
TZ-VirtIO: enabling standardized inter-partition
communication in a TrustZone-assisted hypervisor

A. Oliveira, J. Martins, J. Cabral*, A. Tavares*, S. Pinto*
Centro Algoritmi - University of Minho

{a65319, a60141}@alunos.uminho.pt, *{jcabral, atavares, sandro.pinto}@dei.uminho.pt

Abstract—Virtualization technology allows the coexistence and
execution of multiple operating systems on top of the same hard-
ware platform. In the embedded systems domain, virtualization
has been focused on the isolation of critical requirements like
real-time, security and safety from non-critical characteristics.
The strict confinement of guest partitions typically provided by
virtualization does not suit the modular and inter-cooperative
nature of embedded systems. The need for inter-partition commu-
nication has been addressed by multiple virtualization solutions,
either to enable guest-level device para-virtualization or to ensure
increased flexibility regarding cooperative partitions. However,
the majority of existing approaches follow an ad hoc approach
with limited to none applicability outside their solution’s scope.

This paper presents TZ-VirtIO, an asynchronous standard-
ized inter-partition communication (IPC) mechanism on top
of a TrustZone-assisted dual-OS hypervisor (LTZVisor). The
implemented IPC uses the standard VirtIO transport layer. The
experiments conducted on a physical platform show a scalable,
high-bandwidth and low-overhead solution for both single-core
and multi-core architectures.

Index Terms—TrustZone, Virtualization, Communication,
Monitor, Security, VirtIO, ARM.

I. INTRODUCTION

Virtualization technology has been used as one of the

mainstream approaches to allow the coexistence of multiple

operating systems (OSes) on the same hardware platform [1].

In the embedded systems field, virtualization has been focused

on the isolation of critical requirements from non-critical

characteristics. Embedded industrial, automotive and medical

applications, need to guarantee the deadlines of real-time tasks

and their security, while at the same time, integrating rich

environments for monitoring and network purposes [2], [3].

Despite all the advantages of virtualization, the rigid isola-

tion of traditional virtualized environments is not particularly

suitable for meeting embedded industries requirements. The

strict partition confinement interferes with the embedded sys-

tems modular and inter-cooperative nature. Hence, embedded

systems virtualization disrupts from traditional virtualization

given its need for low-overhead, high-bandwidth and se-

cure communication channels bridging guest partitions [4].

The communication enables cooperation of the embedded

subsystems, allowing for a possible balanced workload and

cooperation between different and heterogeneous OS classes.

Several virtualization solutions such as Xen [5], SASP [6],

SafeG [7], Jailhouse [8], and BlueVisor [9] have implemented

inter-partition communication mechanisms, but all of them

follow an ad hoc implementation. VirtIO [10], a device ab-

straction composed by a set of arrays and descriptors, was

proposed as de-facto standard for virtual I/O devices, and

adopted by KVM [11] and lguest [12] for enabling device

para-virtualization. More recently, VirtIO, as a result of its

abstraction capabilities and efficient performance, was adopted

as the transport abstraction layer for several communication

mechanisms [13] [14], including Texas’ RPMsg. The pair

RPMsg/VirtIO, a multi-core communication mechanism, was

later included on popular multi-core heterogeneous frame-

works such as OpenAMP and MEMF [15].

This paper presents the implementation of a standard-

ized inter-partition/inter-core communication mechanism in a

TrustZone-assisted hypervisor (LTZVisor [3], [16]). The com-

munication mechanism uses the standard VirtIO as the trans-

port abstract layer. The implemented mechanism features an

asynchronous inter-partition communication supporting both

single- and multi-core architectures. The conducted experi-

ments demonstrate the feasibility of the proposed approach,

presenting promising results in both system configurations

(single- and multi-core). The proposed solution distinguishes

from related work by implementing a standardized commu-

nication interface on a TrustZone-assisted hypervisor, while

keeping the system’s real-time capabilities.

II. BACKGROUND

A. ARM TrustZone

ARM TrustZone is a security technology deployed on cur-

rent system-on-chip (SoC). The technology has been available

on ARM application processors (Cortex-A) for several years

and has recently been extended to cover the new generation

of ARM microcontrollers (Cortex-M). TrustZone for ARMv8-

M has the same high-level features as TrustZone for Cortex-A

series, but its design is optimized for microcontrollers and low-

power applications. The remainder of this section focus on the

specificities of TrustZone for the application processors.

