
ON INEXACT ALTERNATING DIRECTION IMPLICIT ITERATION FOR

CONTINUOUS SYLVESTER EQUATIONS

ZHONG-YUN LIU∗, YANG ZHOU∗, AND YULIN ZHANG†

Abstract. In this paper, we study the alternating direction implicit (ADI) iteration for solving the continuous Sylvester

equation AX + XB = C, where the coefficient matrices A and B are assumed to be positive semi-definite matrices (not

necessarily Hermitian), and at least one of them to be positive definite. We first analyze the convergence of the ADI iteration

for solving such a class of Sylvester equations, then derive an upper bound for the contraction factor of this ADI iteration. To

reduce its computational complexity, we further propose an inexact variant of the ADI iteration, which employs some Krylov

subspace methods as its inner iteration processes at each step of the outer ADI iteration. The convergence is also analyzed in

detail. The numerical experiments are given to illustrate the effectiveness of both ADI and inexact ADI iterations.
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1. Introduction. Consider the iterative solution to the continuous Sylvester equation

AX +XB = C, (1.1)

by the ADI-like iterations, where A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n are large sparse matrices.

For definiteness, throughout this paper, both A and B in (1.1) are assumed to be positive semi-definite†

and at least one of them to be positive definite.

It is known that the Sylvester equation (1.1) has a unique solution if and only if A and −B haven’t the

common eigenvalues, see e.g., [19, 21]. A Lyapunov equation is a special case of the Sylvester equation with

B = AH and C = CH , where KH denotes the conjugate transpose of K.

Sylvester equations play important roles in numerous applications such as matrix eigen-decompositions,

control theory, model reduction, numerical solution of matrix differential Riccati equations, image processing,

and many more, see for example [9, 1, 13, 14, 17, 25] and a large literature therein.

The Sylvester equation (1.1) is mathematically equivalent to the larger linear system of the form

A x = c, (1.2)

where A = Im ⊗ A + BT ⊗ In with ⊗ denoting the standard Kronecker product symbol, x, c are two

column-stacking vectors of the matrices X and C, respectively. It is useful to treat the equation (1.2) as a

general linear system in theoretical analysis, but impractical in numerical solution to the continuous Sylvester

equation (1.1), because the equation (1.2) is costly to solve and can be ill-conditioned.

The common approaches to solving (1.1) are the Bartels-Stewart [12] and the Hessenberg-Schur [16, 17]

methods, each of which needs to transform A and B into triangular or Hessenberg form by an orthogonal

similarity transformation and then solving the resulting system directly by Gaussian elimination with partial

pivoting. Those methods are usually referred to as the direct methods. The direct methods are mainly
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applicable for small and medium model problems but often too expensive to be practical for large sparse

problems.

When A and B are large sparse matrices, an alternative for solving (1.1) is iterative methods. The

Smith method [27] and the ADI iterative method [13, 15, 20, 22, 24, 26] are popular ones for solving large

sparse Sylvester equations. Much more attention was paid to the case of the coefficient matrices A and B

being either Hermitian positive definite matrices or M -matrices. However, little attention was focused on

the case of the coefficient matrices A and B being non-Hermitian positive definite matrices. Recently, some

authors applied the state-of-the-art iterative methods, such as the Hermitian and skew-Hermitian splitting

(HSS) iteration [5], the positive-definite and skew-Hermitian splitting (PSS) iteration [8] and the normal and

skew-Hermitian splitting (NSS) iteration [6] for solving non-Hermitian positive definite linear systems¶, to

develop HSS, PSS and NSS iteration solvers for (1.1). Of those methods, one also needs to solve two Sylvester

equations with certain structural coefficient matrices at each inner iteration, those special structures allow

the uses of the numerically stable Cholesky/Bunch-Parlett factorizations (as for the direct methods) or the

short-term recurrence CG/GMRES (CGNE, CGNR) methods (as for the iteration methods). The resulting

methods converge unconditionally and are efficient and robust numerically, see for example [1, 28, 29].

Nevertheless, the coefficient matrices may be dense (for instance, when the matrix A is an upper Hessenberg

matrix, H and S in the HSS splittings are still very dense), see [8]. This motivates us to further study the

ADI-like iterations.

In this paper, we revisit the ADI iteration for solving (1.1). We first analyze its convergence and

then derive an upper bound for its contraction factor. To reduce the computational complexity, we further

establish an inexact variant of the ADI (IADI for short) iteration. The convergence of the IADI method

is also analyzed in detail. Numerical experiments show that those methods are efficient and robust solvers

and have a better performance than the HSS iteration solver for (1.1), and the IADI iteration is usually

superior to the ADI iteration in terms of computation efficiency. Moreover, the IADI iteration as well as the

ADI iteration outperform the IHSS iteration in terms of both the number of iterations and the computation

efficiency.

