
A Systematic Reuse-based Approach for
Customized Cloned Variants

Karam Ignaim, João M. Fernandes
Dep. Informatics, Universidade do Minho

Braga, Portugal
{e6870@alunos, jmf@di}.uminho.pt,

André L. Ferreira, Jana Seidel
Bosch Car Multimedia Portugal

Braga, Portugal
{Andre.Ferreira2@pt, Jana.Seidel@de}.bosch.com

Abstract—Systematic reuse often becomes possible only after
a number of customized cloned variants have already been
delivered. Transforming from customized cloned variants to a
systematic reuse with the explicit management of variability is
beneficial. Hence, industrial companies prefer to adopt a reuse-
based approach. We propose in this research work an approach
that supports the re-engineering of existing customized cloned
variants towards systematic software reuse. The approach also
eases the process of adding a new variant to a set of customized
cloned variants, whenever there is enough implementation
similarity between the existing customized cloned variants and
the new one. We plan to evaluate our approach in an industrial
case study, specifically in a set of customized cloned variants of
software applications used by automotive companies. As an initial
validation effort, we already have presented our first results to
software developers at Bosch. They provided us a positive
feedback about the ability of our approach to give an overview of
the commonality and the variability of the customized cloned
variant. For more robust validation, we propose to use a
structured demonstration for the same industrial case study
environment with qualitative and quantitive evaluation of the
impact.

Keywords— cloning, systematic reuse, variant, variability,
commonality, Feature Model

I. INTRODUCTION

Some companies need to handle customized variants that
have some characteristics in common [1]. Generally,
companies apply an approach called cloning, in which a new
customized cloned variant is built by copying and adapting
existing customized cloned variants [2, 3]. Cloning requires no
major upfront investments and is natural, which makes it
common for industrial use [2]. Unfortunately, cloning does not
favor reuse. The developing organization faces a choice
between building reuse-based systems from scratch or
transforming the existing customized cloned variants into a
systematic reusable form [2, 4, 5]. A systematic reuse-based
approach can be introduced, but it requires explicit information
about commonality and variability over the customized cloned
variants [4, 6, 7]. Moreover, it needs a mapping between
features and artifacts (e.g. requirement document or code base)
into customized cloned variants [3, 8–11].

Feature Models (FMs) are one of the most popular
abstraction forms for modeling commonality and variability of

customized cloned variants [9, 12]. FMs are used broadly to
help generate and validate individual variant configurations
(Fig. 1) and to provide support for domain analysis [9, 10].
However, a successful transformation is challenging, since it
requires precise and detailed information about the distribution
of implementation similarity and difference between the
product variants. This information is usually not available, as
the product variants were modified independently of each other
[4]. Our approach organizes the discovered variability in a
design model, which is called Variability Design Model
(VDM). This model is a design that expresses variations
between customized variants. The purpose of our approach is to
support systematic reuse for a set of customized cloned variants
by delivering detailed similarities and differences among them.
For that purpose, we study customized variants related to the
sensor-based software product family, these variants are cloned
and customized by the developers at Bosch company. Our
research contributes to the work related to the systematic reuse
of a customized cloned variant, by providing the following
characteristics:

A feature-based design for a set of customized cloned
variants at requirement and design level.
A difference analysis specific for requirement level of

customized cloned variants.
An approach to identify commonality and variability

among customized cloned variants.
A novel mapping method to trace features to their place in

the implementation code through requirements
specification of customized cloned variants.

The contributions of our approach are reflected in the
research questions, shown in Table I. In an industrial case
study, we asked the participating developers to assess the
impact/influence of the models and information produced by
our approach on the available set of customized cloned
variants. The feedback has shown that our approach was
appreciated as an explicit way to express variability and to go
through a systematic reuse of variants family.

II. STATE OF THE ARTE
In this section, we summarize the state of the art of the

field addressed by our research. Thus, we review some of the
previous methods, techniques, and tools that tackle the problem
of systematic reuse. Systematic reuse often takes place only

287

2018 International Conference on the Quality of Information and Communications Technology

978-1-5386-5841-3/18/$31.00 ©2018 IEEE
DOI 10.1109/QUATIC.2018.00051

after a number of family variants have already been delivered.
Practically, a new variant is often created by cloning the code
of an existing variant and changing it according to the new
requirements. For example, in [1], authors conducted an
empirical study involving three companies and analyzed in
detail the development activities these companies perform on
existing cloned variants. Then, they provided activities to
support the transitions to a structured Software Product Line
(SPL) based approach. In the short term, cloning is a common
and simple way to create a new customized variant. A novel
approach to enhance cloned variants is proposed in [2]. The
authors evaluated the approach on six case studies, and they
covered 402 variants. As a result, they reached an excellent
percentage of composed variants reuse.

