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ABSTRACT More versatile, user-independent tools for recognizing and predicting locomotion modes 

(LMs) and LM transitions (LMTs) in natural gaits are still needed. This study tackles these challenges by 

proposing an automatic, user-independent recognition and prediction tool using easily wearable kinematic 

motion sensors for innovatively classifying several LMs (walking direction, level-ground walking, ascend 

and descend stairs, and ascend and descend ramps) and respective LMTs. We compared diverse state-of-

the-art feature processing and dimensionality reduction methods and machine-learning classifiers to find an 

effective tool for recognition and prediction of LMs and LMTs. The comparison included kinematic 

patterns from 10 able-bodied subjects. The more accurate tools were achieved using min-max scaling [-1;1] 

interval and “mRMR plus forward selection” algorithm for feature normalization and dimensionality 

reduction, respectively, and Gaussian support vector machine classifier. The developed tool was accurate in 

the recognition (accuracy > 99% and > 96%) and prediction (accuracy > 99% and > 93%) of daily LMs and 

LMTs, respectively, using exclusively kinematic data. The use of kinematic data yielded an effective 

recognition and prediction tool, predicting the LMs and LMTs one-step-ahead. This timely prediction is 

relevant for assistive devices providing personalized assistance in daily scenarios. The kinematic data-based 

machine learning tool innovatively addresses several LMs and LMTs while allowing the user to self-select 

the leading limb to perform LMTs, ensuring a natural gait. 

INDEX TERMS kinematic data, machine learning, motion intention recognition, motion transition 

prediction 

I. INTRODUCTION 

Humans can perform distinct locomotion modes (LMs) in a 

variety of conditions and terrains in their daily routine. The 

classification of daily LMs and LM transitions (LMTs) is 

required to timely tune the assistance provided by the 

robotic assistive devices (e.g., orthoses and prostheses) 

according to the patient’s LM and to generate smooth 

transitions, respectively [1]. The recognition and prediction 

of LMs and LMTs is a requirement in the assist-as-needed 

paradigm to foster personalized gait assistance in daily-life 

scenarios [1], [2]. Recognition tackles the classification of 

the ongoing LMs and LMTs, whereas the prediction refers 

to the classification one-step-ahead of their occurrence. For 

this purpose, it is necessary to develop automatic, user-

independent tools capable of recognizing and predicting the 

LM and LMTs using wearable sensors [1].  

Multiple efforts have been made to develop automatic 

LM recognition tools. Part of them tackles pattern-

recognition from electromyography (EMG) data [3]–[5]. 

However, EMG sensors present some drawbacks when 

compared to kinematic sensors, such as the lengthy and 

expert-based installation, difficulty for keeping them 

attached during the user’s daily locomotion, and the shifting 
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electrodes may change EMG patterns and degrade the 

classification over time [2], [4], [6].  

To avoid these limitations, more cost-effective, wearable 

kinematic sensors, namely inertial measurement units 

(IMUs), have been applied. Previous studies [2], [6], [7] 

have proposed LM recognition tools driven by IMU sensors 

and validated in able-bodied subjects. Jang et al. [7] and Li 

et al. [2] applied a finite state machine whereas Liu et al. 

[6] and Leuenberger et al. [8] employed machine learning 

approaches, namely the linear discriminant analysis (LDA) 

and the k-nearest neighbors (KNN), respectively. Despite 

their contribution to accurate recognition tools, these works 

did not tackle the LM prediction problem, nor LMT 

classification, both demanded on robotic-based 

rehabilitation and assistance.  

The existing state-of-the-art [5], [10], [11], for predicting 

LMs and recognizing LMTs, presents some methodological 

drawbacks. Huang’s work [5] used LDA and support vector 

machine (SVM) to recognize five LMTs (level-ground 

walking to stair ascent, ramp ascent, and stepping over an 

obstacle and stair descent and ramp descent to level-ground 

walking). Despite the successful classification, some factors 

are limiting this work; namely, the tool depends on EMG 

information, and transitions were recognized when one of 

the legs was already on the next terrain type. This transition 

assumption, also observed in [10], does not lead to a 

genuinely user-independent tool since the user is asked to 

start the terrain transition with a predefined limb, and it 

may interfere with the natural gait flow. In contrast, Chen et 

al. [11] applied LDA for LMT recognition without 

imposing a predefined leg for performing the transition. 

This tool was not prepared to recognize common LMTs 

between the level-ground and ramp.   

There is still a set of challenges to be pursued, such as to 

(i) develop a more versatile tool for predicting and 

recognizing more daily performed LMs and LMTs; (ii) use 

discriminative sensor data measured by easily wearable 

sensors, such as kinematic data collected from IMUs, to 

ensure a natural gait; and, (iii) allow the user to freely 

choose the leading limb to perform the LMT. The latter 

challenge demands less cognitive effort from the user and 

enabling a more natural walk during daily activities.  

This study tackles the mentioned challenges. It proposes 

a versatile, automatic, user-independent recognition and 

prediction tool for classifying LMs and LMTs using 

kinematic patterns collected from easily wearable sensors 

(i.e., IMUs) that fosters a more natural gait. The recognition 

and prediction tool aims an efficient classification of the 

LMs commonly encountered in the daily life while 

covering different walking directions (i.e., forward, back, 

clockwise, and counter-clockwise) along with variations in 

gait speed and terrains (i.e., flat, ascending and descending 

stairs, climbing up and down ramp, stepping over 

obstacles). The tool also approaches transitions from/to 

those terrains using the user’s self-selected lower limb. We 

used heterogenous kinematic patterns from 10 able-bodied 

subjects, including variation in walking direction, gait 

speed, and terrain, to assess the tool’s effectiveness. To the 

best knowledge of the authors, there is yet no available 

automatic tool that is capable of accurately recognizing and 

predicting all these daily LMs and respective LMTs 

independently of the leading limb, and no prior study has 

addressed the transition prediction problem only including 

kinematic data of the step that precedes the LMT. 