The organization of this paper is as follows. After analyze the convergence rate of ADI iterative method

for solving (1.1) in next section, we then establish the IADI iteration to improve the computing efficiency of

the ADI iteration in section 3. Numerical experiments are illustrated in section 4 to show the effectiveness

and robustness of our methods.

2. The ADI Iteration. Let us begin with some basic notations. For convenience, throughout this

paper, we denote by k ∈ Cn2

the column-stacking vector of the matrix K ∈ Cn×n, and we denote by λ(K),

ρ(K), ‖ K ‖2 and ‖ K ‖F the spectrum, spectral radius, the 2-norm, and the Frobenius norm of the matrix

K ∈ Cn×n, respectively.

A matrix sequence {Y (k)}∞k=0 ⊆ Cn×n is said to be convergent to a matrix Y ∈ Cn×n if the corresponding

column-stacking vector sequence of {y(k)}∞k=0 ⊆ Cn2

of {Y (k)}∞k=0 is convergent to the corresponding column-

stacking vector y ∈ Cn2

of Y .

The classical ADI iterative method for solving (1.1) is as follows.

The ADI iteration. Given an initial guess X(0), for k = 0, 1, 2, · · · , until {X(k)} converges, compute{
(αI +A)X(k+ 1

2 ) = X(k)(αI −B) + C

X(k+1)(βI +B) = (βI −A)X(k+ 1
2 ) + C,

(2.1)

where α, β are given positive constants.

¶In fact, such kind of methods are analogues to the classical ADI iteration introduced by Peaceman and Rachford for solving

partial differential equations, also see [23].
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Obviously, the equation (2.1) is equivalent to the following one

X(k+1) = (βI −A)(αI +A)−1X(k)(αI −B)(βI +B)−1 + (α+ β)(αI +A)−1C(βI +B)−1, (2.2)

which becomes the Smith iteration [27] when α = β. Therefore, we can think of the ADI iteration as an

accelerated or a generalized version of the Smith iteration.

We remark here that the two half-steps at each iteration (2.2) for solving Sylvester equation (1.1) need

to solve two linear subsystems. Because the coefficient matrices are positive (semi-) definite, we can suitably

choose the shifts in such a way that those matrices have reasonably good diagonally dominant property

such that their incomplete factorizations are existent, stable, and accurate, as mentioned in [10]; or good

preconditioners make the GMRES converge fast, for some effective preconditioner for Hermitian and non-

Hermitian positive definite matrices, see [2, 3, 4].

In matrix-vector form, the ADI iteration (2.1) can be equivalently rewritten as

x(k+1) = H (α, β)x(k) + G c, (2.3)

where {
H (α, β) = [(βI +B)−T (αI −B)T ]⊗ [(βI −A)(αI +A)−1],

G = (α+ β)[(βI +B)−T ⊗ (αI +A)−1],

and x ∈ Cn2

, c ∈ Cn2

, and H (α, β) is the iteration matrix of (2.3).

Before giving the convergence theorem of the ADI iteration, we recall the following known results.

Lemma 2.1. [19] For any A, B ∈ Cn×n, ρ(AB) = ρ(BA) and ρ(A⊗B) = ρ(A) · ρ(B).

Lemma 2.2. Let K ∈ Cn×n, λj ∈ λ(K). Then ρ[(αI +K)−1(βI −K)] = max
1≤j≤n

∣∣∣β−λj

α+λj

∣∣∣.
Now, we can give the convergence theorem of the ADI iteration (2.1).

Theorem 2.3. Let A ∈ Cn×n be positive definite and B ∈ Cn×n be positive semi-definite, α, β be two

positive constants. For j = 1, · · · , n, let λj = λ
′

j + iλ
′′

j and µj = µ
′

j + iµ
′′

j be the eigenvalues of the matrices

A and B, respectively, where λ
′

j, λ
′′

j and µ
′

j, µ
′′

j are the real and pure imaginary parts of the eigenvalues

λj and µj. Let τ = α+β
2 and ∆ = α−β

2 . Then the iterative sequence {X(k)} determined by (2.1) converges

to the exact solution X∗ of (1.1), provided that −λ′

min < ∆ < µ
′

min, where λ
′

min and µ
′

min denote the lower

bounds of the real parts of the eigenvalues of the matrices A and B, respectively.

