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Abstract—Active orthoses (AOs) are becoming relevant for user-

oriented training in gait rehabilitation. This implies efficient 

responses of AO’s low-level controllers with short time modeling 

for medical applications. This thesis investigates, in an innovative 

way, the performance of Feedback-Error Learning (FEL) control 

to time-effectively adapt the AOs’ responses to user-oriented 

trajectories and changes in the dynamics due to the interaction 

with the user. FEL control comprises a feedback PID controller 

and a neural network feedforward controller to promptly learn the 

inverse dynamics of two AOs. It was carried out experiments with 

able-bodied subjects walking on a treadmill and considering 

external disturbances to user-AO interaction. Results showed that 

the FEL control effectively tracked the user-oriented trajectory 

with position errors between 5% to 7%, and with a mean delay 

lower than 25 ms. Compared to a single PID control, the FEL 

control decreased by 16.5% and 90.7% the position error and 

delay, respectively. Moreover, the feedforward controller was able 

to learn the inverse dynamics of the two AOs and adapt to 

variations in the user-oriented trajectories, such as speed and 

angular range, while the feedback controller compensated for 

random disturbances. FEL demonstrated to be an efficient low-

level controller for controlling AOs during gait rehabilitation. 

Keywords- gait rehabilitation; robotic assistive devices; human-

centered robotics; feedback error learning control; neural network 

I.  INTRODUCTION 

Gait rehabilitation has been proposed as a more appropriate 
intervention to restore motor abilities, which are boosted by 
user-oriented and repetitive gait training [1], [2]. Wearable 
robotic assistive devices, such as active orthoses (AOs), are 
becoming a prominent intervention for fostering user-oriented 
gait training by tuning the AOs’ mechanical work in accordance 
with the real-time evaluation of the user’s needs, approaching 
assist-as-needed (AAN) strategies [2], [3]. Additionally, AOs 
have embodied assistive strategies, such as the trajectory 

tracking control based on user-oriented trajectories to improve 
the movement coordination [4].  

Nowadays, the principles of the human motor control 
system start to influence the design of these active orthotic 
systems, and it has been proposed bioinspired architectures with 
emphasis on the human-AOs interaction to deliver an effective 
response in accordance with the user’s needs [2].  

Feedback and feedforward controllers play an important role 
in the low-level layer of these bioinspired architectures. They 
should guarantee that the AOs’ actuation system has accurate 
and time-effective responses to track the position- or torque-
based reference trajectory and the stability of the human-AOs 
interaction. Feedback controllers, such as the Proportional-
Integral-Derivative (PID) and its variants, are the low-level 
controllers mostly applied in AOs due to their feasibility and 
mathematical straightforwardness, without an arduous 
implementation process [5], [6], [7]. Nevertheless, adopting 
user-oriented assistance strategies merely based on PID control 
might present limitations, such as steady-state errors, 
measurement noise in the feedback loop, and low robustness to 
disturbances and human-AO dynamic changes. This limited 
adaptability may lead the human-AO interface to instability [8]. 
On the other hand, optimal and robust controls have been used 
to minimize the influence of disturbances over the control 
response and to confer adaptability in different rehabilitative 
scenarios [9]. However, the applicability of these controls for 
clinical purposes is limited by the considerable complex 
mathematical understanding and modeling [10].  

The development of time-effective low-level controllers for 
AOs capable of providing low steady-state errors, emphasizing 
adaptiveness to different walking scenarios without requiring 
system modeling, becomes imperative. To address these 
features, Feedback-error learning (FEL) control, proposed by 
Kawato [11], has been applied in robotic systems [10]–[12]. 
FEL, bioinspired on the learning process of the human motor 
cortex, is a hybrid control combining a feedback controller with 
a feedforward controller capable of learning the inverse 
dynamics of the robotic system using the feedback control 
command as the error signal for the learning (feedback error). 
The feedforward controller usually includes regression 
techniques to simplify and shorten the learning of the inverse 
dynamics for real-time and medical applications not requiring an 
explicit model of the robotic system neither separating the 
learning and control phase [10], [12]. FEL allows the feedback 
controller to control the system while the inverse model is being 
learned in real-time. The learned inverse model is capable to 
track the reference trajectory. Consequently, this reduces the 
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feedback contribution to the final control command. The overall 
performance of FEL beneficiates from the adaptive and 
anticipatory features of the feedforward control to adapt to 
changes in AOs’ dynamics and enable time-effective fast 
movements while the feedback controller is able to compensate 
for disturbances [12].  