At the heart of TrustZone approach is the concept of

secure and non-secure worlds. These two virtual environments

are completely hardware isolated, with non-secure software

blocked from directly accessing secure world resources. The

current world in which the processor runs is determined by the

Non-Secure (NS) bit, and is propagated over the memory and

peripheral buses. The transition between the secure and non-

secure worlds can be bridged via the secure monitor, which

runs at the highest privileged processor mode (monitor mode).

To enter the monitor mode, a new privileged instruction, SMC

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:28:17 UTC from IEEE Xplore. Restrictions apply.

(Secure Monitor Call), was specified. The monitor can also

be triggered by configuring it to handle exceptions in the

secure world. Still at the processor level, to ensure a strong

isolation between secure and non-secure states, some special

registers are banked, and some security critical registers are

totally unavailable to the non-secure world. The memory

infrastructure outside the core can also be partitioned into the

two worlds through the TrustZone Address Space Controller

(TZASC). DRAM can be partitioned into distinct memory

regions, each of which can be configured to be used in either

world. Furthermore, the processor provides two virtual Mem-

ory Management Units (MMUs), and isolation is also present

at the cache-level. System peripherals can also be configured

as secure or non-secure through the TrustZone Protection

Controller (TZPC). The Generic Interrupt Controller (GIC)

provides both secure and non-secure interrupt sources, while

allowing the configuration of secure interrupts with a higher

priority than the non-secure interrupts.

B. LTZVisor

LTZVisor [3], from TZVisor Project1, is an open-source

lightweight TrustZone-assisted hypervisor mainly targeting the

consolidation of mixed-criticality systems. LTZVisor imple-

ments the classical dual-guest OS configuration: the secure

world hosts the real-time operating system (RTOS) and the hy-

pervisor, while the non-secure world is assigned to the general-

purpose operating system (GPOS) (Fig. 1). LTZVisor provides

support for a single-core configuration, and LTZVisor-AMP

[16] implements support for a supervised asymmetric multi-

processing configuration.

The hypervisor runs in the highest privileged processor

mode, i.e. the monitor mode. It is responsible for enforcing the

inter-partition isolation, through several configurations such as

memory and device partition, as well as exception handling.

The RTOS kernel runs in the supervisor mode of the secure

partition. Therefore, it has full view over the non-secure privi-

leged software, which means it is part of the trusted computing

base (TCB) and necessarily must have a small footprint.

The GPOS kernel runs in the supervisor mode of the non-

secure partition. The secure partition is completely isolated

from the non-secure partition, and any attempt from the non-

secure guest OS to access any of the secure world resources

will immediately trigger an exception to be handled by the

hypervisor. In LTZVisor-AMP, each partition has an assigned

dedicated core following a one-to-one mapping between guest

OSes, cores and processor states. The hypervisor runs in the

secure world. Its main features run on the secure core, whereas

a service layer in the non-secure core provides inter-partition

communication support and exception handling for the GPOS.

Spatial isolation between guest OSes is enforced by the

TrustZone-aware hardware. The hypervisor uses the TZASC

to configure the security state of the memory blocks of the

respective partition. LTZVisor follows the suggested ARM

model, assigning fast interrupt requests (FIQs) to the secure

1http://www.tzvisor.org/

RTOS

LTZVisor
ARM TrustZone-enabled SoC

GPOS

M
on

ito
r

m
od

e
Ke

rn
el

m
od

e

Secure Partition (RTOS)

U
se

r
m

od
e

GPOS Tasks RTOS Tasks

Non-Secure Partit ion (GPOS)

Fig. 1: LTZVisor generic architecture

partition and interrupt requests (IRQs) to the non-secure

partition. In the single-core architecture, while executing in the

non-secure world, FIQs are set to be handled by the hypervisor.

The hypervisor will then trigger a context-switch to the secure

partition, resulting in minimal interrupt latencies for the real-

time OS.