Proof. From (2.3) and by Lemma 2.1 and Lemma 2.2, we have

ρ[H (α, β)] = ρ{[(βI +B)−T (αI −B)T ]⊗ [(βI −A)(αI +A)−1]}

= max
λj∈λ(A), µj∈λ(B)

∣∣∣∣α− µjβ + µj
· β − λj
α+ λj

∣∣∣∣.
Denoting

φ1(α, β) = max
λj∈λ(A)

∣∣∣∣β − λjα+ λj

∣∣∣∣ and φ2(α, β) = max
µj∈λ(B)

∣∣∣∣α− µjβ + µj

∣∣∣∣ , (2.4)

we get

ρ[H (α, β)] ≤ φ1(α, β) · φ2(α, β)

= max
λj=λ

′
j+iλ

′′
j ∈λ(A)

√
(β − λ′

j)
2 + (λ

′′
j )2

(α+ λ
′
j)

2 + (λ
′′
j )2
· max
µj=µ

′
j+iµ

′′
j ∈λ(B)

√
(α− µ′

j)
2 + (µ

′′
j )2

(β + µ
′
j)

2 + (µ
′′
j )2

.
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Setting λ̃j = (λ
′

j + ∆) + iλ
′′

j = λ̃
′

j + iλ
′′

j , µ̃j = (µ
′

j −∆) + iµ
′′

j = µ̃
′

j + iµ
′′

j , the functions φ1(α, β) and φ2(α, β)

in (2.4) become

φ1(τ,∆) = max
λ̃j=λ̃

′
j+iλ

′′
j

√√√√ (τ − λ̃′
j)

2 + (λ
′′
j )2

(τ + λ̃
′
j)

2 + (λ
′′
j )2

and φ2(τ,∆) = max
µ̃j=µ̃

′
j+iµ

′′
j

√
(τ − µ̃′

j)
2 + (µ

′′
j )2

(τ + µ̃
′
j)

2 + (µ
′′
j )2

(2.5)

we then have

ρ[H (α, β)] ≤ φ1(τ,∆) · φ2(τ,∆) ≡ φ(τ,∆).

Due to −λ′

min < ∆ < µ
′

min, we have that λ̃
′

j > 0 and µ̃
′

j > 0, which imply that φ1(τ,∆) < 1, φ2(τ,∆) < 1

and so ρ[H (α, β)] ≤ φ(τ,∆) < 1. Thus the proof is complete.

In the following, we will suggest a method to determine the α and β in (2.1). Consider ∆ as a parameter

in φ(τ,∆), φ1(τ,∆) and φ2(τ,∆). Note that for any fixed ∆ ∈ (−λ′

min, µ
′

min),

min
τ
φ(τ,∆) ≥ min

τ
φ1(τ,∆) ·min

τ
φ2(τ,∆)

and the equality holds if and only if for a certain ∆∗ there is a corresponding τ∗ that minimizes φ1(τ,∆∗)

and φ2(τ,∆∗) (as well as φ(τ,∆∗)) simultaneously. If (τ∗,∆∗) can be determined in this way and in addition

it satisfies τ∗ > ∆∗, we set α∗ = τ∗ + ∆∗ and β∗ = τ∗ −∆∗.

Using an argument similar to the Theorem 2.2 in [6, 7], the minimizers τ∗1 , τ
∗
2 for solving min

τ
φ1(τ,∆)

and min
τ
φ2(τ,∆) for a fixed ∆, respectively, are given by

τ∗1 =


√

(λ
′
min + ∆)(λ′

max + ∆)− λ′′
max

2
, for λ

′′

max < θ1√
(λ

′
min + ∆)2 + λ′′

max
2
, for λ

′′

max ≥ θ1,

(2.6)

and

τ∗2 =


√

(µ
′
min −∆)(µ′

max −∆)− µ′′
max

2
, for µ

′′

max < θ2,√
(µ

′
min −∆)2 + µ′′

max
2
, for µ

′′

max ≥ θ2.
(2.7)

where

θ1 =

√
(λ

′
min + ∆)(λ′

max − λ
′
min)

2
and θ2 =

√
(µ

′
min −∆)(µ′

max − µ
′
min)

2
.

By setting τ∗1 = τ∗2 and solving it for ∆, we have



∆1 =
µ
′
minµ

′
max−µ

′′
max

2
+λ

′′
max

2
−λ

′
minλ

′
max

λ
′
min+λ′

max+µ
′
min+µ′

max

, when λ
′′

max < θ1 and µ
′′

max < θ2

∆2 =
µ
′
minµ

′
max−µ

′′
max

2
−λ

′′
max

2
−λ

′
min

2

2λ
′
min+µ

′
min+µ′

max

, when λ
′′

max < θ1 and µ
′′

max ≥ θ2

∆3 =
µ
′
min

2
+µ

′′
max

2
−λ

′
min

2
−λ

′′
max

2

2λ
′
min+2µ

′
min

, when λ
′′

max ≥ θ1 and µ
′′

max < θ2

∆4 =
µ
′
min

2
+µ

′′
max

2
−λ

′
minλ

′
max+λ

′′
max

2

λ
′
min+λ′

max+2µ
′
min

, when λ
′′

max ≥ θ1 and µ
′′

max ≥ θ2.

