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Abstract. In today’s software industry, systems are constantly changing. To main-
tain their quality and to prevent failures at controlled costs is a challenge. One
way to foster quality is through thorough and systematic testing. Therefore, the
definition of adequate tests is crucial for saving time, cost and effort. This paper
presents a framework that generates software test cases automatically based on
user interaction data. We propose a data-driven software test generation solution
that combines the use of frequent sequence mining and Markov chain modeling.
We assess the quality of the generated test cases by empirically evaluating their
coverage with respect to observed user interactions and code. We also measure
the plausibility of the distribution of the events in the generated test sets using the
Kullback-Leibler divergence.
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1 Introduction

Software development is a complex and continuous process that requires frequent chan-
ges in the code [1]. Each change can introduce errors that affect the ability of the soft-
ware maker to timely deliver a quality product [2]. Errors in software can cause distrust
in software users but can also lead to substantial economic losses [3] and even the sac-
rifice of human lives [4]. Taking into account that software development is becoming
increasingly more agile [5], with systems undergoing constant changes, the moments
for introducing errors are multiplying.

The software industry typically relies on test cases that are executed before each
release [6]. Although the automation of test checking is a common practice [7], the set
of tests is bounded to the ones previously defined and planned. Moreover, the design of
test cases is mostly based on human expertise [8]. However, manually devising software
tests demands much time, costs and effort of human software testers [8]. Correctly
selecting the tests and evaluating their outputs is crucial in order to efficiently improve
the quality of software [8].



2 Alberto Oliveira, Ricardo Freitas et al.

In this paper, we propose an adaptable framework for learning software test gen-
erators from user interaction data. It has been developed in the context of a software
company that produces the web-based application Anywhere+, a platform for manag-
ing insurance products. Nevertheless, our proposed approach can be used with any web
GUI-based software. In our pipeline, the first step is to store the user interaction logs. A
browser plugin captures this data as users work normally. From this data, we discover
sequential micro-patterns using sequence mining. The third step is to chain the discov-
ered patterns into a global Markov chain model. Finally, this model is used to generate
test cases based on these patterns automatically. The approach is tested on real data in
terms of coverage and plausibility of the generated patterns. As a result, we have ob-
tained stable growth rates in terms of coverage – adding more generated tests increases
our coverage metric value, even reaching full coverage for one of the cases – and very
low values of the Kullback-Leibler’s divergence between the distribution of actions in
user sessions and in artificially generated tests.

This paper is organized as follows. We first discuss related work. Then we give
an overview of the software’s deployment pipeline. We describe how data is collected,
how frequent sequences are found and how we use Markov chains to produce our test
generator. We wrap up with evaluation and conclusions.

2 Related Work

Given the importance of the software development process and the tremendous possi-
bilities that AI can bring to it [9], this is a fertile ground for AI research. Many works
can be found in the last two decades with contributions to different phases of the process
and in particular to test generation.

Isabella and Retna [10] present a general overview of test case generation for GUI
based testing. This includes generation of test cases, repairing infeasible test suites and
multiple GUI testing tools over various types of software, as well as its usage advantages
and disadvantages. Conroy et al. [11] proposed a generic method for generating tests
for testing web services from their reference legacy GUI applications. This work mainly
relies on the concept that GUI elements are programming objects whose values can be
set and retrieved and whose methods are associated with actions that users perform on
these elements, which is very similar to our solution’s plugin purpose.

The closest work to ours in spirit and method is the one accomplished by Zhou
et al. [12]. It first builds a Markov usage model based on improved state transition
matrix (STM), which is a table-based modeling language. It then generates a software
reliability test method, including test case generation and test adequacy determination
using the previously created Markov usage model. An improved Kullback discriminant
was chosen as the judgment criteria of convergence from the test chain to the usage
chain in order to measure if the testing process is sufficient.

Lastly, the approach of Last et al. [8] aims to automate the input-output analysis of
execution data based on a machine learning methodology. This methodology relies on
the info-fuzzy network (IFN), which has a tree-like structure. The network is used to
predict output values given test-cases.
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3 The Software Deployment Framework

The main contribution of this paper is the software test generation process that relies on
captured GUI events data. This is part of a broader software deployment framework for
an insurance ERP called Anywhere+ developed by RandTech Computing (https://
rtcom.pt). It has been extended to incorporate this Artificial Intelligence component,
from data collection to test generation. This framework automates the complex software
update process, including code, databases and tests, and enables safer, faster and more
frequent updates. It is flexible enough to be easily adapted to other deployment flows.
The framework follows a modular structure (Figure 1).