Moreover, the proposed tool was able to achieve 

generalization for a given set of healthy subjects. It may be 

applied to establish a recognition and prediction tool for a 

segment of the population of pathological end-users. We 

exclusively used kinematic data from IMUs to explore the 

potential of using easily tracked data in high-complex 

decision making of several daily LMs and LMTs. The 

kinematic data contains valuable information on the time 

domain, which is essential for evaluating the natural human 

motion progress. 

Additionally, we compared standard machine learning 

classifiers of gait pattern recognition to find an accurate 

tool for both recognition and prediction purposes. We 

implemented a machine learning-based framework for 

enabling the fast and systematic benchmark, by applying 

various state-of-the-art algorithms namely, feature selection 

and pre-processing methods, and supervised machine 

learning classifiers (DA, KNN, random forest (RF), SVM, 

and multilayer perceptron-neural network (MLP)). 

This work aims to pursue two main research questions, as 

follows: (i) which machine learning-based configuration is 

best for the recognition and prediction of LMs and LMTs?, 

and (ii) Is it possible to recognize and predict LMs and 

LMTs using only kinematic data? These questions are 

explored in Section III and Section IV, respectively, 

considering the methods described in Section II. 

 
II. METHODS 

This section describes the machine learning-based 

framework implemented in Matlab® (2017b, The 

Mathworks, MA, USA). The framework, presented in Fig. 

1, was designed to enable the fast implementation, testing, 

and comparison of different feature processing methods and 

machine learning classifiers to identify an accurate 

classification model for both recognition and prediction 

purposes. This framework considers the most applied 

procedures in gait pattern recognition, as reviewed in [12].  

The framework describes the conducted stages in the 

training and testing phases. Given the possibility of 

comparing different techniques with the same kinematic 

data, we used this framework to answer the first research 

question to propose a versatile, effective, and benchmarking 

tool for the recognition and prediction of LMs and LMTs. 

We explain each stage of the proposed framework in the 

following. 
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FIGURE 1.  Schematic of the machine learning-based framework for 
LMs and LMTs recognition and prediction purposes. 

A. DATA ACQUISITION 

In the raw data table (Fig. 1), we included kinematic data, 

sampled at 200 Hz, namely the angle and angular velocity 

of the lower limb segments (thigh, shank, and foot) in the 

sagittal plane, and the angle and angular velocity of the 

torso in the sagittal and axial planes. Data were filtered by a 

1st order low-pass filter (exponential smoothing) with 0.5 as 

the smoothing factor and a cut-off of 10 Hz [13]. Appendix 

I provides instances of the collected data.  

1) PARTICIPANTS 

We included 10 able-bodied subjects (6 males, 4 females). 

The participants’ mean age was 27±7.35 years old, with a 

height of 1.70 ± 0.12 m and a weight of 62.63 ± 9.39 kg. 

All participants provided written and informed consent, 

according to the ethical conduct defined by the University 

of Minho Ethics Committee that follows the standards set 

by the declaration of Helsinki and the Oviedo Convention.  

2) EQUIPMENT 

We collected kinematic data using a wearable IMU-based 

system, InertialLAB (Fig. 2.A), given its usability and 

operability in daily scenarios, such as those considered in 

this study. It includes 7 IMUs (MPU-6050) connected via 

I2C protocol to the STM32F4 microcontroller, which has 

attached a USB flash drive to store the data. A 2000 mAh 

power-bank powered the InertialLAB. The IMUs were 

positioned on the outer side of the thighs and shanks, on top 

of the feet, and one IMU on the torso (Fig. 2.A).  

3) EXPERIMENTAL PROTOCOL 

Before data collection, we calibrated the InertialLAB while 

the subject was in the upright standing position for 5 s. 

Then, the participants performed randomly 9 trials per 

walking direction (3 trials per gait speed) considering the 

output of a random number generator (used to set the trial 

number randomly). The trials included different walking 

directions (forward, backward, clockwise, and 

counterclockwise) performed on a 10 m level-ground at 3 

self-selected gait speeds (slow, normal, and fast) in an 

indoor corridor.  

 
FIGURE 2.  A) Wearable sensor system (InertialLAB) used in the Data 
Acquisition stage. B) Instances of experimental protocol performed at 
the indoor staircase and outdoor ramp.   

Additionally, the subjects conducted 10 trials on four 

walking circuits at a self-selected gait speed. In the first 

circuit (Fig 3.A), they walked 2 m forward on level-ground; 

ascended the staircase; walked forward on level-ground for 

2 m and stopped; and descended the staircase back to the 

starting position. This circuit included 3 LMs (level-ground 

walking (LW), stair ascent (SA), and stair descent (SD)) 

and 4 LMTs (LW→SA, SA→LW, LW→SD, SD→LW). 

The indoor staircase (Fig 2.B) had 8 steps each with 17 cm 

of height, 31 cm of depth, and 110 cm width. On the second 

circuit, the participants walked 2 m forward on level-

ground; ascended a ramp; walked forward on level-ground 

for 2 m and stopped; and descended the ramp back to the 

starting position. The outdoor ramp (Fig 2.B) was 10 m 

with a 10º inclination. This circuit included 3 LMs (LW, 

ramp ascent (RA), and ramp descent (RD)) and 4 LMTs 

(LW→RA, RA→LW, LW→RD, RD→LW). On the 2 last 

circuits, the subjects walked forward 2 m on level-ground, 

step over an obstacle (SO), and walked forward 2 m (Fig. 

3.B). These circuits differ in the obstacle dimension. One 

circuit included an obstacle with 22 cm in height and 34 cm 

depth; whereas, the other circuit involved an obstacle with 

34 cm in height and 22 cm depth. The subjects could freely 

perform the LMTs with any leading leg to enable transition 

seamlessly and intuitively between LMs.  