(2.8)
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For each ∆i, we calculate the corresponding θ1, θ2 values denoted by θ
(i)
1 , θ

(i)
2 , i = 1, ..., 4, respectively.

We then determine ∆∗ with the following rule

∆∗ =



∆1, when− λ′

min < ∆1 < µ
′

min and λ
′′

max < θ
(1)
1 and µ

′′

max < θ
(1)
2

∆2, when− λ′

min < ∆2 < µ
′

min and λ
′′

max < θ
(2)
1 and µ

′′

max ≥ θ
(2)
2

∆3, when− λ′

min < ∆3 < µ
′

min and λ
′′

max ≥ θ
(3)
1 and µ

′′

max < θ
(3)
2

∆4, when− λ′

min < ∆4 < µ
′

min and λ
′′

max ≥ θ
(4)
1 and µ

′′

max ≥ θ
(4)
2 .

(2.9)

Once such a ∆∗ is determined, we determine τ∗ = τ∗1 = τ∗2 by using the formulas either in (2.6) or (2.7).

If there are several solutions (τ∗,∆∗), then we pick up a pair with the smallest φ(τ∗,∆∗).

If no ∆∗ can be determined, or it happens that τ∗ ≤ ∆∗ or ∆∗ ≤ −τ∗ for all determined pairs, the above

procedure fails to determine (α∗, β∗). When this happens, we consider ∆ = 0 (i.e., α = β).

In this case, ADI iteration (2.1) reduces to Smith iteration, ρ[H (α)] is bounded by

φ̂(α) = max
γ′+iγ′′∈Ω

(α− γ′
)2 + (γ

′′
)2

(α+ γ′)2 + (γ′′)2
,

where Ω = [γ
′

min, γ
′

max] × i[γ′′

min, γ
′′

max] with γ
′

min and γ
′

max denoting the lower and the upper bounds of

the real part of the eigenvalues of the matrices A and B, and γ
′′

min and γ
′′

max denoting the lower and the

upper bounds of the absolute values of the imaginary part of the eigenvalues of the matrices A and B. The

parameter α∗ is chosen such that the above estimate can be minimized. This fact is precisely stated as the

following theorem.

Lemma 2.4. The minimizer of φ̂(α) over all positive α is attained at

α∗ = arg min
α
φ̂(α) =


√
γ

′
minγ

′
max − γ

′′
max

2
, for γ

′′

max <

√
γ
′
min(γ′

max−γ
′
min)

2√
γ

′
min

2
+ γ′′

max
2
, for γ

′′

max ≥
√

γ
′
min(γ′

max−γ
′
min)

2 ,

(2.10)

and the corresponding minimum value is equal to

φ̂(α∗) =


γ
′
min+γ

′
max−2

√
γ
′
minγ

′
max−γ

′′
max

2

γ
′
min+γ′

max+2
√
γ
′
minγ

′
max−γ

′′
max

2
, for γ

′′

max <

√
γ
′
min(γ′

max−γ
′
min)

2

√
γ
′
min

2
+γ′′

max
2−γ

′
min√

γ
′
min

2
+γ′′

max
2
+γ

′
min

, for γ
′′

max ≥
√

γ
′
min(γ′

max−γ
′
min)

2 .

The proof is a verbatim of one of Corollary 2.3 in [5] and therefore omitted.

Remark 2.5. We remark that the condition −λ′min < ∆ < µ′min is sufficient but not necessary. That

is to say that even if −λ′min < ∆ < µ′min does not hold, we cannot guarantee that the upper bound φ is less

than 1, but it does not mean the spectral radius ρ[H (α, β)] cannot be less than 1.

In fact, if the imaginary parts of the eigenvalues are zero, for example, when A and B are both Hermitian

positive definite matrices, then condition −λ′min < ∆ < µ′min always holds. When A and B are both non-

Hermitian positive definite matrices, we cannot guarantee that −λ′min < ∆ < µ′min. From (2.8), however, we

observe that if one of the following cases:
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(1) λ
′′

max and µ
′′

max are small enough,

(2) ||λ′′

max| − |µ
′′

max|| is sufficient small,

(3) λ
′

max (and µ
′

max) is much larger than λ
′′

max (and µ
′′

max)

holds, then we can find a ∆ such that −λ′min < ∆ < µ′min holds. This phenomenon appears in our numerical

tests. Therefore, we have the following corollary.