So far, the application of FEL in real robotic assistive devices 
has been limited to upper limb assistance by functional electrical 
stimulation [12] and neuroprosthetics [10] and has not yet been 
tested in lower limb assistive devices such as AOs. This thesis 
innovatively investigates the FEL effects in AOs for gait 
rehabilitation. The main goal of this thesis is to present the real-
time implementation of FEL control to time-effectively adapt 
the AOs’ responses to user-oriented trajectories and changes in 
the dynamics due to the interaction with the user. It was applied 
an artificial neural network (ANN) as the feedforward controller 
[11] to learn the inverse dynamics of the AO taking the output 
of a PID command (feedback controller) as an error signal. The 
PID control was also used to control the AOs during the real-
time learning phase of ANN (performed at 1 kHz), and to handle 
with disturbances as the learning is completed. The FEL control 
was tuned and validated in two AOs, a powered knee orthosis 
(PKO) and a powered ankle-foot orthosis (PAFO), using 
position-based trajectory tracking assistive strategies for gait 
rehabilitation of the knee and ankle joints, respectively. These 
AOs are embodied into a smart, active orthotic system – 
SmartOs – controlled by a bioinspired architecture. The ANN 
was designed using normalized inputs to allow variations in the 
user-oriented trajectory, such as gait speed (0.8, 1.0, and 1.2 
km/h) and trajectory angular range. 

II. METHODS 

This thesis presents the FEL as a new low-level controller 
for the smart, active lower limb orthotic system - SmartOs. It 
includes a right PKO and a right PAFO synergistically linked 
to a wearable motion lab (with biomechanical and muscular 
sensors) for the post-stroke robotic-based gait rehabilitation 
with a user-oriented, repetitive gait training. SmartOs was 
designed with a bio-inspired control architecture structured into 
three levels [2]. Currently, this control architecture includes a 
set of AAN assistive strategies, namely: adaptive trajectory 
tracking control, adaptive impedance control, and myoelectric 
control, using the PID as the low-level control.  

Fig. 1 illustrates the general overview of the SmartOs 
modules involved in this thesis. The position-based trajectory 
tracking control was selected as the control assistive strategy.  

A. PKO and PAFO Assistive Devices 

The used PKO and PAFO (see Fig. 1.a)) are modules of the 
lower limb H2-exoskeleton (Technaid S.L., Spain) [4]. Each AO 
has embedded sensors (potentiometer, strain gauges, and hall 
effect sensors) and an actuation technology comprising an 
electrical actuator (brushless DC motor EC60-100W (Maxon)) 
coupled to a gearbox CSD20-160-2A (Harmonic Drive). The 
Control Area Network (CAN) was used to establish a 
deterministic communication among the AOs and the low-level 
processing unit, the STM32F407VGT microcontroller running 
freeRTOS OS that manages the low-level controllers at 1 kHz. 

The reference trajectories are set in the high- and mid-level 
controllers running at 100 Hz in a central processing unit, the 
Raspberry Pi 3 [13] with the Ubuntu Mate OS [14]. A serial 
interface was used, through Universal Asynchronous Receiver-
Transmitter (UART), to manage the communication between the 
central processing unit and the low-level processing unit. The 
system was powered by a LiFePO4 battery of 24 V and 3 Ah, 
which enables at least 10 hours of autonomy.  

B. High- and Mid-level Controllers 

For the position-based trajectory tracking control, the high-
level includes a regression model dependent on the user’s 
height and gait speed [15] to generate user-oriented position 

trajectories (𝜃𝑢𝑠𝑒𝑟) for the knee and ankle joints. It was set the 
gait speeds as 0.8 km/h, 1.0 km/h, and 1.2 km/h as they are the 
target speeds to be used with end-users. 

As shown in Fig. 1, the mid-level controller sets the AO’s 

reference trajectory ( 𝜃𝑟𝑒𝑓. ) as the user-oriented angular 

trajectories (𝜃𝑢𝑠𝑒𝑟) parameterized in accordance with the gait 
speed. As such, (1), empirically found, sets the Number of 
Control Loops (NCL), each lasting 1 ms, that must occur to 
update the value of the reference trajectory. This speed-
parameterization aims to ensure user-AO coordination. 