Analysis of customized cloned variants for systematic reuse
requires precise and detailed information about how
implementation similarities are distributed among the
customized variants. In [3, 4], authors support a research work
close to our research. They support techniques and tools to
identify similarities, which can be identified to be common for
all variants. However, in our research work, we propose an
approach that identifies not only the similarities, but also the
differences among customized cloned variants. Seven
variability mechanisms are characterized and compared in [13].
As a variability mechanism, authors in [14] present a novel
feature-oriented programming approach to migrate multiple
cloned variants into an SPL.

FMs have been widely used to model commonality and
variability in the context of variant families. The key
requirement for using FMs is to derive a product configuration
that satisfies all business and customer requirements [5]. The
authors of this research work present their own tool, called
SPLConfig, to support product configuration in Software
Product Line.

A novel approach named SPLEVO for supporting the
consolidation of customized product copies into a Software
Product Line is presented in [6]. Several researchers tackle the
problem of extracting FMs or variability of existing customized
variants [7, 12, 13, 15–18]. Several kinds of artifacts can be
considered, including variants descriptions [9, 10, 19–21],
models [22, 23], and code bases [8, 24–26] or the combination
of them. The approach under development is suitable for
variability management focusing on artifacts resulting from
requirements engineering and code base implementations
practices.

Existing software reuse approaches often develop and
evolve new variants independently, which makes it difficult to
manage the relationship between features or variability to other

artifacts. Many researches present approaches and tools that
support mapping features to variant artifacts [8] [12],
specifically to the source code [11] [25].

Initially, we evaluated our approach on a sensor-based
software product family. The variants of this family are cloned
and customized in the software development department at
Bosch Company [27–32]. We investigated and analyzed in
detail the development activities performed by the software
team. In addition, we access the software variants artifacts to
apply our approach.

A systematic literature review was conducted by [33] to
assess research quality and to identify research trends, open
problems, and areas for one of the most important reused-
based approach (i.e. SPL). In this research, authors concluded
that there is a clear need for conducting studies comparing
alternative methods for SPL development. Moreover, they
recommended more future research to invest in tool support
and in SPL adoption strategies.

III. RESEARCH OBJECTIVES AND METHODOLOGICAL APPROACH

The main objective of this research proposal is to define a
reuse-based approach that is practicable in transforming
customized cloned variants towards systematic reuse. To fulfill
the main objective, we aim to provide an extractive approach
(1) to support an explicit management of commonality and
variability, and (2) to derive an FM and a VDM for a set of
customized cloned variants. In addition, we aim to provide a
reactive approach (3) to evolve the current set of available
customized cloned variants with a new one. A secondary
objective is to identify and trace the variability, which is
scattered across all the customized cloned variant code bases.
To work towards this objective, we plan to provide an approach
that can trace features to their places in the requirements and
source code, and update the FM to maintain its coherence when
features changes occur.

TABLE I. RESEARCH QUESTIONS FOR OUR RESEARCH
PROPOSAL

RQ1 How can we transform customized cloned variants into a
systematic reuse- based approach?

RQ2
How can we analyze and identify similarities and
differences between independent customized cloned
variants?

RQ3 How can we derive FM and VDM, which support explicit
variability over the customized cloned variants?

RQ4 What is an acceptable approach to extract commonality and
variability of the customized cloned variants?

RQ5 How can we map a feature to its place(s) in the
implementation code bases?

Regarding the input artifacts, variants specifications (i.e.,
requirement specifications) and code bases are the most
important inputs for our approach. In addition, variants family
architecture is taken into consideration, since it contains
variability information. Different types of artifacts are
produced, including FMs, VDM and traceability matrix (which
indicates the relations among features and code bases). As
shown in Fig. 2, our approach has three major phases:Figure 1. Feature Model and valid individual variant configurations.

288

(1) reverse engineering, (2) forward engineering, and
(3) mapping.

A. Reverse Engineering
This phase compares the requirement specifications of two

variants to detect the similarities and the differences between
them and then uses this information to derive a FM and a
VDM. These models support an explicit management of
variability for the family variants.