An experimenter walked alongside the subjects marking 

the transitional moments (vertical red line in Fig. 3) using a 

digital button, similarly to [10], [14]. A transitional moment 

is a moment belonging to the interval from the instant the 

leading limb left the terrain to the instant that this limb 
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touched the other terrain. Fig. 3 shows that a transitional 

step differs for recognition and prediction purposes. For 

recognition, a transitional step refers to the period from the 

moment that the leading limb leaves the prior terrain (last 

foot contact) to the first moment that this limb touches the 

upcoming terrain (initial foot contact). For prediction, we 

used the step that precedes the ongoing transitional step (the 

one used in recognition), i.e., the prediction tackles one-

step-ahead of ongoing LM or LMT.  

 
FIGURE 3.  Representation of two circuits (staircase and obstacles), 
highlighting the transitional step, transitional moment, and the explored 
time window sizes for recognition and prediction using heel-strike (HS) 
and toe-off (TO) events. 

B. FEATURE CALCULATION 

The Feature Calculation stage aims to obtain a feature 

table that includes five types of features (the mean value, 

standard deviation value, range, and the values of the first 

and last positions of the stride) calculated per gait stride for 

each kinematic data of the raw data table, resulting in a 

total of 80 features. Previous intent recognition tools used 

these features [10], [14], [15]. Fig. 4 presents the content of 

the feature table.    

 

FIGURE 4.  Feature Table with 5 types of features per kinematic data. 

The gait stride’s boundaries were defined as the heel-

strike and toe-off events for recognition and prediction 

models, respectively, as illustrated in Fig. 3. We considered 

the toe-off event for prediction since it is a critical point for 

transition (i.e., the beginning of the transitional step) [10], 

and it has achieved low prediction errors [16]. We used an 

adaptive rule-based finite state machine [13] to segment 

these gait events from the feet gyroscopes’ signal 

monitored by InertialLAB.     

We investigated different time window sizes, established 

as fractions of the stride (namely, full-stride, 1/2, 1/3, 1/4, 

1/5, and 1/6), to identify the most representative window’s 

size for recognition and prediction models. We arbitrary 

selected the fractions of the stride, as in [16], to explore 

segmentation approaches less dependent on external tools 

for gait event detection in an attempt to minimize 

cumulative errors. As the time window size is based on 

fractions of the stride, it adapts automatically to gait speed 

variations instead of considering a fixed timing size. 

As depicted in Fig. 3, for recognition and prediction 

models, the features were calculated from a time window 

that starts with the heel-strike event and ends according to 

the selected stride’s fraction, and from a time window that 

starts according to the selected stride’s fraction and ends 

with the toe-off event, respectively.  

The feature table contains data from both legs [17]. 

There is evidence that bilateral features improve intent 

recognition [14] and that walking, especially transitions, 

requires bilateral coordination of the lower limbs because 

the leading and opposite legs have distinct biomechanical 

functions, even for unilaterally-impaired subjects. We 

explored two-leg feature approaches to study the relevance 

of discriminating the leading and opposite legs. The first 

approach considers the leading and opposite leg, whereas 

the second approach considers the left and right leg.  

C. PRE-PROCESSING  

The Pre-Processing stage is relevant for improving features 

using normalization techniques and for identifying 

discriminative features to build the models. 

We normalized the features by the subject’s height since 

the anthropometric scaling features reduce the variability of 

the feature table [12]. Additionally, we compared different 

normalization techniques, namely centering, z-score 

standardization, and min-max scaling [18].  

Subsequently, we compared the effects on the models’ 

performance of one filter feature selection method and one 

feature extraction method. As the filter method, we applied 

an ANOVA-based method, which uses the minimum-

redundancy maximum-relevancy (mRMR) algorithm to 

rank features in descending order according to their 

relevance [19]. Then, we used the ANOVA, starting on the 

highest-ranked feature, to assess which classes are 

distinguishable for the feature considering the feature’s 

mean and variance per class. This procedure was done until 
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there are a set of features that distinguish between all 

classes.  

 As the feature extraction method, we applied the 

principal component analysis (PCA) considering the Horn’s 

Parallel Analysis as a cut-off criterium for extracting the 

number of components to retain [20]. A component is 

retained whether the associated eigenvalue is higher than 

the 95th of the distribution of eigenvalues derived from the 

random data.  

D. DATA LABELING   

In the Data Labeling stage, the processed feature table was 

labeled according to the LM or LMT from whereas it was 

collected. For this purpose, we merged a priori knowledge 

of the feature’s origin with the transitional moment 

recorded during gait trials. During the training, the labeled 

feature table is the ground truth on which the model bases 

its decisions. 

We implemented 8 classification models for both 

recognition and prediction purposes (4 models for each 

one), following the classification scheme depicted in Fig. 5. 

From the processed feature table, we created the labeled 

feature table organized into 4 databases, one to train each 

classification model for recognition and prediction 

purposes. 

The features of the recognition and prediction databases 

were equally labeled as follows. The direction_ft database 

includes features from the trials varying the walking 

direction. This database contains 4 classes (i.e., forward, 

backward, counter-clockwise, and clockwise), and the 

features were labeled according to these classes. The 

database named sts_trs_ft contains two classes; the steady-

state step, that considers all gait steps associated with the 

LMs; and transition step, that includes the gait steps related 

to LMTs. We labeled the features of the 

steady_state_type_ft database according to the five steady-

state classes, one per LM (i.e., LW, SA, SD, RA, and RD). 

The database transition_type_ft includes features from 

transitional steps, which were labeled according to nine 

classes: LW→SA; SA→LW; LW→SD; SD→LW; 

LW→RA; RA→LW; LW→RD; RD→LW; and, SO. The 

period for crossing the obstacle (SO) refers to a transitional 

step from the first terrain (LW) to the second one (LW). 