𝑁𝐶𝐿 = −34.62 ∗ 𝐺𝑎𝑖𝑡 𝑆𝑝𝑒𝑒𝑑 + 107.31 (1) 

C. Low-level Controller 

In the scope of this thesis, the low-level controller covers a 
position-based control loop to ensure that the AO’s angular 
position matches the user-oriented trajectory. Previously to the 
FEL control, it has been achieved through PID control. Both 
controls were implemented in SmartOs as follows.  

1) PID Control: It was tuned using the Ziegler-Nichols 

method with a similar procedure as was reported in [16]. This 

tuning considered the practical application of PKO and PAFO 

in a rehabilitation scenario to avoid abrupt movements that can 

cause discomfort to the user and to avoid oscillations and 

overshoot in the actuator’s response. It was used a 𝐾𝑝 = 90 and 

𝐾𝑖 =  𝐾𝑑 = 1.5 as PID gains. The PID controller implements 

the control law presented in (2) to compute the feedback 

command (𝑢𝑓𝑏), where 𝑒𝑘  and 𝑒𝑘−1 correspond to the current 

Figure 1. SmartOs overview: a) User wearing SmartOs modules: 1- PAFO, 2-

PKO, 3-Power supply system, 4- central processing unit, 5- low-level 

processing unit; b) hierarchical control architecture. 



and previous error between the reference (𝜃𝑟𝑒𝑓.) and measured 

(𝜃𝑚𝑒𝑎𝑠) angular position by a potentiometer embedded on the 

AO, as illustrated in Fig. 2.  

 𝑢𝑓𝑏 = 𝐾𝑝𝑒𝑘 + 𝐾𝑖 ∑ 𝑒𝑛∆𝑡 + 𝐾𝑑
𝑘
𝑛=1

𝑒𝑘−𝑒𝑘−1

∆𝑡
 () 

2) FEL Control: It implies a feedback and a feedforward 

controller to command the AO in the desired way, as depicted 

in Fig. 2. The PID feedback controller provides control 

commands and guarantees stability during the real-time 

learning of the AOs’ inverse dynamics model and to 

compensate disturbances as the learning phase is completed. 

The feedforward controller learns the inverse dynamics model 

using an ANN as the regression technique, as proposed in [10], 

[11], [17]. It was involved a supervised ANN to infer the inverse 

dynamics due to its proper estimation performance, good 

generalization, and its capability to map non-linearities [18]. 

Note that two inverse models were learned, one for each AO.  

The ANN was trained in real-time following a supervised 
learning training method, running at 1 kHz. The Multi-Layer 
Perceptron (MLP) was the adopted structure for the ANN, as in 
[10], [17]. As illustrated in Fig. 2.b), each ANN has 3 layers as 
follows: the input layer with 3 neurons for the 3 input 

trajectories, the reference position (𝜃𝑟𝑒𝑓), the speed (�̇�𝑟𝑒𝑓) and 

acceleration (�̈�𝑟𝑒𝑓); the hidden layer with 4 and 5 neurons for 

PKO and PAFO, respectively; and, the output layer with 1 
neuron, i.e., the feedforward command (𝑢𝑓𝑓). The hyperbolic 

tangent and the identity were the used activation functions for 
the hidden and output layers, respectively. It was included bias 

nodes in the hidden and output layers (see Fig. 2.b)) to increase 
the flexibility of the ANN to fit the input data.  

As the learning method, it was used the backpropagation 
algorithm that includes a forward and a backward phase. The 
forward phase predicts feedforward commands (𝑢𝑓𝑓 ) for the 

given inputs and based on the current weights. The backward 
phase updates the weights based on the gradient descent (i.e., 
minimization) of the current feedback command (𝑢𝑓𝑏 , PID 

command serves as the cost function) with respect to the 
network’s weights change. A stochastic gradient descent (SGD) 
approach was implemented such that the weights are updated 
based on inputs presented in random order on each training 
iteration [19]. To implement SGD in real-time and to meet the 
temporal requirement of 1 ms (1 kHz), it was applied the 
Adaptive Moment Estimation (ADAM) optimizer [20] that is 
an SGD approach for computationally efficient stochastic 
optimization that only requires first-order gradients with little 
memory requirements [20]. ADAM used adaptive learning rates 
per weight connection, providing adaptability to the ANN 
training and decreasing the training time.  

Table I presents the empirically found set-up for training the 
ANN for PKO and PAFO, namely the number of neurons in the 
hidden layer, the maximum learning rate, and the initial weights 
in the hidden (𝑤ℎ𝑖𝑑) and output (𝑤𝑜𝑢𝑡) layers. This parameters’ 
setting resulted from a trade-off between the ANN performance 
and the real-time temporal requirements (1 kHz).  