C. VirtIO

VirtIO [10] emerged as an attempt to become the de-facto
standard for virtual I/O devices in para-virtualized hypervi-

sors. VirtIO is an abstract layer providing a set of front-end

and back-end para-virtualization drivers in order to alleviate

the complexity of emulating a device. Initially exclusively

intended for Linux para-virtualization, it was later extended to

bare-metal/RTOS within the OpenAMP project scope. VirtIO

uses a set of arrays and descriptors to implement a virtual

queue which encapsulates the control and shared data. Its ef-

ficiency results from its ring buffer structure which eliminates

the need for mutual exclusion primitives or unnecessary data

copies. The virtual queue conceptually binds the front-end and

back-end drivers.

Amongst the VirtIO supported devices is the RPMsg device.

The RPMsg device is not designed for para-virtualization;

however, it takes advantage of the underlying transport ab-

straction layer, the virtual queues, used as its communication

transport layer. The intended back-end and front-end drivers

are converted in master and slave communication drivers,

respectively. RPMsg communication was proposed under the

scope of heterogeneous inter-core communication.

RPMsg defines a point-to-point non-persistent asynchronous

communication. Each point-to-point communication is defined

as a RPMsg channel. Each channel may contain several

endpoints, with their own call backs, enabling several distinct

communication applications within the same channel. Each

RPMsg VirtIO device uses two sets of virtual queues, which

are converted into unidirectional transport channels with spe-

cific and individual interrupts. Each channel has defined two

sources of interrupts: one for message transmission notifica-

tion; and the other for buffer freed notification. In order to

enable unordered messages between different endpoints, the

non-persistent communication requires the use of a header in

each transaction.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:28:17 UTC from IEEE Xplore. Restrictions apply.

Rpmsg
(Master/Slave)

LTZVisorLTZVisor
ARM TrustZone-enabled SoC

M
on

it
or

m

o
de

Ke
rn

el
m

o
de

Secure Partition (RTOS)

Shared
Memory

Data Path

U
se

r
m

o
de

Comm. Task

VirtIO
Rpmsg

(Master/Slave)

Comm. Task

Non-Secure Partition (GPOS)

Event Path (IPI)

VirtIO

Fig. 2: TZ-VirtIO generic architecture

III. TZ-VIRTIO

Fig. 2 depicts the proposed TZ-VirtIO communication

mechanism implemention. TZ-VirtIO encompasses: 1) the

RPMsg and VirtIO driver modules, 2) optional user-space

communication tasks and 3) isolated data and event paths.

The latter promotes unblocking asynchronous communication,

essential for the timing requirements of the secure guest.

It features a shared memory block at kernel-level and an

event path routed through the hypervisor. An adaptation of

the inter-core RPMsg defined communication protocol to an

inter-partition supervised architecture was performed.

A. Data Path

The data path is defined by a shared block of memory

configured as non-secure. The shared memory block is config-

ured at compile-time and it is statically allocated at boot-time.

The hypervisor sets this block memory as non-secure through

the TZASC so both the non-secure and secure partitions can

access it. Both guests allocate the shared memory at kernel-

level. Linux, the GPOS used on the deployed system, assigns

the shared memory block to the VirtIO device through the

contiguous memory allocator (CMA) driver.

The RTOS should be designated as the communication

master, even though both modes are available in both guests’

communication mechanism. The communication master is

responsible for the management of the shared memory at boot-

time and consequently the initial organization of the VirtIO

buffers, a task which should, therefore, be handled by the

trusted privileged software, i.e. the RTOS.

B. Event Path

Existing TrustZone-assisted trusted execution environments

(TEE), such as IIoTEED [17] and Linaro’s OP-TEE2, rely on

the use of the SMC instruction to implement their event path.

Typically, this approach implements an RPC schema, which

requires a prompt world-switch and an immediate handling.

This method does not seem suitable under the LTZVisor scope,

because it would lead to considerable inter-guest interference,

2https://www.linaro.org/initiatives/op-tee/

lack of predictability and even jeopardization of the real-time

guarantees.
TZ-VirtIO explores the use of Inter-Processor Interrupts

(IPIs) to implement the inter-partition notifications of RPMsg.

