
microorganisms

Review

COVID-19, Chikungunya, Dengue and Zika Diseases: An
Analytical Platform Based on MALDI-TOF MS, IR
Spectroscopy and RT-qPCR for Accurate Diagnosis and
Accelerate Epidemics Control

Jéssica Costa 1, Eugénio C. Ferreira 2 and Cledir Santos 3,*

����������
�������

Citation: Costa, J.; Ferreira, E.C.;

Santos, C. COVID-19, Chikungunya,

Dengue and Zika Diseases: An

Analytical Platform Based on

MALDI-TOF MS, IR Spectroscopy

and RT-qPCR for Accurate Diagnosis

and Accelerate Epidemics Control.

Microorganisms 2021, 9, 708. https://

doi.org/10.3390/microorganisms

9040708

Academic Editor: Gereon R.

M. Schares

Received: 15 February 2021

Accepted: 3 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera,
Temuco 4811-230, Chile; j.souza01@ufromail.cl

2 CEB-Centre of Biological Engineering, Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
ecferreira@deb.uminho.pt

3 Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
* Correspondence: cledir.santos@ufrontera.cl; Tel.: +56-45-259-6726

Abstract: COVID-19 and arboviruses (ARBOD) epidemics co-occurrence is a great concern. In tropical
and subtropical regions, ARBOD diseases such as chikungunya, dengue, and Zika are frequent. In
both COVID-19 and ARBOD cases, an accurate diagnosis of infected patients is crucial to promote
adequate treatment and isolation measures in COVID-19 cases. Overlap of clinical symptoms and
laboratory parameters between COVID-19 and ARBOD present themselves as an extra challenge
during diagnosis. COVID-19 diagnosis is mainly performed by quantitative reverse polymerase
chain reaction (RT-qPCR), while ARBOD diagnosis is performed by serology, detection of antigen
or antibody, and molecular diagnosis. In this review, the epidemiologic profile of arboviruses and
SARS-CoV-2 is analyzed, and potential risks of symptom overlap is addressed. The implementation
of an analytical platform based on infrared (IR) spectroscopy, MALDI-TOF mass spectrometry, and
RT-qPCR is discussed as an efficient strategy for a fast, robust, reliable, and cost-effective diagnosis
system even during the co-occurrence of virus outbreaks. The spectral data of IR spectroscopy and
MALDI-TOF MS obtained from COVID-19 infected and recovered patients can be used to build up
an integrated spectral database. This approach can enable us to determine quickly the groups that
have been exposed and have recovered from COVID-19 or ARBOD, avoiding misdiagnoses.

Keywords: diagnostic methods; emerging diseases; viral infection

1. Introduction

Emerging infectious disease (EID) is conceptualized as an abrupt rise of new pathogen
in a host population [1]. Further, the term also extends to re-emergent pathogens that have
a sharp incidence in a new geographical area [1]. Overall, EID encompasses a diversity
of pathogenic microorganisms (bacteria, fungi, viruses, and so forth) that may have an
animal origin, so-called zoonosis, and also be linked to other sources (e.g., food-borne and
water-borne pathogens) [2]. However, the increase of EIDs has spilled over from animals
to humans in the last decade and has received attention from health agencies worldwide.

Emerging zoonosis corresponds to transmissible infections from vertebrate animals
to humans [3]. According to Jones et al. [2], around 60% of EIDs are originated from
animals, which include domesticated species, free-range wildlife, and wild animals reared
by man [4]. Recent studies have suggested that zoonotic spillover is related to human
footprint [5–7]. The anthropogenic land conversion, industrial growth, and climate change
events can either result in, or be an open avenue to, deforestation, habitat fragmenta-
tion, and invasion of ecological wildlife niches by intensified farming and animal hus-
bandry [5–7].
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All these shifts in landscape disrupt ecological balance, affecting species distribution
and also food supply [8]. Hence, these can drive zoonotic sources (e.g., bats, ungulates,
rodents, and so forth) into new areas, promoting virus spread by contact with potential
intermediate hosts (e.g., bat, rabbit, cattle, pigs, livestock, and so forth) or disease vectors
(e.g., Aedes mosquitos) [8]. Finally, viral pathogens can jump to humans.

The coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic with fast spread
worldwide [9]. The origin of SARS-CoV-2 has been closely related to zoonotic sources.
Rhinolophus bats are a major candidate [10], although till now, animal reservoirs and the
turning point of spillover event have as yet been unknown [4,11].