TABLE I.  ANN’S SET-UP FOR TRAINING PHASE 

AO 
Hidden 

Neurons 

Initial Weights  Learning 

Rate 

PKO 4 
−0.058 ≤ 𝑤ℎ𝑖𝑑 ≤ 0.058 

−0.05 ≤ 𝑤𝑜𝑢𝑡 ≤ 0.05 

Adaptive 

(≤0.0001) 

PAFO 5 
−0.058 ≤ 𝑤ℎ𝑖𝑑 ≤ 0.058 

−0.045 ≤ 𝑤𝑜𝑢𝑡 ≤ 0.045 

Adaptive 

(≤0.00001) 

 
For both training and recall phases, the input signals of ANN 

( 𝜃𝑟𝑒𝑓, �̇�𝑟𝑒𝑓, �̈�𝑟𝑒𝑓 ) were normalized between [-1;1] in an 

attempt to provide adaptability and versatility to the ANN. This 
enables to handle with variations in the reference trajectories, 
such as gait speed and trajectory angular range, and the 
application of the tuned ANN in different user-oriented 
trajectories. Moreover, it reduces the estimation error and 
accelerates the training phase [21]. As presented in Fig. 2.b), 
the predicted output of the ANN (𝑢𝑓𝑓) was denormalized to the 

maximum operating magnitude of the control commands, 
experimentally set to [-2500; 2500], i.e., to the maximum values 
of the AOs’ pulse-width modulation. 

Moreover, in both training and recall phases, the computed 
feedback (𝑢𝑓𝑏) and feedforward (𝑢𝑓𝑓) commands are summed 

to get the final control command (𝑢) to be applied to the AOs. 
The final command was limited to [-2500; 2500] with a 
saturator (Fig. 2.b)) to protect the operability of AOs. When 
three gait cycles are performed, the contribution of the feedback 
control command (𝑢𝑓𝑏(%)) to the final control command (𝑢) is 

estimated, as given by (3), considering 𝑢𝑓𝑓
2  as the mean squared 

feedforward contribution.  

Figure 2. FEL control: a) FEL control loop for PKO. 𝜃𝑟𝑒𝑓.  is the 

reference angular position; �̇�𝑟𝑒𝑓. is the reference angular velocity; �̈�𝑟𝑒𝑓.  

is the reference angular acceleration 𝜃𝑚𝑒𝑎𝑠.  is the measured angular 

position; 𝑒 is the position error; 𝑢𝑓𝑏 is the feedback command; 𝑢𝑓𝑓 is 

the feedforward command; 𝑢 is the final control command; A is the 

potentiometer and B is the actuator, a) ANN-based feedback controller. 



𝑢𝑓𝑏(%) = 100% ×
𝑢𝑓𝑓

2

𝑢
 (3) 

The training phase ends when the contribution of the 
feedback controller is equal or lower to 5% (𝑢𝑓𝑏 ≤ 5%) since it 

was empirically verified that the feedback contribution did not 
reach much lower than 5%. Then, the recall phase starts and the 
learned inverse dynamics models of PKO and PAFO are able to 
predict time-effective control commands to timely track the 
reference trajectory (𝜃𝑟𝑒𝑓) while the feedforward controller is 

released from this task to compensate for disturbances. 

All software interfaces for FEL real-time implementation 
were done in C language in the STM32F407VGT 
microcontroller, using its hardware abstraction layer libraries 
and following the time-effectiveness architecture of SmartOs.  

D. Safety Measures  

Different safety measures were included throughout the 
control architecture (as illustrated in Fig. 1.b)) to safeguard the 
human-AO interaction. The mechanical limits, i.e., the range of 
motion (ROM) of PKO and PAFO were limited to [3º; 98º] and 
[-18º; 18º], respectively. These intervals are contained within the 
ROMs of the user’s joints so that the AOs do not compromise 
the users’ joints integrity by applying overextension or over 
flexion motions. Additionally, a proper and comfortable 
attachment and alignment of the AOs with the user’s lower limbs 
and joints, respectively, were considered. Lastly, the therapy can 
only be interrupted or stopped in a smooth and safe manner when 
the user is touching on the ground (tracked by force resistive 
sensors embedded on AOs).  