These interrupts cannot be issued natively as the TrustZone

hardware blocks the non-secure world from interrupting the

secure world. Moreover, on the single-core configuration, a di-

rect trigger of the interrupt would cause a self-interrupt on the

same guest generating it. For these reasons the interrupts are

routed through the hypervisor. The event path routing imposes

a slight increase in the partition-switching time, however, it

also guarantees the reliability of the communication as the

hypervisor has control over every transaction.
The direct triggering of an IPI was replaced by an interrupt

request to the hypervisor via the SMC instruction, forcing

an immediate switch to the monitor mode. The hypervisor

then follows one of two approaches, depending of the system

configuration (single or multi-core): 1) stores the interrupt

request in a circular buffer and during the next context-switch

triggers a previously stored IPI to the respective guest OS

or 2) it immediately generates the IPI. The first approach is

valid for the single-core configuration while the second one

can only be used on the asymmetric multiprocessing schema.

Regardless of the configuration, the request interface remains

the same, providing an architecture configuration abstraction

at guest-level of the event path.
In the single-core configuration, the interrupt requests are

stored in a buffer, part of the targeted guest virtual ma-

chine context block (VMCB). The storing mechanism does

not require a prompt context-switch, protecting the real-time

requirements of the RTOS. The interrupt will only be triggered

during the next scheduled context-switch. A limit of one

interrupt per world-switch was imposed in order to lower the

communication interference in the partition-switching time.

From the two interrupts available per channel, the message no-

tification interrupt has the highest priority in the storage buffer.

The natively supported burst mode (one interrupt for several

messages) of RPMsg allows the aforementioned imposed limit

without bottlenecking the communication performance. The

storage mechanism chosen, a circular buffer which follows a

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:28:17 UTC from IEEE Xplore. Restrictions apply.

first-in first-out policy, enables the scalability of the solution

in a multi-guest architecture.

C. RPMsg Adaptation
Russell’s VirtIO [10] and Texas RPMsg implementations

provide the foundation for TZ-VirtIO implementation on top

of the GPOS, while OpenAMP RPMsg and VirtIO implemen-

tation provides the foundation for the RTOS approach.
Amongst the modifications in the communication adaptation

is the Remoteproc module elimination, intrinsically connected

with RPMsg and VirtIO. Remoteproc contains the processor-

dependent software and is responsible for the processor cores

life cycle management and application binary load on its

native implementation. However, these last features violate

the virtualization isolation imposed by the hypervisor and

are already part of the LTZVisor framework. The VirtIO

configuration and memory allocation are now performed stat-

ically by the RPMsg module. Furthermore, the pair GPOS-

slave/RTOS-master modes were implemented using the same

RPMsg/VirtIO standards. On both configurations the RPMsg

blocking fetch of VirtIO buffers was removed.

D. Key Features
The key features of TZ-VirtIO can be summarized as:

• Memory fault proof – all of TZ-VirtIO resources are

allocated statically, including the shared memory region

and VirtIO’s shared memory control data, hindering any

access to unmapped or inexistent memory.

• Real-time – LTZVisor’s real-time requirements are un-

affected by TZ-VirtIO’s communication due to its asyn-

chronous multipath communication properties. The com-

munication tasks are assigned with the lowest priority

and VirtIO implements lock-free shared memory uni-

directional FIFOs and non-blocking fetch of buffers.

Furthermore, TZ-VirtIO contemplates, on both single-

and multi-core configuration, an interrupt request disabler

at hypervisor level, to be used by any of the receiving

guests, foreshadowing an RTOS possible need for critical

sections or a malicious use of the interrupt.

• Throughput – TZ-VirtIO efficiency relies on its VirtIO

transport layer. The use of shared memory reduces the

overhead induced by avoidable data copies. Moreover,

the RPMsg burst message capability combined with the

interrupt storing mechanism provide an efficient separated

event path without unnecessary context-switch overhead.

E. Limitations
Although announced as RPMsg/VirtIO communication pos-

sible capabilities, some features such as zero-copy and mes-

sage sampling, as well as the implementation of remote

procedure call (RPC) pattern on top of the RPMsg were not

implemented in TZ-VirtIO. The single interrupt triggering per

context-switch can be seen as a limitation on specific cases,

given that the ”buffer free” interrupt has lower priority than

the message notification interrupt inside the hypervisor storage

buffer, and could represent a bottleneck on buffer fetch event-

driven applications.