 
FIGURE 5.  Schematic of the classification model’s sequence for 
recognition and prediction purposes. Identification of databases and 
corresponding classes. 

E. MODEL BUILDING   

The Model Building stage builds the classification models 

for recognition and prediction purposes. It may involve the 

application of wrapper and embedded feature selection 

methods and the optimization of the model’s 

hyperparameters.  

In this stage, we explored two wrapper methods, the 

“mRMR plus forward selection” and “forward selection 

plus backward selection”. When using “mRMR plus 

forward selection”, the features were ranked through the 

mRMR method, and a classification model was built and 

evaluated using the highest rated feature. A feature was 

only kept when it increased the performance. This selection 

was made for every feature or until the model reached the 

maximum performance (Mathew’s correlation coefficient 

equal to 1).  

When using “forward selection plus backward selection”, 

the feature that improves the performance the most in 

combination with the already established feature set was 

added to the set. Afterward, the backward selection was 

used on the obtained feature set, and the process was 

inverted; the features were iteratively removed if their 

absence did not affect the model’s performance. 

Moreover, we compared five machine learning 

classifiers, namely DA with linear and quadratic 

approaches; KNN, using both weighted and unweighted 

(regular) neighbor distances; RF; MLP; and, SVM, using 

linear, quadratic, cubic and Gaussian kernels. We 

implemented these classifiers due to their prevalence in gait 

pattern recognition [12]. This comparison aims to identify 

the better-suited classifier for the LM and LMT prediction 

and recognition purposes. 

We optimized the classifiers’ hyperparameters for each 

selected feature dataset until the best hyperparameter’s 

values were found. The KNN and RF were tuned by 

increasing the number of nearest neighbors (k) and the 

number of decision trees, respectively, starting with 1 until 

the performance reached the maximum value or started 

decreasing. For the SVM, we applied the grid-search 

strategy ([-10,10] interval) to tune the box constraint 

parameter (C) and the kernel scale parameter (σ) for the 

Gaussian kernel. For DA, we used the delta threshold set to 

0, and gamma regularization set to 1. The MLP consisted of 

one input layer (number of neurons equal to the number of 

selected features), two hidden layers of 10 neurons, and one 

output layer with the number of possible classes. The 

sigmoidal was the used activation function. The weights 

were updated through the backpropagation algorithm for 

1000 iterations with a learning rate set to 0.01.  

The implemented classification scheme seems to be 

advantageous compared with the one proposed in [10], [14] 

since it demands fewer models, decreasing the 

computational load, and allows the easy incorporation of 

further LMs and LMTs, adding versatility to the framework 

to act as a benchmark tool.  
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This stage produced 4 classification models (Fig. 5), one 

per database (direction_ft, sts_trs_ft, transition_type_ft, and 

steady_state_type_ft). The Direction Classification Model 

classified the gait step data according to the walking 

direction. If a gait step has been classified as forward, then 

it was classified as a steady-state step or a transitional step 

by the Steady-State/Transition Type Classification Model. 

If it has been classified as steady-state, the Steady-State 

Type Classification Model was used for the final 

classification. Otherwise, the final classification used the 

Transition Type Classification Model. This classification 

sequence was applied to build the recognition and 

prediction models. 

F. MODEL EVALUATION   

We evaluated the built model through cross-validation 

methods with a two-fold applicational goal. The first goal 

aims the hyperparameter tuning and comparison of the 

classification models using the different features and 

techniques, as listed in Table I. In this case, the Model 

Evaluation was performed by 2-fold cross-validation with 5 

repetitions for minimizing the computational burden 

associated with the models’ comparison. As the second 

goal, we evaluated the generalization capability of the final 

classification models using the leave-one-out cross-

validation [12]. We used Mathew’s correlation coefficient 

(MCC) for both comparison and reporting of model’s 

performances due to its good representative properties of 

unbalanced classes [21], as considered in this work. We 

also computed the accuracy (ACC) for comparing the 

results with the literature’s findings.  

III.  MACHINE LEARNING-BASED FRAMEWORK: 
RESULTS AND DISCUSSION 

This section presents a comparative analysis of the different 

techniques explored in some stages of the machine learning-

based framework detailed in Section II to answer the first 

research question for finding the machine learning-based 

configuration for the recognition and prediction of LMs and 

LMTs. Table I summarizes the purpose and conditions 

considered in this comparative analysis. 

A. FEATURE CALCULATION ANALYSIS  

Results of the recognition models show that using the full- 

stride fraction with the left/right approach outperforms 

(MCC = 0.907) all the other cases by a significant margin 

(MCC < 0.808). On the other hand, for prediction, the 

leading/opposite approach and 1/4 fraction of gait stride 

yielded the best results (MCC = 0.857). The latter remark 

suggests that the interval from 1/4 stride’s fraction to the 

toe-off event (likely from terminal stance phase to preswing 

phase) contains relevant information for the user’s motion 

prediction. We considered these findings in the subsequent 

analyses. They suggest that both the feature leg approach 

and the time window size affect the model’s performance, 

but these parameters depend on whether it is a recognition 

or prediction model. 

B. FEATURE NORMALIZATION ANALYSIS  

We verified that min-max scaling with the interval [-1;1] 

yielded the best results for recognition (MCC = 0.852) and 

prediction (MCC = 0.728). It was chosen for the remaining 

analyses, as proposed in [22]. Although min-max scaling 

may be sensitive to outliers, we did not observe this fact in 

this comparative analysis. Using no normalization or 

centering data had the same effect, suggesting that 

centering data to zero does not improve the classification 

based on kinematic features. Overall, the normalization had 

a more positive effect in recognition models (MCC > 

0.711) than in the prediction ones (MCC > 0.630).  

C. FEATURE SELECTION AND EXTRACTION 
ANALYSIS  

Overall, feature selection and extraction methods performed 

better in recognition models (0.677 < MCC < 0.96) than in 

the prediction ones (0.589 < MCC < 0.87). 