B. Forward Engineering
This phase evolves the set of customized cloned variants

with a new variant upon a new customer request. It is supposed
to receive the specific requirements for the new customer and
then update the overall FM, in order to include the new features
that relate to the new customized cloned variant.

C. Mapping
In the context of programming, the problem space relates to

the requirements or needs of a domain and describes the
features provided by variants family from a customer
perspective. The solution space relates to the implementation of
variants and describes the variability in the code bases from the
perspective of developers [34]. Based on these definitions, our
approach maps requirements and domain space analysis (i.e.,
FM) into the problem space. Additionally, it maps code bases
(i.e. software elements) to the solution space. This phase helps
to trace features to their locations in the implementation code.
The novelty in this phase is that it maps each feature to its
implementation in the code bases through the software
requirements. This phase delivers the traceability matrix (a
model that maps the features to the code bases).

To evaluate our approach, we will apply it to an industrial
case study related to a variants family of automotive sensors.
These variants are currently cloned and customized by software
team to satisfy the needs of different car manufacturers [27].
We have investigated and analyzed in detail the development
activities, which are performed there. Developers use
configuration management branching techniques to create a
new customized cloned variant to support a customer request
[28, 29, 32]. The branching approach, which is mainly based on
cloning and customization of the variant in order to satisfy
customer needs, has many benefits [30, 31]. At the same time,
it has some challenges, which are summarized in Table II. In
addition to this, we are going to use a structured demonstration
technique to assess the usefulness of our approach, specifically,
to preserve the benefits and overcome the challenges of the

approach adopted at Bosch.

IV. PAST WORK AND PRELIMINARY RESULTS

In this section, we present work and results of our research.
This work satisfies our aim to support an explicit management
of commonality and variability (i.e. almost phase one of our
approach). We have derived FM and a partial VDM for the
customized cloned variants. Gradually, different studies on
reverse engineering to derive FMs from different artifacts of
customized cloned variants were presented [9, 10, 20, 21].
Many of the existing approaches are designed to reverse
engineering FM from high-level models, such as variant
description and requirements [35].

For systematic reuse of customized cloned variants, domain
analysis consists in identifying similarities and differences
among the family variants [20]. The explicit identification of
commonality and variability is the starting point for systematic
reuse of family variants. One of the most efficient and popular
ways to explicitly present this is by using FM. FM is a domain
abstraction for program functionality and at the same time, it is
a compact way to define all features and their valid
combinations [24, 25].

The first phase of our approach derives FM and VDM from
artifact related to the customized cloned variant, specifically
the requirement specifications. Our approach identifies
commonality and variability in requirement specifications,
which are written in natural language (English) and may
contain some additional information in tabular formats. Phase 1
of our approach is divided into steps as next discussed:

Step 1. Define transformation rules to rewrite requirement
specifications for each customized cloned variant in single
requirement line statements (i.e. Requirement Variant / No.
Document). Also, normalize the input of tabular data and
facilitate its interpretation.

Step 2. Identify common and different parts among
requirements for each variant using difference analysis.
Similarities and differences are extracted initially from some
customized cloned variants, specifically from their
Requirement Variant / No Documents. Our approach uses text-
based comparison and natural language processing to identify
similarities and differences among variants artifacts [6].

Step 3. Similarities represent commonality among customized
cloned variants and differences represent variability. As a
result, mandatory features appear on the common
requirements, and optional features appear on the varied
requirements. Our approach relates the requirements that
represent one feature each other. In addition, the difference
between requirements represents a variation point among
customized cloned variants. A variation point identifies one or
more locations at which the variation occurs [15].

Step 4. Finally, variability and commonality are represented in
terms of features, such as root node, mandatory/optional
features, parent features, and an alternative/OR group of
features (Fig. 3 and Fig. 4). In addition, constraints are

Figure 2. The three mais phases of our approach.

289

extracted. Our approach uses the variation points to derive a
VDM.

TABLE II. BENEFITS AND CHALLENGES OF THE BRANCHING
APPROACH

Fig. 5 shows an example of a variation point in the VDM.
We adopt the technique presented in [5] and adapt it to work
with requirements specifications. Using our approach, we have
derived five relevant features (Fig. 3) and other sub-features
(Fig. 4) from classic sensor customized cloned variants a

resulting in a systematic domain abstraction of the sensor
customized cloned variants. Up to now, we have derived a
VDM that refers to requirements implemented by their
variation points. Our approach can use this initial design to
build VDM that refers to features implemented by their
variation points (Fig. 5). Making result available for the classic
sensor developers, we expect it can be used to give a
comprehensive understanding of the classic sensor domain
space and to help them to transform into the systematic reuse-
based approach. Moreover, our approach will use this result
during the progress of our research work.

