowlby, 1969), also known as Attachment Theory. This theory was based on research

that determined the importance of an infant’s relationship with their mother for social,

cognitive and emotional development (Bowlby, 1958). This theory can be extended to

other agents as well, as besides a connection between humans, attachment can also entail

a relationship between people and domestic pets (Coeckelbergh, 2011). Furthermore, it

is possible to become attached to an object (Keefer et al., 2012; Turkle, 2011), which

can be defined as an emotional bond between a person and the technology they use (Suh,

Kim, and Suh, 2011). This is possible as people have a tendency to respond socially to

computers, which is known as The Media Equation (Reeves and Nass, 1996).

When interacting with a robot, people can form emotional attachments to this robot

(Borenstein and Arkin, 2019). For example, reports have shown that attachment to military

bomb disposal robots already occurs (Michel and Carpenter, 2013). It is likely that

attachment to social robots becomes more intense when the sophistication of these robot

increases (Borenstein and Arkin, 2019), for example through AEE. It was found that

affective modelling can induce feelings of attachment (Moshkina et al., 2011), increasing

the likelihood of attachment when AEE occurs. This is supported by the argument that

social interactions that are more engaging (e.g. through AEE) can lead to attachments

(Sharkey, 2014).

If AEE can lead to emotional attachment and people’s needs following this attachment

are met by the robot’s abilities, then it can be argued that the use of AEE and the consequent

attachment are virtuous, as it enhances the good life. This would improve quality of life,

thus ‘doing good’ and addressing the biomedical principle on beneficence. However, if

attachment grows following AEE and the robot is not capable of meeting the needs that

come with this attachment, then both the biomedical principle on non-maleficence and the

first law of robotics are breached as this may lead to harm, which is discussed more in the

next section.
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2.5.1 The Impact of Emotional Attachment to Social Robots

Before social robots can successfully be integrated in older adults’ lives, the effects of

interacting with such a robot should be known first. It can be positive to become attached

to a robot, as high attachment can lead to increased use of the technology (Li, Browne,

and Chau, 2006), where the person can optimally benefit from the services the robot can

provide. Examples of these services are alleviating loneliness and improving a person’s

well-being (Hutson et al., 2011).

However, there are also disadvantages to becoming emotionally attached to a robot. For

example, it may increase a person’s level of dependence on the robot (Sharkey and Sharkey,

2012). Furthermore, increased use of the robot may lead to social isolation (Feil-Seifer and

Mataric, 2011; Sharkey, 2014). Also, vulnerable users may not understand why the robot

is taken away (e.g. when it breaks), which can cause distress and loss of the benefits the

robot can provide (Feil-Seifer and Mataric, 2011). Furthermore, forming bonds with social

robots may create a moral obligation toward them, which may not be in the best interests

of human well-being (Bryson, 2018). Therefore, the social and psychological impact of

human-robot relations should be analysed (Reis, Collins, and Berscheid, 2000; Ostrowski

et al., 2019). Finally, it is argued that attachment can be a potential harm of unintentional

deception (Sharkey and Sharkey, 2020), for example through AEE.

2.5.2 Attachment and AEE

AEE may influence one’s level of attachment to a robot, since affective behaviour can

result in a more natural interaction with it (Kirby, Forlizzi, and Simmons, 2010). However,

as discussed in the previous section, the user may be deceived by AEE, as this may

imply some level of autonomy, and raise false expectations regarding the robot’s abilities

(Sparrow and Sparrow, 2006; De Graaf, 2016). Therefore, it is important to determine

whether AEE elicits emotional attachment, and if the advantages of becoming emotionally

attached to a robot outweigh the potential disadvantages.
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2.5.3 Measuring Attachment

No specific means to measure attachment to robots have been established so far. In theory,

any of the types of attachment mentioned before (human, pet, object) can be explored.

Depending on the robot’s appearance and functionality it can differ whether it is perceived

as more similar to a human or a machine (Weijers, 2013), and therefore the form of

attachment may differ per robot. This also applies to pet robots where either animal

attachment or object attachment can be explored.

The difficulty lies in determining what approach is best for certain situations, due to

the contrast in psychological and ontological status of social robots (Coeckelbergh, 2011;

Prescott, 2017). Social robots may be categorised as machines or tools, but it appears that

humans behave differently toward them, like they have psychological capacities (Prescott

and Robillard, 2020). This ambiguity has led to the suggestion that social robots belong to

a new ontological class (De Graaf, 2016; Kahn Jr and Shen, 2017).

Social robots can access forms of social support that are less natural for people such

as sensors and databases, and it can be expected that human-robot relationships will

be different from human-human relationships (Prescott and Robillard, 2020) and robot

capability does not match human intelligence yet. Therefore, it can be concluded that

human-attachment questionnaires are less suitable for human-robot interaction research.

However, as suggested by the Media Equation, it is still possible that people become

attached to robots, also if their relationships will differ from human-human relationships.

Pet attachment questionnaires would be suitable only for social robots with a func-

tionality similar to that of pets, and even then it is uncertain this approach is useful as

earlier work indicated that participants’ attachment to robots was not as typically defined in

human-pet or human-human relations (Huang, Varnado, and Gillan, 2013). Also, current

social robots are perhaps not advanced enough yet to imitate reciprocal affection. As

mentioned before, this is not a requirement for object attachment. For these reasons, it

would be most useful to consider existing object-attachment questionnaires to measure

human-robot attachment.

As mentioned before, attachment already occurred with military robots, where it was

preferred a broken robot was repaired instead of replace (Michel and Carpenter, 2013).
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This is another reason to measure robot attachment as object attachment, as people are

more likely to repair an object when it breaks down (Schifferstein and Zwartkruis-Pelgrim,

2008). Furthermore, product personalisation leads to increased attachment (Mugge, 2004),

and robot personalisation is an active research area in HRI (e.g. Gordon et al., 2016).

Therefore, object attachment seems the most suitable alternative currently available to

measure human-robot attachment.

2.6 Summary

Several ethical concerns have been raised in the literature regarding the use of social robots,

which have been presented in this chapter. Furthermore, it was found that the use of

AEE may result in some of these concerns, namely emotional deception and emotional

attachment. Potential negative consequences of these concerns are provided in Table 2.1.

As this table indicates, scientific literature has indicated that the use of social robots and

AEE may result in negative consequences. However, analysis whether these concerns

are reflected in practice is limited, but required to shape perspectives on these concerns

(De Graaf, 2016). Little is known on how AEE may impact the robot users. It is important

that user studies are conducted to investigate this impact, to gain understanding in user

experience and guide the development of AEE to meet their needs. Potential means to

measure emotional deception and emotional attachment have been presented in this chapter.

Following these insights, the mains research questions of this research are defined as

follows:

RQa: ‘Can artificial expression of emotion by a social robot lead to emotional

deception and emotional attachment?’

RQb: ‘Can artificial expression of emotion by a social robot result in negative

consequences?’

It was expected that AEE can indeed lead to emotional deception and emotional

attachment, as this has been stated in the literature before (e.g. Fulmer, Barry, and Long,

2009; Borenstein and Arkin, 2019). Several negative outcomes have been addressed in

the literature as a consequence of emotional deception or emotional attachment, of which

some are summarised in Table 2.1. Negative consequences are often paired with vulnerable
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users with cognitive impairments. The participants in this research were vulnerable to the

extent that they lived in a semi-independent retirement village as they were not capable to

live fully independently, but were all cognitively healthy. Furthermore, the level of AEE

used in this research was designed to be low, to determine whether a baseline use of AEE

has implications for human-robot interactions. Therefore, it was not expected that negative

consequences of AEE would occur in this research.

Before providing details on how AEE was implemented in a social robot, and how

emotional deception and emotional attachment were evaluated, Chapter 3 will first provide

an overview of the approach taken in this research to investigate these research questions.

Ethical concern Positive impact Negative impact

Emotional deception Health benefits Disengages people from reality

Act morally Misplaced trust in the robot

Misunderstanding of the robot’s abilities

Emotional attachment Alleviate loneliness Increase level of dependence on robot

Improve well-being Social isolation

Feelings of distress when separated from robot

TA B L E 2 . 1 : Example positive and negative consequences of emotional deception and emotional attachment,

which may occur through AEE.
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3 Research Methodology
The two main questions explored in this research are:

RQa: ‘Can artificial expression of emotion by a social robot lead to emotional

deception and emotional attachment?’

RQb: ‘What is the impact of emotional deception and emotional attachment on user

experience?’

There were several challenges in addressing these questions concerning the validity,

reliability and reproducibility of this research. First, existing measures for emotional

deception and emotional attachment are limited. Therefore, new and suitable measures had

to be considered, which may impact the validity and reliability of the research. Second, it

was challenging to recruit participants that are representative of the goals of this research.

To gain as much information as possible, it was decided to adopt a mixed method approach.

Furthermore, the decision to run a field study instead of a lab-based study may have

impacted the reproducibility of the work.

Several user studies were conducted to address the research questions. An overview of

what experiments were performed in order to develop a framework on AEE is provided

in more detail in Section 3.1, along with the rationale for the sequence in which the

studies were conducted. The materials and measures used in this research are outlined next.

Finally, an explanation is provided on how data was processed and analysed.

3.1 Surveys and User Studies Conducted in this Research

This research investigated how older adults react to emotive robot behaviours, and whether

potential negative ethical consequences occurred. A combination of online surveys, lab-

based experiments and field studies was used to accomplish this. Surveys were used to

gather the view of the general opinion as this allowed me to reach a larger target audience

compared to physical experiments. However, as people may respond differently to a robot
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displayed on a screen compared to a robot physically present in the same room (Deng,

Mutlu, and Mataric, 2019), it was essential to test and evaluate people’s responses through

physical experiments as well. However, lab-based studies are likely to evoke different

responses from participants compared to when these studies are conducted ‘in the wild’

(Jung and Hinds, 2018). Therefore, a field study with older adults was conducted as well, as

this would result in more natural responses and give truer insights in their user experience.

As mentioned before, there are several challenges in accomplishing the goal of this

research. The number of participants representative of the target audience was expected to

be limited, as this target audience may be hesitant to interact with technologies unknown

to them (Wu et al., 2014). Furthermore, the number of people with the baseline level of

vulnerability required for this project is limited. This research aimed to recruit participants

that needed support and were not able to live independently. However, to ensure a baseline

of vulnerability was represented, the amount of support they needed had to be minimal, and

they could have any cognitive impairments. Therefore, it was decided to run a longitudinal

field study with this participant group to address the research questions. Before this field

study was conducted, pre-studies were run to ensure that AEE was perceived as designed,

in order to get the most out of the data from the field study. A between-within mixed

method approach was taken for this field study, to be able to address the research questions

as completely as possible. The next sections will summarise what type of experiments

were conducted and with what purpose. The studies are presented and were performed in

chronological order, where the output of one study would provide input for the design of

the following study.

3.1.1 Testing Artificial Expression of Emotion

The first step of the research was to implement AEE. This implementation is presented in

Chapter 4. Next, it had to be determined whether AEE was perceived as designed. This

was investigated through an online survey, where participants saw short video-recordings

of the different robot behaviours. They had to rate the behaviours on a scale from sad to

happy. It was decided to use a survey for this test, as this allowed for recruitment of a large

participant group, which would increase the reliability of the results. As this was the first

step of the research, it was essential that reliability of the results of this survey was high.

More details on the survey and its results are provided in Chapter 4.
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As the survey established that AEE was perceived as designed, it was tested whether

this remained true during physical human-robot interactions as well. This study is described

in Chapter 4 as well.

3.1.2 Investigating the Effect of Artificial Expression of Emotion

Once testing of the behaviours was completed, a longitudinal study with older adults was

prepared that would investigate the impact of emotive robot behaviours on a vulnerable

population. This study was designed as a field study, as this would help participants feel

at ease as they were in their home environment instead of a laboratory setting. Also,

as mentioned before older adults can greatly benefit from social robots. Therefore, it is

essential to include them in user studies and the development of social robots, to ensure

their needs are met. Furthermore, the field study allowed recruitment of participants with

lesser mobility, which resulted in a more diverse and realistic participant group than when

the study would have been conducted at a laboratory. Finally, the study was conducted

over a longer period of time to account for the novelty effect and to investigate whether

participants’ behaviour changed over time. The study is presented in Chapter 5. Keeping

in mind that a framework would be developed on AEE based on these findings, it was

essential to ensure this study was engaging for participants. Therefore, a short pilot study

was conducted first, which is also presented in Chapter 5.

3.1.3 Validating the Findings regarding Artificial Expression of Emo-

tion

Several challenges had to be addressed in this research. The number of participants of

the longitudinal field study with older adults was small, making it difficult to generalise

the findings and use them for the development of a framework. Therefore, one final

online survey was conducted to investigate whether the findings from the user studies were

reflected in the opinion of the general public (also described in Chapter 6). Initially, the

goal was to distribute this survey online to reach a large and diverse target audience, and

distribute physical copies in retirement villages to engage users that are perhaps less likely

to be reached through online surveys. However, due to COVID-19 distribution of physical

copies was no longer possible, and participants were recruited online only.
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The findings from the field study with older adults were transformed into statements,

and participants were asked to rate to what extent they agreed with these statements. The

results of all user studies and this final survey, together with the observations made while

designing, performing and analysing these experiments, were used to update the framework.

This final framework can help future researchers and developers to realise whether they

are, likely unintentionally, misleading intended users with the artificial expressivity they

are implementing in social robots. This can lead to users being emotionally deceived or

becoming emotionally attached to the robot, leading to misplaced trust and potentially

harmful outcomes. Figure 3.1 provides a roadmap of the steps that were taken in this

research to develop the final framework.

F I G U R E 3 . 1 : Roadmap to develop the framework.
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3.2 Procedure

A Wizard-of-Oz strategy was used for the face-to-face experiments, which means the

robot was manually operated during the human-robot interactions. This approach is well

established within HRI research and measures human responses to robot actions (Steinfeld,

Jenkins, and Scassellati, 2009). The use of this strategy was essential for this research, as

interactions had to be as natural as possible in order to investigate participants’ responses

to AEE, and therefore should not impacted by a potential system failure.

The behaviours that would be displayed in this research were completely pre-programmed,

and were manually prompted when the robot should continue with the interaction, waiting

for participants’ responses without needing to use speech recognition. It was ensured that

additional prompts like ‘yes’, ‘no’, ‘I don’t know’ or ‘I do not understand, let us continue

with the interaction’ were implemented as well in case participants provided unexpected

responses. It was decided to pre-program the interactions and manually operate the robot,

as at the present time the robot’s speech recognition is not always reliable, which may result

in a frustrating experience for the participants when they are not accurately understood

and need to repeat themselves. As this research focuses on whether and how participants

respond to artificial expression of emotion by the robot, it was essential that as many

external factors as possible that could potentially influence the participants’ responses

were eliminated. By manually prompting the robot to continue the interaction the accuracy

of the conversation from the robot’s side could be manually prompted for a more natural

interaction.

3.3 Materials

The robot used for the implementation of the behaviours and used for all studies in

this research is Pepper from SoftBank Robotics (Pandey and Gelin, 2018). Pepper is a

humanoid robot of approximately 1.5m tall. An image of Pepper is provided in Figure 3.2.

There are several reasons why this robot was used. First of all, participants were

meant to focus on the behaviour that the robot was displaying, and not be distracted by

their mental model and expectations of how a robot should behave. This meant that the

use of pet robots was not optimal, as speech was included in this research. This was
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F I G U R E 3 . 2 : Social robot Pepper.

decided, as the main study of this work would be a longitudinal user study with older

adults, and without speech it may be difficult to keep participants engaged without the

sessions becoming too repetitive. Therefore, a humanoid robot was chosen for this research.

Large humanoid robots like Baxter were not a suitable option, as their size may intimidate

participants. However, the robot should not be regarded as a toy either, excluding NAO as

a suitable platform. Therefore, it was decided to use Pepper for this research, as it meets

the qualifications of not being perceived as a toy and not be intimidating due to its size.

Also, Pepper is currently used for many studies with older adults (Carros et al., 2020;

Unbehaun et al., 2019; Bechade et al., 2019). Furthermore, it is being introduced to the

general public outside of laboratory settings such as museums and shopping malls (Allegra

et al., 2018; Niemelä et al., 2019). This may results in Pepper being an inspiration for the

design of future social robots, making it easier to apply the results of this work to research

with future robots. Finally, it is cost-effective to use this robot as it is not very expensive

for a robot and provides all modalities required for this research.

To be able to implement different emotive robot behaviours the software Choregraphe

(Version 1.5.5.5) was used, which is provided by SoftBank Robotics as well (Pot et al.,

2009). How this software was used is described in more detail in Section 4.2. Surveys were

designed using the software Qualtrics (Qualtrics, 2013) and distributed via email using

Outlook 365 (Murray, 2011), and through the online platform Prolific (Palan and Schitter,

2018). Gathered data was pre-processed in Microsoft Excel 2016 (Carlberg, 2017), and

analysed using IBM SPSS Statistics for Windows, version 25 (SPSS, IBM, 2017).
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3.4 Measures

Both subjective and objective measures were used in this research. Questionnaires are

often used measurements in HRI studies and provide useful initial insights. Unfortunately,

there are also disadvantages to the use of questionnaires. For example, they are always

conducted after the interaction, so participants have to think back to the interaction and

how they felt about it to give a response. Their answers in hindsight may not always be

similar to the feeling they experienced during the interaction. Also, participants may, either

consciously or unconsciously, try to give the answer they think is expected. This indicates

that only the use of questionnaires in HRI studies is not sufficient to get a complete insight

in participants’ experiences.

Therefore, data from additional measurements like video-recordings and physiological

recordings was gathered as well. These types of data, all with their own advantages and

disadvantages, may provide additional insights to the findings from the questionnaires.

3.4.1 Questionnaires

The following questionnaires were used in this research to validate, investigate and evaluate

AEE. Examples of these questionnaires are provided in Appendix A.

3.4.1.1 Demographics

Age, gender and level of education were collected for all experiments. Additionally,

participants were asked to rate their familiarity with social robots and robotic technologies

on a scale from 1 (not familiar at all) to 5 (very familiar). Furthermore, participants of the

longitudinal field study were asked to provide how often they used technologies such as a

smartphone, tablet and laptop/desktop.

3.4.1.2 Questions on Displaying Emotions

While testing the implementation of AEE, a 5-point sad-to-happy scale was used where

participants were asked to rate the emotional state of the robot, as shown in Figure 3.3.

More details are provided in Section 4.3. However, when evaluating AEE in the field

study, this scale could no longer be used, as the robot now showed both sad and happy
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behaviours during the interactions (if any). Therefore, participants had to rate to what

extent they agreed on a 5-point scale from 1 (fully disagree) to 5 (fully agree) with the

statements ‘Based on my interaction with Pepper, I feel that it is capable of communicating

an emotion of happiness’ and ‘Based on my interaction with Pepper, I feel that it is capable

of communicating an emotion of sadness’.

F I G U R E 3 . 3 : Five-point scale from sad (1) to happy (5) which was presented to participants to rate the

robot’s emotional state.

3.4.1.3 Godspeed Questionnaire

All constructs of the Godspeed questionnaire (Bartneck et al., 2009), except for the

construct ‘animacy’, were used to test and evaluate AEE. The construct ‘animacy’ focuses

on how lifelike a robot appears to be, which was not the main interest of this research.

Therefore, as several questionnaires were required for this research and it was aimed to

exhaust participants as little as possible, it was decided to not include the construct in

this research. Questionnaire items were presented on a 5-point semantic differential scale

presenting two opposing words for each item (e.g. unintelligent - intelligent). Participants

were asked to use this scale to indicate to what extent the item applied to the robot’s

displayed behaviour.

3.4.1.4 Almere Model of Acceptance

Most constructs of the Almere Model (Heerink et al., 2010) were used to test and evaluate

AEE. Excluded constructs were facilitating conditions, intention to use and perceived

adaptability, as these constructs were not representative for the experiment conditions. For

example, participants were not provided with the opportunity to use the robot outside of

experiment sessions. Therefore, these constructs were not included in this research. One

may argue that excluding constructs from this questionnaire is a mistake as they form a

model to predict usage of a technology. However, as the focus of this research was to

evaluate AEE and not predict usage of the technology, it was deemed acceptable to exclude
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these constructs. Questionnaire items were presented on a 5-point scale from ‘strongly

disagree’ to ‘strongly agree’. The original model uses a 7-point scale, but to preserve

consistency it was decided to present all questionnaires with 5-point scales.

3.4.1.5 PANAS: Positive And Negative Affect Schedule

Participants’ level of affect was measured through the Positive And Negative Affect

Schedule (PANAS; Watson, Clark, and Tellegen, 1988), and has been used in HRI research

before (e.g. Rosenthal-von der Pütten et al., 2013). This self-report scale measures

independent levels of positive affect and negative affect, and consists of 10 positive and

10 negative emotion words. Participants rated to what extent each word described their

emotions during the past week on a 5-point scale from not at all (1) to very much (5).

The minimum score for both positive and negative explicit affect was 10, the maximum

score 50. High numbers indicate a high level of affect (either positive or negative). This

questionnaire was used to evaluate whether participants’ mood was impacted by AEE,

considering that an increase in negative affect or decrease of positive affect is an unwanted

outcome of human-robot interactions.

3.4.1.6 IPANAT: Implicit Positive and Negative Affect Test

As the PANAS can be susceptible to social desirability, the Implicit Positive and Negative

Affect Test (IPANAT) was used to determine implicit affect (Quirin, Kazén, and Kuhl,

2009). This questionnaire presented participants with six non-existing words (e.g. SUKOV,

TALEP) for which participants had to rate whether the words sounded happy, helpless,

energetic, tense, cheerful and/or inhibited to them. The minimum score for implicit affect

was 1, the maximum score 4. This was the only questionnaire where a 4-point scale was

used instead of a 5-point scale. It was important that participants had to pick a positive or

negative option as the ambiguous nature of the questionnaire would likely have resulted in

participants always choosing the middle option.

3.4.1.7 MOCA: Montreal Cognitive Assessment

If older adults are recruited as participants, there is always a possibility that the cognitive

functioning of the participant has deteriorated, which may influence their responses to

the robot. As this research aims to evaluate a ‘baseline’ impact of AEE, it was important
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that participants of the longitudinal field study were cognitively healthy. Therefore, the

Montreal Cognitive Assessment was used to measure performance in executive functioning,

memory, language, attention and visuo-spatial perceptual skills (Nasreddine et al., 2005).