The application of an adequate dimensionality reduction 

method improved the effectiveness of the classifier 

compared to the inclusion of the entire dataset. This finding 

is according to the literature [12] since it results from the 

ability to create a compact set of uncorrelated features that 

still characterize the original data without redundancy. 

Using the “mRMR plus forward selection” method (MCC > 

0.8483) or “forward selection plus backward selection” 

(MCC > 0.8696), both feature selection methods, yielded 

similar results. However, the former is less computationally 

intensive, and while it selects a larger number of features 

than the latter method (20 and 13 features, respectively), it 

was the selected method allowing a feature reduction of 

TABLE I 

EXPERIMENTAL COMPARISON OF TECHNIQUES FROM FRAMEWORK’S STAGES 

Stage Purpose Condition 

Feature 

Calculation 

Window’s sizes (full-stride, 

1/2, 1/3, 1/4, 1/5,1/6) 

KNN classifier 

(k=1)a using all 

features Feature leg approaches 

(left/right or leading/opposite) 

Pre-Processing 

(Feature 

normalization) 

Normalization techniques 

(centering, z-score 

standardizing min-max scaling 

with [0; 1] interval, min-max 

scaling with [-1; 1] interval) 

KNN classifier 

(k=1)a using all 

features  

Pre-Processing 

(Feature 

selection and 

extraction) 

1 feature extraction (PCA) and 

3 feature selection methods 

(ANOVA-based method with 

mRMR, “mRMR plus forward 

selection”, “forward selection 

plus backward selection”) 

KNN classifier 

(k=1)a using 

features normalized 

by min-max scaling 

in [-1; 1] interval b 

Model Building 

9 machine learning classifiers 

(RF, linear and dynamic DA, 

regular and weighted KNN, 

SVM with linear, quadratic, 

cubic, and RBF kernels) 

Classifiers with all 

features normalized 

by min-max scaling 

in [-1; 1] interval 

a Only KNN classifier was used given its fast training with reliable results 
b Previously reported as the best normalization technique 
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75% from a total of 80 features. This sequential selection 

and ranking-based methods were used in [8], [23], [24]. In 

particular, the findings are consistent with [23], who 

concluded that the mRMR was faster and more effective 

than the “forward selection” and “backward selection” 

methods. 

On the other hand, the ANOVA was less effective (MCC 

< 0.677) due to the low number of selected features (2 to 3 

features) to discern between the classes.  

These findings suggest that the dimensionality reduction 

methods that depend on the built model outperformed the 

ones (as ANOVA and PCA) that consider neither the 

classification model nor the classification goal. 

D. MODEL BUILDING ANALYSIS  

Fig. 6 shows that the SVM classifier with the Gaussian 

kernel performed better than other classifiers for both 

prediction (MCC = 0.86) and recognition (MCC = 0.94). 

The SVM’s ability to define more complex decision 

boundaries by applying optimization instead of 

probabilities, and its inherent flexibility to suit the data may 

explain this finding [12]. Previous literature indicates this 

classifier as the best, mainly when the Gaussian kernel is 

involved. Begg et al. [25] concluded that SVM performs 

better than MLP, as observed in this benchmarking 

analysis. Badesa et al. [26] noted that the SVM is more 

appropriate than LDA, QDA, and KNN methods. Huang et 

al. [27] reported that SVM yielded better results than LDA 

to recognize six LMs and predict five LMTs.  

The results achieved for RF models indicate their middle-

ranked performance for prediction and recognition. Despite 

the optimization of the hyperparameter related to the 

number of decision trees, the optimization procedure could 

have addressed further hyperparameters.  

On the other hand, both DA models produced the worst 

classification performance (MCC < 0.73), in contrast to 

[14], where the LDA performance was comparable to the 

SVM. Three reasons can explain this finding: LDA does 

not work well if the design is not balanced, such as the one 

in this study; LDA is not suitable for non-linear data, such 

as the kinematic data; and, LDA simplicity was perhaps not 

sufficient to discriminate the LMs and LMTs using the 

calculated features.  

Due to the increased complexity of SVM, the built model 

took almost double time to classify data comparing to other 

classifiers (Fig. 6). However, this computational burden is 

acceptable for recognition and prediction applications, 

considering human gait frequency at a normal pace (> 1s).  

This comparative analysis suggests that the SVM 

classifier with a Gaussian kernel is an effective classifier to 

yield a benchmark tool for both recognition and prediction 

purposes, despite the higher computational burden than 

other classifiers. This remark is based on its higher 

prediction performance, which is still a critical challenge in 

the literature. 

 
FIGURE 6.  Average performance (MCC and computational load) for 
each machine learning classifier across every database and subject.  

IV. RECOGNITION AND PREDICTION TOOL: RESULTS 
AND DISCUSSION 

This section shows the performance of the final recognition 

and prediction tool built from the best machine learning 

configuration found in Section III. The findings presented 

in this section allow investigating whether kinematic data is 

enough to recognize and predict LMs and LMTs, 

addressing the second research question of this study. We 

approached the first steps on a user-independent recognition 

and prediction tool by including inter-subject gait pattern 

variability into the tool building, i.e., the tools were built 

using data from all subjects instead of building a subject-

specific tool [10]. More participants will increase the user-

independent character.  

A. EVALUATION OF RECOGNITION TOOL 

The final recognition models were built using features 

calculated from a window size covering full-stride with the 

left/right approach and normalized by min-max scaling in [-

1; 1] interval. Table II summarizes the results of the 

Gaussian SVM classifier (C = 64, σ = 4) in terms of MCC 

and AC and presents the number of classified steps and the 

number of selected features by “mRMR plus forward 

selection” algorithm. The obtained confusion matrices are 

presented in Appendix II for a more in-depth analysis. 

The number of selected features was variable, given the 

different decision-making complexity between the models. 