III. FEL CONTROL PERFORMANCE 

A. Experimental Tuning  

The tuning of FEL control focused on the feedforward 
controller. No tuning was made in the feedback controller since 
it was used the already tuned PID control. The tuning of the 
feedforward controller consisted of the real-time training of the 
ANN by considering the normalized inputs randomly presented 
to the ANN (SGD approach) and the actual PID commands as 
the feedback error to be minimized. This procedure was 
separately performed for the PKO and PAFO with the respective 
reference trajectories adjusted with NCL for 1 km/h and 0.8 
km/h (speeds randomly selected), respectively.  

During the real-time training of the feedforward controller, 
the ANN is trying to learn the AOs’ inverse dynamics models. 
Consequently, the feedforward commands that contribute to the 
final command ( 𝑢 ) could lead the AOs to exceed their 
mechanical limits and compromising their integrity. Therefore, 
for the first training phase of the ANN, it was decided to modify 
the original reference position trajectory. It was added an offset 
of 15o to the original knee reference trajectory and smoothed the 
original ankle reference trajectory with an attenuation gain of 
40% and 4o of offset. With this procedure, it is was possible to 
get the inverse dynamics models of PKO and PAFO while 
operating far from their mechanical limits. As illustrated in Fig. 
3, the trajectory modification was possible since the normalized 
signals of the original and modified trajectory are equal. This 

finding shows that the ANN would receive equal inputs in both 
situations. Note that the initial AOs’ angular position was set 
close to the first value of the non-normalized input signals.  

The pre-trained ANNs were subsequently retrained using the 
original reference trajectories to get the final configuration for 
the ANNs. The pre-trained state is an important advantage to 
clinical application once it may decrease the training time for 
new user-oriented trajectories, as reported in [12].  

B. Experimental Validation  

FEL control was validated in PKO and PAKO following 
three experimental procedures. In the first one, it was validated 
the robustness, repeatability, and time-effectiveness of the FEL 
control, with focus on the ANN-based feedforward controller. 
Moreover, it was studied the stability of FEL control commands 
along the time such that to investigate the possible inclusion of 
FEL as a low-level controller in SmartOs. For these purposes, a 
set of experiments were separately performed for the PKO and 
PAFO without involving the user, considering the original 
reference trajectories tuned for 0.8 km/h, 1.0 km/h, and 1.2 km/h. 
Each experiment lasted 5 minutes.  

The second procedure covers the validation of FEL control 
considering the user-AO interaction to investigate the FEL 
adaptability to changes in the dynamics due to the interaction 
with the user. For this purpose, two able-bodied subjects (a male 
and a female) with 25.5 ± 0.71 years old, the height of 1.69 ± 
0.1 m, and the weight of 64.50 ± 14.84 kg were involved. They 
gave their informed consent to take part in the experiment. They 
were asked to walk at 0.8, 1.0, and 1.2 km/h in level-ground on 
a treadmill with the PKO and PAFO. Each participant 
performed 3 trials with a duration of 5 minutes.  

With the third procedure, it was studied the FEL response to 
external perturbations to the user-AO interaction. Under the 
same conditions as the ones taken for the second procedure, the 
participants were informed and asked to counteract the PKO 
and PAFO in the terminal stance and in the initial stance phase, 
respectively, preventing both AOs from increasing their 
position. The participants performed the disturbances in self-
selected gait cycles. These disturbances were selected given 
their high prevalence during a gait therapy. 

Figure 1. Original (red) and modified (black) input signals for PKO (A-C non-

normalized signals, D-F normalized signals) and PAFO (G-I non-normalized 

signals, J-L normalized signals). 



C. Performance Measures and Metrics  

To evaluate the FEL performance while comparing with the 
single PID feedback controller, it was collected the position 
trajectory measured by the potentiometer (𝜃𝑚𝑒𝑎𝑠), the feedback 
(𝑢𝑓𝑏 ) and feedforward commands (𝑢𝑓𝑓), for PKO and PAFO. 

All signals were sampled at 100 Hz. As performance metrics, it 
was computed the phase delay (ms), the angular position error 
(º) and its normalized root mean square error (NRMSE (%)), and 
the feedback command contribution (𝑢𝑓𝑏(%)).  

IV. RESULTS AND DISCUSSION  

A. FEL Tuning  

It was analyzed the AOs’ state during FEL tuning, by 
considering the evaluation of the measured position trajectory, 
the control commands, and the angular position error. For 
instance, Fig. 4 presents the results achieved during the ANN 
training using the modified trajectory for the PKO at 1 km/h 
under three different periods of FEL control: Initial Phase, 
Middle Phase, and Final Phase.  