Corollary 2.6. Under the assumption of Theorem 2.3, the iterative sequence {X(k)} determined by

(2.1) converges to the exact solution X∗ of (1.1), if λ
′′

max and µ
′′

max are small enough, ||λ′′

max| − |µ
′′

max|| is

sufficient small, or λ
′

max (and µ
′

max) is much larger than λ
′′

max (and µ
′′

max).

Corollary 2.7. If α = β, i.e., ∆ = 0, then the iteration (2.1) converges to the exact solution

unconditionally for all α > 0.

If B = AT in (1.1), then λ(B) = λ(A). From (2.8), we therefore have ∆ = 0. In this case we obtain the

following result.

Corollary 2.8. If B = AT in (1.1), then the iteration (2.1) converges to the exact solution uncondi-

tionally for all α > 0.

3. The IADI Iteration. The two half-steps at each step of the ADI iteration for solving continuous

Sylvester equation (1.1) need to solve two matrix equations like

(αI +A)X = Y1 and X(βI +B) = Y2, (3.1)

where Y1 and Y2 are known.

This may be very costly and impractical in actual implementations. To further improve the compu-

tational efficiency of the ADI iteration, we can solve the two subproblems in (3.1) inexactly by employing

some state of the art iterative methods such as GMRES, which results in the basic framework of the IADI

iterative method for solving (1.1).

Given an initial guess X(0) ∈ Cn×n, for k = 1, 2, · · · , until {X(k)}∞k=0 ⊆ Cn×n satisfies the stopping

criterion, solve X(k+ 1
2 ) approximately from

(αI +A)X(k+ 1
2 ) ≈ X(k)(αI −B) + C,

by employing an inner iteration (e.g., the GMRES) with X(k) as the initial guess; then solve X(k+1) approx-

imately from

X(k+1)(βI +B) ≈ (βI −A)X(k+ 1
2 ) + C,

by employing an inner iteration (e.g., GMRES) with X(k+ 1
2 ) as the initial guess, where α, β are given positive

constants.

To simplify numerical implementation and convergence analysis, based on the residual-updating form

[11] we may rewrite the above IADI iteration as the following equivalent scheme.

The IADI Iteration. Given an initial guess X(0) ∈ Cn×n, for k = 1, 2, · · · , until {X(k)}∞k=0 ⊆ Cn×n

converges:

1. approximate the solution of

(αI +A)Z(k) = R(k),

with R(k) = C −AX(k) −X(k)B, by iterating until Z(k) is such that the residual

P (k) = R(k) − (αI +A)Z(k)
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satisfies

‖ P (k) ‖F≤ εk ‖ R(k) ‖F ,

and then compute

X(k+ 1
2 ) = X(k) + Z(k);

2. approximate the solution of

Z(k+ 1
2 )(βI +B) = R(k+ 1

2 ),

with R(k+ 1
2 ) = C −AX(k+ 1

2 ) −X(k+ 1
2 )B, by iterating until Z(k+ 1

2 ) is such that the residual

Q(k+ 1
2 ) = R(k+ 1

2 ) − Z(k+ 1
2 )(βI +B)

satisfies

‖ Q(k+ 1
2 ) ‖F≤ ηk ‖ R(k+ 1

2 ) ‖F ,

and then compute

X(k+1) = X(k+ 1
2 ) + Z(k+ 1

2 ),

where {εk} and {ηk} are prescribed tolerances used to control the accuracies of the inner iterations.

In order to analyze the convergence of the above IADI iteration, we need to recall the following conver-

gence theorem of iterative solution to a general linear system Ax = b by an inexact two-step splitting iterative

method. Let ||v|| (for all v ∈ Cn) be a general vector norm and M be a nonsingular matrix. We define a new

vector norm by |||v|||M = ||Mv|| (for all v ∈ Cn), then its induced matrix norm is |||K|||M = ||MKM−1||
(for all K ∈ Cn×n ).

Lemma 3.1. [5, Theorem 3.1] Let A ∈ Cn×n and A = Mi −Ni (i = 1, 2) be two splitings of the matrix

A. If {x̃(k)} is an iterative sequence defined as

x̃(k+ 1
2 ) = x̃(k) + z̃(k), with M1z̃

(k) = r̃(k) + p̃(k),

satisfying ||p̃
(k)||

||r̃(k)|| ≤ εk, where r̃(k) = b−Ax̃(k), and

x̃(k+1) = x̃(k+ 1
2 ) + z̃(k+ 1

2 ), with M2z̃
(k+ 1

2 ) = r̃(k+ 1
2 ) + q̃(k+ 1

2 ),

satisfying ||q̃
(k+1

2
)||

||r̃(k+1
2
)||
≤ ηk, where r̃(k+ 1

2 ) = b−Ax̃(k+ 1
2 ), then {x̃(k)} is of the form

x̃(k+1) = M−1
2 N2M

−1
1 N1x̃

(k) +M−1
2 (I +N2M

−1
1 )b+M−1

2 (N2M
−1
1 p̃(k) + q̃(k+ 1

2 )).