The features collected from the IMU placed on the back 

were exclusively used in the recognition models, as 

follows: standard deviation of the axial torso angle for 

Direction Recognition Model; mean of sagittal torso 

angular velocity for Transition Type Recognition Model; 
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standard deviation of the axial torso angular velocity for 

Steady-State Type Recognition Model; and, mean, range 

and first position of the sagittal torso angle, first and last 

position of the sagittal torso angular velocity, mean and 

first position of the axial torso angle for Steady-

State/Transition Recognition Model. The feature selection 

for the different models was consistent across subjects and 

involved features from all 7 IMUs.  

TABLE II 

RECOGNITION MODELS’ PERFORMANCE 

Recognition 

Model 

Number 

of steps 

Number 

selected 

features 

MCC* ACC (%)* 

Direction 6064 43 0.998±0.01 99.9±0.4 

Steady-State/ 

Transition 

3170 69 0.817±0.008 96.5±0.12 

Transition 

Type 

300 19 0.993±0.011 99.6±0.22 

Steady-State 

Type 

2870 53 0.995±0.01 99.8±0.3 

*Mean ±Standard deviation  

The Direction Recognition Model had near-perfect 

results (MCC = 0.998, ACC = 99.9%) with only few 

forward steps being classified as counter-clockwise or 

clockwise. This model used 43 features from a total of 80. 

It shows that not all information is necessary for accurate 

classification of the walking direction.  

On the other hand, the Steady-State/Transition 

Recognition Model was less effective (MCC = 0.817, ACC 

= 96.5%) even using more features (69 features). The 

selection of more features may indicate that the 

discrimination between steady-state and transition is 

complex. Previous studies [10], [16] reported that the 

inclusion of ramps as an LM introduced some error due to 

the similarities between ramps and LW. This remark is 

according to the obtained results since all misclassifications 

involved walking on or transitioning to ramps. The fusion 

of kinematic data with environment-aware data [6] might 

improve the ramp classification. The performance of the 

Steady-State/Transition Recognition Model may affect end-

stage classification accuracy, i.e., the performance of the 

Transition Type Recognition Model and Steady-State Type 

Recognition Model. 

The Transition Type Recognition Model was accurate 

(MCC = 0.993, ACC = 99.6%), even when it was built with 

one-tenth of the steps and with the least number of used 

features (19 features). This finding shows that it is possible 

to accurately distinguish transition steps using a small 

number of kinematic features. The Steady-State Type 

Recognition Model had near-perfect results (MCC = 0.995, 

ACC = 99.8%) using 53 features. Errors were due to the 

classification of level walking steps as ramp steps and vice-

versa.  

By comparing with the existing machine learning-based 

recognition tools based on kinematic data from wearable 

sensors, the proposed framework can perform a more 

versatile classification. At the best of the authors’ 

knowledge, there is still no accurate recognition tool able to 

classify LMs and LMTs that considers different walking 

directions in LW (forward, back, clockwise, and counter-

clockwise) and terrains (LW, RA, RD, SA, and SD). Chan 

et al. [24] limited the recognition to SA and SD by using a 

less accurate tool (ACC = 96.8%) than the one proposed in 

this work (ACC = 99.8%). Further, the proposed 

recognition tool performs better when comparing to the one 

in [8], which identified the LW, SA, and SD with a 

sensitivity of 97%, 94%, and 87%, respectively. 

The achieved results for recognizing steady-state steps in 

the LMs (LW, SA, SD, RA, RD) are consistent with the 

ones reported in [11] (ACC = 99.8% and ACC = 99.7%, 

respectively), where the lowest recognition accuracy 

occurred for RA. Nonetheless, this tool [11] and other 

studies [6], [23], [24], [27], [28] did not define transitional 

steps as a class; instead, they set a boundary between LMs 

after which the upcoming LM was attributed. In contrast, 

our tool recognizes the transitional steps to allow some time 

to the robotic device to timely generate smooth LMTs. 

Lastly, we observed that the most effective recognition 

tools proposed in the literature [10], [27] only recognized 

an LMT after the leading leg is already on the next terrain. 

In contrast, our recognition tool recognizes an LMT before 

the leading leg reaches the second terrain type, without 

demanding any predefined leading leg, allowing a more 

natural walk in daily activities.  

B. EVALUATION OF PREDICTION TOOL 

The final prediction models were built using features 

calculated over a window size of 1/4 of the stride preceding 

the leading/opposite leg approach and normalized by min-

max scaling in [-1; 1] interval. We used the “mRMR plus 

forward selection algorithm” for feature selection and 

Gaussian SVM classifier (C = 64, σ = 4). Table III presents 

the results considering the number of classified steps, the 

number of selected features, and the MCC and ACC 

metrics. Appendix III presents the confusion matrices. 

The prediction models incorporate a different number of 

features by including features from all wearable sensor 

units. Thus, the dimensionality reduction did not contribute 

to reducing the number of IMUs. Around eighteen features 

(almost 25% of the total) were common to all models. 

TABLE III 

PREDICTION MODELS’ PERFORMANCE 

Prediction 

Model 

Number 

of steps 

Number 

selected 

features 

MCC* ACC (%)* 

Direction 6070 52 0.989±0.01 99.6±0.3 

Steady-State 

/Transition 
3192 64 0.670±0.024 93.3±0.28 

Transition 

Type 
316 38 0.887±0.0184 95.9±0.47 

Steady-State 

Type 
2876 59 0.986±0.01 99.4±0.8 

*Mean ±Standard deviation  
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Some features were exclusively used in the prediction 

models, as follows: mean of the event foot angular velocity 

for Direction Prediction Model; first and last positions of 

the sagittal torso angle, and standard deviation of the 

sagittal torso angular velocity for Steady-State/Transition 

Prediction Model; mean angular velocity of the opposite 

shank, range of the opposite foot angle, range of the sagittal 

torso angle, last position of the sagittal torso angular 

velocity for Steady-State Prediction Model. No specific 

feature was associated exclusively with the Transition Type 

Prediction Model, and there is no evidence for indicating 

the critical sensors per prediction model.  
From Table III, we concluded that the prediction models 

used more features than the analogous recognition models. 