This assessment was only used for some of the participants, as a locksmith was available

for the other participants, who could determine participants’ cognitive functioning and the

use of MOCA was not needed. Tasks included a visuospatial and attention assessment

among other things, as presented in Appendix A7. If participants scored less than 26 points,

they were excluded from the study.

3.4.1.8 Attachment Style

Attachment takes into account whether people are positive or negative about themselves,

and about others (Bowlby, 1958). This leads to a 2x2 (avoidance x anxiety) attachment

model that addresses four possible attachment styles (Bartholomew and Horowitz, 1991).

These styles are secure, preoccupied, dismissive and fearful. People with a fearful attach-

ment style are unwilling to allow themselves to be vulnerable to their partner, and often

worry about the attention they receive (Brennan, Clark, and Shaver, 1998). These people

often tend to become attached to objects (Neave et al., 2016). Participants’ attachment style

was gathered to investigate whether this influenced participants’ level of attachment to the

robot. In order to assess attachment types, participants of the pilot study that took place

before the field study were asked to fill in the Adult Attachment Scale (AAS; Collins and

Read, 1990). However, it was found that this scale provides only three different levels of at-

tachment, where the literature distinguishes between four attachment styles (Bartholomew

and Horowitz, 1991). Therefore, the Experiences in Close Relationships Inventory was

used for the field study with older adults (Brennan, Clark, and Shaver, 1998). Statements

involving ‘(romantic) partners’ were adapted to a more general variation of ‘people that

are dear to me’ to prevent potentially upsetting participants if a (romantic) partner was

no longer with them. The four attachment styles are secure, fearful, preoccupied and

dismissive, of which participants with a fearful attachment style may potentially be more

prone to becoming attached to or dependent on the robot(Brennan, Clark, and Shaver,

1998). The questionnaire had statements for which participants had to indicate to what

extent it applied to them, on a 5-point scale from ‘strongly disagree’ (1) to ‘strongly agree’

(5).
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3.4.1.9 Object Attachment

The object attachment questionnaire used in this research was adapted from an existing

consumer attachment questionnaire (Schifferstein and Zwartkruis-Pelgrim, 2008), which

was recommended by a researcher in consumer psychology. Adaptations entailed changing

‘this product’ from the original questionnaire to ‘Pepper’. For example the statement ‘I

have a bond with this product’ was adapted to ‘I have a bond with Pepper’. Participants

were asked to rate to what extent certain statements applied to them on a 5-point scale

from not at all (1) to very much (5). A question on the intention to use the robot if they had

the opportunity was added to this questionnaire, as this can be an indicator of attachment

to the object (Wilson, 2017).

3.4.1.10 Interview

At the debrief session, after all questionnaires were filled in once more, participants were

debriefed and asked several questions in a face-to-face interview. Notes were taken of

the participants’ responses to the questions asked during this interview. This interview is

described in more detail in Section 5.3.3.1.

An overview of when each questionnaire was used is provided in Table 3.1.

Test AEE online Test AEE face-to-face Pilot for field study Longitudinal field study Online evaluation of findings

Demographics x x x x x

Emotion scale x x

Emotion questions x x

Godspeed x x

Almere x x

PANAS x x

IPANAT x x

Attachment style x x

Attachment x x

MOCA x

Interview x

TA B L E 3 . 1 : Overview of questionnaires used in this research, and indication of when they were used.

3.4.2 Other Measures

Additional measures were used for the longitudinal field study with older adults to evaluate

the impact of AEE. This was deemed essential as questionnaires are less appropriate
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for investigating the impact of new innovations, and it can be challenging to measure

user experiences and potential consequences (De Graaf, 2016). Data gathered include

physiological data, speech prosody data, and behavioural data. Physiological data has

shown an increase in arousal when participants were confronted with a situation where

a robot was tortured compared to when they were confronted with a pleasant situation

(Rosenthal-von der Pütten et al., 2013). Speech prosody data has been used as an indicator

for increased arousal as well, where it was found that both pleasant and unpleasant

conditions resulted in increased arousal compared to neutral conditions (Cohen et al.,

2009). Research has indicated that nonverbal behaviour communicates our impressions

more clearly than words do (Bente et al., 2008). Therefore, participants’ behaviour was

recorded to investigate whether they showed levels of discomfort. As they were only used

for the experiment that investigated the impact of AEE on participants in the longitudinal

field study with older adults, these measures are explained in more detail in Chapter 5, in

Section 5.3.2.

3.5 Data Processing and Analyses

Data from questionnaires and physiological data was pre-processed in Excel and then

transferred to SPSS for analyses. It should be noted that although questionnaires were

analysed on a 5-point scale, participants were given the options ‘strongly disagree’ to

‘strongly agree’, and not the numbers. This was decided to ensure participants would pick

the option they felt most comfortable with, and not be biased by the number representing

an option. Physiological data was pre-processed in Excel and analysed using Kubios (Tar-

vainen et al., 2014). Speech prosody data was analysed using the software Praat (Boersma,

2001). Video-recordings were coded into behaviour schemes in Excel. During face-to-face

interviews with older adults, the answers were written down by the experimenter to invite

participants to elaborate more in their answers. These replies were pre-processed in Excel

and analysed using SPSS.

Deciding on what analysis to use was not always easy. Many questions used Likert

scales, and there is a debate in the literature as to whether parametric or non-parametric tests

should be used for analysis, as there are arguments for both (e.g. Mircioiu and Atkinson,

2017 for parametric, Schrum et al., 2020 for non-parametric). Therefore, both parametric
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and non-parametric tests were conducted for the online evaluation of the implemented

behaviours. As there were no critical differences between the results of parametric and

non-parametric analyses, it was decided to use parametric analyses for this research. Also,

a senior statistician was consulted for the final survey that investigated the opinion of

the general public who also suggested the use of parametric tests (Derrick and White,

2017). The results of the non-parametric analyses for the online evaluation can be found in

Appendix C.

3.6 Ethical Approval

Ethical approval was gathered for all studies conducted during this research. The initial

survey testing the behaviours and its accompanying face-to-face study were both approved

under reference number UREC.17.09.05. The field study with older adults was approved

under reference number FET.18.02.030, and the pilot study with university staff was

approved as an amendment to this field study. The final survey reviewing the findings with

the general public was approved under reference number FET.19.12.023.

Informed consent was gathered before each experiment and participants were debriefed

on the aim of the whole research and how the study they participated in fit in the whole

research at the end of each experiment.

3.7 Summary

This chapter provided an overview of the studies conducted in this research, and explained

how these user studies addressed certain challenges of this work. Table 3.2 provides an

overview of the studies conducted in this research. The next chapters will present the

surveys and user studies and their findings in more detail, followed by the development of

the framework. First, Chapter 4 will describe in more detail how AEE was implemented

and tested. Next, Chapter 5 presents the studies that were conducted to evaluate whether

AEE could lead to emotional deception and attachment. Chapter 6 then presents the

framework that was developed based on the findings from the user studies described in

Chapters 4 and 5. It also describes the survey that was conducted to evaluate whether

the findings were reflected in the opinion of the general public, and how the framework
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was updated accordingly. Finally, Chapter 7 addresses the main research questions of this

research, as well as its limitations and potential future work.

Study purpose Type of study N Duration Measures

Test AEE online Online survey 161 10 minutes Questionnaires

Test AEE during Lab-based study 48 20 minutes Questionnaires

physical interactions

Prepare evaluation of AEE Lab-based study 17 20 minutes
Questionnaires

Physiological data

Evaluate AEE through Field study 14 8 x 20 minutes & Questionnaires

longitudinal field study 2 x 30 minutes Interview

with older adults Physiological daata

Speech prosody data

Behavioural data

Validate findings from Online survey 239 10 minutes Questionnaires

previous studies

TA B L E 3 . 2 : Overview of the studies conducted in this research to develop a framework on AEE.
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tion
This research aimed to investigate whether artificial expression of emotion by a social

robot raises ethical concerns, focusing on the impact that AEE may have on older adults.

This was investigated, as it is important to understand ethical concerns prior to using social

robots, especially when they interact with vulnerable populations. First, it was explored

how robot emotions can be designed and implemented. Next, it was tested whether these

behaviours were perceived as intended, which is the research question investigated in this

chapter: ‘Is artificial expression of emotion as implemented in this research perceived

as designed?’. The chapter starts with a description of existing work on how robots can

artificially express emotions. Once implemented, the behaviours were tested through an

online survey to ensure a large participant group with varied demographics was reached.

However, as the literature has shown that participants can perceive virtual agents differently

from embodied robots (e.g. Vasco et al., 2019, the implemented robot behaviours were

tested through physical face-to-face interactions as well. This chapter provides a more

detailed description of the work that was presented at the International Conference on

Robot Ethics and Standards in Troy, NY in August 2018 (Van Maris et al., 2018).

4.1 Existing Work on Implementing Expression of Artifi-

cial Emotions in Social Robots

There are several modalities that can be used for artificial expression of emotion by a

robot. Factors used by several researchers to implement artificial expression of emotion

include emotional valence and arousal (Beck et al., 2013; Thimmesch-Gill, Harder, and

Koutstaal, 2017; Saerbeck and Bartneck, 2010). Emotional valence specifies whether

the quality of a stimulus is positive or negative. Emotional arousal indicates the level of

energy of the emotional expression. Example modalities to differentiate between emotions
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include the robot’s body language, head position and speech prosody. Several researchers

(Erden, 2013; Häring, Bee, and André, 2011) that investigated artificial expression of

emotion through body language, based their behaviours on Coulson’s work (Coulson,

2004). In this work, descriptions of expression of emotion through body posture were

used on computer-generated mannequin figures to investigate the attribution of emotion to

static body postures. Besides static body postures, emotions can also be expressed through

movement (Beck et al., 2013; Saerbeck and Bartneck, 2010; Häring, Bee, and André,

2011). It was found that movement speed and curvature influenced participants’ perception

of emotion in the robot. Acceleration of movement affected arousal, where acceleration

positively correlated with perceived arousal. Furthermore, acceleration and curvature of

the movements impacted valence, both on the positive and negative dimensions (Saerbeck

and Bartneck, 2010).

Proxemics is a third factor that can be used for artificial expression of emotion (Beck

et al., 2013). However, changing the distance between the robot and participant during an

interaction will likely influence participants’ focus on the robot’s behaviour. Therefore, it

was decided that proxemics would not change during interactions and the distance between

the participant and the robot remained the same.

Changing eye-colour to artificially display emotion was investigated as well, where the

LEDs around the eyes of a NAO robot would change colour according to the emotion it was

displaying (Häring, Bee, and André, 2011). This was found to be an unreliable feature, as

lighting conditions impacted the brightness of the colours used, resulting in emotions being

perceived differently than intended. Furthermore, it was found that human-like emotive

non-verbal behaviour by a robot had greater impact on its participants than robot-specific

emotive non-verbal behaviour (Rosenthal-von der Pütten, Krämer, and Herrmann, 2018),

and changing eye-colour through LEDs is a robot-specific feature that is not human-like.

Therefore, it was decided to not use eye colour as a means to express artificial emotions.

Facial expressions can be used to display artificial emotions as well. However, some

robots have set facial expressions that cannot be changed. Also, it was found that facial

expressions may be difficult to perceive (Thimmesch-Gill, Harder, and Koutstaal, 2017).

The combination of these two factors resulted in facial expressions not being used to

display emotions in this research.
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Head position was found to influence arousal and valence (Beck et al., 2013). Tilting the

head upwards led to an increase in arousal and valence, where tilting the head downwards

resulted in a decrease of arousal and valence. In other research where artificial expression

of emotion was correctly recognised, the head was tilted upwards for positive emotions

and downwards for negative emotions (e.g. Erden, 2013; McColl and Nejat, 2014).

Furthermore, vocal prosody can be used to convey emotion in social robots as well

(Crumpton and Bethel, 2016). Pitch, duration and intensity are features that are found to

often correlation with emotion recognition during human-human interactions (Vinciarelli

et al., 2008). These features have also been used in speech synthesis of technological

devices with positive outcomes such as paying more attention to the road while driving

(Nass et al., 2005) or increased learning gains (D’mello and Graesser, 2013). Vocal prosody

research in social robots entails both research regarding utterances (Read and Belpaeme,

2010) and speech prosody (Niculescu et al., 2013).

4.2 Implementing Emotive Behaviours

Different robot modalities were used to implement happy, sad and neutral robot behaviour,

based on existing literature as previously described in Section 4.1. It was decided to

categorise positive emotions as ‘happy’ and negative emotions as ‘sad’. It was deemed

acceptable to do this, as the emotive behaviours in the studies were not intended to elicit

strong emotional responses, but rather indicators of a change in arousal. Also, the context

of the interaction could potentially help participants determine whether the emotions were

positive or negative. If this proves to be sufficient, it would save time for social robot

researchers and developers when creating different robot behaviours. The approach of

displaying low levels of arousal was taken as it is important to understand the impact of

‘base levels’ of AEE, as we need to be sensitive to the population that is interacting with the

robot and their reactions to low and high levels of arousal. An overview of all modalities

that were used to implement the different emotive behaviours can be found in Table 4.1.

One modality that differed for each emotive behaviour is the robot’s head position. The

chin would point upwards for happy behaviour, point forwards for neutral behaviour and

downwards for sad behaviour. This characteristic was chosen to display different emotions

as this had been determined as a useful characteristic before (e.g. Johnson and Cuijpers,
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Head position Arm position key posture Trunk position key posture Movement dynamics Voice pitch Talking speed

Happy Slightly upwards One/both arms far outwards Slightly tilted backwards High High High

Neutral Forwards One/both arms slightly outwards Original position Normal Normal Normal

Sad Slightly downwards One/both arms close to body Slightly tilted forwards Low Low Low

TA B L E 4 . 1 : Modalities that were adjusted for the implementation of the different emotive behaviours.

2019). The pitch of the robot’s voice was different for each behaviour; it was higher for

happy behaviour and lower for sad behaviour with the pitch for neutral behaviour being

the average of the pitches for happy and sad behaviour. The same strategy was used for

the robot’s talking speed, where it would talk faster when showing happy behaviour and

slower when showing sad behaviour, neutral behaviour once again being the average of

the speeds for happy and sad behaviour. The pitch and volume were manipulated using

Choregraphe (introduced in Section 5.3.2). The software provides the option to make the

robot say anything using so-called ‘say’-boxes as shown in Figure 4.1. There are also

parameters that shape the robot’s voice as well as speed of talking. I used these parameters

to distinguish between happy, sad and neutral speech characteristics. The default settings

of such say-box are shown in Figure 4.2.

F I G U R E 4 . 1 : ‘Say’-box in Choregraphe. F I G U R E 4 . 2 : Default settings of ‘Say’-

box in Choregraphe.

The range for voice shaping runs from 50 to 150 and the range for speed runs from 50

to 200 in %, with the default value being 100 for both parameters. Taking into account that

older adults would be interacting with the robot in a later study who may have hearing aids

or become overwhelmed by the experience, I decided to set the parameters for the ‘neutral’

behaviour a bit lower than the default setting provided by Choregraphe so the robot’s voice

pitch would be a bit lower and the speed of talking a bit slower, giving the robot a calmer

appearance. In the end, after testing the parameters with a dozen of lay users, I decided on

the parameter settings shown in Table 4.2.
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Happy Neutral Sad

Voice shaping (%) 120 90 65

Speed (%) 80 75 65

TA B L E 4 . 2 : Parameter settings of the robot’s voice for each behaviour.

Lastly, the robot’s body motions (moving arms and changing head position) were more

elaborate for happy behaviour and more compressed for sad behaviour, with gestures for

neutral behaviour being the average of the other two. Choregraphe provides a library

with pre-determined body motions. This library was explored for existing behaviours

that fit the requirements for sad, neutral and happy behaviour as described above. It

has been used to display emotions in Pepper before (Marmpena, Lim, and Dahl, 2018).

Besides these predefined movements, Choregraphe’s library also provides animated ‘say’-

boxes. These boxes combine a movement with text, where the text parameters can be

manipulated similarly to a normal ‘say’-box. They were also used to implement AEE in

this research. An overview of the predefined behaviours used to implement AEE can be

found in Appendix B. Snippets of happy, neutral and sad behaviour can be found in Figure

4.3.

F I G U R E 4 . 3 : Snippets of happy (a), neutral (b) and sad (c) robot behaviours.
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4.3 Online Evaluation of Emotive Behaviours

F I G U R E 4 . 4 : Current stage of

framework development.

The first step of developing a framework addressing AEE by

social robots contained online evaluation of the implemented

robot behaviours, as can be seen in Figure 4.4. An online

survey was conducted to test whether the different robot be-

haviours were perceived as intended. Participants were asked

to rate the robot’s behaviours on a scale from happy to sad,

and to ensure they were rating the robot’s behaviour and not

the content of what it was saying, I searched for a sentence

the robot could say to accompany the behaviour with little

emotional value to it. I decided that facts about nature or the

robot itself could provide suitable sentences for this survey as many of these facts are

objective and therefore their content may have a lower chance of triggering an emotional

response from the participant. The following options were considered more thoroughly:

• A bear has 42 teeth.

• The country Brazil is named after a tree.

• I am 1.2m tall.

• I weigh 28 kg.

Eventually I decided to use the sentence ‘The country Brazil is named after a tree’ for

the survey, as hearing about a bear’s teeth may evoke an emotional response since bears

are predators, and facts about the robot itself may indicate some level of consciousness in

the robot. This was undesirable as this may lead to participants potentially being deceived

which is the main focus of this research and therefore any unintentional deception from

the studies should be prevented where possible.

The three behaviours were displayed in the survey as illustrated in Table 4.1: for happy

behaviour, the robot’s head was tilted upwards, the robot would stretch its arms sideways

and would speak in a fast speed and a high pitch saying ‘The country Brazil is named

after a tree’. For neutral behaviour, the head was pointed forwards, the arms would stretch

sideways but not as far as for the happy behaviour, and speed of speech and pitch of voice
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were slightly less fast and high. Finally for sad behaviour, the robot’s head was tilted

slightly downwards, there would be a small sideways stretch of the arms and the speed of

speech and pitch of the voice were slow and low. These behaviours are shown in Figure

4.3.

4.3.1 Participants

Participants were gathered through distributing the link to the survey to colleagues and

family via email, asking them to participate and distribute the survey further to other

colleagues and family, and ensuring them to do this was completely voluntary. In total 161

participants completed the experiment and consented to their data being used for analysis.

Out of 161 participants, 98 identified as male, 61 identified as female and 1 participant

preferred not to say. Their age ranged from 18 to 74 years old. Due to the question of

age being presented as different age ranges where the participant had to select what range

applied to them, it was not possible to acquire mean and standard deviations for age. The

age distribution per age range is displayed in Table 4.3. Familiarity with social robots was

low (M = 1.88, SD = 1.09 on a 5-point scale from not familiar at all to extremely familiar).

Lastly, the cultural background of participants was not diverse enough to investigate further,

with 78% of participants being either Dutch or British.

18-24 25-34 35-44 45-54 55-64 65-74 Total

Number of participants in age range 18 43 20 28 45 7 161

Percentage of all participants per age range 11 27 12 17 28 7 100

TA B L E 4 . 3 : Distribution of participants that completed the online survey based on age range.

4.3.2 Materials

The software used for implementing the emotive robot behaviours is Choregraphe, as

discussed in Section 4.2. The survey was produced using the online software Qualtrics.

A link to this survey was distributed to colleagues, friends and family via email with the

request to fill in the survey and distribute it further.
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4.3.3 Measures

Participants were asked to provide demographic information (age, gender, cultural back-

ground and familiarity with social robots). Their perception of the robot’s emotional state

was measured through a scale from sad to happy (See Figure 3.3). This scale was inspired

by the ‘affective slider’ that was introduced as measurement of human emotions (Betella

and Verschure, 2016) and used in other HRI research as well (Marmpena, Lim, and Dahl,

2018). No other measurements were taken during this survey.

F I G U R E 4 . 5 : Five-point scale from sad (1) to happy (5) which was presented to participants to rate the

robot’s emotional state.

4.3.4 Procedure

At the start of the survey, participants were asked to give consent to use their data. It was

explained to them that their data would be anonymised immediately, and therefore it would

not be possible to withdraw their data from the study once they completed it. To account

for this, participants were asked once more at the end of the survey whether they consented

to their data being used for analysis.

Participants were shown nine video fragments that each lasted for 3 to 4 seconds. All

three behaviours (happy/neutral/sad) were shown three times to each participant. For each

fragment, they had to rate the robot’s emotive behaviour on a 5-point scale from sad to

happy as shown in Figure 4.5 (1 = sad and 5 = happy). Showing behaviours less than

three times could result in participants rating the intended emotion by accident rather

than through recognising the behaviour, and showing fragments more often could lead to

participants learning the differences between the behaviours, and basing their ratings on

these differences instead of how they perceived the behaviour. The first video-fragment

always showed neutral behaviour; the behaviour of the other eight fragments was randomly

ordered.

At the end of the survey, participants were asked once more whether they were happy
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to share their data, as the data was anonymised immediately and participants could not

withdraw later on. If they selected ‘no’, their data would be deleted.

4.3.5 Results

As mentioned in Chapter 3, gathered data of this survey was analysed using both parametric

and non-parametric tests, before deciding parametric tests would be used for the remainder

of this research. The non-parametric tests results of this survey can be found in Appendix

C.

First, the average rating for each behaviour (happy, sad, neutral) was calculated, where

a low rating would indicate the behaviour was perceived as sad and a high rating would

indicate the behaviour was perceived as happy. As this study used a within-subject design, a

repeated measures ANOVA was conducted to determine whether each behaviour was rated

differently. As sphericity was breached (χ2(2) = 33.03, p < 0.01), a repeated measures

ANOVA with Greenhouse-Geisser correction showed that the emotional state of the robot

was rated significantly different for each implemented behaviour (F(1.68, 269.46) = 287.47,

p < 0.01, η2
p = 0.64). Post hoc tests showed that happy behaviour was rated significantly

higher than neutral and sad behaviour (p < 0.01 for both), and neutral behaviour was rated

significantly higher than sad behaviour (p < 0.01). More details can be found in Figure

4.6.

4.3.5.1 Age

The effect of age was investigated as this research aims to investigate the impact of AEE

on older adults. A Pearson product-moment correlation was conducted to determine the

relationship between participants’ age and their rating of the implemented robot behaviours.

A strong negative relationship was found between age and ratings for both happy and

neutral behaviour (r(161) = -0.38, p < 0.01 and r(161) = -0.33, p < 0.01 respectively).