TABLE I: Memory Footprint (bytes)

Sections
Total

.text .data .bss

Single-core 52868 284 452656 505808

Single-core
comm

80548 752 453316 534616

Multi-core 46488 284 423984 470756

Multi-core
comm

80312 752 424644 505708

TABLE II: Context-switch average duration

Context-
Switch

Buffer
μ

(clock cycles)
σ

(clock cycles)

Secure to
Non-Secure

- (1.1) 1675 39
Empty (1.2) 2150 53
Filled (1.3) 3885 49

Non-Secure
to Secure

- (2.1) 3411 46
Empty (2.2) 3990 49
Filled (2.3) 5610 55

IV. EVALUATION

The performance of the communication mechanism and

its impact on LTZVisor was evaluated in the Zedboard,

a TrustZone-enabled platform endowed with a dual ARM

Cortex-A9 running at 667MHz. The hardware architecture

enables the characterization of both the single-core and multi-

core capabilities of the TZ-VirtIO communication. Perfor-

mance results were gathered resorting to the Performance

Monitoring Unit (PMU) component present in the SoC. Mem-

ory footprint results were collected using the size tool of ARM

GNU Xilinx toolchain. Linux (version 4.0) and FreeRTOS

(7.0.2) run as non-secure and secure guest OS, respectively.

A. Overhead

TZ-VirtIO introduces two sources of overhead in the LTZVi-

sor system: memory overhead and context-switch time over-

head. The context-switch overhead is only present in the

single-core architecture and has two distinct parts: the handling

of the interrupt storage circular buffer by the hypervisor and,

in case of interrupt existence, its consequent triggering. Hence,

the context-switch overhead was monitored in three different

scenarios: with interrupts disabled (1.1 and 2.1 in Table II)

and with interrupts enabled; the latter either with the interrupt

buffer empty (1.2 and 2.2) or filled (1.3 and 2.3).

Table I displays the memory footprint in bytes for each

software component for both single-core and multi-core con-

figurations. The memory footprint refers exclusively to the

system’s TCB, i.e., the software running on the secure world

side: LTZVisor and RTOS. In accordance with Table I, TZ-

VirtIO represents an addition of 5,7% and 7,2% in the memory

footprint for the single-core and multi-core configurations,

respectively.

As for the context-switch performance, each test was re-

peated a hundred times, and the results report the mean (μ)

value and the respective standard deviation (σ) of the collected

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:28:17 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60
80

100

120

140

0
2
4
6
8

10
12
14
16

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (M

bp
s)

Data Size (Bytes)
Single-core (Latency) Multi-core (Latency) Single-core (Throughput) Multi-core (Throughput)

Fig. 3: TZ-VirtIO latency and throughput for different data size (single-core and multi-core)

measurements. The fluctuation in the measured values, in spite

of the constant number of instructions executed, is justified

by some dynamic architectural features of the Cortex-A9

processor, such as cache and branch prediction.

Table II presents the overhead introduced in the context-

switch performance. An addition of 28,36% and 16,97% to

the ”secure to non-secure” and ”non-secure to secure” context-

switch time, respectively, is caused solely by the storage

interrupt buffer handling (1.2 and 2.2). In case it requires an

interrupt triggering, scenarios 1.3 and 2.3, the impact on the

context-switch time is much higher, increasing the context-

switch time by 132% and 64,4%, respectively.

The values presented in Table II indicate that, as expected,

the inter-partition interrupt routing through the hypervisor has

a slightly negative impact on the global system performance

and latency. Although a mandatory characteristic in the single-

core architecture, this event routing also represents a trade-off

between performance and security. It guarantees the reliability

of the communication, providing a secure interface for the

inter-partition notification system.

B. Performance

To assess the performance of the implemented communi-

cation mechanism the experiments were conducted for a best

case scenario. The low priority assigned to the communication

tasks (i.e., for keeping LTZVisor real-time requirements near

intact) results in an amount of non-deterministic restraints

which make very difficult to experiment a worst-case eval-

uation (which ultimately could lead to the non-existence of

communication). Therefore, to setup the best case scenario no

real-time tasks were added to the system, which mean the

communication tasks had the highest priority of execution.