Moreover, if x∗ ∈ Cn is the exact solution of the linear system Ax = b, then we have

|||x̃(k+1) − x∗|||M2 ≤ τk|||x̃(k) − x∗|||M2 , k = 0, 1, 2, · · ·,

where τk = σ + µθεk + θ(ρ+ θνεk)ηk with

σ = ||N2M
−1
1 N1M

−1
2 ||, ρ = ||M2M

−1
1 N1M

−1
2 ||, µ = ||N2M

−1
1 ||,

θ = ||AM−1
2 ||, ν = ||M2M

−1
1 ||.
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In particular, if

τmax ≡ σ + µθεmax + θ(ρ+ θνεmax)ηmax < 1,

then the iterative sequence {x̃(k)} converges to x∗ ∈ Cn, where εmax = max
k

εk and ηmax = max
k

ηk.

Now we can demonstrate the following convergence result concerning the above IADI iterative method.

Theorem 3.2. Let {X(k)}∞k=0 ⊆ Cn×n be an iteration sequence generated by the IADI iterative method

and let X∗ ∈ Cn×n be the exact solution of (1.1). Under the assumption of Theorem 2.3, we have that

‖ X(k+1) −X∗ ‖B †† ≤ τk ‖ X(k) −X∗ ‖B (3.2)

where

τk = σ + µθεk + θ(σ + θνεk)ηk (3.3)

with

σ =‖ [(αI −B)T (βI +B)−T ]⊗ [(βI −A)(αI +A)−1] ‖2,
µ =‖ I ⊗ (βI −A)(αI +A)−1 ‖2,
θ =‖ (βI +B)−T ⊗A+BT (βI +B)−T ⊗ I ‖2,
ν =‖ (βI +B)T ⊗ (αI +A)−1 ‖2 .

In particular, if

τmax ≡ σ + µθεmax + θ(σ + θνεmax)ηmax < 1, (3.4)

then the iteration sequence {X(k)}∞k=0 converges to X∗, where εmax = max
k

εk and ηmax = max
k

ηk.

Proof. Denoting M1 = I⊗(αI+A),M2 = (βI+B)T ⊗I,N1 = (αI−B)T ⊗I and N2 = I⊗(βI−A), we

have that A = Mi −Ni (i = 1, 2) are two splittings of A . Again, by making use of the kronecker product,

we can rewrite the above-described IADI iteration in the following matrix-vector form:

M1z
(k) = r(k), x(k+ 1

2 ) = x(k) + z(k) (3.5)

with r(k) = c−A x(k), where z(k) is the approximate solution such that the residual

p(k) = r(k) −M1z
(k)

satisfies ‖ p(k) ‖2≤ εk ‖ r(k) ‖2, and

M2z
(k+ 1

2 ) = r(k+ 1
2 ), x(k+1) = x(k+ 1

2 ) + z(k+ 1
2 ) (3.6)

with r(k+ 1
2 ) = c−A x(k+ 1

2 ), where z(k+ 1
2 ) is the approximate solution such that the residual

q(k+ 1
2 ) = r(k+ 1

2 ) −M2z
(k+ 1

2 )

satisfies

‖ q(k+ 1
2 ) ‖2≤ ηk ‖ r(k+ 1

2 ) ‖2 .

By Lemma 3.1, we can easily obtain

|||x(k+1) − x∗|||M2
≤ τk|||x(k) − x∗|||M2

. (3.7)

††For any K ∈ Cn×n, we define its matrix norm by ‖ K ‖B=‖ K(βI +B) ‖F .
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Now, taking |||y|||M2
=‖M2y ‖2, then we have

|||y|||M2
=‖M2y ‖2=‖ [(βI +B)T ⊗ I]y ‖2=‖ Y (βI +B) ‖F=‖ Y ‖B .

Hence, we can equivalently rewrite the inequality (3.7) as

‖ X(k+1) −X∗ ‖B≤ τk ‖ X(k) −X∗ ‖B .

Thus we complete the proof of this theorem.

According to Theorem 3.2, we want to choose tolerances {εk} and {ηk} so that the computational work

of the IADI iterative method is minimized. In fact, the tolerances {εk} and {ηk} are not required to approach

zero as k increases in order to ensure the convergence of the IADI iteration but are required to approach

zero in order to asymptotically recover the original convergence rate (cf. Theorem 2.3) of the ADI iteration.

How to arrive at a tradeoff between the computational complexity and the convergence rate is a difficult

optimal problem, it deserves further in-depth study.