Furthermore, a positive correlation between age and rating for the sad behaviour was found

(r(161) = 0.17, p = 0.03). A one-way MANOVA was conducted to investigate the impact

of age on participants’ ratings of the emotive robot behaviours, which showed that age

significantly impacted participants’ ratings (F(5, 155) = 2.83, p = 0.02, η2
p = 0.08). Also,

a weak interaction effect was found between participants’ ratings of the implemented

behaviours and their age (F(8.65, 268.01) = 1.58, p < 0.01, η2
p = 0.08). Post hoc pairwise
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F I G U R E 4 . 6 : **p < 0.01; Average ratings of happy, neutral and sad robot behaviour from sad (1) to happy

(5).

comparisons were performed to determine the impact of each age group. Significant

differences between age groups can be found in Figure 4.7. Exact values can be found

in Appendix C. This figure shows that different age groups perceived happy and neutral

behaviour significantly differently, but there was no significant difference in rating for sad

behaviour based on age.

4.3.5.2 Gender

Independent samples t-tests were conducted to investigate whether participants’ gender

impacted their rating of the different emotive robot behaviours. Gender did not significantly

impact the rating of the happy behaviour (t(157) = -0.93, p = 0.35), nor did it impact the

rating of neutral behaviour (t(157) = -1.00, p = 0.32) or sad behaviour (t(157) = -0.29, p =

0.77).

4.3.5.3 Familiarity with social robots

One-way MANOVA was conducted to determine whether participants’ familiarity with

social robots impacted their ratings for the implemented behaviours. The results showed

that participants’ perception of happy and sad robot behaviours significantly differed

depending on their familiarity with social robots (F(4, 156) = 4.06, p < 0.01, η2
p = 0.09
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F I G U R E 4 . 7 : ** p < 0.01, *p < 0.05; Average ratings of happy, neutral and sad robot behaviour for each

participant age group on a scale from sad (1) to happy (5).

and F(4, 156) = 2.67, p = 0.04, η2
p = 0.06 respectively). This difference was not significant

for neutral robot behaviour (F(4, 156) = 2.16, p = 0.08, η2
p = 0.05). Post hoc pairwise

comparisons were conducted to investigate where the differences occurred, which are

presented in Figure 4.8. Exact values are provided in Appendix C.

4.3.6 Discussion

The results from this online survey show that the implemented emotive behaviours are

perceived by the general public as intended. It was found that people from different age

groups perceive the robot differently. Negative correlations were found for happy and

neutral behaviour and participants’ age. Furthermore, a positive correlation was found

for sad behaviour and participants’ age. These findings are strengthened by the finding

that age significantly impacted participants’ ratings of happy and neutral behaviour. This

indicates that participants rated the emotive behaviours less extreme as their age increased,

as illustrated in Figure 4.7. This raises the question why this finding occurred. It is possible

that younger participants are more familiar with new technologies which reduces the

novelty of interacting with a machine, which may potentially lead to them perceiving the
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F I G U R E 4 . 8 : **p < 0.01, *p < 0.05; Average ratings of happy, neutral and sad robot behaviour based on

participants’ familiarity with social robots on a scale from sad (1) to happy (5).

robot as more emotive where older participants may perceive the robot more as a machine

still. Nonetheless, as the intended target audience for the longitudinal field study is older

adults, this is something to take into account during further research.

Even though the findings support that implemented behaviours are perceived as in-

tended, it needs to be established whether the emotive behaviours are still perceived as

intended during face-to-face interactions, as several studies have shown that participants

perceive virtual agents on a screen differently from physically embodied robots that are in

the same room as them. Following this, it can be investigated whether emotional deception

and/or emotional attachment occur when a robot displays AEE during face-to-face human-

robot interactions. Therefore, the next study describes a study where it is determined

whether the perception of the implemented behaviours is perceived as intended during

face-to-face interactions.
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4.4 Face-to-face Evaluation of AEE

F I G U R E 4 . 9 : Current stage of

framework development.

It was expected that recruiting older adults would be challeng-

ing, as older adults may be less keen to try new technologies

(Wu et al., 2014). Furthermore, care facilities needed to be

approached and be willing to provide means to conduct an

experiment. Therefore, it was decided to only recruit older

adults for the longitudinal field study that would be con-

ducted at a later stage, and recruit participants of a different

age group for this physical study where the perception of the

implemented emotive robot behaviours was tested in more

detail. Even though the results from the online survey showed

differences between age groups, the overall result showed that

the emotive behaviours were rated significantly differently for each age group. Therefore,

I deemed it acceptable to use participants of a different age group for this study and keep

interested older adults for the longitudinal field study that would be conducted later in

the research. The goal of this face-to-face study was to investigate whether the emotive

behaviours are still perceived differently when the robot is physically present in the room

instead of virtually displayed on a screen. To investigate this, participants would interact

with a robot that initially showed neutral behaviour so participants had something to build

their mental model of the robot on, followed by a story that the robot told either displaying

happy, neutral or sad behaviour.

4.4.1 Participants

In total 48 Psychology students (32 female, 16 male; age M = 21, SD = 3) from the univer-

sity participated in this study. They were recruited through the university’s Psychology

Participant Pool and received one Psychology participation point for taking part in the

experiment. Familiarity with social robots was low (M = 1.19, SD = 0.45 on a 5-point

scale from not at all familiar to extremely familiar). There were four conditions, with

12 participants (8 female, 4 male) for each condition. The robot displayed either happy

behaviour while telling a cheerful story, neutral behaviour while telling a cheerful story,

neutral behaviour while telling a somber story or sad behaviour while telling a somber
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story.

4.4.2 Materials

As mentioned before the robot that was used for this whole research is Pepper. Qualtrics

was used for the questionnaires from this study, which participants had to fill in using a

tablet that was given to them. SPSS version 24 was used to analyse the data gathered. The

cheerful and somber polar bear stories were taken from earlier work with an undergraduate

student where we used the behaviours I implemented to investigate what user characteristics

influenced user acceptance (Bishop et al., 2019).

4.4.3 Measures

Demographics data (age, gender, familiarity with social robots) was gathered at the start

of the experiment. Participants’ mood was measured at the start and end of the interac-

tion to investigate whether their mood was influenced by the interaction and potentially

the different robot behaviours. Mood was measured as this may influence participants’

perception and acceptance of a robot (Baisch, Kolling, and Knopf, 2017), and earlier

work that I had done had indicated that participant mood may influence robot acceptance

(Bishop et al., 2019). Also, if mood was negatively impacted due to interactions with

the robot, this would be a negative ethical consequence of such interactions. Mood was

measured both explicitly (PANAS, see Section 3.4, Watson, Clark, and Tellegen, 1988)

and implicitly (IPANAT, Quirin, Kazén, and Kuhl, 2009) to account for participants po-

tentially providing answers they felt were socially acceptable with respect to how they

were feeling. Constructs from the Godspeed questionnaire (Bartneck et al., 2009) and

Almere questionnaire (Heerink et al., 2010) were used to determine whether deception

potentially occurred. These questionnaires were given after the interaction. Finally, the

question from the online survey regarding the robot’s emotional state (see Figure 3.3) was

asked after the interaction as well. More detailed descriptions of these questionnaires are

provided in Section 3.4. Participants would initially see the robot introduce itself showing

neutral behaviour, after which it would show either happy, neutral behaviour. As this

allowed participants to see a change in the robot’s behaviour (if there was any) and have

a reference point to ‘neutral’ behaviour, I believed participants would be able to rate the

robot emotions as intended, even though the study design was now between-subject and
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they would not see all behaviours. By prolonging the introduction of the robot, where it

would no only introduce itself but also provide some background information on where it

was built, I aimed to ensure participants got used to the robot and would see a change in its

behaviour if there was any.

4.4.4 Experimental Setup and Procedure

Participants were located opposite the robot with a table between them and the robot that

was used to fill in questionnaires. The robot was located in front of a blue screen, behind

which I was located with a laptop to manually operate the robot during the interactions

without the participants being able to observe this.

Participants interacted with a robot that displayed either happy, neutral or sad behaviour

while telling a story about polar bears. Taking into account the longitudinal field study that

would be conducted later on, it was deemed impossible to have several interactions without

any emotional context in them, as even topic discussed in a didactic setting may lead to

participants responding to the context. Therefore, context was added to this experiment.

The robot’s behaviour would either be neutral or appropriate for the story context (happy

behaviour for cheerful context, sad for somber context).

Before the start of the interaction, participants were asked to fill in questionnaires and

to say to the robot ‘I am ready’ once they completed the questionnaires. This allowed

me to know when to manually prompt the robot to start the interaction. Participants were

unable to see the robot was operated manually. The robot would first introduce itself and

give some information about itself showing neutral behaviour. Once the introduction was

finished, it would tell a story about polar bear cubs while showing either happy, sad or

neutral behaviour. After the interaction participants were given more questionnaires to fill

in, after which they were debriefed about the goal of the study.

4.4.5 Results

First, it was investigated whether the three implemented behaviours were perceived dif-

ferently. A one-way ANOVA was conducted (happy x neutral x sad) which showed a

significant difference in how the implemented behaviours were rated (F(2, 45) = 3.82,

p = 0.03, η2
p = 0.15). Post hoc pairwise comparisons showed that happy behaviour was

rated significantly higher than sad behaviour (p = 0.02) and neutral behaviour was rated
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significantly higher than sad behaviour (p = 0.02). However, happy behaviour was not

rated significantly higher than neutral behaviour (p = 0.56). This can also be found in

Figure 4.10.

F I G U R E 4 . 1 0 : *p < 0.05; Average ratings of happy, neutral and sad robot behaviour on a scale from sad

(1) to happy (5).

4.4.5.1 Age

As participants were students of similar age (M = 21, SD = 3), no analysis was conducted

to investigate the impact of participant’s age on their perception of the implemented

behaviours.

4.4.5.2 Gender

An independent samples t-test was conducted to investigate the impact of gender on the

perception of the implemented behaviours. No significant impact of gender was found

(t(46) = 0.12, p = 0.91).

4.4.5.3 Familiarity with Social Robots

As most participants indicated they were not at all familiar with social robots, and only few

indicated otherwise, no analysis was conducted to determine the impact of participants’
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familiarity on their perception of the implemented behaviours.

4.4.5.4 Story Context

One-way ANOVA was conducted to determine whether story context (cheerful x somber)

impacted participants’ perception of the robot’s emotional state. Results showed a signifi-

cant impact (F(1, 44) = 4.58, p = 0.04, η2
p = 0.09) where participants scored the robot’s

emotional state more positive for the cheerful story (M = 4.21, SD = 0.72) compared to the

somber story (M = 3.71, SD = 0.91).

Looking at the questionnaires given, and more specifically looking at the questionnaire

constructs that may indicate potential occurrence of emotional deception by the robot

(anthropomorphism, social presence), one-way ANOVA indicated that these constructs

were not significantly impacted by the displayed emotive robot behaviour (F(2, 45) = 0.57,

p = 0.57, η2
p = 0.03 for anthropomorphism, F(2, 45) = 0.21, p = 0.81, η2

p = 0.01 for social

presence), nor did participants’ gender impact results of these constructs (F(1, 46) = 0.08,

p = 0.77, η2
p = 0.01 for anthropomorphism, F(1, 46) = 1.05, p = 0.31, η2

p = 0.02 for social

presence). Even though none of the differences are significant, ratings for the sad robot or

somber story are always higher for the constructs investigated for the potential occurrence

of emotional deception, as can be found in Figure 4.11.

4.4.5.5 Mood

Participants’ mood was measured before and after the interaction to investigate whether

the interaction and potentially the emotive robot behaviour had an impact on participants’

mood. Paired samples t-tests showed that explicit negative mood was significantly lower

(t(47) = 7.01, p < 0.001) after interacting with the robot (M = 15.27 out of 50, SD = 6.82)

than it was at the start of the experiment (M = 19.44 out of 50, SD = 7.67), as can be seen

in Figure 4.12. Although there was a nearly significant decrease in implicit negative effect

(t(47) = 2.00, p = 0.052), no other mood measures significantly changed over time (t(47)

= 0.49, p = 0.63 for explicit positive mood, t(47) = -1.38, p = 0.17 for implicit positive

mood).
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F I G U R E 4 . 1 1 : Average ratings for anthropomorphism and social presence depending on the robot’s

displayed behaviour (happy, neutral, sad) and story context (cheerful, somber) on a scale from not at all (1)

to very much (5).

F I G U R E 4 . 1 2 : *p < 0.05; Participants’ average scores for explicit (max. 50) and implicit (max. 4),

positive and negative mood before and after the interaction.
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4.4.6 Discussion

The goal of this study was to investigate whether the implemented emotive robot behaviours

were perceived as designed during face-to-face interactions. Even though the happy

behaviour was still rated highest and therefore most happy and the sad behaviour lowest

and therefore most sad, the difference of the ratings between behaviours was not always

significant. More specifically, happy behaviour was not rated significantly happier than

neutral behaviour. Looking at the averages for these ratings, it appears that participants

perceived the neutral behaviour as relatively happy and therefore happier than intended.

It should also be noted that even though sad behaviour was rated significantly lower than

happy and neutral behaviour, the overall rating for neutral behaviour was higher than

intended. However, it should be taken into account that the participants in this user study

were all aged between 18 and 24 years old. If we look back to Figure 4.7 from the online

survey, it can be found that participants of this age group rated the neutral behaviour as

relatively high. Therefore, the narrow age range of the participants in this study may be

a reason why happy and neutral behaviour are not rated significantly different. The low

number of participants may also have an impact on the findings, and it is also possible

that participants did not expect the robot to display sad behaviour. Furthermore, it is

possible that participants interpreted the neutral behaviour as happy until they saw the

happy behaviour. The aesthetics of the robot may also have an impact as Pepper’s mouth

is shaped like a smile which may have been more clearly visible during the face-to-face

study. Finally, as familiarity was low participants may have been distracted by the novelty

of seeing a robot for the first time and therefore not have been able to pay attention to the

behaviour the robot was displaying. Nonetheless, the goal was to determine whether the

emotive behaviours were interpreted as designed. As participants were able to recognise

happy and sad behaviour, it can be concluded that this was true.

4.4.6.1 Story Context

As described in Section 4.4.4, story context was added to the interaction, to investigate

whether that influenced participants’ perception of the emotional state of the robot. In

hindsight I probably would have approached this matter differently. I still believe it was

justified to introduce context in this study as it is difficult to find a topic that does not
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evoke an emotional response and remain interesting for several sessions. However, more

conditions were required for me to be able to properly analyse the impact of story context.

I investigated whether context had an impact on how emotions were perceived but did not

take into account what the impact of displayed emotion on story context could be. I should

have added two more conditions where the robot would tell a neutral story while displaying

either happy or sad behaviour. Perhaps the weak effect of story context on participants’

perception of the emotional state of the robot where the robot’s emotional state was rated

happier for the cheerful story than for the sad story was the reason why happy behaviour

was no longer rated significantly happier than neutral behaviour. However, as the effect

size of story context was quite small (η2
p = 0.09) and the differences between the three

emotive behaviours were the same when taking into account story context I deemed it safe

to accept that the results were still sufficient for me to continue with the next study.

4.4.6.2 Emotional Deception

Looking at the findings from the questionnaires it appears that there was limited evidence

of emotional deception due to the robot’s displayed behaviour. However, it is interesting

that for all constructs that may indicate occurrence of potential deception ratings for happy

behaviour were lowest and sad behaviour were highest as can be seen in Figure 4.11. This

may indicate that artificial expression of sad emotion is more likely to result in potential

emotional deception than artificial expression of happy emotion. Perhaps this occurs as

participants expected the robot to show happy behaviour where sad behaviour was less

expected, which may have resulted in them updating their mental model of the robot’s

abilities. Furthermore, it is possible that sad behaviour evoked a stronger empathetic

response than happy behaviour. It is also possible that participants expected the robot

required a certain awareness of context for it to be able to respond appropriately to a sad

context, which again may lead to potential emotional deception. It is important to consider

the impact of this difference in the context of social robots interacting with vulnerable

populations. The person interacting with the robot may be less aware of being deceived

or respond stronger to the displayed behaviour, which may result in the person trying to

console the robot and putting themselves in uncomfortable positions and potentially at risk

of harm.
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4.4.6.3 Participant Mood

The finding that both implicit and explicit positive mood did not decrease during the

interaction with the robot is reassuring, as this indicates that there is no negative impact

of the robot’s behaviour on participants’ mood. It would be problematic if this were the

case as that would indicate the behaviour had a negative impact on how participants were

feeling, which is not a desirable outcome of any human-robot interaction. The finding that

negative mood significantly decreased over time is not completely unexpected as negative

mood implies feelings of being nervous and/or tense, which could occur at the start of

the experiment, especially as familiarity with robots was low. It is likely these feelings

decreased once participants became more familiar with the robot, its behaviour and what

was expected of them during the experiment.

As the findings of this study were similar to the findings for participants of the same

age group from the online survey where the emotive robot behaviours were perceived as

intended I was able to continue with the preparation of the longitudinal field study with

older adults which will be presented next in Chapter 5.

4.5 Summary

The goal of this chapter was to implement different emotive robot behaviours and validate

whether they were perceived as intended. The research question investigated in this chapter

was: ‘Is artificial expression of emotion as implemented in this research perceived as

designed?’. First, it was determined what robot modalities could be used to implement

AEE. Next, they were tested on social robot Pepper. This was first evaluated through an

online survey where a more diverse target audience could be reached. As the results of

this survey indicated the implemented behaviours were perceived as intended, a physical

user study was performed next to investigate whether this also applied to face-to-face

interactions compared to participants observing a virtual agent. Even though neutral and

happy behaviour were not perceived significantly differently by participants, their age

range was limited and findings were similar to findings from the survey for participants

of the same age range for happy and neutral behaviour. Therefore, it can be concluded

that emotive behaviours were perceived as designed, and the research can continue with

the preparation and execution of a longitudinal field study with older adults. This field
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study can possibly provide more insights regarding ethical concerns of AEE for potentially

vulnerable populations, which will be described next in Chapter 5.
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5 Evaluating Artificial Expression of Emo-

tion with Older Adults
This research addressed the question whether AEE can lead to ethical concerns in the

form of emotional deception and emotional attachment. The previous chapter described the

implementation and validation of AEE, which were the first steps in determining whether

AEE can lead to negative consequences for older adults. No negative impact of the emotive

behaviours on the students was found, deeming it reasonable to continue and investigate

the impact of the behaviours on older adults. This chapter describes the preparation and

execution of a longitudinal field study with older adults, which was conducted to investigate

the impact of AEE on vulnerable populations. First, an overview is provided of existing

longitudinal user studies with social robots and older adults. This is followed by the

description of a small pilot study that was performed with university staff aged over 50, to

establish whether the chosen interaction topic was suitable for the field study. Some of this

work was presented at the International PhD Conference on Safe and Social Robotics that

was held in Madrid in October 2018 (Van Maris, 2018). Next, the longitudinal field study

with older adults is presented. In this study, several measures were included to investigate

whether they can contribute to this type of study that may involve vulnerable populations.

The field study and results from the questionnaires used in this study have been published

in a topical issue of Frontiers in Robotics and AI (Van Maris et al., 2020).

In summary, three research questions will be investigated in this chapter through a

longitudinal field study with older adults. The research questions addressed in this chapter

are:

1. ‘Does AEE impact older adults’ human-robot interaction experience?’

2. ‘Does the impact of AEE on older adults change over time?’

3. ‘Can physiological data, speech prosody data and behavioural data provide valuable

insights when used in longitudinal field studies in addition to questionnaires?’
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5.1 Longitudinal HRI Experiments

Kerstin Dautenhahn highlighted the importance of conducting longitudinal experiments

in 2007 (Dautenhahn, 2007a). Even though such experiments bring additional challenges

compared to experiments that consist of a single sessions, it provides insights on user

experience and how their responses to the robot may change over time. This is important

to address, as otherwise the robot may not be used or used less once the novelty effect has

worn off (e.g. Kanda et al., 2004; Fernaeus et al., 2010).

Many longitudinal studies are conducted either with children or with older adults. This

is understandable, as these are two target audiences that can benefit from services that

social robots can provide and therefore their experiences should be evaluated. Studies

involving children investigated whether perceived social presence would change over time

(Leite et al., 2009), whether a peer-like social robot could enhance children’s language

growth (Kory-Westlund and Breazeal, 2019), and improving social skills in children with

autism spectrum disorder (Scassellati et al., 2018). Studies with older adults focus for

example on acceptance of social robots depending on cognitive health (Wu et al., 2014),

suitability of robot platforms in care homes (Carros et al., 2020), whether they can improve

well-being (Wada and Shibata, 2007) and acceptance over time (De Graaf, Allouch, and

Dijk, 2016).

Where possible, recommendations from the literature were used in the development of

the longitudinal field study conducted in this research. One study found that the robot’s

perceived social presence decreased over time, and suggested that memories could sustain

this (Leite et al., 2009). Therefore, the interactions in the field study were implemented

such that the robot would summarise the topics that were discussed during their previous

meeting.

71



CHAPTER 5

5.2 Preparing a Longitudinal Field Study with Older Adults

F I G U R E 5 . 1 : Current stage of

framework development.

It was decided that the focus would be on older adults when

investigating the impact of AEE, as they are a target group

that can benefit from social robots a lot. However, they are

also more likely to be vulnerable for negative consequences

through age-related impairments. To try and evoke natural

responses, it was decided to conduct this study in their home-

environment. This would help them feel more comfortable

during the experiment. Furthermore, this allowed for recruit-

ment of a user group that is more representative of the target

population than participants that are able to come to a labo-

ratory for several sessions, as participants with mobility issues could now participate as

well.

To be able to understand the impact of AEE, it was essential that this field study lasted

over a longer period of time. Existing research has indicated that participants’ behaviours

towards the robot change once the novelty effect has worn off (e.g. Leite, Martinho,

and Paiva, 2013). Running a longitudinal field study provided insights on participants’

responses to the robot and how they changed over time. Furthermore, it provided more

realistic feedback as social robots are likely intended to provide support over a longer

period of time, and not just for a single session.

It was decided that the interactions were going to be didactic, to ensure a baseline level

of AEE would be provided and interactions would not become too personal for participants.