This section presents the part of our research work that
already has been performed using phase 1 of our approach.
This phase receives the Variant Specifications, as an input, and
produces the FM and, partially, the VDM.

V. FUTURE WORK AND EXPECTED RESULTS
The research work and the results of the previous section

satisfy some but not all of our objectives and research
questions. We answered partially the RQ1, RQ2, and RQ3.
There are several lines of research work still need to be
addressed. Thereby, as a future work, we plan to incrementally
use other customized cloned variants until we derive FM that
covers a set of the available customized cloned variants.
Moreover, we plan also to use the derived FM to evolve the set

a For readability, we split the FM into Fig. 3 and 4.

of available customized cloned variants with new variants.
Finally, software developers noted that annotation of features
in the code bases to be a time- consuming and repetitive task.
Therefore, and to justify RQ4 and RQ5, we intend to
investigate our proposed method to map features to their
implementation on the code bases and to produce the
traceability matrix. For more robust validation, we are going to
evaluate our approach among available variants family of the
classical sensor, for that, we use a structured demonstration
with qualitative and quantitive evaluation of the impact.

Our approach is perceived as integrated successfully within
the existing customized cloned variants based on the decision
of both the software project manager and software developer
team. We aim to satisfy them with a systematic reuse-based
approach that is flexible enough to customize the intended
product variants and to provide a manageable amount of
configurations. The expected results of our future research
work are:

Practicable systematic reuse-based approach for
customized cloned variants.
FMs that cover a set of customized cloned variants.
Defined concept to evolve the FM with a new variant.
VDM that identifies separate difference points to support
continues variability management.
Mapping/Tracing features to code bases through
requirements specification of customized cloned variants.
Moreover, for usability, it is important to store this
information in the traceability matrix.

CONCLUSIONS

In this manuscript, we present an approach for supporting
the reuse of customized cloned variants in software
engineering. We propose a systematic reuse-based approach
that delivers part of our research work. To evaluate our
approach, we have conducted a case study related to a sensor-
based software product family. We have successfully derived
an FM and a partial VDM for some customized cloned
variants. Our future work will be focused on improving the
results even further considering the execution of a second
structured demonstration case study by adding more
customized cloned variants.

ACKNOWLEDGMENT

We thank our colleagues from Bosch company in sensor
software team (João Santos and Hélder Vilas-Boas) and we
also like to show our gratitude to Matthias Renninger
(Development, Mangement of projects) for his assistance. We
thank the European Structural and Investment Funds in the
FEDER component, through the Operational Competitiveness
and Internationalization Programme (COMPETE 2020) Project
nº 002797; Funding Reference: POCI-01-0247-FEDER-
002797.

Benefits Challenges
Fast and low effort in the creation

of a new customized cloned variant.
Lower maintainability of the new

customized cloned variant resulting
code. Since maintaining, the

duplicated code involves repetitive
tasks.

Branched a new customized cloned
variant lead to no risk to the already
existing customized cloned variants.

Porting similar problems, which
will be carried over from one new

customized cloned variant to
another.

There is no need to coordinate
modifications and configurations,
which were introduced to the new-
branched variant to other variants.

This reduces the coding effort.

This approach takes some time
considering branching, freezing,

updating branched variant, checking
and testing.

In case of testing fails, the new
customized cloned variant can be

easily modified due to its
independence from other

customized cloned variants. This
means low development effort.

The developer would harm the
platform software with customer
related code in case of wrong or

miss step in branch handling.

290

Figure 3. Feature Model for classical sensor variants family.

Figure 4. Feature Models for classical sensor variants family.

Figure 5. Example of variation point in the Variability Design Model.

291

REFERENCES

[1] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: A
framework and experience,” in 17th International Software Product Line
Conference (SPLC 2013), ACM, pp. 101–110, 2013.

[2] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
"Enhancing clone-and-own with systematic reuse for developing
software variants", in IEEE International Conference on Software
Maintenance and Evolution (ICSME 2014) , IEEE, pp. 391–400, 2014.

[3] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, “Supporting the
grow-and-prune model in of software product lines evolution using clone
detection,” in 12th European Conference on Software Maintenance and
Reengineering (CSMR 2008) , IEEE, pp. 163–172, 2008.