During the Initial Phase (first 11 s), the feedforward 
controller is starting to tune its ANN. Consequently, 
feedforward contribution to the final control command is not 
significant, being the PID control responsible to track the 
reference trajectory (Fig. 4.B). It is possible to see in Fig. 4.A 
that the measured trajectory is delayed 210 ms comparatively to 
the reference one. Hence, the angular position error varies from 
-20o to 20o, as demonstrated in Fig. 4.C. 

In the Middle Phase (between the first 11 s until 40 s), the 
FEL controller is learning the inverse dynamics model of the 
PKO. Therefore, the measured trajectory starts to decrease its 
phase difference to the reference signal to a mean value of 6 ms 
(considering three gait cycles presented in Fig. 4.D). To correct 
this delay, the feedforward controller produces commands that 
when summed with PID commands lead the PKO to perform a 
trajectory with 10o more than the reference trajectory, as 
illustrated in Fig. 4.D. This happens because the ANN has not 
learned the inverse dynamics model with the best performance 
yet. Fig. 4.E highlights an increase and decrease in the 
feedforward command and the PID command, respectively, 
relatively to the Initial Phase. As depicted in Fig. 4.F, the 
position error decreased, varying from -20º to 10º. 

For the Final Phase (after 40s), when the ANN already 
learned the inverse dynamics of the PKO, it was verified that 
the FEL control has successfully aligned the PKO trajectory 
with the reference one (Fig. 4.G) and corrected the amplitude 
divergence previous observed. The position error decreased by 
75% compared to the Initial Phase. In this phase, the feedback 
controller contribution was 4.4% (Fig. 4.K).  

In overall, the findings of FEL tuning indicate that the 
designed ANN was capable of correctly learning the inverse 
dynamics for both AOs. When the learning phase finished, the 
ANN can timely track the reference trajectory, discharging the 
feedback controller for this task. It was observed that the 
learning phase lasted 90 s (approximately 25 gait cycles) and 
315 s (approximately 70 gait cycles) for PKO and PAFO, 
respectively. The temporal difference is mainly explained by 

the different learning rates used in both cases (Table I). 
Additionally, it was verified that the run time of FEL control 
loop (0.25 ms) is lower than the one required by the bioinspired 
control architecture of SmartOs (1 ms). These temporal findings 
suggest that the techniques applied for approaching a real-time 
implementation were effective to avoid long-time periods in the 
training phase. Furthermore, few iterations were required to 
tune the pre-trained ANN. 

It is important mentioning that the modification made in the 
reference trajectory for the first learning moment protected the 
AOs. Fig. 4.D shows a practical situation, during the Middle 
Phase, where a 10º-deviation would put the device out of its 
lower operating limit (3º). The 10º-deviation did not damage the 
PKO since the added 15º-offset was enough to deviate the PKO 
from its lower mechanical limit (3º). A similar effect was 
observed in PAFO for the lower and upper limits. 

B. FEL Validation 

This sub-section presents the validation of FEL control for 

PKO and PAFO considering their ANNs tuned for the original 

reference trajectory. It was also compared the FEL performance 

with the single PID low-level controller of the SmartOs.  

1) PKO validation: Table II presents the results for FEL and 

PID controls with and without the user’s interaction (first and 

second procedures, respectively), namely the NRMSE, phase 

delay, and the contribution of the feedback control (𝑢𝑓𝑏). 

For all tested speeds in the first procedure, the FEL control 
presented a mean NRMSE of 5.13% and a mean phase delay of 
13 ms, with the feedback controller only contributing 5.9% for 
the final control command. Additionally, it was observed that the 
ANN tuned for 1 km/h well-predicted the feedforward 
commands for 0.8 and 1.2 km/h speeds by only changing the 
normalization limits. This finding is supported by the low 
NRMSE (5.17 ± 0.04% and 4.68 ± 0.03%) and delays (20 ± 
0.001 ms) found for 0.8 and 1.2 km/h speeds, respectively. These 
outcomes state that the FEL control provides robust and time-
effective control commands in a repetitive manner along the gait 
cycle independently of the speed variation. 