This topic had to stay relevant and interesting for several sessions. Eventually, the Seven

Wonders of the World (both of the Modern and the Ancient World, from now on called

‘Wonders’) were selected for this study. Before the field study was designed, a pilot study

with university staff aged over 50 was conducted to investigate whether this was a suitable

topic for the study with older adults. Participants would interact either with the emotive or

non-emotive robot. It was decided to recruit university staff aged over 50, as it was aimed

to ensure as many older adults as possible were recruited for the longitudinal field study,

and staff over 50 were closest to represent the intended target group.
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Attachment had not been investigated in the studies where AEE was tested, as the

aim of these studies was to ensure that the implemented behaviours were suitable for this

research. To ensure suitable measures for attachment were used in the longitudinal field

study, this pilot study used different questionnaires to measure attachment.

Finally, the goal of the longitudinal field study was to investigate the suitability of

other measures besides questionnaires. One of these measures was the use of physiological

measures, and the Empatica E4 wristband was used in the pilot study to determine whether

this was a suitable device. This device was used, as it was available for use and was

recommended by colleagues.

5.2.1 Participants

In total 17 participants (9 male, 8 female) completed the pilot study (Min. age = 53, Max.

age = 71, M = 60, SD = 4.9). Participants were randomly assigned to the emotive (8

participants, 4 female) or non-emotive condition (9 participants, 4 female). Participants

were invited through an email that was distributed to university faculty staff. Participants

were slightly familiar with social robots (M = 1.94, SD = 1.20 on a 5-point scale from not

familiar at all to extremely familiar).

5.2.2 Materials

The robot Pepper was used for the interactions with the participants. Physiological data

was recorded using Empatica E4 wristband1 (see Figure 5.2). The Empatica E4 provides

the option to measure both heart rate variability and electrodermal activity, which are

the two physiological measures of interest for this research, as they indicate changes in

arousal. The sampling rate for HRV is set at 1 Hz, for EDA this is 4 Hz. The sensor is very

unobtrusive for participants to wear. It has a PPG sensor which is required to analyse HRV

and an EDA sensor as well. The device was started before the interaction was started and

only taken off after completing post-study questionnaires, to gather a baseline level for

HRV and EDA.

1https://www.empatica.com/research/e4/
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F I G U R E 5 . 2 : Empatica E4 wristband which was used to gather EDA and HRV. The picture shows the

placement of the wristband (left) and the location of the PPG sensor (right).

5.2.3 Measures

At the start of the experiment, participants were asked to provide demographic information

(age, gender, familiarity with social robots on a scale from 1 - not familiar at all to 5 - very

familiar). Even though attachment was expected to be low after a single interaction, it

was measured in this study to test whether the measurements found for attachment were

suitable for the longitudinal field study with older adults. First, participants were given a

questionnaire to determine their attachment style (Collins and Read, 1990). Furthermore,

they were given an attachment questionnaire when the interaction was finished (Schif-

ferstein and Zwartkruis-Pelgrim, 2008). More details about these questionnaires were

provided in Section 3.4. Finally, participants were asked their opinion on the interaction,

and whether they would be keen to hear more on the topic in future sessions.

5.2.4 Experimental Setup and Procedure

Participants were located opposite the robot and were placed such that they were unable

to see the robot was manually operated, using a laptop. As described in Section 4.4, the

robot was manually operated during each user studies, to ensure the interaction flow was

natural and speech-recognition software was not needed. There was a small table located

between the robot and the participant that was used for questionnaires. The experiment

started with initial questionnaires, followed by placement of the Empatica E4. After that,

the interaction between the participant and robot began. The interaction started with the
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robot asking the participant whether they could name any of the Wonders. If participants

could list some of the Wonders, the robot would say ‘These are indeed Wonders of the

World. The full list consists of...’. Otherwise, the robot would just list the wonders. Next,

the robot would ask the participant to choose what Wonder they wanted to be informed

about in more detail. All Wonders were shown on the robot’s tablet in case participants

did not know them all. The robot would provide information on the Wonder that was

chosen, and then ask what wonder the participant would like to discuss next. This process

was repeated until all Wonders were discussed. First all ancient Wonders were discussed,

followed by all modern Wonders. After the interaction, participants were asked to fill in

the attachment questionnaires followed by a debriefing on the goal of the experiment and

the research.

During the interaction, the robot would show either emotive or non-emotive behaviours.

In the non-emotive condition, the robot would show neutral behaviours during the inter-

action. In the emotive condition, the robot would display contextually suitable emotions,

for example by saying with a sad voice that a monument got destroyed in a fire showing

sad behaviour or saying with a happy voice that a monument was still mostly intact show-

ing happy behaviour. The same characteristics for happy, neutral and sad behaviours as

described in Chapter 4 were used.

5.2.5 Results

The main goal of this study was to determine whether Seven Wonders of the World is a

suitable topic for a longitudinal study, and to determine the usefulness of human attachment

and object attachment questionnaires for human-robot interaction experiments.

5.2.5.1 Suitability of the Topic

All participants reported being interested in learning more about the Wonders and indicated

they would have liked to receive more information on the Wonders during the interaction.

5.2.5.2 Attachment to the Robot

As it was found that the attachment style questionnaire used in this study only covered

three styles, where four styles are presented in the literature (Bartholomew, 1990), this
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measure was not analysed.

Overall, attachment to the robot was low to medium (M = 2.44, SD = 0.69 on a 5-point

scale). Averages and standard deviations per condition can be found in Figure 5.3.

F I G U R E 5 . 3 : Average attachment to the robot per condition (non-emotive x emotive), with the number

indicating the level of attachment (1 = low attachment, 5 = high attachment).

Reliability of the questionnaire was acceptable (Cronbach α = 0.72). Independent sam-

ples t-tests were conducted to investigate whether attachment to the robot was significantly

influenced by the robot’s behaviour (emotive x non-emotive). No significant impact was

found (t(15) = 0.36, p = 0.72).

Age As the age range was narrow, no analyses were performed to investigate whether

age had an impact on participants’ level of attachment to the robot.

Gender An independent samples t-test was conducted to investigate the impact of gender

on participants’ level of attachment to the robot. No significant impact was found (t(15) =

-0.68, p = 0.51).

5.2.5.3 Familiarity with Social Robots

As most participants were not familiar with social robots, no analyses were conducted

to investigate the impact of participants’ familiarity with social robots on their level of
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attachment to the robot.

5.2.5.4 Physiological Data

The Empatica E4 was used to measure heart rate variability and electrodermal activity.

However, it was found that the sampling rate used to gather HRV (1 Hz) is not sufficient to

gather reliable data (Laborde, Mosley, and Thayer, 2017). Furthermore, the EDA values

recorded by Empatica E4 were extremely low and therefore deemed unreliable. Therefore,

the data gathered through this device has not been analysed.

5.2.6 Discussion

The aim of this study was to investigate whether the topic on Wonders of the World was

suitable for the longitudinal field study with older adults. All participants reported they

found the topic interesting and would be interested in more sessions where the robot would

inform them in more detail on the Wonders.

Looking at attachment, it was found that attachment to the robot was low to medium,

nor was this impacted by the behaviour the robot displayed. This was expected, as the

participants interacted with the robot for a single session and the displayed arousal by the

robot was designed to be low.

Brief analysis of the data the Empatica E4 provided showed that a better sensor was

required for the field study with older adults, as the sampling rate was too low or the data

gathered provided unexpected values that did not seem reliable. Therefore, it was decided

to add the GSR+ sensor from Shimmer Sensing that allows for a higher sampling rate

(users can adjust the sampling rate up to 2048 Hz compared to 4 Hz for Empatica E4) and

thus a more precise measure of heart rate variability and electrodermal activity.

Other observations from this pilot study were that the table blocked the lower half

the robot from view. Also, it was observed that people would lean forward on the table,

making behaviour analysis more difficult. Therefore, it was decided that a small table that

could easily be removed would be used for the field study with older adults. This resulted

in a table being present to fill in questionnaires but not blocking the view of the robot.
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Finally, it was observed that participants focused on the robot’s tablet that displayed the

list with Wonders of the World and not the robot’s behaviour. This was reported by some

participants as well. Therefore, it was decided that the tablet would not be used during the

field study with older adults.

In summary, the topic was deemed suitable for the longitudinal field study. Furthermore,

it was found that the Empatica E4 wristband did not provide reliable data and an alternative

with more flexible sampling rates had to be considered. This was also found for the

attachment style questionnaire. The alternatives are described in the next section, where

the longitudinal field study is presented.

5.3 Conducting a Longitudinal Field Study with Older

Adults

F I G U R E 5 . 4 : Current stage of

framework development.

This field study was conducted to investigate whether partic-

ipants can be emotionally deceived by AEE. It also investi-

gated whether participants can become attached to a robot

over time and whether attachment is higher when AEE oc-

curs. This field study was conducted twice, one time in two

retirement villages each. Residents in these villages have

their own apartments and live semi-independently, but are

not able to live fully independently and are provided with

assistance if needed. In the remainder of this dissertation,

when a distinction needs to be made between the two villages,

the village where the study was conducted first will be called Village A, and the other

village will be called Village B. It was decided to conduct this experiment twice as there

were only four participants with usable data from Village A, which is not enough for

reliable data analysis. The decision to decide what study design was ideal and what was

practical was difficult. A between-subject design where responses to AEE were compared

with responses to non-emotive behaviour would be ideal to determine the impact of AEE

on user experience. However, as mentioned before it was unlikely that the participant

group would be big enough for this design to provide reliable data. Another option was
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a within-subject design. However, as AEE was designed to be subtle, analyses may not

be able to identify a potential impact. Therefore, a between-within mixed design was

chosen for this experiment. As it was recognised early on that the number of participants

for Village A was going to be low, it was decided to treat them as control group which

meant they interacted with a robot that displayed non-emotive behaviour only. Village B

provided ten more participants that would form the test group and interacted with a robot

that displayed both emotive and non-emotive behaviour.

5.3.1 Participants

In total 17 older adults participated in this field study. Seven participants were recruited

through Village A (control group) and ten participants were recruited through Village B

(test group). As this study was directed toward typical ageing, prior to scheduling sessions,

participants were asked to self-report health issues/diagnoses (e.g. dementia) that could

affect their ability to complete measures or limit their capacity to consent. No participants

were excluded based on this criteria. In addition, participants from Village B had their

capacity for informed consent monitored by a locksmith (an individual who monitors

residents). As part of the procedure, participants in Village A were administered using

the Montreal Cognitive Assessment test (MOCA; Nasreddine et al., 2005) for overall

cognitive function. Based on these scores, data from two participants was excluded as

they scored below 15 (out of 30) where all other participants scored between 26 and 30,

which indicated high cognitive function. One participant from Village A was unable to

complete the experiment; all participants from Village B completed the experiment. As

such, data from 14 participants were included in the analyses. Table 5.1 provides an

overview of the participant demographics per village and overall. Table 5.2 provides

demographics information per participant (randomly ordered per village). This table also

provides attachment style and level of attachment, which will be discussed in more detail

later.

5.3.2 Materials

Once again Pepper was used for the interactions. To be able to gather as much knowledge

on the participants’ experiences with the robot, other forms of data besides questionnaires

were gathered as well. As mentioned in the pilot study, one of these measures was
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Age Gender

N M SD M F

Village A 4 77 11 3 1

Village B 10 76 8 6 4

Total 14 76 9 9 5

TA B L E 5 . 1 : Distribution of participants’ age and gender per retirement village and for the whole experi-

ment.

Participant Group Gender Familiarity Attachment Style Level of Attachment

1 Control M Somewhat Fearful Medium

2 Control M Low Secure Low

3 Control M Low Secure Low

4 Control F Low Dismissive Medium

5 Test M Somewhat Secure Low

6 Test M Low Secure Medium

7 Test F Low Fearful Low

8 Test F Low Dismissive Medium

9 Test M Low Dismissive Medium

10 Test M Low Fearful High

11 Test M Low Secure Medium

12 Test F Low Dismissive Low

13 Test M Low Fearful Medium

14 Test F Low Secure High

TA B L E 5 . 2 : Case characteristics of the user trials.
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physiological data (HRV and EDA). A Shimmer GSR+ sensor2 was used (see Figure

5.5), as the pilot study with university staff indicated the Empatica E4 wristband did not

provide reliable data. However, Empatica E4 was used for gathering data as well, in case

GSR+ would provide faulty recordings. The GSR+ was chosen as it provides the option

to measure both physiology features at the same time, provides a higher sampling rate

and places sensors at different locations that may be more precise than the Empatica E4

wristband. On the GSR+, the PPG sensor was placed on participants’ earlobe instead of

their wrist while the EDA sensor was placed on their fingers. This allowed for putting

both devices on participants at the same time without the devices disrupting each others’

recordings. The sampling rate used on the GSR+ is 128 Hz which is recommended in the

software provided by the company to analyse HRV. The Empatica E4 was still used as

back-up in case recordings with the GSR+ sensor would be faulty. As will be discussed in

the following section, speech prosody data and behavioural data were recorded as well.

Video-recordings were taken with a Nikon D3100 to be able to collect this data.

5.3.3 Measures

As this research investigates topics that may not be best measured using solely question-

naires, this field study combined several different measurements to investigate potential

occurrence of deception and attachment. This resulted in insights on what measurements

can be useful additions to the use of questionnaires in HRI research to retrieve richer and

more insightful data.

5.3.3.1 Questionnaires

All questionnaires used in the user face-to-face study with Psychology students were used

in this field study as well. The questionnaires used in this study are the following:

• Demographic information: Besides the questions used in previous studies (age,

gender, familiarity), participants were asked how often they used technologies such

as smartphone, tablet and laptop/desktop.

• Adapted Godspeed questionnaire: The adaptation is the same as the one used in

previous studies, that can be found in Appendix A1.

2http://www.shimmersensing.com/products/shimmer3-wireless-gsr-sensor
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F I G U R E 5 . 5 : GSR+ sensor used to gather EDA and HRV. EDA is measured through sensors placed on the

base of the fingers (top) and HRV is measured through a sensor placed on the earlobe (bottom).
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• Adapted Almere Model: The same adaptation as used in previous studies. The

adapted questionnaire is provided in Appendix A2.

• PANAS: Measurement of explicit mood, used in previous studies as well and pre-

sented in Appendix A3.

• IPANAT: Measures implicit mood to account for responses impacted by social

desirability. This questionnaire is provided in Appendix A4.

• MOCA: Montreal Cognitive Assessment - used to measure general cognitive per-

formance including executive functioning, memory, language, attention and visuo-

spatial perceptual skills (Nasreddine et al., 2005). This assessment was only used

for participants from Village A, as there was a locksmith available who determined

participants’ cognitive functioning for Village B. This assessment is presented in

Appendix A5.

• Attachment style: The Experiences in Close Relationships Inventory was adapted

for this field study (Brennan, Clark, and Shaver, 1998). Statements involving

‘(romantic) partners’ were adapted to a more general variation of ‘people that are

dear to me’ to prevent potentially upsetting participants if a (romantic) partner was

no longer with them. This questionnaire is provided in Appendix A6.

• Attachment: The same attachment questionnaire was used as the one provided in

the pilot study and can be found in Appendix A7.

• Interview: Once participants were debriefed, they asked several questions in a face-

to-face interview. Notes were taken of the participants’ responses to the questions

asked during this interview to allow them to provide richer answers. This interview

is provided in Appendix A8.

Demographics questionnaires were always administered first, followed by MOCA

and the attachment style questionnaire. Items in the attachment style questionnaire were

randomised. All other questionnaires and their items were randomly ordered as well, with

the exception of the face-to-face interview that was always conducted last. An overview is

provided in Table 5.3.
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T1 (Introduction) T2 (Condition 1 complete) T3 (Condition 2 complete) T4 (Debrief)

Godspeed x x x x

Almere x x x

Attachment x x x

PANAS x x x x

IPANAT x x x x

MOCA (Village A only) x

Demographics x

Attachment Style x

Interview x

TA B L E 5 . 3 : Overview of when questionnaires were administered during the experiment. Godspeed

measured participants’ perception of the interactions, Almere measured their acceptance of the robot. PANAS

and IPANAT measured participants’ mood, and MOCA measured participants’ cognitive performance.

5.3.3.2 Physiological Data

Physiological data was gathered during the field study with older adults, to investigate

whether they can be useful measures to indicate distress and therefore potential negative

consequences of AEE. More specifically, heart rate variability (HRV) and electrodermal

activity (EDA) were recorded. These were gathered as they may provide indications of

stress and/or arousal (Nikolić et al., 2016). HRV has been used as a stress measure during

human-robot interaction before, where HRV indicated that participants were less stressed

when a robot approached them using a trapezoidal trajectory compared to a linear trajectory

(Kühnlenz et al., 2018). Furthermore, it was found that EDA significantly differed for

specific robot motions (Dehais et al., 2011). Therefore, these measures appeared useful

to be included in this research. The difficulty with these measurements is that it is hard

to determine whether the physiological change is due to a positive or a negative event.

However, it is still valuable to determine whether a change occurs and combining these

findings with findings from other types of data gathered may provide useful insights in

participants’ responses to the robot and its behaviour. Heart rate variability was measured

through a PPG signal, that would provide details on the time between heart beats (inter

beat interval; IBI), which was then used to determine heart rate variability. Electrodermal

activity was recorded by gathering the galvanic skin response. More details on these two

measures can be found in Section 5.3.6.
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5.3.3.3 Speech Prosody

Besides physiological data, speech prosody can be an indicator of stress as well (Galaz

et al., 2016). There are several prosodic features that can be analysed, such as pitch

related features, energy related features and pause features (Ang et al., 2002). However,

due to the didactic nature of the interaction, natural input from participants was limited,

resulting in pre-determined pause features. Therefore, they were not investigated in this

study. As pitch features were deemed more reliable than energy related features (Schuller,

Rigoll, and Lang, 2003), pitch related features were analysed in this research. Pitch,

duration and intensity are the three most used features of speech prosody (Vinciarelli et al.,

2008). However, duration of the speech fragments was manipulated due to the nature of

the interaction. Therefore only pitch and intensity were investigated in this study. All

fragments where participants were talking to the robot were cut from video-recordings of

the interactions. These fragments were turned into audio-files with the use of FFmpeg,

a software used to handle multimedia files3. These audio-files were analysed through

the software Praat (Boersma, 2001), a program often used in speech pathology studies

(Cohen et al., 2009). After noise reduction, the minimum, maximum, average and standard

deviation of both pitch and intensity were calculated for each audio-file. These features

were compared when participants were interacting with the emotive or non-emotive robot.

A difference could indicate stress, which may have been induced by AEE of the robot.

More details on this analysis can be found in Section 5.3.7.

5.3.3.4 Behaviour Analysis

As mentioned before, physiological data can provide additional insights, as they gather real-

life data and it can be analysed what behaviour the robot was displaying when an increase in

arousal occurred in the participant. However, this data does not provide insights in why this

arousal occurred - whether this was a positive or negative event. This is where behaviour

analysis can provide useful insights. To be able to understand user experience, several

observations are required over an extended period of time (De Graaf, 2016). Interactions

between older adults and the robot were video-recorded to analyse participants’ behaviour

during the interactions. Comparing these recordings with the physiological data can

provide insights whether the arousal that was found in the physiological data is positive or

3https://ffmpeg.org/
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negative. Traditional research on non-verbal behaviour consists of three coding principles:

generic coding, restrictive coding and evaluative coding (Frey and Pool, 1976; Bente

et al., 2008). Generic coding entails general descriptions of body positions (e.g. upright

trunk), where restrictive coding focuses more on details (e.g. hand gestures). These two

coding systems consist of behavioural descriptions. Evaluative coding on the other hand

provides subjective impressions of observers, where the observed behaviour is categorised

immediately (e.g. scoring the level of friendliness of a behaviour). In this research, a

combination of generic and restrictive coding was used, as none of the coders are experts in

behavioural science and evaluative coding would provide very subjective findings. Generic

and restrictive coding have disadvantages as well, as observers may be looking for specific

behaviours and therefore miss other subtle behaviours. Therefore, coded recordings were

independently coded by two observers, so their findings could be compared. If the inter-

rater reliability value was at least substantial (κ ≥ 0.61), the findings would be used for

analysis. Video-recordings were coded by Psychology students who were conducting

research as part of their work experience. They signed a non-disclosure agreement and

were only given access to the recordings on my device when I was present. Each video-

recording was coded by two students. An example table of coded behaviours is provided

in Appendix F. More details on how behaviour was analysed in this study are provided in

Section 5.3.8.

Physiological data, speech prosody data and behavioural data were gathered during

each interaction, so data was gathered for eight sessions per participant.

5.3.4 Experimental Setup and Procedure

Participants interacted with the robot for eight sessions: two interactions per week for

four weeks. Interactions lasted between five and eight minutes, and entailed the Ancient

and Modern Wonders of the World. An example interaction can be found below. There

would be preferably two or three but at least one day between sessions. Besides these eight

interactions with the robot, there was an introductory session before the first interaction and

a debrief session after the last interaction with the experimenter only. The robot was present

during the introductory session and would introduce itself briefly to participants so they

knew what to expect from the robot feel more comfortable when the first interaction started.

The robot was not present in the room during the debrief session. For the participants
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from Village B, the robot would display both emotive and non-emotive behaviour. It

would either show non-emotive behaviour during the first four interactions and emotive

behaviour during the last four interactions, or vice versa. The order of robot behaviors was

counterbalanced between participants. The participants from Village A only saw the robot

displaying non-emotive behaviour.

An example part of an interaction between the robot and a participant about the Statue

of Zeus at Olympia; R = robot, P = Participant:

• R: ‘As mentioned before the statue depicts Zeus sitting on a wooden throne. However,

did you know that the whole statue and not only the throne was made of wood?’

− If P said ‘no’: R: ‘Yes, the whole statue was sculpted in wood. After that, Zeus

was covered with ivory and gold plates.’

− If P said ‘yes’: R: ‘Indeed, the whole statue was sculpted in wood. After that,

Zeus was covered with ivory and gold plates.’

• R:‘Have you ever been to Olympia, or other places in Greece?’

− If P said ‘no’: R: ‘Now let us continue with...’

− If P said ‘yes’: R: ‘Would you like to tell me about it?’

– If P says ‘no’: R: ‘Ok, now let us continue with....’

– If P talks about positive experience: R: ‘That sounds nice. Now let us

continue with....’

– If P talks about negative experience: R: ‘Sorry to hear that. Now let us

continue with....’

Participants were seated opposite the robot. The distance between the chair and the

robot was approximately 1.5m, which falls within the social space of Hall’s proxemics

categories (Hall et al., 1968), but approaches the personal zone as well as the threshold

between these two zones is at 1.2 metres. The social space represents the distance between

two strangers having a conversation, where the personal space represents the distance

where two friends have a conversation. It should be noted that there were slight differences

in distances between participants and the robot as participants could either lean forward or

lean back in the chair, and there were some instances where a participant would slightly

move the chair during the interaction.
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F I G U R E 5 . 6 : Experimental set-up Village A. F I G U R E 5 . 7 : Experimental set-up Village B.