The COVID-19 pandemic has caused an unprecedented world economic crisis. Severe,
intermediate, and mild COVID-19 symptoms have been manifested in different groups,
overloading healthcare facilities [9]. Throughout 2020, the global economic decline was
4.3%, although this contraction was perceived more harshly in developing economies [12].
Sectors of service and consumption related to tourism are among the most affected, having
a direct impact on employability. According to the International Labour Organization [13],
about 255 million full-time jobs have been lost. Concomitant COVID-19 occurrence with
other viral epidemics have been causing concern, mainly in low-income countries [12].

Arbovirus diseases (ARBOD) are caused by arboviruses mainly maintained in nature,
or to an important extent, through biological transmission between susceptible verte-
brate hosts by hematophagous arthropods [14]. Simultaneously, the co-circulation risk of
arthropod-borne virus (arbovirus), causal agents of ARBOD such as chikungunya, dengue,
and Zika diseases, imposes an extra burden on health systems. Although this panorama
can normally be observed mainly in tropical regions’ endemics for some ARBOD [15],
France and Italy have recently reported autochthonous dengue infection cases in the year
2020 [16].

The co-occurrence of different emerging virus-based diseases is a challenge from an
epidemiological point of view. The similarity of symptoms, cases of virus co-infection, and
cross-reaction can result in a misdiagnosis [17,18].

Thus, in a pandemic setting, rapid and accurate approaches are necessary to speed
up time for diagnosis and for keeping the results reliable. As a standard technique,
the quantitative reverse polymerase chain reaction (RT-qPCR) has been widely used in
viral disease diagnosis. Alternatively, IR spectroscopy and MALDI-TOF MS have been
introduced as routine tools in microbiology laboratories, being used for identification of
bacteria, fungi, and viruses. The usability of these techniques can cover identification of
transmitting vector, pathogen agent, and also the virus detection in final receptor [19–21].

In this review, the epidemiologic profile of arboviruses (chikungunya, dengue, and
Zika) and SARS-CoV-2 is analyzed, and the potential risks of symptom overlap is addressed.
Further, the implementation of an analytical platform based on IR spectroscopy, MALDI-
TOF mass spectrometry, and RT-qPCR is discussed as an efficient strategy for a rapid and
accurate diagnosis even during the co-occurrence of virus outbreaks.

2. Arbovirus Disease

Zika, chikungunya, and dengue are tropical and subtropical diseases caused by ar-
boviruses that pose a major concern for global public health [22]. The interplay between
pathogens (one or more virus serotypes), transmission vectors (Aedes mosquitoes), mainte-
nance host, and humans are pivotal to the success of arboviruses cycle infection [23].

First, the enzootic cycles are restricted to the interplay among arbovirus-transmitting
mosquitoes and maintenance hosts such as nonhuman primates (e.g., baboons, green
monkeys) and other small mammals (e.g., rodents, bats) [23]. The following step is the
infection overflows for humans, which initially occur in forests, and then are amplified into
urban areas [24].

The first reported dengue outbreaks were in Asia, while for chikungunya and Zika, it
was Africa [25–27]. Then, a rapid spread occurred in intra-continental cycles of disease re-
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emergence. Afterward, over different periods, a quick global spread was observed [28–30].
According to the WHO [31], dengue is endemic in more than 128 countries. The number of
dengue cases increased over 8-fold over the last two decades, from 505,430 to 4.2 million [31].
Furthermore, it is estimated that approximately 390 million cases of symptomatic dengue
infections annually lead to about 10,000 deaths per year [31].

The American continent is a hotspot for dengue, with ongoing resurface in annual
peaks [32]. A recent upsurge of chikungunya virus (CHIKV) cases has been reported in
Africa (Democratic Republic of Congo, 2019), Europe (Italy, 2017), and America (Brazil) [33].

In 2014, Brazil was an epicenter of infections by CHIKV and Zika virus (ZIKV) cases
overflow, with several points of arbovirus co-emergencies [34,35]. A key factor for the
spread of these diseases lies in the ability of the Aedes mosquito main propagation vectors
to reproduce and adapt quickly to peridomestic ecotope [36]. Throughout this urban cycle,
humans act as virus reservoirs [24].