The Direction Prediction Model presented a near-perfect 

behavior (MCC = 0.989, ACC = 99.6%), even when 

considering variations in gait speed. We observed few 

misclassifications that occurred when forward steps were 

classified as counter-clockwise or clockwise and vice-versa, 

similarly to the recognition models. The model used 52 

features from a total of 80 features, showing that there were 

still quite a few features irrelevant to the model. A previous 

automatic turn system with IMUs reported results similar to 

the ones achieved in this work (ACC > 97% vs. ACC = 

99.6%, respectively) [17]. 

The Steady-State/Transition Prediction Model had the 

worst performance (MCC = 0.67, ACC = 93.3%) while 

using the most features (64 features). The use of an 

unbalanced sts_trs_ft database, including a higher number 

of steady-state steps than transitional steps, may explain 

this finding. Experiments with more transition steps are 

needed.  

The Transition Type Prediction Model was suitable 

(MCC = 0.887, ACC = 95.7%), mainly for SA→LW, 

SD→LW, RD→LW transitions. Moreover, the Steady-

State Type Prediction Model has shown to be effective 

(MCC = 0.9857, ACC = 99.4%) when using 59 features.  

A previous study [10] developed a prediction system 

based on kinematic data and LDA that was able to classify 

LW, ramp, and stair steady-states with 99% accuracy. Our 

proposal (ACC = 99.4%) also matches this performance. 

This suggests that the proposed prediction tool, when 

compared with similar works, is more versatile (by 

considering more steady-state and transition steps) and 

similarly effective. Moreover, our protocol was, in part, 

identical to the study [14], by investigating kinematic data 

from the step that precedes the LMT. However, our 

prediction models are more accurate, more versatile by 

varying walking direction and speed on LW, and followed a 

lower complex prediction scheme than the one proposed in 

[14]. Furthermore, our approach is more practical 

considering daily application requirements given the faster 

time for wearing the IMUs and provided a less intrusive 

experience than the one reached with the tethered solution 

proposed in [14]. 

Other studies [16], [23] have combined EMG with 

kinematic sensors, addressing a neuromechanical sensor 

fusion for improving the steady-state and transition 

prediction. The sensor fusion used in [23] was slightly more 

effective (ACC = 0.95) in the transition prediction problem 

than the proposed kinematic-based tool (ACC = 93.3% for 

Steady-State/Transition Prediction Model and ACC = 

95.9% for Transition Type Prediction Model). On the other 

hand, the developed transition prediction model was more 

accurate than the models described in [16] (ACC = 88%), 

which used EMG sensors that also reported uncomfortable 

usability [10]. 

C. LIMITATIONS AND FUTURE DIRECTIONS  

In this study, we presented a proof-of-concept of 

applicability of kinematic data to recognize and predict 

LMs and LMTs with able-bodied subjects walking without 

an assistive device. Our long-term goal is to test the 

recognition and prediction tool with neurologically 

impaired subjects walking with an assistive orthosis to 

investigate whether the achievements of this study translate 

to meaningful clinical benefit. The cross-validation results 

indicate that the proposed tool was able to achieve 

generalization for a given set of subjects; consequently, it 

may be applied to individual subjects afterward. We expect 

that we could use the presented machine learning-based 

framework to establish a recognition and prediction tool for 

a segment of the population of pathological end-users. The 

procedure described in this study will be part of further 

validation to obtain a pathological data-driven recognition 

and prediction tool.  

There is still room for improving the decision-making 

from/to ramp, as reported in [10], [16]. For this purpose, 

environment-aware data [29] may be fused with kinematic 

data towards improving the Steady-State/Transition and 

Transition Type Prediction Models. Furthermore, we expect 

to increase the accuracy of the Steady-State/Transition 

Prediction Model with more data from the transitional steps 

of a larger number of participants.  

This study shows the potential of lower limbs’ kinematic 

data to recognize and predict LMs and LMTs. The future 

investigation aims to reduce the number of sensors while 

ensuring the models’ effectiveness. The use of smartphone 

sensors is a practical solution for daily use; however, their 

application has been limited to recognition purposes [9]. 

The developed classification scheme requires accurate 

classification models throughout the classification sequence 

since classification errors would propagate from the initial 

to the final classification stage.  

The combination of variable walking direction and gait 

speed with terrains still has to be approached, extending the 

implemented classification sequence presented. Otherwise, 

the Direction Classification Model is only useful for level-

ground. 
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V. CONCLUSION 

This study showed that the automatic recognition and 

prediction tool built from a kinematic data-based machine 

learning framework correctly classify LMs and LMTs 

commonly encountered in daily life. The most effective 

machine learning configuration includes min-max scaling 

in [-1;1] interval and “mRMR plus forward selection 

algorithm” for feature normalization and dimensionality 

reduction, respectively, and Gaussian SVM classifier. The 

machine learning-based framework offers methodological 

directions for future studies to find an effective machine 

learning-based tool for recognition and prediction purposes. 

The contribution of this study to the state-of-the-art is 

manifold; it proposes a more versatile tool that classifies 

several LMs and LMTs while covering different walking 

directions and terrains; it tackles the transition prediction 

problem only using kinematic data; and, it allows the user 

to self-select the leading limb for performing the 

transitional step. There is evidence that kinematic data are 

appropriate for predicting LMs and LMTs one step before 

their occurrence. 