Fig. 1: Software Deployment Framework

The Plugin component collects interaction data from the browser as the application
is used. This is high-level data that represents business events. In the Analysis Module
this data is used to induce a model for generating tests. The Tests Generator uses the
model to generate software tests. Since some actions of the tests require specific values
(for example, filling in the name of a client), this is provided by a specific dataset of
attribute-value pairs created using the Datasets Editor. When the software tests are au-
tomatically executed, the E-learning component captures the sequence of screenshots
that can later be used for user training. The Installer is the component that deploys new
versions of the software. The XHTML generator automatically transforms the XHTML
files which compose the application’s UI. This generator is capable of assigning graph-
ical widgets to high-level functional categories corresponding to embedded business
concepts. This is important to give semantics to the events to be logged by the Plugin.
The AutoUpdate component warns users of new updates. The Automatic Database Re-
covery changes the structure of the database if needed, and Rollback is there to recover
the previous database if anything goes wrong.

4 Data acquisition

As the application is used, GUI events are continuously recorded by the Plugin com-
ponent. This provides a memory of the real sessions that will drive the building of test
case scenarios.

https://rtcom.pt
https://rtcom.pt
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In order to define and execute the software tests, it is fundamental that the frame-
work can recognize the various business concepts. For that, we have defined a syntax
for the XHTML generator which recognizes a set of patterns used on the UI design of
the Anywhere+ application. The XHTML files which compose the Anywhere+ appli-
cation are transformed by inserting the reference to the business concepts. Despite its
complexity, this transformation occurs transparently and automatically, both for pro-
grammers as for users and is triggered at each build of the application.

4.1 Data Format

User activities are recorded on a text file, following a simple and optimized structure
for the analysis task. The interactions’ format firstly contain the timestamp, session
id, tab id and the business concept separated by a comma. Secondly, there are three
components separated by semicolon: action/command, target and value.

The action field is mandatory, but target and value parameters may be void. The
captured user sessions are the input for the Analysis Module that builds output for the
Test Generator. This is a Markov model whose states are sequences of user actions.
The Test Generator pre-processes the interaction events logged and looks for frequent
sequences with a given maximum length. The resulting sequences are chained into a
single Markov model. This model is built by identifying all the initial states from the
sequences and then, for each initial state, it explores the next states. The transition
probabilities are estimated using the number of transitions from a determined current
state to a next state. The Markov chain model is then output in JSON format.

5 Frequent Sequence Identification

To generate the frequent sequence patterns, we considered various frequent sequence
mining algorithms. These algorithms can be categorized by their search approach as
breadth-first search or depth-first search. Depth-first search algorithms need less database
scans in order to obtain all frequent sequences so they are more computationally effi-
cient with larger databases.

Fournier-Viger et al. [13] proposed the data structure CMAP (Co-occurrences Map,
CMAP) capable of keeping a co-occurrences map of items extracted from a single
database scan and also a new approach to the sequence pruning stage based on this
data structure and on the co-occurrences’ properties. The CM-SPAM algorithm is an
optimized version of SPAM [14] for the frequent pattern mining task. The SPAM algo-
rithm first constructs a vertical sequence representation of the sequences database and
obtains the set of frequent items, according to the given minimum support parameter.
It then searches for candidate patterns based on the set of frequent items. SPAM uses
bitmaps for faster pattern joining operations. The algorithm outputs sequences and their
respective frequency.

This library uses the IBMGenerator format for sequence databases, which is repre-
sented by a binary file of integers ordered by little-endian, where positive values repre-
sent events, -1 represents the separation between events and -2 represents the end of a
sequence.
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6 Software Test Generator

A Markov model provides us with flexible, easily understandable representations of the
operational profiles of given programs or software systems [15]. The Markov property
says that the probability distribution of future states of a process relies only upon the
current state. Therefore, a Markov model captures the time-independent probability of
being in state s1 at time t + 1 knowing that the state at time t was s0. The relative fre-
quency of event transitions during program executions provides a probability estimate
for each possible immediate state.