All these arboviruses are under constant surveillance by regulatory agencies world-
wide. The WHO set chikungunya and dengue on the current list of neglected tropical
diseases (NTDs) [37]. In the European Union (EU), the European Centre for Disease Preven-
tion and Control (ECDC) monitors arthropod vector distribution and also cases of human
transmission. Dengue virus (DENV) has been in tighter control than ZIKV and CHIKV.
The last two are rare in EU, and the noted cases are mainly traveler-associated [38].

In the United States, the National Institute of Allergy and Infectious Diseases (NIAID’s)
and the Centers for Disease Control and Prevention (CDC) insert these arboviruses on
the pathogen priority list [39,40]. In South America, this monitoring has been carried
out by the combined task force of government agencies and the Pan-American Health
Organization [41].

2.1. Arbovirus

DENV and ZIKV are both positive-sense, single-stranded RNA viruses belonging to
the Flaviviridae family [42]. DENV exists as four serotypes (DENV1=4) and infection with
any serotype may be asymptomatic or can result in mild to severe clinical symptom [29].
CHIKV belongs to the family Togaviridae, genus Alphavirus. It is a positive-sense, non-
segmented, single-stranded RNA (12 kb in length) virus, with an enveloped icosahedral
capsid [43]. Three main lineages of CHIKV have been identified and comprise the enzootics
East/Central/South African (ECSA), West African, and Asian strains genotype [44]. In the
American continent, the chikungunya epidemic was caused mainly by the CHIKV-Asian
genotype. However, the ECSA-genotype was detected in northeast Brazil [45].

2.2. Arbovirus Disease Transmission

The primary transmission mechanism of CHIKV, DENV, and ZIKV is through Aedes
aegypti and Aedes albopictus, although non-vector transmission has been reported. Rarely
cases have reported CHIKV and DENV infection vertically during pregnancy and via
blood-borne transmission [46–48]. Several cases of ZIKV-infected pregnant women have
resulted in congenital and postnatal modification due to intrauterine infection [49].

Between 2015 to 2017, Brazilian Ministry of Health notified 2639 cases of microcephaly
by Zika disease, pointing out possible underreporting for other newborn congenital mal-
formations [49]. Conversely, few case reports have linked CHIKV and DENV to vertical
transmission during pregnancy [46–48].

Isolating arbovirus from body fluid (e.g., urine, saliva, and breast milk) of infected
individuals is a feasible possibility, even though, until now, no transmission from these
sources have been notified [50].

2.3. Arbovirus Disease Symptoms

The main clinical symptoms of CHIKV, DENV and ZIKV are listed in Figure 1. Symp-
toms typically appear after an incubation time of 4–7 days. Overall, DENV has been
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reported as more lethal than ZIKV and CHIKV [51], even though the latter two, in the long
term, may show the gravest disease progression [52,53].

Figure 1. The main symptoms related to COVID-19, dengue, Zika, and chikungunya.

In more severe manifestations, DENV can cause dengue hemorrhagic fever and
dengue shock syndrome [29]. ZIKV is linked to congenital malformations, encephalitis,
and Guillain–Barré syndrome (GBS) [53,54], whereas debilitating polyarthralgia is recurrent
in 30–40% of CHIKV-infected individuals [55].

For these arboviruses, clinical manifestations such as fever, exanthema, conjunctivitis,
retro-orbital headache, and arthralgia are similar, mainly during the acute phase [56].
Symptoms overlapping mainly during arbovirus co-circulation are a critic outlook.

A triple epidemic scenario has already been faced in arbovirus hotspots regions
of Brazil, leading to misdetection and disease frequency misreporting [15,57,58]. It is
important to note that sudden appearance of CHIKV, DENV, and ZIKV, as well as other
seasonal respiratory tract diseases (e.g., H1N1, rhinoviruses, respiratory syncytial virus),
and also the current pandemic with SARS-CoV-2, will continue to occur.

The co-occurrence outbreaks remain a great pressure on the public health systems,
which can get overloaded [15,59]. This scenario poses a further challenge for health systems,
that should be able to accurately diagnose and treat single and co-infection cases [59].