For this test case scenario the RTOS was configured as

master (communication is issued from the FreeRTOS to the

Linux) and its buffer payload maximum size was set to

512 bytes. Each value represents the throughput and latency

equivalent to the time measured between the issue of the

first message until the arrival of the last message for the

different payload sizes. Each sample reflects the average of

100 collected measurements.

Fig. 3 depicts the throughput and latency for different data

sizes. For a single message, i.e. size below 512 bytes, the

throughput is very similar for both single-core and multi-

core configurations. For a data size of 1 byte, the throughput

of the single-core configuration is 17% less than for the

multi-core configuration. The reason behind this penalty is

related to the extra context-switch time needed to handle

asynchronous notifications, which do not happen in a multi-

core configuration. This performance degradation decreases as

the data size increases, reaching 1% for a message with 512

bytes. When the data size is higher than 512 bytes, i.e. more

than one message is transmitted, the throughput for the single-

core communication keeps near 8Mbps. For the the inter-

partition communication in the multi-core configuration its

throughput reaches 14,5Mbps, which means an improvement

of 85% comparing with the single-core architecture. This

values demonstrate the performance enhancement provided by

the parallel processing of the multi-core configuration.

V. RELATED WORK

Several virtualization solutions implement inter-partition

communication mechanisms, either with the intent of provid-

ing guest-level device para-virtualization or merely to provide

a communication infrastructure among partitions. However,

the majority of existing solutions follows an ad hoc imple-

mentation with limited applicability outside their proposed

solution’s scope.

Xen [5] implements its own communication mechanism

with a transport system which was the inspiration for VirtIO.

Despite its widespread popularity, the use of this communi-

cation system outside of Xen scope is severely difficult as it

would require the support for Xen-Bus probing and configu-

ration system. The inter-domain communication mechanism

is mainly used for device para-virtualization. Contrarily to

typical approaches, Xen places the back-end drivers on the

most privileged guest (Dom0) which has full ownership over

the systems devices. The least privileged guests (Dom-U)

communicate with Dom0 through the front-end drivers.

SASP [6], a dual-OS TrustZone-based solution, implements

a secure device access similar to Xen’s: only one partition

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:28:17 UTC from IEEE Xplore. Restrictions apply.

has full access to the system devices, requiring device para-

virtualization at guest level. The underlying communication

mechanism between guests follows a similar approach to TZ-

VirtIO on the event path level, featuring the use of IPIs.

However, SASP implements a synchronous communication

with shared memory at monitor level, which reveals a blocking

mechanism with unnecessary data copies, favoring reliability

at the expense of performance.

SafeG [7] implements a TrustZone-based dual-OS commu-

nication system. It features several unique mechanisms: shared

memory at user-space level, range-checking control data,

message filters, and interrupt limiters. The shared memory is

managed by untrusted-privileged applications exposing it to

potential malicious software attacks by untrusted-unprivileged

applications. The communication presents some similarities

with TZ-VirtIO such as availability of single event notification

for several messages and transmission messages divided into

two different paths (data and event); however, it follows a

non-standardized interface.

Jailhouse [8] is an open-source Linux-based hypervisor.

Shared device access and inter-domain communication is

enabled by the hypervisor through shared mapped-IO and

shared memory, respectively. Both kinds of communication

are unsupervised, compliant with its minimalistic design, an

unreliable approach which depends on the guests appropriate

behavior. The inter-partition communications implementation

is based on virtual peripheral component interconnect (PCI)

using Message Single Interrupts (MSI-X) or legacy interrupts;

optionally, a virtual ethernet link can be implemented on top

of it. In systems lacking PCI hardware, Jailhouse emulates a

simple generic PCI host controller.

KVM [11] and lguest [12], both Linux-hosted hypervisors,

make use of the standardized VirtIO drivers to implement

device para-virtualization. lguest was implemented as proof

of concept and with the aim to standardize open-source para-

virtualization techniques. KVM, a mature approach on Linux-

centric hypervisor, followed lguest in the use of VirtIO. The

communication mechanism in these hypervisors is, however,

limited to guest-host communication.

VI. CONCLUSION

This paper presented a standardized inter-partition commu-

nication for a TrustZone-assisted hypervisor. TZ-VirtIO pro-

vides an asynchronous non-persistent communication mecha-

nism independent of the core architecture of the hypervisor,

supporting both single and multi-core configurations. The

proposed approach is based on the VirtIO standard, and

makes use of its infrastructure for the communication transport

abstraction layer. Experiments demonstrated a negative impact

on the hypervisor context-switch execution time, on the single-

core configuration, mainly caused by the event path routing.