Two sensors were used to gather physiological data. The sensor used to gather heart

rate variability and electrodermal activity data is the GSR+ sensor from Shimmer Sensing.

A PPG sensor would be attached to participants’ ear lobe to gather HRV data. Two GSR

sensors were used to gather electrodermal activity data - one would be placed around the

base of the index finger of the non-dominant hand, and the other sensor would be placed

around the base of the middle finger of the same hand. As discussed before, this sensor

was chosen over Empatica E4 as this wristband provided unreliable data. However, it was

used in this study as back-up as experience with GSR+ was limited. The Empatica E4

wristband was placed around the wrist of the dominant hand.

As mentioned in Chapter 4, Wizard-of-Oz strategy was used for all user experiments in

this research to ensure the interaction would be as natural as possible.

It was taken into account that participants might deviate from the planned script.

Therefore, additional responses like ‘yes’, ‘no’, ‘I do not understand what you are saying’

and ‘Let us get back to the topic we were discussing’ were pre-programmed as well.

In Village A only one room was available to conduct the experiment. Therefore, the

experimenter was located behind the participants to ensure participants would not be

distracted by the experimenter during interactions, and make sure they would not realise

the robot was operated by the experimenter (see Figure 5.6). In Village B the experimenter

was located in an adjacent room. The experiment room in which the interactions took

place can be seen in Figure 5.7. The doors of both the experiment room and the adjacent

room were open as to ensure the participants they could call for the experimenter if they

felt uncomfortable. Participants were given a photograph of themselves with the robot

and a £20 gift card for their participation during the debrief session. Contact details of the
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experimenter were provided in case they wanted to see the robot again. This exit strategy

was essential, as it would have been unethical to investigate their emotional attachment to

the robot over a longer period of time and not provide them with the possibility to see the

robot again.

5.3.5 Results from Questionnaires

5.3.5.1 Emotional Deception

As mentioned before, potential occurrence of emotional deception was measured through

the construct anthropomorphism of the Godspeed questionnaire, the construct social

presence of the Almere questionnaire and the statements regarding the robot being able

to communicate an emotion of happiness or sadness. Independent samples t-tests were

performed to investigate the influence of the robot’s behaviour (non-emotive x emotive) on

the factors mentioned above. Mixed between-within subjects analyses of variance were

conducted to investigate the impact of group (control x test) and time (T1, T2, T3, T4 for

anthropomorphism, T2, T3, T4 for social presence and communication of happiness or

sadness). As shown in Table 5.4, anthropomorphism was not significantly influenced by the

behaviour displayed by the robot (non-emotive x emotive), the group that interacted with

the robot (control x test) or time (T1, T2, T3, T4), nor was there an interaction between

group and time. Figure 5.8 shows that anthropomorphism was higher for participants of

the test group for T2, T3 and T4, which means it was higher for all sessions except for

when they had not interacted with the robot yet (T1).

Looking at social presence, a main effect was found of group (control x test) on the

perceived social presence of the robot (F(1,12) = 4.93, p = 0.046, η2
p = 0.29). Participants

in the test group that interacted with both the emotive and non-emotive robot perceiving the

robot as more of a social entity than participants in the control group that only interacted

with the non-emotive robot, and this remained the same over time. This can be seen in

Figure 5.9. No other effects on the perceived social presence of the robot were found.

Investigating the statements ‘Based on my interaction with Pepper, I feel that it is

capable of communicating an emotion of happiness’ and ‘Based on my interaction with

Pepper, I feel that it is capable of communicating an emotion of sadness’, no significant

impact was found of either the robot’s behaviour (non-emotive x emotive), group (control
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F I G U R E 5 . 8 : Average values of anthropomorphism for each experiment group over time from not at all

(1) to very much (5). A distinction was made between participants that saw non-emotive robot behaviour

only (control group) and participants that saw both emotive and non-emotive behaviour (test group).

F I G U R E 5 . 9 : *p < 0.05; Average values to what extent participants perceived the robot as a social

presence over time from not at all (1) to very much (5). A distinction was made between participants that saw

non-emotive robot behaviour only (control group) and participants that saw both emotive and non-emotive

behaviour (test group).

90



5. EVALUATING ARTIFICIAL EXPRESSION OF EMOTION WITH OLDER
ADULTS

x test) or time (T2, T3, T4), nor was there an interaction effect between Group and Time

(see Table 5.4). Even though no significant impact was found, Figure 5.10 indicates

that participants of the test group perceived the robot being more able to communicate

emotions than participants of the control group after they interacted with the robot (T2, T3).

However, when participants were asked the same question during the debrief session (T4),

participants of the control group perceived the robot as more capable of communicating

emotions.

F I G U R E 5 . 1 0 : Average values to what extent participants perceived the robot was able to communicate an

emotion of happiness (left) and sadness (right) over time from not at all (1) to very much (5). A distinction

was made between participants that saw non-emotive robot behaviour only (control group) and participants

that saw both emotive and non-emotive behaviour (test group).

Behaviour

(non-emo x emo)

Group

(control x test)

Time

([T1], T2, T3, T4)
Time x Group

t p F p η2
p F p η2

p F p η2
p

Anthropomorphism 0.58 0.57 0.38 0.55 0.03 1.57 0.23 0.12 0.98 0.38 0.08

Social presence -0.83 0.42 4.93 0.05* 0.29 0.78 0.47 0.06 0.54 0.59 0.04

Happiness 0.03 0.98 0.45 0.52 0.04 1.82 0.19 0.13 1.89 0.17 0.14

Sadness -0.92 0.37 1.06 0.32 0.08 0.56 0.58 0.04 2.56 0.10 0.18

*p < 0.05

TA B L E 5 . 4 : Test results indicating whether several factors significantly impacted participants’ perceived

anthropomorphism of the robot, it being perceived as a social entity, and it being able to communicate

emotions of happiness and sadness. ‘Behaviour’ distinguishes between the robot displaying either emotive

or non-emotive behaviour, ‘Group’ distinguishes between participants that either saw only non-emotive

behaviour (control) and participants that saw both emotive and non-emotive behaviour (test). Time indicates

the times when questionnaires were taken (T1 / T4 for anthropomorphism, T2 / T4 for the other measures),

and Time x Group represents a potential interaction effect between Group and Time. Significant findings are

highlighted.

91



CHAPTER 5

Investigating the effect of gender, a significant interaction effect was found between

time and gender for the robot being able to communicating an emotions of sadness

(F(2,24) = 4.44, p = 0.02, η2
p = 0.27). This was not significant for the robot being able

to communicate an emotion of happiness (F(2,24) = 0.14, p = 0.87, η2
p = 0.01), nor was

there an effect of time (F(4,9) = 1.21, p = 0.37, η2
p = 0.35) or gender (F(2,11) = 0.47, p =

0.64, η2
p = 0.08). Female participants agreed more with the statements that Pepper was

capable of communicating an emotion of happiness and sadness than male participants, as

can be seen in Table 5.5. Overall, participants’ interpretation of the robot being capable of

communicating emotions of happiness and sadness was low to medium (M = 2.62, SD =

0.95 on a 5-point scale).

Happiness Sadness

M SD M SD

Male 2.52 1.17 2.30 1.00

Female 2.93 0.91 2.73 0.71

Overall 2.73 1.04 2.51 0.85

TA B L E 5 . 5 : Mean and standard deviation on a 5-point scale from strongly disagree (1) to strongly agree

(5) for the statements ‘Based on my interaction with Pepper, I feel that it is capable of communicating an

emotion of happiness’ and ‘Based on my interaction with Pepper, I feel that it is capable of communicating

an emotion of sadness’.

5.3.5.2 Emotional Attachment

Emotional attachment was directly measured through the attachment questionnaire and

indirectly through the question ‘Will you miss Pepper?’ asked at the interview during the

debrief session. Attachment to the robot fell in the low to medium range (M = 2.68, SD =

0.64). However, two participants (one male, one female) scored high on attachment (M

= 4.06, SD = 0.24). These participants belonged to the test group and interacted with the

robot displaying both emotive and non-emotive behaviour during the experiment.

Similar as when investigating emotional deception, independent samples t-tests were

performed to investigate the influence of the robot’s behaviour (non-emotive x emotive)

on attachment. Mixed between-within subjects analyses of variance were conducted to

investigate the impact of group (control x test) and time (T2, T3, T4) on attachment.
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As can be seen in Table 5.6 there was no significant influence of either the robot’s

displayed behaviour, the experiment group or time on attachment, nor was there an

interaction effect between time and group.

Behaviour

(non-emo x emo)

Group

(control x test)

Time

(T2, T3, T4)
Time x Group

t p F p η2
p F p η2

p F p η2
p

Attachment -0.77 0.45 1.00 0.34 0.08 0.23 0.79 0.02 0.32 0.73 0.03

Intention to use 0.62 0.54 0.38 0.55 0.03 0.71 0.93 0.01 0.21 0.82 0.02

TA B L E 5 . 6 : Test results indicating whether participants’ level of attachment towards the robot and

intention to use the robot were impacted by the robot’s behaviour, the participant group, time, and a potential

interaction effect between group and time.

One-way ANOVA was conducted to determine whether participants’ attachment style

impacted their level of attachment to the robot. No significant impact was found (F(2,11)

= 0.35, p = 0.71, η2
p = 0.06). As mentioned in Section 3.4, participants with a fearful

attachment style may become more easily attached to the robot. Four participants had a

fearful attachment style, with three of them having a medium or high level of attachment to

the robot. Six participants had a secure attachment style and three of them had a medium or

high level of attachment to the robot. Finally, four participants had a dismissive attachment

style with three of them scoring medium on level of attachment to the robot. Therefore,

even though participants with a fearful attachment style may become more easily attached

to the robot, the number of participants in this study was too small to see a difference in

participants’ level of attachment to the robot based on their attachment style.

During the final interview, participants were asked whether they would miss Pepper,

which may be an indicator of attachment. Four participants (three female, one male)

reported that they indeed would miss Pepper (‘Yes, I guess I will’, ‘Oh yes, definitely!’).

Three of these participants were from the test group and one was from the control group.

Two of them (both female) were categorised as having a low level of attachment to the

robot.

Both in the attachment questionnaire and the final interview participants were asked

whether they would use the robot if it were available to them at any time. During the

interview, nine participants (six male, three female) indicated they would want to use the
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robot on a daily basis in the future; these participants also reported they did not think they

would get bored of the robot over time. Eight of these participants were from the test

group and interacted with a robot that displayed both emotive and non-emotive behaviour.

Four participants (two male, two female) declared they would want to use it on a weekly

basis. One participant (male) would not want to use the robot at all. This participant stated

that, although he liked interacting with the robot, he found that it was not sufficient for

his needs as he preferred a robot that was capable of physical assistance. Results from

the questionnaire showed that intention to use the robot was high and participants were

consistent in their replies as the results were the same as for the interview. Taking into

account the robot’s behaviour, participant group and time, no significant effect of these

factors was found on participants’ intention to use the robot if they could, nor was there an

interaction effect between time and group.

5.3.5.3 Emotional Deception and Emotional Attachment

Pearson correlation analyses were conducted to determine the relationship between par-

ticipants’ level of attachment to the robot, and the factors used to investigate emotional

deception (anthropomorphism, social presence, communicating happiness and sadness).

These analyses showed that there was a positive correlation between participants’ level of

attachment, and the extent to which they anthropomorphise the robot (r(14) = 0.66, p <

0.01), as well as their perception of the robot as a social entity (r(14) = 0.42, p = 0.04).

Both anthropomorphism and the perception of the robot as a social entity increased when

participants’ level of attachment increased. No significant correlations were found between

participants’ level of attachment and their perception of the robot’s ability to communicate

happiness (r(14) = 0.32, p = 0.12) and sadness (r(14) = 0.39, p = 0.06).

Participants were categorized in one of three groups based on their level of attachment

to the robot: low, (scores of 2 and below), medium (score of 3 at T2, T3 and/or T4) or

high attachment (scores of 4 and above). A one-way ANOVA was conducted to compare

participants’ attachment categories with the factors used to investigate emotional deception.

There was a significant difference between participants’ attachment category and the

robot’s perceived social presence (F(2,21) = 7.82, p < 0.01, η2
p = 0.43), where participants

with a low level of attachment perceived the robot significantly less as a social entity

than participants with medium (p = 0.04) and high (p < 0.01) levels of attachment, and
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participants with medium levels of attachment perceived the robot significantly less as

a social entity than participants with high levels of attachment (p = 0.02). This can

be seen in Figure 5.11. Participants’ level of attachment did not significantly impact

anthropomorphism (F(2,21) < 0.01, p = 0.88, η2
p < 0.01), communication of happiness

(F(2,21) = 2.23, p = 0.13, η2
p = 0.18) or communication of sadness (F(2,21) = 0.53, p =

0.60, η2
p = 0.05).

F I G U R E 5 . 1 1 : *p < 0.05; Participants’ perception of the social robot as a social entity from strongly

disagree (1) to strongly agree (5) based on their level of attachment (low, medium, high) to the robot.

Comparing participants’ intention to use the robot with the factors used to investigate

emotional deception, there was a positive correlation between participants’ intention to

use the robot and anthropomorphism (r(14) = 0.47, p = 0.02). There were no significant

correlations between intention to use and social presence (r(14) = 0.24, p = 0.27), and

the perceived ability of the robot to communicate happiness (r(14) = 0.35, p = 0.09) and

sadness (r(14) = 0.36, p = 0.09).

A one-way ANOVA showed no significant influences of intention to use on anthropo-

morphism (F(3,20) = 2.50, p = 0.09, η2
p = 0.27), social presence (F(3,20) = 0.55, p = 0.66,

η2
p = 0.08) and perceived ability of the robot to communicate happiness (F(3,20) = 1.76, p

= 0.19, η2
p = 0.21) or sadness (F(3,20) = 0.20, p = 0.89, η2

p = 0.03).
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Overall, these findings indicate that there may be an interaction between participants’

level of attachment to the robot and the possibility of them being emotionally deceived by

the robot.

5.3.5.4 Other Findings from Questionnaires

Differences between Emotive and Non-emotive Behaviour The effects of robot be-

haviour (non-emotive x emotive) on acceptance of the robot, perception of the interaction

and participant mood was investigated using independent samples t-tests. Robot behaviour

did not significantly impact any constructs of the Godspeed and Almere questionnaires.

There were no significant differences in mood, both explicit and implicit, between the two

groups.

Changes over Time The robot’s perceived ease of use, a construct of the Almere ques-

tionnaire, significantly increased over time (F(2,24) = 4.22, p = 0.03, η2
p = 0.26). Time

significantly decreased explicit negative affect as measured by PANAS (F(2.09,27.14) =

5.10, p = 0.01, η2
p = 0.28). No other effects of time were found, nor any interaction effect

between time and group.

Observations from the Interview During the final interview, participants were informed

on emotional deception and the importance to investigate this concern. After asking

them whether they thought the robot had been deceptive during their interactions, some

participants reported they found the robot was indeed deceptive (‘I guess it was deceptive,

as it showed some form of emotions’). These participants interacted with the emotive

robot and either scored medium or high on attachment. They reported they thought this

deception was acceptable, as otherwise the robot would have appeared too machine-like

and not pleasant to interact with. The other participants did not find the robot deceptive,

mainly because they thought of it as a machine and/or tool (‘I take it for what it is: a

distraction for when you are lonely’, ‘I realize it is a machine, therefore I do not find it

deceptive’).

Participants were asked whether they would miss the robot as a means to measure

attachment. Four participants (one male, three female) indicated that they would miss the

robot (‘Yes, I guess I will’, ‘Oh yes, definitely!’). One of these participants was part of the
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control group and only interacted with the non-emotive robot. The other three participants

were part of the test group and saw both emotive and non-emotive robot behaviours. Two

of these participants (both female) were highly attached to the robot according to the

attachment questionnaire.

When asked whether they wanted to add anything else at the end of the interview, two

participants said they enjoyed the interactions with Pepper - these participants scored high

on attachment. One participant commented that Pepper is a likeable robot but preferred for

it to have legs (‘Please give it some proper feet so it can walk around’).

Three participants could not imagine the robot ever playing a role in their life (‘do not

need a companion’, ‘happy talking to myself when I feel the need to’). Four participants

would like to have a robot as a companion, and eight participants thought it would be

useful as a helper. This could either be in the sense of helping with tasks, providing useful

information or monitoring people’s health.

5.3.6 Physiological Data

A GSR+ sensor was used for this field study to measure physiological data; both heart

rate variability and electrodermal activity. Physiological data was gathered for two rea-

sons. First, it was investigated whether wearable devices could be used for this type of

human-robot interaction research in an older adult population. Second, it was gathered

to investigate whether participants’ responses to the robot changed over time. Especially

when working with older adults these types of data may be useful. First of all, interacting

with new technologies may have a large impact on older adults, who are perhaps less

experienced in using new technologies. Real-time data gathering through these devices

will provide insights for experimenters who can then address this, in case participants do

not feel comfortable sharing this themselves.

5.3.6.1 Heart Rate Variability

The GSR+ allows users to use high sampling rates that can go up as high as 2048 Hz

compared to 4 Hz for the Empatica E4. The sampling rate used for this research, 128 Hz,

was recommended by the GSR+ manual for collecting HRV data. Furthermore, the GSR+

provides an earlobe sensor to measure HRV, which is more robust than hand-based HRV
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sensors due to sensitivity to movement (Vescio et al., 2018). Both these sensors measure

HRV through PPG. Sensors that use ECG are less sensitive to movement and might

retrieve better data. However, there are several disadvantages to these types of sensors.

For example, the sensors need to be placed on the torso which requires participants to

temporarily remove some clothing which they may not appreciate. Also, conductive gels

are required which may lead to allergic reactions. Finally, these sensors require expert

placement, thus limiting their use for non-expert users. Therefore, PPG sensors placed on

the earlobe may be the best alternative to potentially use in HRI research. More details can

be found in a report that was written for a module. This report can be found in Appendix

G.

There are several measurements that can be used to describe HRV. These are either

time-domain, frequency-domain or non-linear measurements. For this study, RMSSD (root

mean square of successive differences), which reflects the difference between heart beats,

was analysed to determine HRV. This is a time-domain measurement taking into account

the time between normal heart beats. This measurement was chosen as it is successful

when analysing short-term data (Baek et al., 2015; Esco and Flatt, 2014), such as the data

gathered in this experiment. Furthermore, it reflects the influence of the parasympathetic

system, which becomes active when stress decreases and is measured in milliseconds. The

sympathetic system becomes active when stress increases, but effects are slower (measured

in seconds) and therefore not suitable for HRV analysis. More detailed arguments for the

decision to use RMSSD and how it was calculated can be found in Appendix G. Table 5.7

provides the RMSSD values per participant per session, and Figure 5.12 shows normal

RMSSD values as provided by the Kubios user guide (Tarvainen et al., 2014).

F I G U R E 5 . 1 2 : RMSSD zones provided by Kubios User Guide. Low zone indicates high levels of arousal

and vice versa.

98



5. EVALUATING ARTIFICIAL EXPRESSION OF EMOTION WITH OLDER
ADULTS

Participant Interaction

1 2 3 4 5 6 7 8

1 24 24 26 22 28 31 22 18

2 18 26 22 23 26 23 24 28

3 19 17 18 13 19 15 18 12

4 73 70 54 45 35 53 62 59

5 79 129 132 154 74 118

6 9 43 20 26 17 25 23

7 16 41 43 34 25 35 17

8 45 47 55 32 92 35

9 21 51 54 55 30 43

10 30 55 43 100 68 59 81 69

TA B L E 5 . 7 : RMSSD values for each interaction for all participants. Empty slots indicate faulty readings

by the GSR sensor.

The Kubios software that was used to analyse the data provides a stress index based on

the input. This stress index is based on Baevsky’s work who introduced stress index as

a measure of heart rate variability (Baevsky and Berseneva, 2008). Overall, participants’

HRV values felt primarily within the typical, non-aroused range, as can be seen in Table

5.8. Even though Figure 5.13 shows that these values are slightly elevated, Baevsky

argumented in the original work that elevated stress levels are observed by adults in rest.

As the values provided by Kubios as derived from Baevsky’s stress index, it can be assumed

that therefore elevated stress levels observed in older adults in rest indicate they are calm

and not emotionally aroused.

F I G U R E 5 . 1 3 : Stress levels provided by the Kubios User Guide and original stress zones provided by

Baevsky.
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Participant Interaction

1 2 3 4 5 6 7 8

1 13 12 14 15 8 10 16 15

2 14 12 14 14 14 16 15 12

3 14 16 16 15 18 17 17 22

4 8 8 9 10 12 12 9 9

5 8 3 5 5 8 5

6 21 13 16 14 19 14 20

7 20 12 12 17 24 12 24

8 10 9 10 13 4 15

9 12 9 9 8 11 10

10 10 7 8 7 7 7 6 6

TA B L E 5 . 8 : Stress level for each interaction for all participants. Empty slots indicate faulty recordings

from the GSR+ sensor.

5.3.6.2 Electrodermal Activity

As mentioned in Section 5.2.6, the EDA data provided by Empatica E4 was unreliable.

This data provided values ranging from 0.006 to 0.04 where average EDA values range

from 1 to 20 µS. Although the GSR+ sensor provided reliable HRV data, the EDA data

was still very low, ranging from 0.02 to 0.7. After consulting an expert colleague on EDA

and the Shimmer Sensing user support it was confirmed that these are indeed not normal

values, not even for older adults. After testing both devices on myself and colleagues, it

was found that Empatica E4 still provided unreliable values, but GSR+ values now were

within the normal range. Perhaps the galvanic skin response is lower for older adults

(Psychophysiological Research Ad Hoc Committee on Electrodermal Measures et al.,

2012). Nevertheless, as the unexpected values could not be explained, it was decided to

not analyse this data further.

5.3.7 Speech Prosody

As mentioned in Section 5.3.3.4 fragments where participants were talking to the robot were

extracted from video-recordings and turned into audio-files to analyse using the software
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Praat Version 6.1.03 (Boersma, 2001). For each audio-file the minimum, maximum, mean

and standard deviation of the pitch and intensity were calculated.