2.4. Vaccine Development against Arbovirus

Up to now, there is no licensed vaccine available against CHIKV and ZIKV. However,
for ZIKV, several candidate vaccines are in ongoing trials (phase I and II) [60,61]. For
DENV, a current vaccine in pre-clinical phase adopts different development paths such
as a live-attenuated virus, inactivated virus, recombinant protein, DNA vaccine, viral
vector vaccine, and heterologous prime/boost vaccines [62]. Only the vaccine CYD-TDV
(Dengvaxia®, Sanofi Pasteur, Lyon, France) has been licensed in the countries of Asia, Latin
America, and the Pacific [63].
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International drug regulatory agencies such as the European Medicines Agency (EMA)
and the Food and Drug Administration (FDA) have also approved the use of CYD-TDV
in DENV-seropositive individuals [64]. The CYD-TDV vaccine performance depended on
prior sero-status, the efficacy among DENV seropositive individuals ranging from 42.3%
to 77.7% depending on DENV serotype [63,65]. In seronegative participants, CYD-TDV is
less effective and increases the risk of severe dengue symptoms in an eventual subsequent
infection [63,64,66].

Alternatively, there are second-generation dengue vaccines (TAK-003, TDV, Takeda);
TV003/TV005, National Institutes of Health, United States) that, in phase 1 and 2, proved
to be well-tolerated and immunogenic against all serotypes. Phase 3 efficacy trials are
currently ongoing [65].

3. Coronavirus Disease

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), became one of the major outbreaks of the century [9].
SARS-CoV-2 emerged in late 2019 and spread to more than 220 countries within a short pe-
riod, resulting currently in more than 2,564,560 deaths and more than 115,289,961 confirmed
cases [67].

Previous coronavirus outbreaks such as (SARS)-CoV and the Middle East respiratory
syndrome (MERS)-CoV have occurred from time to time. Due to severe symptoms, both of
them are considered public health concerns [68]. Other low-pathogenicity human coron-
aviruses (HCoVs) such as HCoV-29E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63 have
been already identified as responsible for upper and minor respiratory tract infections [69].

SARS-CoV-2 is a positive-sense single-stranded enveloped RNA virus. It is clustered
in the genus Betacoronavirus, sharing 79% genome sequence identity with SARS-CoV and
50% with MERS-CoV [70]. Although genetically similar, SARS-CoV-2 has a profile of
clinical signs and transmission efficiency distinct from SARS-CoV-like coronaviruses [71].

Despite some uncertainties about the transmission starting point, bats are reported as
natural reservoirs of SARS-CoV-2 [10]. Initially, pangolins were suggested as intermediate
hosts, but this hypothesis was discharged [72,73]. As a zoonotic disease, SARS-CoV-2 can
be transmitted from animal to animal, animal to human, and also human to human [74].
The intermediate species that promoted the spread of these disease to human is not yet
known [74].

Animal-to-human transmission was punctual, being linked to the seafood market
in Wuhan, where wild animals were also sold [74]. However, the massive spread of the
illness is by person-to-person contact through small droplets produced when people cough,
sneeze or talk [75]. Cases of intrauterine transmission have been reported [76,77]. SARS-
CoV-2 has been detected in breast milk [78], stool [79], blood, and urine samples [80], but
transmission through these routes remains unclear.

Nosocomial setting has been reported as an important source of infection. According
to Houlihan et al. [81], 84 out 200 (44%) frontline healthcare workers from a London hospital
(United Kingdom) were infected with SARS-CoV-2. Transmission through contaminated
surfaces has been suggested, since SARS-CoV-2 has been detected for up to 7 days on
surfaces (e.g., plastic, stainless steel, copper, and cardboard), but till now the data regarding
indirect virus transmission are inconclusive [82].

After infection, generally, SARS-CoV-2 viral loads reach a peak within the first week
after symptom onset which entails that transmission highest risk occurs in the very early
disease stage [83,84]. Thus, immediate isolation measures during the first symptoms are
essential, since the high titers of SARS-CoV-2 at the onset of disease possibly increase the
virus transmission efficiency [83].

SARS-CoV-2 has shown greater transmissibility than other viruses’ diseases, such as
MERS-CoV and SARS-CoV-1 [71]. Several studies sought to estimate the basic reproduction
number (R0) in different populations. R0 corresponds to an average number of secondary
infections arising from a primary infected person [85].
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WHO [86] have estimated R0 values for SARS-CoV-2 ranging between 1.4–2.5. How-
ever, several studies reached different values ranged from 1.94 to 6.94. R0 above 1 indicates
that the transmissibility process will continue to happen. R0 is an important parameter to
drive the appropriate control measures [87].

COVID-19 clinical manifestation ranges from asymptomatic to severe cases. The
most common symptoms at illness onset are fever, fatigue, and dry cough, while nasal
congestion, rhinorrhea, sore throat, and myalgia are reported less often [88,89].