The following theorem presents one possible way of choosing the tolerances {εk} and {ηk} such that the

original convergence rate of the ADI iteration can be asymptotically recovered.

Theorem 3.3. Let the assumptions in Theorem 3.2 be satisfied. Suppose that both {ψ1(k)} and

{ψ2(k)} are nondecreasing and positive sequences satisfying ψ1(k) ≥ 1, ψ2(k) ≥ 1, and lim
k→∞

supψ1(k) =

lim
k→∞

supψ2(k) = +∞, and that both δ1 and δ2 are real constants on the interval (0, 1) satisfying

εk ≤ t1δψ1(k)
1 and ηk ≤ t2δψ2(k)

2 , (3.8)

where t1 and t2 are nonnegative constants. Then we have

‖ X(k+1) −X∗ ‖B≤ (
√
σ + ϕθδψ(k))2 ‖ X(k) −X∗ ‖B ,

where

ψ(k) = min{ψ1(k), ψ2(k)}, δ = max{δ1, δ2},

and

ϕ = max{
√
t1t2ν,

1

2
√
σ

(t1µ+ t2σ)},

In particular, we have

lim
k→∞

sup
‖ X(k+1) −X∗ ‖B
‖ X(k) −X∗ ‖B

≤ σ.

i.e. the convergence rate of the IADI iterative method is asymptotically the same as that of the ADI iterative

method.

Proof. The proof is a verbatim of Theorems 3.3 and 3.4 in [5] and thus omitted.

4. Numerical examples. In this section, we use some examples to illustrate the effectiveness of ADI

and IADI iterations for solving the Sylvester equation(1.1).

In actual computations, all iterations are started from the zero matrix, performed in MATLAB with

machine precision 10−16, and stopped if the norm of the current residual matrix satisfies ‖ R(k) ‖F / ‖
R(0) ‖F≤ 10−6, where, following the definition, R(k) = C−AX(k)−X(k)B is the residual matrix of the k-th

ADI iteration.
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For convenience, throughout our numerical experiments, we denote by IT the number of the iteration

steps, by CPU the computing time (in seconds), and by αexp and βexp the experimentally found local

optimal values‡ of the iteration parameters of the ADI iteration, respectively.

Example 4.1. We consider the Sylvester equation (1.1) and the matrices

A = B = M + 2rN +
100

(n+ 1)2
I,

where M,N ∈ Rn×n are the tridiagonal matrices given by

M = tridiag(−1, 2,−1) and N = tridiag(0.5, 0,−0.5).

Such a class of problems arise frequently in the preconditioned Krylov subspace iterative methods, see

[1] and reference therein. For comparison, we also test the HSS solver. The numerical results obtained by

the ADI method and the HSS solver are listed in Table 4.1 with r = 1, Table 4.2 with r = 0.1, Table 4.3

with r = 0.01, where let βexp = αexp, and ωexp is the numerically found optimal value of the shift parameter

of the HSS iterations in [1]. We can see that both the number of iteration steps and the runtime by ADI

iteration are much less than those by HSS iteration in all cases.

In Fig.4.1, we depict the convergence behavior of the ADI and HSS iterations for Example 4.1, which

are denoted by +++ and ◦ ◦ ◦ curves, respectively. From Fig.4.1, we can see that the ADI iteration has

a better convergence behavior than the HSS iteration. We can also observe that the HSS is not sensitive

to the nonsymmetric part, as mentioned in [1], where the author pointed out that the convergence depends

only on the spectrums of the Hermitian parts (symmetric parts in our example).

Table 4.1 IT and CPU for ADI and HSS with r=1

ADI HSS

n αexp IT CPU ωexp IT CPU

32 1.20 12 0.001 0.95 27 0.234

64 0.88 17 0.004 0.81 44 1.614

128 0.62 24 0.015 0.62 93 9.841

256 0.51 32 0.250 0.51 203 60.708

Table 4.2 IT and CPU for ADI and HSS with r=0.1

ADI HSS

n αexp IT CPU ωexp IT CPU

32 0.74 18 0.002 0.4 48 0.488

64 0.43 31 0.010 0.23 92 2.943

128 0.27 50 0.063 0.13 177 20.721

256 0.18 74 0.687 0.09 274 161.132

Table 4.3 IT and CPU for ADI and HSS with r=0.01

ADI HSS

n αexp IT CPU ωexp IT CPU

32 0.75 18 0.005 0.4 27 0.390

64 0.42 32 0.010 0.17 44 4.299

128 0.25 55 0.062 0.09 93 36.051

256 0.15 92 0.827 0.05 203 429.960

‡The scalars αexp and βexp are obtained by searching the optimal values of the iteration parameters for the ADI iteration

in two intervals (α − 1, α + 1) and (β − 1, β + 1) with stepsize 0.1, respectively, where α and β are the approximate values

obtained from ∆ and τ defined as in (2.8) and (2.6), in which λmin and µmin are approximately computed by employing the

inverse iteration, and λmax and µmax are roughly estimated by using the power iteration.