However, without the event path the communication would

become unsupervised and thus, unreliable. Assessed results

demonstrate the maximum throughput increases from 8 Mbps

to 14.5 Mbps when the system scales from a single- to a multi-

core configuration.

Work in the near future will focus on the evaluation on

a broader spectrum of scenarios and on the implementation

of additional communication features such as zero-copy and

message sampling. In the near feature, we also plan to merge

this communication subsystem to the open-source project’s

repository.

VII. ACKNOWLEDGEMENTS

This work has been supported by COMPETE: POCI-01-

0145-FEDER-007043 and FCT - Fundação para a Ciência e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] J. Shuja, A. Gani, K. Bilal, A. U. R. Khan, S. A. Madani, S. U. Khan,
and A. Y. Zomaya, “A survey of mobile device virtualization: Taxonomy
and state of the art,” ACM Comput. Surv., vol. 49, no. 1, pp. 1:1–1:36,
Apr. 2016.

[2] G. Heiser, “Virtualizing embedded systems - why bother?” in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2011, pp.
901–905.

[3] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor:
TrustZone is the Key,” in 29th Euromicro Conference on Real-Time
Systems, ser. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 76. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017, pp. 4:1–4:22.

[4] G. Heiser and B. Leslie, “The OKL4 Microvisor: Convergence Point of
Microkernels and Hypervisors,” in Proceedings of the First ACM Asia-
pacific Workshop on Workshop on Systems, ser. APSys ’10. ACM,
2010, pp. 19–24.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Oct. 2003.

[6] S. W. Kim, C. Lee, M. Jeon, H. Y. Kwon, H. W. Lee, and C. Yoo,
“Secure Device Access for Automotive Software,” ICCVE International
Conference on Connected Vehicles and Expo, pp. 177–181, 2013.

[7] D. Sangorrı́n, S. Honda, and H. Takada, “Reliable and efficient dual-OS
communications for real-time embedded virtualization,” Information and
Media Technologies, vol. 8, no. 1, pp. 1–17, 2013.

[8] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, no
VM Exits! (Almost),” CoRR, vol. abs/1705.06932, 2017.

[9] Z. Jiang, N. Audsley, and P. Dong, “BlueVisor: A Scalable Real-Time
Hardware Hypervisor for Many-core Embedded Systems,” in 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), April 2018, pp. 75–84.

[10] R. Russell, “Virtio: Towards a De-facto Standard for Virtual I/O De-
vices,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008.

[11] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor,” SIGPLAN Not., vol. 49, no. 4, pp. 333–
348, Feb. 2014.

[12] R. Russel, “lguest: Implementing the little Linux hypervisor,” IBM
OzLabs, vol. 7, pp. 173–178, 2007.

[13] S. Patni, J. George, P. Lahoti, and J. Abraham, “A zero-copy fast channel
for inter-guest and guest-host communication using VirtIO-serial,” in
2015 1st International Conference on Next Generation Computing
Technologies, Sept 2015, pp. 6–9.

[14] F. Diakhaté, M. Perache, R. Namyst, and H. Jourdren, “Efficient shared
memory message passing for inter-vm communications,” in Euro-Par
2008 Workshops - Parallel Processing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 53–62.

[15] F. Baum and A. Raghuraman, “Making Full use of Emerging ARM-
based Heterogeneous Multicore SoCs,” XCell95, Xillinx, October 2015.

[16] S. Pinto, A. Oliveira, J. Pereira, J. Cabral, J. Monteiro, and A. Tavares,
“Lightweight multicore virtualization architecture exploiting ARM
TrustZone,” in IECON 2017 - 43rd Annual Conference of the IEEE
Industrial Electronics Society, Oct 2017, pp. 3562–3567.

[17] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares, “IIoTEED:
An Enhanced, Trusted Execution Environment for Industrial IoT Edge
Devices,” IEEE Internet Computing, vol. 21, no. 1, pp. 40–47, Jan 2017.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:28:17 UTC from IEEE Xplore. Restrictions apply.