APPENDIX 

A. APPENDIX I 

Appendix I presents representative signals of the angular 

velocity and angles of lower limb segments collected from 

one female subject while walking at different conditions 

(forward level-ground walking, clockwise level-ground 

walking, stair ascent and descent, ramp ascent and descent) 

at self-selected gait speed. This information will allow a 

meaningful understanding of the used kinematic data for 

extracting the features.  

 
FIGURE 7.  Angular velocity and angles of the lower limb segments 
collected from one female subject walking forward on level-ground.  

 
FIGURE 8.  Angular velocity and angles of the lower limb segments 
collected from one female subject in clockwise walking on level-ground.   

 
FIGURE 9.  Angular velocity and angles of the lower limb segments 
collected from one female subject in stair ascend. The transitional 
moments are marked with the vertical black line.  
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FIGURE 10.  Angular velocity and angles of the lower limb segments 
collected from one female subject in stair descend. The transitional 
moments are marked with the vertical black line.  
 

 
 
FIGURE 11.  Angular velocity and angles of the lower limb segments 
collected from one female subject in ramp ascend. The transitional 
moments are marked with the vertical black line.  
 

 
FIGURE 12.  Angular velocity and angles of the lower limb segments 
collected from one female subject in ramp descend. The transitional 
moments are marked with the vertical black line.  
 

B. APPENDIX II 

Table IV, Table V, Table VI, Erro! A origem da 

referência não foi encontrada.and Table VII present the 

confusion matrices of the final recognition models, as 

follows.   

 
TABLE IV 

CONFUSION MATRIX OF DIRECTION RECOGNITION MODEL 

 
Forward Backward 

Counter-

clockwise  
Clockwise 

Forward 0.999 0.0019 0.0 0.003 

Backward 0.0 0.9981 0.0 0.0 

Counter-clockwise 0.0006 0.0 1.0 0.0 

Clockwise 0.0004 0.0 0.0 0.997 

 

TABLE V 

CONFUSION MATRIX OF STEADY-STATE/TRANSITION RECOGNITION 

MODEL 

 Steady-State Transition 

Steady-State 0.9963 0.0663 

Transition 0.0037 0.9337 

 

TABLE VI 

CONFUSION MATRIX OF STEADY-STATE TYPE RECOGNITION MODEL 

 LW SA SD RA RD 

LW 0.998 0.0 0.0 0.003 0.011 

SA 0.0 1.0 0.0 0.0 0.0 

SD 0.0 0.0 1.0 0.0 0.0 

RA 0.001 0.0 0.0 0.997 0.0 

RD 0.001 0.0 0.0 0.0 0.989 
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TABLE VII 

CONFUSION MATRIX OF TRANSITION TYPE RECOGNITION MODEL 

     

 
LW 

→ 

SA 

SA 

→ 

LW 

LW 

→ 

SD 

SD 

→ 

LW 

LW 

→ 

RA 

RA 

→ 

LW 

LW 

→ 

RD 

RD  

→ 

LW 

SO 

LW  

→ 

SA 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SA 

→ 

LW 

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

LW  

→ 

SD 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

SD  

→ 

LW 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

LW  

→ 

RA 

0.0 0.0 0.0 0.0 1.0 0.03 0.0 0.0 0.05 

RA 

→ 

LW 

0.0 0.0 0.0 0.0 0.0 0.97 0.0 0.0 0.0 

LW 

 → 

RD 

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.05 

RD 

 → 

LW 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 

SO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 

C. APPENDIX III 

Table VIII, Table IX, Table X Erro! A origem da 

referência não foi encontrada.and Table XI present the 

confusion matrices of the final prediction models, as 

follows.   
 

TABLE VIII 

CONFUSION MATRIX OF DIRECTION PREDICTION MODEL 

 
Forward Backward 

Counter-

clockwise 
Clockwise 

Forward 0.998 0.0 0.0 0.013 

Backward 0.0 1.0 0.0 0.0 

Counter-clockwise 0.001 0.0 1.0 0.0 

Clockwise 0.001 0.0 0.0 0.987 

 

TABLE IX 

CONFUSION MATRIX OF STEADY-STATE/TRANSITION PREDICTION MODEL 

 Steady-State Transition 

Steady-State 0.997 0.13 

Transition 0.003 0.87 

 

 

TABLE X 

CONFUSION MATRIX OF STEADY-STATE TYPE PREDICTION MODEL 

 LW SA SD RA RD 

LW 0.998 0.0 0.0 0.01 0.018 

SA 0.001 1.0 0.0 0.0 0.0 

SD 0.0 0.0 1.0 0.0 0.0 

RA 0.0 0.0 0.0 0.99 0.0 

RD 0.001 0.0 0.0 0.0 0.982 

 

 

 

 

 

 

 

 

TABLE XI 

CONFUSION MATRIX OF TRANSITION TYPE PREDICTION MODEL 

     

 
LW 

→ 

SA 

SA 

→ 

LW 

LW 

→ 

SD 

SD 

→ 

LW 

LW 

→ 

RA 

RA 

→ 

LW 

LW 

→ 

RD 

RD  

→ 

LW 

SO 

LW  

→ 

SA 

0.93 0.0 0.07 0.0 0.03 0.04 0.0 0.0 0.0 

SA 

→ 

LW 

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

LW  

→ 

SD 

0.03 0.0 0.93 0.007 0.0 0.0 0.0 0.0 0.03 

SD  

→ 

LW 

0.0 0.0 0.0 0.993 0.0 0.0 0.0 0.0 0.0 

LW  

→ 

RA 

0.0 0.0 0.0 0.0 0.89 0.0 0.0 0.08 0.0 

RA 

→ 

LW 

0.0 0.0 0.0 0.0 0.0 0.90 0.0 0.0 0.0 

LW 

 → 

RD 

0.01 0.0 0.0 0.0 0.08 0.06 0.917 0.0 0.03 

RD 

 → 

LW 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.90 0.0 

SO 0.03 0.0 0.0 0.0 0.0 0.0 0.083 0.02 0.94 
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