Inexact ADI iteration 11

0 10 20 30 40 50 60 70 80 90
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n = 64, r = 0.1

Iterative numbers 

R
es

id
ua

l

 

 
ADI
HSS

0 5 10 15 20 25 30 35 40 45
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n = 128, r = 1

Iterative numbers 

R
es

id
ua

l

 

 
ADI
HSS

Fig. 4.1 Convergence curves for ADI and HSS for n = 64, r = 0.1 (left) and n = 128, r = 1 (right) in Example 4.1.

Example 4.2. We consider the Sylvester equation (1.1) and the matrices{
A = diag(1, 2, · · · , n) + rLT ,

B = 2−tI + diag(1, 2, · · · , n) + rLT + 2−tL,
(4.1)

with L the strictly lower triangular matrix having ones in the lower triangle part and t is a problem parameter

to be specified in actual computations.

The Sylvester equation in Example 4.2 is solved by the ADI, the IADI and the IHSS iterative methods,

respectively. Parameters α1
exp and β1

exp are the numerically found optimal values for IHSS iteration. The

corresponding results are listed in Table 4.4, where we set t = n, r = 1
n , and we use the GMRES as the inner

iteration scheme and set εk = ηk = 0.01, for k = 0, 1, 2, · · · .

From Table 4.4, we can observe that the IADI iteration is usually superior to the ADI iteration in terms

of computation efficiency. Moreover, the IADI iteration as well as the ADI iteration outperform the IHSS

iteration in terms of both the number of iterations and the computation efficiency, especially when the order

of the coefficient matrices is large enough.

Table 4.4 IT and CPU for ADI, IADI and IHSS

ADI IADI IHSS

n αexp βexp IT CPU αexp βexp IT CPU α1
exp β1

exp IT CPU

8 3.7 1.9 9 0.010 3.7 2.1 9 0.060 5 1 16 0.003

16 5.0 3.5 12 0.010 5.0 3.5 12 0.060 8 1 21 0.028

32 6.7 6.1 16 0.020 6.7 6.1 16 0.090 13 1 27 0.130

64 9.0 8.7 23 0.060 9.0 8.7 23 0.120 20 3 36 0.419

128 12.3 12.3 33 0.510 12.3 12.3 33 0.731 30 7 45 2.321

256 17.0 16.9 48 3.113 17.0 16.9 48 3.531 50 10 54 19.224

512 23.6 23.5 69 311.325 23.6 23.5 69 27.188 65 11 91 193.825

5. Conclusions. In this paper, we have revisited ADI iteration for solving the continuous Sylvester

equation AX + XB = C, where the coefficient matrices A and B are assumed to be positive semi-definite

matrices (not necessarily Hermitian), and at least one of them to be positive definite. For such a class of

Sylvester equations, we have analyzed the convergence of the ADI iteration and derived an upper bound of

its contraction factor. To reduce the computational complexity, we have also proposed the IADI iteration

whose convergence has been analyzed in detail. We have presented some numerical experiments to illustrate

the effectiveness of both ADI and IADI iterations.
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In order to get the practical choices of the iteration parameters α and β, we first get the maximal and

minimal eigenvalues of A and B via power method and inverse iteration, then get τ and ∆ according to

formulas (2.6) to (2.10), and finally get the approximations to α and β. The scalars αexp and βexp in text are

obtained by searching the optimal values of the iteration parameters for the ADI iteration in two intervals

(α − 1, α + 1) and (β − 1, β + 1) with stepsize 0.1, respectively. We notice that those iteration parameters

αexp and βexp used in our numerical experiments for the ADI iteration are the experimentally locally optimal

values, not the globally optimal values. Therefore, we can expect the ADI and IADI iterations with exact

optimal iteration parameters to have better convergence behavior and computational efficiency. However, it

is an important and hard task to find the optimal α and β which strongly depend on the specific structures

and properties of the coefficient matrices A and B and need further in-depth study from the viewpoint of

both theory and computations.

We remark here that our convergence theory regarding ADI iterations with two parameters for solving

Sylvester equations can be easily extended to solve the general positive definite linear system, Kx = b,

if K = U + V with U and V being positive definite. In this sense, we can say we have generalized the

convergence theory in [15] concerning ADI iterations with two parameters for solving Hermitian positive

definite linear system Kx = b to the case of K being non-Hermitian positive definite.
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