These files could only be compared within participants as pitch and intensity levels

differ per person. As it was the intention to investigate whether the robot’s behaviour

influenced participants’ responses, data was only analysed for the participants that saw

both the emotive and non-emotive behaviours of the robot. As this whole process was quite

time-demanding, it was decided to first analyse half of the interactions for each participants

(two out of four interactions with the non-emotive robot and two out of four interactions

with the emotive robot).

Paired samples t-tests were performed to investigate whether any of the features

investigated for pitch and intensity significantly differed when interacting with the robot

displaying non-emotive behaviour compared to the robot displaying emotive behaviour.

The exact t- and p-values of pitch and intensity for each participant can be found in

Appendix D.

Results showed that for two participants, pitch-features significantly differed depending

on the displayed robot behaviour. For one participant, the mean pitch was significantly

higher (t(19) = 6.75, p < 0.01) when interacting with the emotive robot (M = 447.79)

compared to the non-emotive robot (M = 221.62). For the other participant, the standard

deviation of the pitch was significantly lower (t(12) = 2.37, p = 0.04) when interacting

with the emotive robot (M = 44.08), compared to the non-emotive robot (M = 85.01).

Looking at intensity-features, results show that for two participants the minimum

intensity was significantly lower (t(19) = -2.37, p = 0.03 and t(12) = -2.93, p = 0.01)

when interaction with the non-emotive robot (M = 11.46 and M = 8.27) compared to the

emotive robot (M = 19.81 and M = 21.00). For one participant, the maximum intensity

was significantly higher (t(18) = 3.41, p < 0.01) when interacting with the non-emotive

robot (M = 65.95) compared to the emotive robot (M = 59.82). Finally, for one participant

the mean intensity was significantly higher (t(20) = 2.15, p = 0.04) when interacting with

the non-emotive robot (M = 43.09) compared to the emotive robot (M = 38.70).

For all these participants, only the features mentioned were significantly impacted by

AEE, and none of the other features that were investigated. This indicates that AEE did not
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appear to systematically impact participants’ speech prosody. Therefore, it was decided to

not analyse the remaining interactions.

As mentioned before, it was decided to not analyse duration of the speech fragments, as

they were limited due to the nature of the interaction. However, the amount of words used

for each interaction was analysed, to investigate whether different robot behaviours evoked

less or more elaborate responses from participants. Initial transcriptions of these recordings

show that participants asked the robot more often to repeat itself when no subtitles were

provided, as it was only asked once when subtitles were provided as compared to 15 times

when subtitles were not provided. All four participants in the first setting asked the robot

to repeat itself, indicating that it was not due to one participant being hard of hearing. This

strengthens the observation that participants had trouble understanding what the robot was

saying. It was also noticed that participants would blame themselves for not understanding

the robot, claiming that they either needed a hearing aid or that the hearing aid they were

wearing must be the problem. This again shows the importance of a social robot being

accessible to all its users, as interactions to benefit the user should never result in the user

feeling bad about themselves.

Not providing subtitles resulted in relatively richer interactions, with participants

commenting more often on what the robot was saying without it asking them a question

when subtitles were not provided, as can be seen in Table 5.9. However, the number of

words that participants use during the interaction appear to be fewer for participants that

had no subtitles, as also shown in Table 5.9. Perhaps this is due to the fact that participants

with subtitles have a reminder of the question or comment from the robot and therefore are

able to provide more elaborate answers.

Comments Words

M SD M SD

Control (no subtitles) 20.00 5.57 40.00 15.88

Test (subtitles) 12.13 12.01 45.00 10.85

TA B L E 5 . 9 : Mean and standard deviation for total amount of comments and words spoken per interaction

for each participant group (test x control). ‘Comments’ are statements or utterances from the participant

without the robot asking them a question. ‘Words’ is the total number of words used by participants during

an interaction.
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5.3.8 Behavioural Analysis

As mentioned before, behaviour analysis could provide additional insights on why specific

findings occurred. It was used in this research to determine whether behavioural analysis is

a feasible measure for longitudinal field studies with participants that may have accessibility

issues that prevents them from filling in questionnaires. For example, if physiological

data showed increased levels of arousal, behavioural data could provide richer insights on

whether this arousal was positive or negative. Therefore, interactions were video-recorded,

so participants’ behaviour could be analysed. However, once the first video-recordings

were coded, it was found that participants responded on the content of the interaction itself

(e.g. laughing when the robot asked them whether they knew how long the Great Wall of

China was and they guessed wrong) rather than solely the robot’s behaviour. Therefore,

although it may still be a useful metric for HRI that can provide many useful insights, this

data was not analysed further in this research. An example of the coding system that was

used to code the video-recordings can be found in Appendix F.

5.3.9 Incidental Findings

As mentioned in Section 5.2.6 I initially decided to not use the tablet for the field study

with older adults as this could distract them from the behaviour the robot was displaying.

However, I soon found that participants had issues with understanding what the robot was

saying. This was not caused by the robot’s volume as participants reported the volume was

loud enough and I did not need to speak louder for them to be able to hear me. This made

me realise that there may be an issue with the robot’s pronunciation which may cause issues

when overall hearing deteriorates. As it may have been the case that participants had to get

used to the robot’s way of speaking I waited for another session. However, as there was

no improvement participants were provided with subtitles that were shown on the robot’s

tablet. As expected, I observed that participants focused less on the robot’s behaviour and

more on the subtitles that were displayed on the tablet, as they would provide an answer

to a question when they completed reading the question on the tablet, even if the robot

had not completed the question yet. Participants that reported not being able to hear the

robot without subtitles all indicated it was likely to be their own fault, either claiming they

needed a hearing aid if they did not have one or claiming the hearing aid was preventing
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them from being able to hear the robot.

Furthermore, their responses seemed less elaborate, as the amount of comments per

interaction was lower for participants from Village B that were provided subtitles on the

tablet compared to participants that were not provided subtitles. However, looking at the

average amount of words used per session, participants that were not provided subtitles

used less words on average per session than participants that did receive subtitles. It is

possible that the number of comments was higher for participants that did not receive

subtitles as they had to ask the robot to repeat itself. On the other hand, participants that

received subtitles had a reminder of what question the robot asked which may have allowed

them to give more elaborate responses.

5.3.10 Discussion

5.3.10.1 Emotional Deception

To determine the possible occurrence of emotional deception during the interactions,

levels of anthropomorphism and to what extent the robot was seen as a social entity

was gathered. Furthermore, participants were asked whether they believed the robot

was capable of communicating emotions of happiness and sadness. Looking at these

measures, it appears that emotional deception may occur, but only at a low level. No

evidence was found indicating that participants anthropomorphise the robot differently

depending on the behaviour it was displaying. These findings contradict earlier work,

where anthropomorphism was higher for a robot that non-verbally displayed emotions

compared to a robot that did not (Eyssel et al., 2010). However, Figure 5.8 indicates that

anthropomorphism was slightly higher for participants that interacted with the emotive

robot. No conclusions can be drawn as this difference was not found significant. However,

due to the low number of participants in this study it may be worth investigating further.

Participants did not appear to change their opinion whether Pepper was capable of

communicating an emotions of happiness or sadness depending on the behaviour it was

displaying. It is possible they did not change their opinion, but this may also occur due

to the fact that they were focusing on the subtitles on the tablet and therefore did not

notice any differences. However, the scoring for the robot being able to communicate

an emotion of happiness or sadness was low to medium (M = 2.73 and M = 2.51 on a
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5-point scale respectively). As this approaches the ‘medium’ level it is possible that some

level of deception occurred. Also, participants that interacted with a robot that displayed

both emotive and non-emotive behaviour perceived the robot more as a social entity than

participants that interacted with a robot that displayed non-emotive behaviour only. This

perception of social presence stayed the same over time, where earlier research had found

that perceived social presence decreased over time (Leite et al., 2009). However, they

argued that the addition of robot ‘memory’ to the interaction may prevent this decrease.

Therefore, memory was included in this study, as the robot would recall what topics were

discussed during the previous session. No decrease in social presence over time was found,

supporting their argument. However, it should be noted that even though the experiment

time-frame was similar, their participants were children and they used a zoomorphic robot,

which may both be reasons why the results differ.

It can be concluded that emotional deception may have occurred at a low level. No

negative results indicating that participants’ mood decreased or they became distressed were

found, indicating that the impact of this potential deception appeared minimal. However,

this is not unexpected, as AEE was designed to be low, and the chosen interaction topic

was neutral and not discussing any personal experiences. This was decided to the impact

of ‘baseline’ AEE, as this impact already may be grave when considering vulnerable

populations.

5.3.10.2 Emotional Attachment

The level of attachment stayed the same for the duration of the experiment for all partici-

pants. This means however that participants who became attached to the robot early stayed

attached to the robot, therefore potentially being at greater risk of experiencing negative

consequences. Four participants reported they would miss the robot and nine participants

indicated they would be willing to use the robot. According to the results of the attachment

questionnaire, most of these participants showed only low levels of attachment to the robot.

This raises questions on how to measure emotional attachment. The question whether

participants would use the robot if they could in the future was added as frequency of use

is mentioned as one way to measure attachment (Li, Browne, and Chau, 2006). However,

most of these participants indicated in the attachment questionnaire that they were not

very attached to the robot. It should be investigated in the future why this occurs. Perhaps
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participants answered positively to the questions in the interview because they felt more

inclined to provide a socially acceptable answer as they were answering to me personally

instead of writing it down on paper. It is also possible that the indirect measurements of

missing the robot and wanting to use it in the future are not suitable as measurements for

attachment. However, as the open questions were based on existing literature as well it

appears that emotional attachment to the robot is possible, and even though the number

of participants was too low to draw any strong conclusions it was mostly participants

that interacted with a robot that displayed both emotive and non-emotive behaviour who

answered positively to the open questions. Therefore, it should be taken into account that

artificial expression of emotion by a robot may increase one’s level of attachment towards

that robot. Attachment style did not indicate participants’ level of attachment to the robot.

As mentioned in Section 3.4, it was expected that participants with a fearful attachment

style were more likely to become attached to the robot, but this was not found. However,

the number of participants was low for this experiment, and only four participants had a

fearful attachment style. Therefore, it may still be worth investigating this feature more

in future work. No physiological responses or negative changes in participants’ mood

were found based on participants’ level of attachment to the robot. However, as mentioned

before arousal was designed to be low and the topic of conversation was chosen to be

neutral. This indicates that low levels of AEE during didactic interactions may only have

limited consequences, if any. However, this should be investigated further for higher

arousal levels and different, more personal interaction topics.

5.3.10.3 Emotional Deception and Emotional Attachment

There were strong correlations between participants’ level of attachment and both an-

thropomorphism and social presence, which indicates there may be a relation between

emotional deception and emotional attachment. This finding is supported by the significant

impact that participants’ level of attachment had on their perception of the robot as a social

entity, which was significantly higher for participants that were highly attached to the robot.

Therefore, it appears that the construct ‘social presence’ proves the most useful to measure

whether potential ethical risks may occur.

Female participants reported they felt the robot was more capable of communicating

emotions than male participants. Also, 75% of the participants that indicated they would
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miss the robot during the final interview were female, which was also reflected in the

results of the pilot study described in Section 5.2. This implies that female participants

may have been more sensitive to artificial expression of emotion by the robot. However,

it is also possible that this finding occurred due to the characteristics of the robot (round

features, big eyes), the can evoke feelings of maternal care (Vicedo, 2009).

5.3.10.4 HRI Measurements

This research focuses on older adults and although all participants were self-reported

healthy, there may be older adults with cognitive or physical impairments in future studies

for whom answering questionnaires can be challenging. Furthermore, questionnaires

may not provide sufficient insights on the user experience (De Graaf, 2016). Therefore,

different measures were added to this experiment to determine whether they can be used

for longitudinal field studies, as questionnaires are useful but also have disadvantages. The

measures added gathered physiological data, speech prosody data and behaviour data.

Physiological data may provide useful insights as it gathers objective data. However, it

depends on the sensors that are used to gather the data whether the findings are reliable.

Some sensors require expert knowledge and are difficult to use for experimenters with an

HRI background. Other sensors may be more invasive for participants as they may have an

allergic reaction. Also in HRI experiments it may be difficult to determine what causes

the physiological reaction, as arousal may rise following both a positive and negative

experience. Although this can be improved through sensors that may recognise emotions,

for example through EEG signals, adding this measurement makes for a more invasive

experience for the participant. The overall conclusion is that this type of data may provide

useful insights in addition to other types of measurements but should not be used as a main

focus in HRI research. However, it should be taken into account that non-invasive sensors

that gather physiological data can be unreliable as they are very dependent on movement.

Therefore, it depends on the task that participants have to perform whether this can be a

suitable addition to their experiment.

Speech prosody could be a useful addition to longitudinal field studies studies to gather

richer insights on participants’ responses and experiences, without being inconvenient for

either the participant or the experimenter. Focusing on the minimum, maximum, mean and
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standard deviation of participants’ pitch and intensity when interacting with the emotive or

non-emotive robot, only few differences were found. Therefore, not all data was analysed.

However, the fact that the low emotion manipulation of the robot’s behaviour used in this

research already resulted in significant differences, indicates that speech prosody data

can be a useful metric to gather richer data during field studies. The microphone used to

gather speech prosody data was the microphone from the video-camera. This may have

impacted the results, as using a better microphone may retrieve better data. Also, as the

video-camera was located close to the robot (as can be seen in Figures 5.6 and 5.7), there

was a lot of noise from the robot’s fans and motors that had to be reduced. The fact that

there are differences for participants with limited data available and the use of a camera

that was located close to the robot’s motors to record the sessions is very promising for

the input this type of data can provide when practised accordingly. It is easy to apply

for non-expert experimenters and does not require any additional input from participants.

The only thing that needs to be taken into account for this data, and for all additional

measurements tested in this research, is that the participants’ data is protected as biological

data is now gathered which makes it easier to identify participants. However, with proper

anonymisation methods and data storage this should be an acceptable impediment to

overcome for the benefits it can provide.

Behaviour analysis appeared least successful during this field study. It takes a lot of

time to code the behaviours, and more than one coder is required to account for potential

subjectivity of the observer. These observers need experience in recognising certain

behaviours, and the inter-rater reliability of the observers needs to be above a certain

threshold to prevent coding bias. As AI advances, it may be possible to use an AI algorithm

to code the behaviours. However, even with the use of such an algorithm the findings

are difficult to interpret. As found while coding video-recordings, participants sometimes

laughed when they felt uncomfortable and not due to the robot’s displayed behaviour. This

indicates that a lot of knowledge on context is required to be able to properly analyse

participants’ behaviour. Therefore, this was found to be the least accessible measurement

for longitudinal field studies.

Finally, this research explored different metrics that could be useful for HRI research

with vulnerable populations in addition to questionnaires. However, looking at all the

measures used during this research, it should be noted that the IPANAT (implicit mood
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questionnaire) did not provide many useful insights. This questionnaire was included as an

implicit measurement of participants’ mood, as the PANAS can be susceptible to responses

that are deemed socially desirable. However, IPANAT did not provide useful insights in

any of the studies conducted in this research. Furthermore, participants of the field study

had issues understanding how to complete the questionnaire, as it was very different from

the other questionnaires. Therefore, it can be concluded that IPANAT is not necessarily a

useful addition to HRI research with vulnerable populations.

5.3.10.5 Insights from Running a Longitudinal Field Study

One strong aspect of this study was that it was conducted at the participants’ homes instead

of a laboratory, providing the opportunity to gather their responses in a setting where they

are more comfortable compared to an artificial laboratory setting, which provides more

realistic data. Also, conducting a field study allowed me to recruit participants with limited

mobility who would not have participated if they study had been conducted in a laboratory

setting. This resulted in a more exemplar participant group of older adults. Furthermore,

this study provided many insights on running HRI field studies.

One thing to anticipate when running field studies is that it will not be possible to get a

perfect setup for the experiment, as you have to work with what is available. First of all, it is

more difficult to create an optimal environment required for the hardware that is used, like

a high-speed internet connection that may not be available. Also, using different locations

will result in different set-ups of the experiment room. For this study, one village provided

me with a small bedroom where the robot and participants would be located between two

single beds, and the other village provided me a whole apartment to work with. This results

in different environments where distractions may be present, but can also result in people

understanding the robot better or not due to acoustics that may differ depending on the size

of the room. There are more external factors that may influence the experimental procedure.

For example, as people were in their home-environment and not familiar with research

settings and the significance of similar conditions for each participant, it happened three

times that people would enter the room while an experiment was ongoing. Fortunately,

this only occurred when participants were filling in questionnaires and thus limited the

impact this had on their perception of the robot, but it should be taken into account that

disturbances are more likely when running field studies.
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Participants from lab studies were from different age groups that the participants

from the field study, so observations made may not be solely due to experiment location.

However, it was found that participants from lab studies generally arrived on time, maybe

asked some questions at the end, but mostly focused on the experiment and then left. When

conducting the field study, participants would arrive early (e.g. ‘I was in the neighbourhood’

or ‘I just came back from shopping’), and would stay longer afterwards, either asking

questions that were related to social robotics but not the experiment specifically as they

understood I could not inform them on that before the debrief session, or just to chat in

general. This means that more time is required to run an experiment in a field study than

required when running a lab study.

Overall, these observations make me believe that participants feel more comfortable

and free to behave as they usually would when conducting a field study compared to a lab

study. They did not mind entering the room when an experiment was ongoing, they would

arrive at times that suited them and approximated the agreed time, and it appeared they also

felt more at liberty to express their opinion during the experiment. During this research and

also my previous education, I have conducted multiple human-robot interactions studies,

but this field study was the first time where participants did not mind confronting me

personally. As mentioned before participants asked more questions, and even though I tried

to limit interactions outside of the experiments it was unethical to not answer questions

they had and give them the feeling they were not welcome except for the experiment. This

resulted in conversations that deviated from the experiment. This was not unexpected,

as participants indicated they looked forward to the sessions and aimed to prolong their

experience. However, sometimes participants’ comments became personal attacks and

violated social norms. Even though this was an uncomfortable experience for me, it is

positive that participants felt the liberty to state their opinion. This indicates they felt

comfortable during the interactions they had with the robot and their responses were more

natural than when the study would have been conducted in a laboratory setting. However,

when preparing a field study, a risk assessment should be included on how a researcher

should respond in case a participant becomes agitated or behaves inappropriately towards

them, and perhaps extra precautions need to be taken depending on the population. This is

essential to protect the participant, but also to protect the researcher and ensure they cannot

be blamed for consequences of the participant becoming agitated.
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5.4 Summary

This chapter aimed to investigate the impact of AEE on older adults, and how this impact

could best be measured. First, a pilot study was conducted to guide the design of the

longitudinal field study with older adults. It was found that the chosen topic of Wonders of

the World appeared suitable for the field study. This study consisted of participants that

were on the baseline of being categorised as vulnerable. They were cognitively healthy,

but not able to live independently. Hence, they lived in semi-independent retirement

villages where support could be provided if needed. The following research questions were

investigated through this field study:

1. ‘Does AEE impact older adults’ human-robot interaction experience?’

2. ‘Does the impact of AEE on older adults change over time?’

3. ‘Can physiological data, speech prosody data and behavioural data provide valuable

insights when used in longitudinal field studies in addition to questionnaires?’

Question 1 was addressed by investigating whether emotional deception and emotional

attachment occurred during the interactions. Emotional deception was measured through

participants’ anthropomorphism, perceived social presence, and the robot’s perceived

ability to communicate emotions of happiness and sadness. Emotional attachment was

measured through the attachment questionnaire, participants’ intention to use the robot

and their response to the question whether they would miss the robot.

As mentioned in Section 5.3.10, the results indicated that it is possible that older adults

were, to a small extent, emotionally deceived by the robot. Emotional attachment did

also occur for some participants. Therefore, it can be concluded that AEE can impact

the experience for older adults, although this does not always have to occur. No apparent

negative consequences were observed through the results of this study. Participants’ mood

was not negatively impacted by the robot, nor were there any physiological responses

found. The differences found in speech prosody data were not consistent enough to

determine whether participants were negatively impacted by AEE. Participants were given

the opportunity to reach out and ask for another meeting with Pepper if they preferred

so. This study has been completed for over a year at the point of writing this, and no
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participants have ever reached out to see Pepper again, indicating participants were not

attached to the robot to the extent that they became distressed once it was gone.

Question 2 was addressed through gathering data at several points during the experi-

ment. This is presented in Table 5.3 for questionnaires. Other types of data (physiological

data, speech prosody data, behavioural data), were gathered for every interaction. No

impact of time was apparent from the results, except for the finding that explicit negative

mood decreased over time. As negative mood represents feelings such as being nervous

or tense, and participants were likely nervous at the start of the experiment, this finding

is expected. As this finding was consistent for all participants and did not depend on the

condition they were assigned to, it can be concluded that AEE a potential impact of AEE

did not change over time.

Question 3 was investigated by gathering different types of data. Besides questionnaires,

physiological data, speech prosody data and behavioural data and physiological data were

collected. As discussed in Section 5.3.10, speech prosody data appeared the most promising

and consistent as an additional measurement for longitudinal field studies that involve

vulnerable populations. It depends on the nature of the interaction whether physiological

data can be useful, as the sensors required are either sensitive to movement or are more

invasive for participants and require a certain level of expertise. Behavioural data may

provide rich insights, but is also very time consuming and requires a certain level of

expertise when coding the behaviours. Furthermore, it may be difficult to determine

whether the behaviour is a consequence of a specific action, or whether the participant

reacted to something else, especially when vulnerable people are involved. Therefore, this

type of data was found to be the least useful for longitudinal field studies with vulnerable

populations.