For the deployment framework, the Markov model is represented as a dictionary
structure, < key, values >, where key is the current initial state (associated with the
previous actions) and values is a list of future actions associated to their probabilities.
The states in our application are the actions performed by the user. This model is stored
in JSON format.When used to reproduce sequences, Markov models can lead to infinite
cycles of alternating states. To avoid that, we have adopted an end-of-sequence token
which, when generated, terminates the sequence.

Given the Markov model, tests are generated in multiple ways using a proportional
sampling criterion. This approach, proposed by Zhou et al. [12], divides the choice
interval space, making it between [0,1] and splitting by the occurrence probabilities of
each action (for example, if we have A = 0.3, B = 0.2 and C = 0.5, our interval will be
split into intervals of [0,0.3], ]0.3,0.5] and ]0.5,1]). A random number between 0 and
1 is generated and the action is chosen according to where the generated value fits (for
example if the generated value is 0.4, the chosen action will be B).

The generated tests correspond to interaction paths that could be followed by the
platform’s users. The test generation algorithm takes three parameters, N, L and markov.
N represents the order of the Markov model, i.e., the number of actions to be taken into
account for the next action of the Markov chain. L is the number of sequences we want
to generate, and markov is the Markov model generated by the Analysis module.

7 Evaluation

The current evaluation of our approach focuses on code coverage and plausibility. In our
experiments, we generate large numbers of tests and observe how these two dimensions
evolve. We aim at assessing the quality of the generated tests, as well as determining
the minimum number of tests that must be generated to ensure quality.

7.1 Metrics

The metrics used are Proportion of Actions Covered (PAC) and the Kullback-Leibler’s
(KL) divergence [16]. PAC is the ratio between the number of distinct actions in real
sessions and the number of distinct actions in sessions built by the Analysis Module.
This metric does not measure the code coverage directly since it is based on the de facto
users’ actions. If a part of the code is never involved in real sessions, it is not tested.
However, the more PAC grows, the more code is tested. The Kullback-Leibler’s diver-
gence [16] is a comparison measure between two probabilities’ distributions. Using it,
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we can compare the distribution of events in the real session with the generated ones.
The expression to calculate this divergence is presented below.

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)
(1)

7.2 Results

Code Coverage We performed the test for the code coverage using a growing number
of N (from 1 to 6) and a maximum value for L (600). For each value of N , we generated
0 to 600 tests and cumulatively measured the coverage of the tests. In Figure 2, we
observe how PAC grows with the number of generated tests, reaching a value of 1 to
N = 1 and nearly 1 for the remaining N . Although there is no clear relation between
N and the measured of PAC, higher values of N do not seem to pay off in terms of
coverage. As we will see, this is also the case with plausibility. In any case, a number of
600 test cases already offers excellent coverage. The parameter N (size of the frequent
sequences) does not seem to have a clear influence. This indicates that the number of
tests has to be relatively large to assure high coverage.

Fig. 2: Evaluation results for code coverage (PAC)

Kullback-Leibler’s divergence We have executed an experiment similar to the pre-
vious one for measuring the plausibility of the generated tests. Now we measure KL
of the produced distribution of events given the observed one. We obtained the results
shown in Figure 3. We see that KL tends to zero for all values of N (a KL value close
to 0 indicates that the generated sequences are a good representation of real sequences).
With L > 2500 test cases, we already obtain plausible distributions for all N . This
shows that we can find various safe pairs, L and N . Combining both evaluation di-
mensions, and taking into account that lower values of N and L are preferable for
computational reasons, right combinations would be N ∈ {1, 2, 3}, L ≥ 2500.



Sequence Mining for Automatic Generation of Software Tests 7

Fig. 3: Evaluation results for the Kullback-Leibler divergence

8 Conclusions

With this work, we have managed to implement a tool that automatically generates
software tests based on GUI event logs. This proposed solution has a high degree of
adaptability for easy adoption by other systems. However, to implement this method-
ology, it is necessary for some degree of permanent system users’, in order to obtain
useful results. For further research/improvements, we will deepen the presented empir-
ical study and consider other dimensions. Currently, the Kullback-Leibler’s divergence
does not compare distributions of micro sequences but only of individual items. Despite
the merits of the PAC metric, which give more importance to more frequent user actions,
we should also measure the plain coverage of code. These metrics are continuously and
automatically obtained throughout the software development and deployment process.
It is, therefore, important to provide developers with dashboard tools for easy access
to these performance indicators. In another line of evaluation, we are designing an A/B
test methodology that enables the direct comparison of the performance of automatic
software testing with manual test design.
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