In severe cases, respiratory symptoms such as breath shortness and pneumonia make
up the framework of acute respiratory distress syndrome (ARDS), the main mortality
cause [90]. Non-respiratory symptoms such as palpitation, diarrhea, and headache have
been reported. SARS-CoV-2 infection might also have neurotropic potential, until now
16 cases of Guillain–Barré syndrome (GBS) in a para-infectious (3) and post-infectious (13)
profile have been associated with SARS-CoV-2 [91]. However, it is necessary to expand the
epidemiological data to support a causal relationship [92].

SARS-CoV-2 mutation rates, as well the evolutionary convergence of different strains
from different locations, have raised a red flag for the scientific community [93]. Although,
until now, it is suggested that vaccines are equally effective for all SARS-CoV-2 strains [93].

The new variant of SARS-CoV-2 in the UK is estimated to be up to 70% more transmis-
sible than the previous one [94,95]. Other variants detected in South Africa (e.g., 501Y.v2 or
B1351) and Brazil (B.1.1.28.1) underscore that there is much room for improvement in the
understanding of the pathogenicity and action mode of SARS-CoV-2.

Several technologies have been used in COVID-19 vaccine development. Currently,
two RNA-based vaccines (tozinameran from Pfizer–BioNTech, Marburg, Germany and
mRNA-1273 from Moderna, Massachusetts, United States), two conventional inactivated
virus vaccines (BBIBP-CorV from Sinopharm, Beijing, China and CoronaVac from Sinovac,
Beijing, China), and one viral vector vaccines (Sputnik V from the Gamaleya Research
Institute, Moscow, Russia) already have had the first doses applied [93].

4. Overlapping Symptoms and Co-Infection

The current pandemic has unleashed extra pressure on public health systems, making
itself even more threatening in regions that are endemic for arboviruses. Simultaneous to
SARS-CoV-2, arbovirus infections continue spreading, mainly in tropical settings such as
Southeast Asia and Latin America [29].

Currently, Brazil is the second country with the highest number of deaths due to
COVID-19 [96]. Manaus, the capital of Amazonas State in northern Brazil, is currently
classified as a purple area (Tier 1), which characterizes an extremely critical situation.
Concomitantly, dengue reaches its peak in the first quarter of the year in Manaus and other
municipalities in northern Brazil that are currently also classified as purple and red for
COVID-19 [97]. Other geographical regions such as India, Thailand, and Singapore faced
this overlap of COVID-19/ARBOD infections between September and November 2020 [98].

The overlap of COVID-19/ARBOD, besides overloading health centers, can result in
misdiagnosis, as observed in Figure 2. During the disease onset, COVID-19 and dengue,
for instance, shared similar clinical and laboratory features, being difficult to distinguish
from each other. The initial clinical symptoms (e.g., fever, myalgia, fatigue, chills, and
headache) and laboratory parameters (e.g., lymphopenia, leukopenia, thrombocytopenia,
and elevated transaminases) can be similar in both illnesses [99].

Furthermore, diagnosis based only on physical features may be insufficient in some
cases. Joob et al. [100] reported a case of a patient who presented a skin rash with petechiae
and low platelet count, a common clinical finding in dengue illness. Later, the patient
showed respiratory problems, so COVID-19 infection was confirmed by RT-PCR. Similarly,
Yan et al. [101] reported two cases of patients with COVID-19 who firstly produced false-
positive dengue results in a rapid serological test. Misdiagnosis of COVID-19 and dengue
may delay the appropriate treatment, as well as the determination of patient isolation in
COVID-19 cases. Besides, it can prompt the risk of transmission in a nosocomial setting.
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Figure 2. The main hypotheses that may be related to misdiagnosis between COVID-19 and ar-
boviruses (ARBOD).

Prasitsirikul et al. [102] reported a possible infection of a nurse by SARS-CoV-2 during
patient blood sampling. The patient had mild thrombocytopenia and IgG and IgM positive
for dengue, but the symptoms progressed to breath shortness and pulmonary reticular
infiltration. Afterwards, RT-PCR was carried out confirming the positive result for SARS-
CoV-2. These inconsistencies have been generating concern about the reliability of rapid
diagnostic tests.