Regarding the validation with the user-PKO interaction 
(second procedure), a mean NRMSE of 5.87%, a mean phase 
delay of 12.5 ms, and a mean contribution of 6.52% of the 

Figure 2. FEL tuning over three periods: Initial Phase (A-C), Middle Phase 

(D-F), and Final Phase (G-I). Random example for PKO using the modified 

trajectory tuned for 1 km/h. 



feedback controller were yielded. Fig. 5 also shows the 
consistency of FEL performance, presenting low position error 
and delay, and repetitive time-effective feedforward commands 
even when considering the user-PKO interaction under different 
gait speeds. Comparing both procedures, i.e., in the presence or 
not of interaction with the user, it was noted that i) the phase 
delay decreased by 0.5 ms; ii) the mean NRMSE increased by 
0.74%; and, iii) the mean feedback contribution increased 1% to 
the final control command. The two last findings could result 
from the load added (i.e., the user) in the PKO, that may difficult 
the controller to follow the reference trajectory.  

Furthermore, it was also evaluated the FEL performance in 
the presence of external disturbances to the user-PKO 
interaction. This analysis was limited to disturbances in the 
terminal stance phase, like the one marked in Fig. 6 at 58 s. Fig. 
6.B shows that at the instant of the disturbance the feedback 
command increases once the position error grows (see Fig. 6.C) 
due to the disturbance. The increased contribution of the 
feedback control aimed to prevent the FEL control from fall into 
an instability state and from damaging the user-PKO interaction. 

On the other hand, the feedforward controller command stayed 
periodic (Fig. 6.B), as the reference signals and the learned 
inverse dynamics model did not change. 

TABLE II.  RESULTS (MEAN ±STD) OF FEL AND PID CONTROLS FOR 

FIRST (I) AND SECOND (II) PROCEDURES WITH PKO AT DIFFERENT SPEEDS  

 
Speed  

(km/h) 

Control NRMSE  

(%) 

Delay  

(ms) 
𝒖𝒇𝒃 (%) 

I 

0.8 
PID 21.58 ±0.17 260±0.046 - 

FEL 5.17±0.04 20±0.001 6.9±3.6 

1.0 
PID 22.33±0.16 210±0.024 - 

FEL 5.54±0.08 1±0.001 4.5±0.15 

1.2 
PID 22.0±0.16 230±0.05 - 

FEL 4.68±0.03 20±0.001 6.3±0.53 

II 

0.8 
PID 21.58±0.17 260±0.046 - 

FEL 5.55±0.04 15±0.007 6.94±0.67 

1.0 
PID 22.33±0.16 210±0.024 - 

FEL 5.69±0.04 1±0.004 6.1±0.95 

1.2 
PID 22.0±0.16 230±0.05 - 

FEL 6.37±0.013 22.5±0.004 6.52±0.23 

Figure 5. Results of PID (A-C) and FEL (D-L) controls in the recall phase considering the user-PKO interaction for 0.8, 1, and 1.2 km/h speeds. 

Figure 3. Results of FEL control to external disturbances to the user-PKO interaction for 1 km/h. 



 

2) PAFO validation: The performance of FEL and PID 

controls with and without the user’s interaction (first and 

second procedures, respectively) was evaluated considering the 

NRMSE, phase delay, and the contribution of the feedback 

control, as presented in Table III.  

Results for the first procedure including all tested speeds 
demonstrate that FEL achieves a mean phase delay of 23.3 ms, 
a mean NRMSE of 6.6% with low position errors (0.8 km/h, 
from -5o to 5o; 1.0 km/h, from -5o to 5o; 1.2 km/h, from -6o to 4o). 
These outcomes were observed under a predominant 
contribution of the feedforward controller over the feedback 
controller (mean contribution of 8.3% for all speeds). Thus, the 
assistance is almost given entirely by the feedforward controller. 
FEL control was able to learn the inverse dynamics of PAFO, 
providing accurate and time-effective control commands in a 
repetitively and independently of the speed variation. It was 
verified that the same set-up of FEL control can successfully be 
applied for different gait speeds due to the equal temporal 
performance with slight deviations in NRMSE under speed 
variation.   

TABLE III.  RESULTS (MEAN ±STD) OF FEL AND PID CONTROLS FOR 

FIRST (I) AND SECOND (II) PROCEDURES WITH PAFO AT DIFFERENT SPEEDS  

 
Speed  

(km/h) 

Control NRMSE  

(%) 

Delay  

(ms) 
𝒖𝒇𝒃 (%) 