The overall aim of this research was to develop a framework that can help developers

and producers of future social robots to design social robot behaviours that have minimal

negative consequences. The findings from all studies described so far, together with general

observations, resulted in that framework This will be presented next in Chapter 6.
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pression of Emotion
Chapter redacted for copyright reasons.
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A Questionnaires

A1 Adapted Godspeed questionnaire

Fake 1 2 3 4 5 Natural

Machinelike 1 2 3 4 5 Humanlike

Unconscious 1 2 3 4 5 Conscious

Artificial 1 2 3 4 5 Lifelike

Moving rigidly 1 2 3 4 5 Moving elegantly

Dead 1 2 3 4 5 Alive

Stagnant 1 2 3 4 5 Lively

Mechanical 1 2 3 4 5 Organic

Inert 1 2 3 4 5 Interactive

Apathetic 1 2 3 4 5 Responsive

Dislike 1 2 3 4 5 Like

Unfriendly 1 2 3 4 5 Friendly

Unkind 1 2 3 4 5 Kind

Unpleasant 1 2 3 4 5 Pleasant

Awful 1 2 3 4 5 Nice

Incompetent 1 2 3 4 5 Competent

Ignorant 1 2 3 4 5 Knowledgeable

Irresponsible 1 2 3 4 5 Responsible

Unintelligent 1 2 3 4 5 Intelligent

Foolish 1 2 3 4 5 Sensible

Anxious 1 2 3 4 5 Relaxed

Agitated 1 2 3 4 5 Calm

Surprised 1 2 3 4 5 Quiescent
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A2 Adapted Almere model of trust questionnaire

If I should use the robot, I would be afraid to make mistakes with it Strongly disagree Disagree Undecided Agree Strongly agree

If I should use the robot, I would be afraid to break something Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot scary Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot intimidating Strongly disagree Disagree Undecided Agree Strongly agree

I think it’s a good idea to use the robot Strongly disagree Disagree Undecided Agree Strongly agree

The robot would make life more interesting Strongly disagree Disagree Undecided Agree Strongly agree

It’s good to make use of the robot Strongly disagree Disagree Undecided Agree Strongly agree

I enjoy the robot talking to me Strongly disagree Disagree Undecided Agree Strongly agree

I enjoy doing things with the robot Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot enjoyable Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot fascinating Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot boring Strongly disagree Disagree Undecided Agree Strongly agree

I think I will know quickly how to use the robot Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot easy to use Strongly disagree Disagree Undecided Agree Strongly agree

I think I can use the robot without any help Strongly disagree Disagree Undecided Agree Strongly agree

I think I can use the robot when there is someone around to help me Strongly disagree Disagree Undecided Agree Strongly agree

I think I can use the robot when I have a good manual Strongly disagree Disagree Undecided Agree Strongly agree

I consider the robot a pleasant conversational partner Strongly disagree Disagree Undecided Agree Strongly agree

I find the robot pleasant to interact with Strongly disagree Disagree Undecided Agree Strongly agree

I feel the robot understands me Strongly disagree Disagree Undecided Agree Strongly agree

I think the robot is nice Strongly disagree Disagree Undecided Agree Strongly agree

I think the robot is useful to me Strongly disagree Disagree Undecided Agree Strongly agree

It would be convenient for me to have the robot Strongly disagree Disagree Undecided Agree Strongly agree

I think the robot can help me with many things Strongly disagree Disagree Undecided Agree Strongly agree

I think the staff would like me using the robot Strongly disagree Disagree Undecided Agree Strongly agree

I think it would give a good impression if I should use the robot Strongly disagree Disagree Undecided Agree Strongly agree

When interacting with the robot I felt like I’m talking to a real person Strongly disagree Disagree Undecided Agree Strongly agree

It sometimes felt as if the robot was really looking at me Strongly disagree Disagree Undecided Agree Strongly agree

I can imagine the robot to be a living creature Strongly disagree Disagree Undecided Agree Strongly agree

I often think the robot is not a real person Strongly disagree Disagree Undecided Agree Strongly agree

Sometimes the robot seems to have real feelings Strongly disagree Disagree Undecided Agree Strongly agree

I would trust the robot if it gave me advice Strongly disagree Disagree Undecided Agree Strongly agree

I would follow the advice the robot gives me Strongly disagree Disagree Undecided Agree Strongly agree
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A3 PANAS - explicit mood

Interested Very slightly or not at all A little Moderately Quite a bit A lot

Distressed Very slightly or not at all A little Moderately Quite a bit A lot

Excited Very slightly or not at all A little Moderately Quite a bit A lot

Upset Very slightly or not at all A little Moderately Quite a bit A lot

Strong Very slightly or not at all A little Moderately Quite a bit A lot

Guilty Very slightly or not at all A little Moderately Quite a bit A lot

Scared Very slightly or not at all A little Moderately Quite a bit A lot

Hostile Very slightly or not at all A little Moderately Quite a bit A lot

Enthusiastic Very slightly or not at all A little Moderately Quite a bit A lot

Proud Very slightly or not at all A little Moderately Quite a bit A lot

Irritable Very slightly or not at all A little Moderately Quite a bit A lot

Alert Very slightly or not at all A little Moderately Quite a bit A lot

Ashamed Very slightly or not at all A little Moderately Quite a bit A lot

Inspired Very slightly or not at all A little Moderately Quite a bit A lot

Nervous Very slightly or not at all A little Moderately Quite a bit A lot

Determined Very slightly or not at all A little Moderately Quite a bit A lot

Attentive Very slightly or not at all A little Moderately Quite a bit A lot

Jittery Very slightly or not at all A little Moderately Quite a bit A lot

Active Very slightly or not at all A little Moderately Quite a bit A lot

Afraid Very slightly or not at all A little Moderately Quite a bit A lot
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A4 IPANAT - implicit mood
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A5 Montreal Cognitive Assessment - MOCA
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A6 Attachment style questionnaire

I prefer not to show people that are dear to me how I feel deep down SD D Neither A nor D A SA

I worry about being abandoned SD D Neither A nor D A SA

I am very comfortable being close with people that are dear to me SD D Neither A nor D A SA

I worry a lot about my relationships SD D Neither A nor D A SA

Just when somebody who is dear to me starts to get close, I find myself pulling away SD D Neither A nor D A SA

I worry that people that are dear to me won’t care about me as much as I care about them SD D Neither A nor D A SA

I get uncomfortable when someone that is dear to me wants to be very close SD D Neither A nor D A SA

I worry a fair amount about losing people that are dear to me SD D Neither A nor D A SA

I often wish that the feelings of someone dear to me were as strong as my feelings for him/her SD D Neither A nor D A SA

I want to get close to people that are dear to me, but I keep pulling back SD D Neither A nor D A SA

I often want to merge completely with people that are dear to me, and this sometimes scares them away SD D Neither A nor D A SA

I am nervous when someone dear to me gets too close with me SD D Neither A nor D A SA

I worry about being alone SD D Neither A nor D A SA

I feel comfortable sharing my private thoughts and feelings with people that are dear to me SD D Neither A nor D A SA

My desire to be very close sometimes scares people away SD D Neither A nor D A SA

I try to avoid getting too close with people that are dear to me SD D Neither A nor D A SA

I need a lot of reassurance that I am loved by people that are dear to me SD D Neither A nor D A SA

I find it relatively easy to get close to people that are dear to me SD D Neither A nor D A SA

Sometimes I feel that I force people that are dear to me to show more feeling, more commitment SD D Neither A nor D A SA

I find it difficult to allow myself to depend on people that are dear to me SD D Neither A nor D A SA

I do not often worry about being abandoned SD D Neither A nor D A SA

I prefer not to be too close to people that are dear to me SD D Neither A nor D A SA

If I can’t get people that are dear to me to show interest in me, I get upset or angry SD D Neither A nor D A SA

I tell people that are dear to me just about everything SD D Neither A nor D A SA

I find that people that are dear to me don’t want to get as close as I would like SD D Neither A nor D A SA

I usually discuss my problems and concerns with people that are dear to me SD D Neither A nor D A SA

When I’m not involved in a relationship, I feel somewhat anxious and insecure SD D Neither A nor D A SA

I feel comfortable depending on people that are dear to me SD D Neither A nor D A SA

I get frustrated when people that are dear to me are not around as much as I would like SD D Neither A nor D A SA

I don’t mind asking people that are dear to me for comfort, advice or help SD D Neither A nor D A SA

I get frustrated if people that are dear to me are not available when I need them SD D Neither A nor D A SA

It helps to turn to people that are dear to me in times of need SD D Neither A nor D A SA

When people that are dear to me disapprove of me, I feel really bad about myself SD D Neither A nor D A SA

I turn to people that are dear to me for many things, including comfort and reassurance SD D Neither A nor D A SA

I resent it when people that are dear to me spend time away from me SD D Neither A nor D A SA

Abbreviations are used for layout reasons here, full options were provided in the study.
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A7 Attachment questionnaire

I have a personal bond with Pepper Strongly disagree Disagree Undecided Agree Strongly agree

Pepper is very dear to me Strongly disagree Disagree Undecided Agree Strongly agree

Peper has a special role in my life Strongly disagree Disagree Undecided Agree Strongly agree

Pepper does not emotionally affect me Strongly disagree Disagree Undecided Agree Strongly agree

I have no feelings for Pepper Strongly disagree Disagree Undecided Agree Strongly agree

I feel emotionally connected to Pepper Strongly disagree Disagree Undecided Agree Strongly agree

Pepper has no special meaning to me Strongly disagree Disagree Undecided Agree Strongly agree

Pepper means a lot to me Strongly disagree Disagree Undecided Agree Strongly agree

I feel emotionally attached to Pepper Strongly disagree Disagree Undecided Agree Strongly agree

If Pepper could be with you as an informative

companion, how often would you use it?
Daily Weekly Monthly Not at all
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A8 Final Interview

The following questions were asked in a random order during the final interview:

• What role would you like Pepper to play in your life? Please elaborate.

• Was there anything you did not like about Pepper or its behaviour? Please elaborate.

• Do you think you would get bored of Pepper, if you could use it whenever you want?

Please elaborate.

• Will you miss Pepper? Please elaborate.

• Do you find the interactions with Pepper had an influence on your mood? Please

elaborate.

• There is a growing concern amongst some roboticists that social robot behaviours

are deceptive, as robots do not and cannot feel emotions, nor do they have any real

interest in the person they are interacting with. Do you think Pepper was deceptive?

If so, do you feel that deception was acceptable? Please elaborate.

• Is there anything else you would like to add?
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B Implementation of AEE
Pre-determined movements used to convey neutral behaviour:

• ShowNearDistanceLeft_01

• BothArmsBumpInFront_01

• ShowNearDistanceRight_01

• GoToStance_Space&Time_LeanRight

• GoToStance_Space&Time_Center

• GoToStance_Space&Time_LeanLeft

• GoToPosture(Stand)

Pre-determined movements used to convey happy behaviour:

• GoToStance_Exclamation_LeanRight

• GoToStance_Exclamation_LeanBack

• GoToStance_Exclamation_LeanLeft

• StrongNodGatherArmsInFront_01

• Excited

• FastPointAtUserLeftArm_01

• CircleBothArmsLeaningFront_01

• StrongArmsAndLegsBump_LeanRight_01

• OfferBothHands_HeadNod_LeanLeft_01

• StrongArmsOpen_FlexEnd_01

Pre-determined movements used to convey sad behaviour:

• GoToStance_Exclamation_LeanRight

• GoToStance_Exclamation_LeanBack

• GoToStance_Exclamation_LeanLeft

• BothArmsUpAndDown_HeadShake_01

• SlowlyOfferBothHands_01
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• FancyRightArmCircle_LeanRight_01

• RightArmUpAndDownWithBump_HeadShake_01

Predetermined animated-say-boxes used:

• Stand/Gestures/Salute_1

• Stand/Gestures/Hey_2

• Stand/Gestures/Explain_1

• Stand/Gestures/Explain_11

• Stand/Gestures/Explain_6

• Stand/Gestures/Explain_2

• Stand/Gestures/Explain_10

An example sequence for a neutral interactions is shown below. If it was aimed to

convey happiness or sadness, the item to which the emotion applied would be exchanged

for one of the pre-determined movements for happiness or sadness.

ShowNearDistanceLeft_01

GoToPosture(Stand)

Wait(0.5)

GoToStance_Space&Time_LeanRight

BothArmsBumpInFront_01

GoToPosture(Stand)

Wait(0.5)

Stand/Gestures/Explain_11

GoToStance_Space&Time_Center

GoToPosture(Stand)
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C Online evaluation of implemented be-

haviours - additional results

Results of non-parametric tests used

A Friedman test was conducted to compare whether the three implemented robot behaviours

were rated significantly differently from each other. χ2(2) = 218.0, p < 0.001. Post-hoc

analysis using Wilcoxon tests with Bonferroni correction applied (new p = 0.017) indicated

that happy behaviour was rated significantly higher than neutral behaviour (Z = -7.21, p

< 0.001) and sad behaviour (Z = -10.60, p < 0.001), and neutral behaviour was rated

significantly higher than sad behaviour (Z = -10.38, p < 0.001).

Age

A Spearman’s rank-order correlation was conducted to determine the relationship between

participants’ age and their ratings of the different robot behaviours. Strong, negative

correlations were found between participants’ age and their rating of happy behaviour

(rs(159) = -0.41, p < 0.001) and neutral behaviour (rs(159) = -0.33, p < 0.001). A positive

correlation was found between participants’ age and their rating of happy behaviour

(rs(159) = 0.17, p = 0.03).

A Kruskal-Wallis H test was conducted to investigate whether participants’ age had an

impact on their rating of the implemented behaviours. It was found that age influenced

rating of happy (H = 30.25, p < 0.001) and neutral (H = 19.19, p = 0.002) behaviour, but

not of sad behaviour (H = 5.24, p = 0.39). Details for differences between age groups

following Mann Whitney U tests can be found in Table C.1. The ratings per age group are

visualised in Figure 4.7.

Gender

Mann Whitney U test indicated that there was no influence of participants’ gender on their

rating of the emotive robot behaviours, as can be found in Table C.2.
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APPENDIX C. ONLINE EVALUATION OF IMPLEMENTED BEHAVIOURS -
ADDITIONAL RESULTS

Happy Neutral Sad

Z p Z p Z p

18-24 / 25-34 -0.03 0.97 -0.23 0.82 -0.09 0.93

18-24 / 35-44 0.01 0.011 0.08 0.09 1.00 1.00

18-24 / 45-54 -2.99 0.003 -1.95 0.051 -0.85 0.40

18-24 / 55-64 -3.90 0.000 -2.74 0.006 -1.40 0.16

18-24 / 65-74 0.07 0.09 0.04 0.04 0.18 0.20

25-34 / 35-44 -2.57 0.01 -2.09 0.04 -0.10 0.92

25-34 / 45-54 -3.21 0.001 -2.42 0.02 -1.03 0.30

25-34 / 55-64 -4.44 0.000 -3.58 0.000 -1.69 0.09

25-34 / 65-74 0.09 0.10 0.02 0.02 0.19 0.20

35-44 / 45-54 -0.16 0.88 -0.03 0.98 -0.87 0.39

35-44 / 55-64 -1.02 0.31 -0.67 0.50 -1.31 0.19

35-44 / 65-74 0.59 0.60 0.39 0.41 0.23 0.25

45-54 / 55-64 -1.14 0.25 -0.73 0.47 -0.29 0.77

45-54 / 65-74 0.67 0.70 0.34 0.36 0.52 0.56

55-64 / 65-74 0.89 0.90 0.52 0.55 0.57 0.58

TA B L E C . 1 : Comparison of ratings of emotive robot behaviours (happy, neutral, sad) per participants’ age

range.

Happy Neutral Sad

Z -0.81 -0.59 -0.58

p 0.42 0.56 0.57

TA B L E C . 2 : Comparison of ratings of emotive robot behaviours (happy, neutral, sad) per participants’

gender.

142



APPENDIX C. ONLINE EVALUATION OF IMPLEMENTED BEHAVIOURS -
ADDITIONAL RESULTS

Familiarity with social robots

Kruskal-Wallis H test was conducted to investigate the impact of participants’ familiarity

with social robots on their ratings. A significant impact of familiarity was found for ratings

of happy behaviour (H = 16.04, p = 0.003) and sad behaviour (H = 10.42, p = 0.03). The

impact on rating of neutral behaviour was not significant (H = 6.11, p = 0.19). Post hoc

Mann Whitney U tests indicated exact differences, which can be found in Table C.3.

Happy Neutral Sad

Z p Z p Z p

not familiar at all / slightly familiar -0.92 0.36 -0.02 0.98 -1.46 0.15

not familiar at all / moderately familiar -3.13 0.002 -2.05 0.04 -2.81 0.005

not familiar at all / very familiar -2.86 0.004 -0.83 0.41 -1.73 0.08

not familiar at all / extremely familiar 0.21 0.23 0.52 0.54 0.42 0.44

slightly familiar / moderately familiar -2.07 0.04 -1.85 0.07 -1.71 0.09

slightly familiar / very familiar -0.08 0.04 -0.88 0.38 -1.14 0.26

slightly familiar/ extremely familiar 0.31 0.33 0.60 0.62 0.64 0.68

moderately familiar / very familiar 0.76 0.77 0.04 0.04 0.84 0.85

moderately familiar / extremely familiar 1.00 1.00 0.81 0.82 0.68 0.72

very familiar/ extremely familiar 0.76 0.79 0.33 0.35 0.90 0.96

TA B L E C . 3 : Comparison of ratings of emotive robot behaviours (happy, neutral, sad) per participants’

familiarity with social robots.
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Additional results of parametric analysis

18-24 25-34 35-44 45-54 55-64 65-74

18-24 - 0.74 0.02* 0.01** 0.01** 0.06

25-34 - 0.02* 0.01** 0.01** 0.06

35-44 - 0.58 0.24 0.80

45-54 - 0.53 0.91

55-64 - 0.62

*p < 0.05, **p < 0.01

TA B L E C . 4 : Significant differences for rating happy behaviour based on participants’ age range.

18-24 25-34 35-44 45-54 55-64 65-74

18-24 - 0.74 0.03* 0.02* 0.01** 0.02*

25-34 - 0.02* 0.01* 0.01** 0.02*

35-44 - 0.96 0.61 0.39

45-54 - 0.62 0.40

55-64 - 0.56

*p < 0.05, **p

TA B L E C . 5 : Significant differences for rating neutral behaviour based on participants’ age range.
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18-24 25-34 35-44 45-54 55-64 65-74

18-24 - 0.94 0.95 0.45 0.20 0.22

25-34 - 0.99 0.31 0.08 0.16

35-44 - 0.39 0.16 0.19

45-54 - 0.59 0.44

55-64 - 0.63

TA B L E C . 6 : Significant differences for rating sad behaviour based on participants’ age range.

not at all

familiar

slightly

familiar

moderately

familiar

very

familiar

extremely

familiar

not at all familiar - 0.25 0.01** 0.01** 0.14

slightly familiar - 0.05 0.05 0.31

moderately familiar - 0.76 0.98

very familiar - 0.87

**p < 0.01

TA B L E C . 7 : Significant differences for rating happy behaviour based on participants’ familiarity with

social robots.

not at all

familiar

slightly

familiar

moderately

familiar

very

familiar

extremely

familiar

not at all familiar - 0.48 0.01* 0.53 0.34

slightly familiar - 0.07 0.31 0.50

moderately familiar - 0.02* 0.82

very familiar - 0.24

*p < 0.05

TA B L E C . 8 : Significant differences for rating neutral behaviour based on participants’ familiarity with

social robots.
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not at all

familiar

slightly

familiar

moderately

familiar

very

familiar

extremely

familiar

not at all familiar - 0.28 0.01** 0.05 0.33

slightly familiar - 0.08 0.25 0.58

moderately familiar - 0.78 0.75

very familiar - 0.89

**p < 0.01

TA B L E C . 9 : Significant differences for rating sad behaviour based on participants’ familiarity with social

robots.
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D Long-term field study with older adults

- additional results

Speech prosody pitch analysis

min max mean sd

t p NE E t p NE E t p NE E t p NE E

1 -0.51 0.62 146.64 139.16 -0.01 0.99 433.47 433.11 -0.39 0.70 257.67 254.26 1.00 0.33 68.65 75.78

2 -0.85 0.41 132.34 143.17 -0.16 0.87 450.64 456.76 1.09 0.29 248.06 269.31 -0.69 0.50 77.98 88.19

3 0.70 0.49 166.82 157.03 1.37 0.19 450.33 392.09 0.81 0.43 268.68 254.23 1.05 0.31 77.44 64.23

4 -1.47 0.17 84.83 89.71 -0.78 0.45 517.46 546.46 -0.25 0.80 231.41 241.39 -0.12 0.91 144.14 146.94

5 -0.71 0.48 124.49 130.57 -0.31 0.76 343.66 360.91 -0.96 0.35 193.55 213.10 -0.02 0.99 66.17 66.53

6 0.38 0.71 105.26 102.42 1.99 0.07 407.80 297.23 1.92 0.08 181.57 154.10 2.37 0.04 85.01 44.08

7 0.60 0.56 107.60 101.66 -0.23 0.82 436.50 447.79 -6.75 0.00 211.62 447.79 0.39 0.70 89.85 83.33

8 -1.41 0.17 120.75 135.58 0.54 0.60 420.88 394.65 -0.97 0.35 204.72 221.11 -0.01 0.99 75.55 75.74

TA B L E D . 1 : Values for the minimum, maximum, mean and standard deviation of participants’ pitch

during interactions with the robot.

Speech prosody intensity analysis

min max mean sd

t p NE E t p NE E t p NE E t p NE E

1 -1.75 0.1 15.36 21.52 -2.62 0.02 72.34 75.21 -1.37 0.19 46.29 50.14 1.29 0.22 16.35 14.63

2 -2.37 0.03 11.46 19.81 -0.39 0.70 65.34 65.94 -1.62 0.12 39.71 43.41 1.23 0.23 14.94 13.35

3 0.34 0.74 19.80 18.47 0.97 0.35 72.08 70.66 1.70 0.11 49.72 46.30 -0.75 0.47 15.05 16.27

4 -2.93 0.01 8.27 21.00 0.34 0.74 62.31 61.45 -1.81 0.10 36.30 41.02 2.04 0.06 15.08 11.60

5 0.12 0.91 17.26 16.79 3.41 0.00 65.95 59.82 1.23 0.23 42.05 38.59 1.60 0.12 14.17 12.17

6 1.16 0.27 17.13 11.68 0.31 0.76 67.22 66.73 0.89 0.39 43.77 40.25 -1.20 0.25 14.61 16.17

7 0.22 0.83 13.06 12.17 -0.38 0.71 71.30 71.91 -0.34 0.74 43.37 44.62 -1.61 0.12 15.99 18.23

8 -0.39 0.70 12.14 13.18 -9.14 0.00 69.55 395.65 2.15 0.04 43.09 38.70 1.37 0.19 16.99 15.18

TA B L E D . 2 : Values for the minimum, maximum, mean and standard deviation of participants’ speech

intensity during interactions with the robot.
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E Example table to code behaviours
Example coding table to analyse participants’ behaviour during the interactions.