Another hypothesis is that cross-reactivity among DENV and SARS-CoV-2, which may be
related to tandem virus infection, can lead to false-positive dengue serology [17,18,98,99,101–105].
Both hypotheses are feasible and require more comprehensive cohort studies.

Against this background, public health management agencies are responsible for
tackling the current COVID-19 pandemic and also for predicting and preventing the
concomitant risk of emerging ARBOD infections. It suggests that such agencies must
primarily focus on setting up a nationwide platform for (a) identifying and detecting viral
pathogen, and (b) monitoring viral load in both infected symptomatic and asymptomatic,
and in recovered patients. An implementation of an analytical platform is an efficient
strategy for accurate diagnosis, accelerating epidemics control [106,107].

5. Integrated Analytical Platform for Fast and Cost-Effective of EID Diagnosis

Enzyme-linked immunosorbent assay (ELISA) which detects specific antibodies from
human serum has been widely used for fast detection of virus diseases. ELISA offers a
rapid result with a good cost–benefit ratio, although in endemic areas of chikungunya,
dengue, and Zika, cross-reactivity is expected in diagnoses [14,58]. Further, cases of false-
negatives for COVID-19 have been reported, highlighting low accuracy and precision as
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important drawbacks [17,18,98,101]. A fast, simple, and low-cost analysis tool which must
be effective in screening for virus variants is urgently required.

Until now, RT-qPCR testing was considered as the golden method for screening cases
of COVID-19 and also chikungunya, dengue and Zika [21]. However, in a pandemic
context, where a large number of analyses are required in a short time, these tests cannot be
cost-effective. RT-qPCR per-test costs are approximately USD 10 and reaction times require
about 2 h to perform [108,109]. This approach could be optimized if it worked conjugated
with other techniques.

Infrared (IR) spectroscopy techniques can be a useful tool for the early diagnosis
and monitoring of virus human infections [21]. Rapid diagnosis of COVID-19 by IR
spectroscopy offers reduced dependence on RT-qPCR technique. IR spectroscopy can
detect chemical bonds of structural components of microorganisms and can reach detection
limit in the concentration range of 5–700 ppb [110,111].

An IR spectral database for COVID-19 diagnosis must be built up based on RT-qPCR-
validated IR spectra by using SARS-CoV-2 reference and clinical strains. Such an IR spectral
database must then be fed with clinical strains as it has been made before for other kind of
microorganisms, which includes viruses [111–114]. Once the database is created, COVID-
19 detection based on IR spectroscopy does not require reagents for spectral acquisition,
configuring a fast and inexpensive method [112] (Figure 3A).

IR spectroscopy can also be used to quantify SARS-CoV-2 viral load in carriers of the
virus (Figure 3B). This data is important since the virus transmission capacity is directly
related to its load. Furthermore, in most cases, viral load is strictly related to different
disease cycles [84]. Once it does not require chemicals for analysis (basically manpower),
applying the IR spectroscopy approach to control spread of SARS-CoV-2 is a simple and
cost-effective procedure.

In addition to manpower, the cost for a single IR spectroscopy measurement is basically
that related with swab and electricity [111]. Moreover, the results are delivered in up to
one minute from the reading of the sample by the equipment. The rapid test can be applied
for workers who enter and leave their work and for people who enter and exit areas of
public places, such as public and private companies, factories, clinical offices, airports, and
bus stations.

Similarly, matrix assisted laser desorption ionization–time-of-flight mass spectrometry
(MALDI-TOF MS) is a highly sensitive technique efficient for SARS-CoV-2 detection by
swab analysis [112] (Figure 3A). In addition, detection of SARS-HCoV-OC43 has also been
achieved in collaborative testing of RT-qPCR and MALDI-TOF MS assays [115]. MALDI-
TOF MS can detect traces of organic molecules at concentrations from femtomolar to
attomolar level (10–15 to 10−18 mol/L) and is able to establish fingerprints of biomarkers
as lipids and proteins, expressed in an infectious process assay [116].

Nachtigall et al. [112] used the direct swab procedure to obtain MALDI-TOF mass
spectra from a total of 362 samples. Samples were previously analyzed by RT-qPCR and
confirmed as SARS-CoV-2-positive (211 samples) and negative (151 samples). According to
the authors, detection of SARS-CoV-2 in nasal swabs using MALDI-TOF MS was succeeded
with an accuracy of about 94% in COVID-19 diagnosis.