I 

0.8 
PID 22.28±0.14 250±0.28 - 

FEL 5.63±0.04 20±0.03 8.5±0.47 

1.0 
PID 24.53±0.18 260±0.27 - 

FEL 6.54±0.04 20±0.03 7.9±0.07 

1.2 
PID 26.99±0.17 250±0.28 - 

FEL 7.68±0.05 20±0.03 8.6±0.94 

II 

0.8 
PID 22.28±0.14 250±0.28 - 

FEL 6.95±0.008 30±0.01 6.2±0.01 

1.0 
PID 24.28±0.18 260±0.27 - 

FEL 5.99±0.002 20±0.001 6.9±0.3 

1.2 
PID 26.99±0.17 250±0.28 - 

FEL 6.58±0.004 25±0.007 4.84±1.9 

 

Moreover, it was evaluated the FEL performance 
considering the user-PKO interaction (second procedure). Fig. 7 
shows the obtained results, randomly selected for one subject, 
walking on a treadmill for 0.8, 1.0 and 1.2 km/h. In this 
procedure, it was observed a mean NRMSE of 6.51%, a mean 
phase delay of 25 ms and a mean contribution of 5.8% of the 

Figure 5. Results of PID (A-C) and FEL (D-L) controls in the recall phase considering the user-PAFO interaction for 0.8, 1, and 1.2 km/h speeds. 

Figure 5. Results of FEL control to external disturbances to the user-PAFO interaction for 1 km/h. 



feedback controller to the final control command. It is possible 
to verify that FEL performs similarly in the presence or not of 
the interaction with the user given that: i) mean NRMSE 
decreased 0.09%; ii) the phase delay increased 1.7 ms; and, iii) 
the feedback contribution decreased 2.5%. The decrease in the 
NRMSE and consequent reduction of feedback contribution 
might be due to the load added to the PAFO that stopped it to 
exceed the reference signal since it was observed in the first 
procedure a general tendency to the PAFO position exceeds -5o 
and 5o the reference trajectory. In overall, the findings show that 
FEL can be used as an adaptive control to deal with dynamics 
changes due to interaction with the user. It also yielded time-
effective commands since the AO’s position gets the reference 
position at least 40 ms before the reference position is updated 
(every 65 ms for 1.2 km/h, the more demanding condition).  

Furthermore, it was validated the FEL performance in the 
presence of external disturbances to the ones introduced by the 
user-PAFO interaction, as depicted in Fig. 8. Such disturbances 
increased the position error due to the displacement between the 
reference and measured position. In responding to this 
disturbance, the FEL control augments the feedback controller 
contribution (increased PID command) while the feedforward 
command stayed periodic since the PAFO dynamics did not 
change. These outcomes demonstrate that the feedback control 
is charged to compensate for small disturbances while the 
feedforward control has the higher actuation command to drive 
the desired movement.  

C. Comparative analysis with PID control 

For the assistance provided by the PKO under all tested 
speeds, the PID control achieved an NRMSE around 22% and 
a phase delay of 230 ms. Consequently, it was observed that the 
FEL control decreased, approximately, the NRMSE 16.5% and 
93% for the phase delay. In the ankle-foot assistance by PAFO, 
the PID achieved a mean NRMSE of 24%, a position error 
varying from -16o to 7o, and a phase delay of 250 ms for all 
speeds. For PAFO, the FEL control decreased by 17.5% and 
90.7% the NRMSE and delay, respectively. In overall, the FEL 
control can provide more accurate and time-effective 
assistance, with lower position error and phase delay than single 
PID feedback control. Therefore, the hybrid arrangement 
offered by FEL control can control limbs with a small delay and 
this holds great importance for gait rehabilitation.  

V. CONCLUSION & FUTURE WORK  

This thesis innovatively implemented a FEL control in 
assistive devices for gait rehabilitation. The designed ANN was 
able to learn the inverse dynamics of PKO and PAFO with an 
acceptable learning time for clinical applications. Furthermore, 
the learning time can be decreased by using the pre-trained 
ANN of AOs. Due to its learning capabilities, the feedforward 
control was able to handle with variations in the user-oriented 
trajectories. FEL control time-effectively adapts the AOs’ 
responses to the changes in the dynamics due to the interaction 
with the user. Moreover, the feedback control compensated for 
random disturbances. FEL control substantially decreased the 
tracking error for acceptable ranges and the response delay 
compared to PID control. This thesis shows that FEL control is 
an adaptive and time-effective low-level controller for AOs, 

such as the ones embedded in SmartOs, which may yield to an 
efficient gait rehabilitation.  

Future work comprises the validation with more subjects, 
disturbances, and AAN strategies. Evaluation of the FEL 
control with patients is also necessary from a practical 
perspective. It is also relevant to compare the FEL control with 
a hybrid control. 
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