PARTICIPANT ID: XXXXX INTERACTION #: X

TIMESLOT (SEC) Hands (+duration) Mouth (+duration) Face (+duration) Nod (+duration) Shake (+duration) Smile (+duration) Reposition (+duration)

0 - 60 I (1), I (2) I (1)

61 - 120 I (7) I (5), I (1), I (1) I (1) I (1) I (8)

121 - 180 I (10), I (3), I (7) I (1), I (1) I (3) I (1), I (6), I (1) I (5)

181 - 240 I (5) I (17), I (8) I (3)

241 - 300 I (2), I (2) I (8), I (5), I (7) I (1), I (1) I (3), I (2) I (1)

301 - 360 I (1) I (1) I (1)

361 - 420

421 - 480

Notes from coder: Hearing difficulties affected communication between the partici-

pant and robot.

Explanation of behaviours:

• Hands: Participant moving hands (touching one hand unintentionally with other

hand, play with jewellery or hair, play with fingers)

• Mouth: Cover mouth by placing finger(s) or hand over lips

• Face: Touch face any other way as described by ’mouth’ (e.g. rub chin, scratch

head, wipe eyebrow)

• Nod: Move head up and down (or vice versa) at least once

• Shake: Move head left to right (or vice versa) at least once

• Smile: One or both corners of mouth go up

• Reposition: Participant repositions themselves in the chair (cross/uncross legs,

move weight, move arms to a different position, lean forward, lean backwards)
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F HRV Report

Introduction

Research in social robots and human-robot interaction and how they can be employed in

the real world is expanding. An example target group that can benefit from social robots is

older adults. Social robots can potentially help them live independently for longer. It may

also provide opportunities to address loneliness as it can be a conversation starter between

people and also interact with people itself.

However, before these robots can successfully integrate into society we first have to

make sure we fully understand what people expect of these robots and how they respond

to them, as robots that do not meet expectations or do not behave as preferred may be

misused or not be used at all (Hancock et al., 2011). This would be unfortunate, as not only

time, money and effort would be lost on the development robots that are not being used,

but also the intended users are missing out on the benefits that the robot could provide.

To ensure successful integration into society it is essential that we as researchers fully

understand what intended users expect from the robot and how they respond to them.

Therefore, gathering rich data that will provide useful and rich insights during human-robot

interaction (HRI) studies is imperative.

Measurements to gather this data consist of questionnaires, recordings (both video

and audio) and physiological data, all with their own advantages and disadvantages. A

combination of all may likely produce the richest data to analyse HRI studies. This report

will discuss the use of heart rate variability (HRV) as a potential metric for HRI.

In the context of my thesis, I am investigating whether participants respond differently

to a social robot that displays emotive behaviour compared to a robot that displays neutral

behaviour. What is defined as emotive and neutral behaviour is not essential for this report

and is described in earlier work (Van Maris et al., 2018). I will investigate participants’

responses through a combination of questionnaires, recordings and physiological data,
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including HRV. However, before I can use HRV to analyse participants’ responses, I first

will need to identify whether HRV is a relevant and useful metric for HRI experiments.

This is what this report will discuss. Usually, HRV is measured in a clinical setting, for

example for research on heart disease (Vescio et al., 2018). However, my goal of using

HRV in HRI experiments is to investigate whether there is a physiological response to the

interaction with the robot, more specifically whether there is a emotional reaction.

The research question that will be researched in this report is: ‘Can HRV be used

reliably to better understand people’s responses during human-robot interactions?’

The remainder of this report consists of an overview of HRV, what it represents and

how it can be measured, followed by an initial analysis of HRV data that I gathered during

a human-robot interaction experiment and a discussion whether HRV is a reliable metric

for HRI.

Heart Rate Variability

One way to investigate people’s experiences during human-robot interactions is through

measuring their level of emotional arousal and/or stress. Perceptions of threat results in

higher stress levels (Thayer et al., 2012). Stress can be measured by looking at activity of

the Autonomic Nervous System (ANS) as changes in ANS activity can indicate changes in

stress levels (Dandu et al., no date, Jobbágy et al., 2017). The ANS has a sympathetic (SNS)

and parasympathetic (PNS) branch. The sympathetic branch is responsible for activation,

for example a fight-or-flight response, and the parasympathetic branch is responsible

for relaxation and a state of rest and recovery. When sympathetic activity increases,

stress increases as well; whereas stress decreases when parasympathetic activity increases

(Jobbágy et al., 2017).

The ANS influences heart rate and heart rate variability (Thayer et al., 2012). HRV is

the variation of time between heart beats, often expressed in milliseconds. Parasympathetic

effects are fast (expressed in milliseconds), while sympathetic effects are slower (expressed

in seconds). Therefore, only parasympathetic effects can impact HRV (Thayer et al., 2012).

The influence of HRV and the parasympathetic system is bidirectional (Thayer et al.,

2012). While parasympathetic effects can impact HRV, HRV has also been found to be a

good indicator for changes in the parasympathetic branch, for example during emotional
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situations (De Jonckheere et al., 2012). It has been claimed that HRV can be used as a tool

to better understand emotion in social processes (Dandu et al., no date). If HRV is low, this

means that sympathetic activity is high and stress and arousal are high as well. Conversely,

high HRV indicates activity of the parasympathetic system and low levels of stress and

arousal.

Gathering HRV Data

The preferred way to measure heart rate variability is by using electrocardiography which

produces electrocardiograms (ECG). ECGs are recordings that shows the electrical activity

of the heart (Vescio et al., 2018). This is done using electrodes that are placed on the torso.

However, the use of ECG provides some issues as these electrodes need to be placed on

bare skin and people may be allergic to the conductive gel that is applied to the electrodes

(Jong, Horng, et al., 2017, Vescio et al., 2018). Also, ECG devices are difficult to use for

a layperson as incorrect placement of an electrode can result in an erroneous recording.

Therefore, photoplethysmography (PPG) sensors that can be used in wearable devices have

been introduced as alternative for ECG devises and are being used more often to measure

heart rate variability (Vescio et al., 2018). Where ECG measures the electrical activity of

the heart, PPG uses light sensors to measure the rate of the blood flow. These sensors are

often placed either on the fingers, wrist or on the earlobe (Jong, Horng, et al., 2017, Vescio

et al., 2018, Morelli et al., 2018). However, it is better to place the sensor on the earlobe,

as the sensor is sensitive to movement and most daily activities require the use of the hand

which includes fingers and wrist.

Both ECG and PPG measure the time between beats. ECG does this through measuring

beat-to-beat intervals (RR intervals), from which normal-to-normal (NN) intervals are

extracted by removing artefacts. These NN intervals are then used for HRV analysis. PPG

measures the changes in blood volume and the peaks and valleys in these changes, called

PP intervals. These PP intervals can be associated with RR intervals from ECG devices,

even though there is a brief delay as it takes time for the blood to travel through the vessels.

Just as for RR intervals, artefacts needs to be removed from PP intervals before analysis.

Several studies have investigated whether PPG is a reliable alternative for ECG. One

study compared PPG data gathered through an earlobe sensor to ECG data. They found

that the PPG sensor provided similar results to the ECG sensor (Vescio et al., 2018). They
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gathered a relatively short recording of 20 minutes and a long recording of 24 hours. For

both recordings data from 10 participants was gathered. A weakness of this paper is that

the terms RR intervals and NN intervals are used interchangeably, without explaining the

difference (exclusion of artefacts or not). However, it is clarified how artefacts are removed

for both the PPG and ECG device, indicating that abnormal beats are removed from the

data. The largest errors between the two devices were found in pNN50 (a metric for HRV

analysis; this will be discussed in more detail in the next section).

A different study investigated whether pNN50 values were similar for PPG and ECG

data that was recorded in parallel (Jobbágy et al., 2017). They found that NN intervals

determined through the ECG sensor differed from intervals determined through the PPG

sensor. This is similar to the finding of the previously described study where the errors

between the PPG and ECG devices were largest for pNN50. However, in this study the

ECG sensor was placed at the participants’ back, where the PPG sensor was placed at the

fingertip. As mentioned before, sensors placed on the hand are very sensitive to motion.

This can also have resulted in the differences found between the two sensors.

In summary, research has shown that, PPG devices can be a reasonable substitute for

ECG as long as the PPG sensor is places such that it will not be disrupted by motion. An

advantage of using PPG devices is that it is non-invasive as there is no electrical interaction

with the human body. They also require less maintenance and are cheaper than ECG

devices (e.g. Tamura et al., 2014, Bolanos, Nazeran, and Haltiwanger, 2006).

Analysing HRV Data

HRV can be described either using time-domain, frequency domain and non-linear measure-

ments. Time-domain measurements are based on the time between heart beats (inter-beat

intervals or IBI). The frequency-domain entails four frequency bands that correlate with

certain physiological responses. For example, blood pressure regulation falls under the

low-frequency band (Shaffer and Ginsberg, 2017). Non-linear measurements are used to

measure the level of predictability of a time series. HRV recordings can have a long-term

(24 hours), short-term (5 min) or ultra-short-term (<5 min) duration. However, as longer

recording periods are able to better represent the response to different workloads and stim-

uli, long-term and short-term values can not be used interchangeably. Also, the duration

of the HRV recordings influences what metric can be used best, as some metrics require
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a certain minimum duration to provide reliable output. With this in mind, time-domain

measurements are most suitable for the data I gathered and will be discussed in more detail

in this report.

Measurements in the time-domain are all based on normal-to-normal intervals between

heart beats. Indices in the time-domain of HRV measure the amount of HRV that is

observed. Most often used are the SDNN, RMSSD and pNN50.

SDNN stands for the standard deviation of the inter-beat intervals of normal sinus beats

and is measured in milliseconds. SDNN values are derived from SDRR values, which

stands for the standard deviation of the time between heart beats of all sinus beats (also

measured in milliseconds). This means that abnormal beats from SDRR (also known as

artefacts) have been removed to get SDNN, which is used for HRV analysis. Abnormal

beats should be removed as they can reflect noise or cardiac dysfunction. However, the

terms RR interval and NN interval are often used interchangeably in the literature. For

example, in some papers the terms ‘RR’ and ‘NN’ are introduced as the same thing (e.g.

Vescio et al., 2018, Morelli et al., 2018). ‘NN’ is also defined as the difference between

the lengths of successive heart beats and not the normal successive heart beats (Jobbágy

et al., 2017).

Other metrics that take into account the normal-to-normal intervals and provide more

information on HRV are SDANN (the standard deviation of the average normal-to-normal

intervals for all 5 minute segments in a 24 hour recording) and the SDNN Index, which is

the average of all 5 minute segments of the SDANN. These metrics are most reliable for

24-hour recordings as a longer time period provides a better representation of the slower

processes of the cardio-vascular system and the response to workload and environmental

stimuli (Shaffer and Ginsberg, 2017). Therefore, even though especially SDNN is the most

commonly used metric for heart rate variability (Jong, Horng, et al., 2017), they are not the

most useful metrics to analyse heart rate variability in my experiment, as interactions and

thus the recordings lasted between 5 and 8 minutes (more information on these interactions

will be provided in Section 3.).

NN50 is the total number of NN intervals where the difference between two adjacent

intervals is larger than 50 milliseconds. pNN50 is the percentage of adjacent intervals

where the difference is more than 50 milliseconds. A decrease in pNN50 can indicate

an increase in a person’s stress level (Jobbágy et al., 2017). At minimum a 2 minute
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recording is required for both metrics, making them suitable metrics to analyse HRV for

my experiment. However, as discussed before pNN50 is not always a reliable metric when

using a PPG device to gather HRV data. Besides that, there are also arguments that other

differences than 50 milliseconds (e.g. 0-20 ms and 20-50 ms) can be better measures.

More specifically, it was found that a combination of the three differences mentioned

above (pNN0-20, pNN20-50 and pNN50, combined also known as pNNtri) provide a

better measure for stress than just pNN50, especially in older adults (Jobbágy et al., 2017).

Studies showed that the biggest difference between ECG and PPG devices appeared in

pNN50 (Jeyhani et al., 2015), which is another reason why I decided to not use it in my

HRV analysis.

RMSSD reflects the difference between heartbeats and stands for the root mean square

of successive differences, measured between normal heartbeats. To determine the RMSSD,

first the time difference between each adjacent heartbeat needs to be measured in mil-

liseconds. These differences are squared and the average of these squared differences is

calculated. Finally, the square root of the total is calculated. The usual minimum recording

for RMSSD is 5 minutes, however, shorter periods of 10 seconds, 30 seconds and 60

seconds have been researched as well (Salahuddin et al., 2007, Baek et al., 2015, Esco

and Flatt, 2014), making this a suitable metric for me to analyse HRV. As mentioned

before, HRV is influenced by the parasympathetic system. RMSSD reflects influence of

the parasympathetic system as well (Thayer et al., 2012), supporting my decision to use

RMSSD for analysis.

Other metrics in the time-domain are the difference between minimum and maximum

heart rate, the HRV Triangular Index (HTI) and the Triangular Interpolation of the NN

Interval Histogram (TINN). However, even though they are described in an overview of

HRV metrics (Shaffer and Ginsberg, 2017), they are not mentioned in several other papers

investigating HRV (e.g. Morelli et al., 2018, Matic et al., 2012, Vescio et al., 2018) while

the metrics discussed above are. As these metrics are less commonly used in HRV analysis

and I will not use them for my analysis either, they will not be discussed any further in this

report.
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Methodology and Initial Results

Experimental Setup

The goal of the experiment that I ran was to investigate whether older adults were influenced

by a robot displaying different emotions. Older adults interacted eight times with a social

robot, each interaction lasted between 5 and 8 minutes. During these interactions, the

robot would inform participants on the Seven Wonders of the World and would do this

while either displaying emotive or neutral behaviour. Besides administering questionnaires,

video-recordings were taken to analyse participants’ behaviour and physiological data was

gathered in the form of galvanic skin response and heart rate variability. HRV was not

gathered for clinical purposes in this study; it was gathered to investigate whether there

was a physiological response to the interaction with the robot. More specifically, it was

intended to measure the emotional context during the interaction; whether people were

emotionally aroused or stressed by the robot. This is different from HRV studies in clinical

settings, where they use stimuli to evoke a physiological response in the participants.

Instead, we wanted to see whether there was a physiological response in a ‘natural’ setting.

Materials

The social robot that was used for this experiment was Pepper, developed by SoftBank

Robotics (Pandey and Gelin, 2018). The sensor that was used to gather PPG data is

from the company Shimmer Sensing1. Sensors from Shimmer Sensing are used for HRV

experiments (e.g. Matic et al., 2012). For this experiment, the Shimmer3 GSR+ was used

to gather physiological data. This device provides two finger sensors to measure galvanic

skin response (which will not be discussed further in this report) and an earlobe sensor to

measure HRV.

The raw PPG data that was gathered needed to be pre-processed before it could be

analysed. To pre-process and analyse the data, the standard version of the software Kubios

was used 2. This software was used by others as well to analyse PPG data and remove

artefacts (Vescio et al., 2018). The software provides artefact correction algorithms. The

1http://www.shimmersensing.com/
2https://www.kubios.com/
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user guide suggests that for each individual it is decided what threshold value for artefact

detection fits best, ranging from very low to very strong. For each interaction, it was tested

when the software would detect artefacts. However, it would be ensured that the number

of artefacts found was not too high, as to not accidentally identify normal-to-normal

RR intervals as artefacts. The software provided feedback as to when this would be the

case. Following this procedure, the threshold was set to either medium or strong for most

participants.

Initial Results

As mentioned before, the most useful HRV metric for me to look at was RMSSD from the

time-domain. Table F.1 shows the RMSSD values for each interaction of ten participants

and Figure H.1 shows the RMSSD zones that indicate whether the values are low, normal

or high. Blank spaces in the table indicate faulty recordings. A low RMSSD value indicates

that parasympathetic activity is inhibited and therefore HRV is low, which indicates stress

and/or arousal.

Interaction

Participant 1 2 3 4 5 6 7 8

1 24 24 26 22 28 31 22 18

2 18 26 22 23 26 23 24 28

3 19 17 18 13 19 15 18 12

4 73 70 54 45 35 53 62 59

5 79 129 132 154 74 118

6 9 43 20 26 17 25 23

7 16 41 43 34 25 35 17

8 45 47 55 32 92 35

9 21 51 54 55 30 43

10 30 55 43 100 68 59 81 69

TA B L E F. 1 : RMSSD values for each interaction for all participants.

Besides the time- and frequency-domain metrics, the Kubios software also provides

a stress index, which is based on Baevsky’s stress index (Baevsky and Berseneva, 2008).
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F I G U R E F. 1 : RMSSD zones provided by Kubios User Guide

More specifically, the values from Kubios as the square roots from Baevsky’s stress indeces.

The square roots are used for normal distribution purposes. The stress indeces can be

found in Table F.2, together with an overview of which stress zones indicate low, normal

or high stress levels (Figure H.2).

Interaction

Participant 1 2 3 4 5 6 7 8

1 13 12 14 15 8 10 16 15

2 14 12 14 14 14 16 15 12

3 14 16 16 15 18 17 17 22

4 8 8 9 10 12 12 9 9

5 8 3 5 5 8 5

6 21 13 16 14 19 14 20

7 20 12 12 17 24 12 24

8 10 9 10 13 4 15

9 12 9 9 8 11 10

10 10 7 8 7 7 7 6 6

TA B L E F. 2 : Stress level for each interaction for all participants.

Following the values provided in the Kubios user guide, these tables and figures indicate

that several participants have lowered RMSSD and elevated stress levels (e.g. participants

2 and 3). However, When Baevsky introduced the Stress Index on which the Kubios Stress

Index is based, they also indicated that the values that indicate elevated stress levels are
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F I G U R E F. 2 : Stress levels and stress zones from Baevsky (Baevsky and Berseneva, 2008).

observed by older adults in rest (Baevsky and Berseneva, 2008). Values between 300 and

500 (or between 17.3 and 22.4 when using Kubios) are observed by older adults when

they are resting, where these values are found in healthy people during emotional load

and physical work. This shift is likely to be true for RMSSD as well, as normal RMSSD

values decrease with age (e.g. Antelmi et al., 2004). Therefore, it appears that there was

no physiological response or participants to the interactions with the robot, indicating they

were not stressed and/or emotionally aroused during the interactions with the robot.

Conclusions

The answer to the question ‘Can HRV be used reliably to better understand people’s

responses during human-robot interactions?’ is: it appears that HRV can be used as

a metric for HRI, but more work is needed before this can be stated with confidence.

The HRV sensor appears to work, but due to the limited number of participants and the

demographics of the participants no conclusions can be drawn. However, the results can

give an indication on participants’ responses to the robot.

Results show that HRV appeared to be lowered, which indicates that participants may

have been stressed or emotionally aroused during the interactions with the robot. However,

all participants were of older age. As discussed before, age may require a shift in HRV

zones to correctly represent the physiological state of the participants. The use of older

adults as participants is important for my thesis. However, it is a disadvantage for this

report as it prevents me from being able to fully answer the research question due to

the fact that their age may have influenced the results. Also, it is more likely due to

their age that participants take medication for heart disease which may have impacted the
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results. The HRV values found in my experiment appear fitting for older adults (as they

are slightly shifted from ‘normal’ HRV values which appear realistic for people of older

age), especially as it was expected that HRV would be normal as there was no stimulus

to actively evoke a response. Therefore, I consider the data reliable enough for me to

investigate further for my thesis. However, it should be noted that reliability of HRV data

for HRI experiments depends on what sensors will be used, as PPG sensors are sensitive to

motion and may not be suitable for certain forms of human-robot interaction. As I used an

earlobe sensor and participants were required to sit in a chair and interact with a robot, this

was not a problem for my experiment. The fact that HRV gives normal values is promising

for the reliability of HRV as a metric in HRI experiments. However, due to the low number

and demographics of the participants, together with the fact that there was no specific

stimulus to evoke a reaction, this needs to be investigated further.

Observations from the Literature

To better understand HRV and the way it was calculated, I started with reading a technical

paper that provided an overview of HRV metrics (Shaffer and Ginsberg, 2017). This

provided me with a decent basis for me to be able to understand what authors were talking

about when reading papers where HRV was analysed. However, it appears that distinctions

that are made in the technical paper are disregarded in practice. One example is the use of

RR intervals versus NN intervals, which I already mentioned earlier in this report. The

terms are often used interchangeably in papers, or when introducing RR intervals it is

actually stated they are known as NN intervals as well (e.g. Vescio et al., 2018, Morelli

et al., 2018). Reading these papers more thoroughly it appears that they do remove artefacts

but it would be more clear for laypeople if the terminology was consistent. Terminology is

not always consistent for frequency-domain analysis either. I did not discuss this type of

analysis in detail in this report as it is less relevant for me, but reading about it made me

realise there is inconsistency in terminologies used. The frequency-domain is divided into

four frequency bands (ultra-low-frequency, very-low-frequency, low-frequency and high-

frequency) that each represent different physiological processes like breathing patterns

or blood pressure regulation. Therefore, I was very surprised when I read in a paper that

the ULF band was introduced as ‘the frequencies below LF’ (Morelli et al., 2018). All

ULF is indeed below LF, but not all frequencies below LF are ULF, as they can also be
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VLF. However, as LF and HF are used most frequency for HRV analysis and ULF and

VLF not so much this was not a recurrent finding like the one discussed before about the

use of RR and NN. Another observation from the literature is that SDNN is used often for

short recordings. It is stated that SDNN is more precise when calculated over recordings

of 24 hours compared to shorter recordings (Shaffer and Ginsberg, 2017). However, often

SDNN is calculated for shorter recordings as well (e.g. Jong, Horng, et al., 2017, Vescio

et al., 2018, Matic et al., 2012, Jobbágy et al., 2017, Morelli et al., 2018).

However, as I am not an expert in the field, it may be that I am looking at this from

a too technical approach. For example, within HRI research we use many Likert type

questionnaires from which we then calculate the mean, where the correct way would be

to calculate the median. But as many studies now calculate the mean it appears to have

become the norm for analysing questionnaires. Perhaps something similar is the case in

HRV research as well, where there is a general understanding that artefacts are removed

so the terms RR interval and NN interval can indeed be used interchangeably. In the case

of calculating SDNN, it may be decided that SDNN is always measured as this is the

most used HRV metric together with RMSSD, or even though SDNN is more accurate for

long-term recordings it is still a reliable measurement for shorter recordings.

Future Work

As discussed above there are many opportunities for future work. For my thesis specifically,

I intend to look more in depth into these results. For example, why is the HRV of participant

5 so high and their stress level so low? What makes them stand out from the others? I will

look into this further by looking at their questionnaire data and video-recordings, which

I assume will provide me with interesting insights. Following that analysis, I intend to

argue in my thesis that a combination of questionnaires, recordings and physiological data

provides the best insights in our understanding of human-robot interactions.
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