Mass spectrometry-based approach to ARBOD diagnosis is ongoing, although until
now few studies have targeted this tool to ZIKV, CHIKV, and DENV infection analy-
sis [117,118]. For these arboviruses, previous results highlighted that there are specific
marker ions which can be used to define rapid diagnosis by mass spectrometry [118].
Likewise, in cases of patients (n = 3) co-infected, it was possible to establish the metabolic
fingerprint for CHIKV, DENV II, and ZIKV [118].

Although MALDI-TOF is a high-performance mass spectrometry tool, it is still under-
utilized in arbovirus detection. Conversely, MALDI-TOF MS has widely been applied in
diagnosis of respiratory (influenza viruses), enterohepatic (hepatitis virus), and herpesvirus
infections [107,119]. Further, MALDI-TOF MS conjugated with molecular (PCR) approach
has been achieving high-throughput virus detection.
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Figure 3. Integrated analytical platform based on IR spectroscopy, MALDI-TOF MS, and RT-qPCR for SARS-COV-2 detection
and quantification and COVID-19 fast diagnosis. (A) General procedure for nasopharyngeal and oral swab sampling and
spectral acquisition. (B) Way for integration of information and database feeding with novel information. RT-qPCR is the
gold standard of the proposed analytical platform.

Cost of reagents and consumables per sample for bacterial infection diagnosis by
MALDI-TOF MS is estimated to be around USD 0.43 [120]. Similarly, regarding SARS-CoV-
2 analysis and COVID-19 diagnosis, MALDI-TOF MS reagents are cheaper than those used
in RT-qPCR tests [112].

Regarding time of diagnosis for influenza virus, for IR spectroscopy it has been
achieved by 1 min/per sample [111]; while for MALDI-TOF MS it has been achieved for
3 h/per sample [121]. Unlike the aforementioned techniques, RT-qPCR is costly and often
time-consuming. If using a reliable spectra database, IR spectroscopy and MALDI-TOF MS
techniques are fast and reliable methods for SARS-CoV-2 analysis and COVID-19 diagnosis.

In addition, IR spectroscopy appears as a reliable method for the virus load quantifica-
tion. Both techniques are complementary to each other, even in the case that the equipment
are based in different laboratories or physical spaces. Molecular biology-based RT-qPCR
must be used as the gold standard for such analytical platform, and the database must be
integrated using a common chemometrics language (Figure 3B).

Analysis based on IR spectroscopy has presented the highest accuracy, close to 97%
(29 of 30 samples) and at 100% (30 of 30 samples), for non-influenza and influenza patients,
respectively, in both cases, using direct test based on nose swab analysis [111].
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The best COVID-19 surveillance approach is by testing and isolating new cases
and tracing their contacts. Using this approach, a huge resurgence of infections can
be avoided [122]. It is necessary to be prepared with an integrated analytical platform
that operates with low-cost analysis and high confidence level, able to support clinical
decision-making.

As can be observed in Figure 3A,B, an integrated IR spectroscopy and MALDI-TOF
MS analytical platform configures a robust, reliable system, cost-effective in terms of
consumables and reagents, and fast in delivering the diagnosis. The spectral data of IR
spectroscopy and MALDI-TOF MS obtained from these recovered patients can be evaluated
with chemometrics’ tools, serving to build up an integrated spectral database. These data,
after being validated with spectral molecular data of SARS-CoV-2 reference and clinical
strains, can be used as a standard for the rapid detection of other individuals recovered
from COVID-19.

This step is of utmost importance since it is necessary to quickly determine the
individual groups that have already been exposed and that have recovered from COVID-19.
In order to get individuals back into their social activities and to promote their mental
health, as well as to boost economics, this platform appears as a cost-effective approach.
In addition, as a strategy to known possible changes in the behavior of the virus and
in the manifestation of the disease, the IR spectroscopy and MALDI-TOF MS spectral
analysis may provide clues for emerging HCoVs and be an important contribution to the
whole society.

The establishment of such a platform could allow a more efficient approach to control
COVID-19 and also arboviruses infections collaborating to (1) diagnose, even if the viral
load is low but sufficient to generate IR spectroscopy fingerprints and/or MALDI-TOF
mass spectra biomarkers, at concentrations as low as 700 ppb and 10−15–10−18 mol/L,
respectively; (2) quantify the viral load by IR spectroscopy of patients infected, and (3)
diagnose recovered patients, using IR spectroscopy and MALDI-TOF mass spectrometry.
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