[4] S. Duszynski, “Analyzing similarity of cloned software variants using
hierarchical set models,” Ph.D dissertation, University of Kaiserslautern,
Germany, 2015.

[5] L. Machado, J. Pereira, L. Garcia, and E. Figueiredo, “Splconfig:
Product configuration in software product line,” in Brazilian Congress
on Software (CBSoft), pp. 1–8, 2014.

[6] B. Klatt, “Consolidation of customized product copies into software
product lines,” KIT Scientific Publishing, 2016.

[7] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. Traon, “Bottom-
up technologies for reuse: Automated extractive adoption of software
product lines”, in 39th International Conference on Software
Engineering Companion (ICSE 2017), IEEE, pp. 67–70, 2017.

[8] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Recovering
traceability between features and code in product variants,” in 17th
International Software Product Line Conference (SPLC 2013), ACM,
pp. 131–140, 2013.

[9] J. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P.
Heymans, "Feature model extraction from large collections of informal
product descriptions", in 9th Joint Meeting on Foundations of Software
Engineering (FSE 2013), ACM, pp. 290–300, 2013.

[10] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C.Vanbeneden, P. Collet,
and P. Lahire, “On extracting feature models from product descriptions,”
in 6th International Workshop on Variability Modeling of Software-
Intensive Systems, ACM, pp. 45–54, 2012.

[11] Y. Zheng, C. Cu, and H. U. Asucion, “Mapping features to source code
through product line architecture: Traceability and conformance,” in
IEEE International Conference on Software Architecture (ICSA 2017),
IEEE, pp. 225–234, 2017.

[12] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski,
“Cool features and tough decisions: A comparison of variability
modeling approaches,” in 6th International Workshop on Variability
Modeling of Software-intensive Systems, ACM, pp. 173–182, 2012.

[13] B. Zhang , S. Duszynski, and M. Becker, "Variability mechanisms and
lessons learned in practice", in IEEE/ACM International Workshop on
Variability and Complexity in Software Design (VACE 2016), IEEE, pp.
14–20, 2016.

[14] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake, “Variant-
preserving refactorings for migrating cloned products to a product line”,
in Software Analysis, Evolution and Reengineering (SANER) , pp. 316–
326, IEEE, 2017.

[15] D. L. Webber and H. Gomaa, “Modeling variability in software product
lines with the variation point model,” Science of Computer
Programming 53(3):305–331, 2004.

[16] J. Bosch, R. Capilla, and R. Hilliard, “Trends in systems and software
variability [Guest editors introduction],” IEEE Software 32(3):44–51,
2015.

[17] V. Alves, P. Matos Jr. , L. Cole, P. Borba, and G. Ramalho, “Extracting
and evolving mobile games product lines,” in International Conference
on Software Product Lines (SPLC 2005), Springer, pp. 70–81, 2005.

[18] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: A case study using conditional compilation,” in European

Conference on Software Maintenance and Reengineering (CSMR 2011),
IEEE, pp. 191–200, 2011.

[19] N. Bakar, Z. Kasirun, and N. Salleh, “Feature extraction approaches
from natural language requirements for reuse in software product lines:
A systematic literature review,” Journal of Systems and Software
106:132–149, 2015.

[20] F. Wanderely, D. S. Silveira, J. Araujo, and M. Lencastre, “Generating
feature model from creative requirements using model driven design,” in
16th International Software Product Line Conference-Volume 2, ACM,
pp. 18-25, 2012.

[21] N. Itzik and I. Reinhartz-Berger, “Generating feature models from
requirements: Structural vs. functional perspectives,” in 18th Inter-
national Software Product Line Conference (SPLC 2014), ACM, pp. 44–
51, 2014.

[22] H. Casalánguida and J. Durán, “Automatic generation of feature models
from UML requirement models,” in 16th International Software Product
Line Conference (SPLC 2016), ACM, pp. 10–17, 2012.

[23] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. Le Traon,
“Automating the extraction of model-based software product lines from
model variants,” in 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2015), IEEE, pp. 396–406, 2015.

[24] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in 19th Working Conference on Reverse Engineering
(WCRE 2012), IEEE, pp. 145–154, 2012.

[25] R. F. Al-Msie'Deen, A. Serial, M. Huchard, C. Urtado, S. Vauttier, and
H. E. Salman, “Feature location in a collection of software product
variants using formal concept analysis,” in International Conference on
Software Reuse (ICSR 2013), Springer, pp. 302–307, 2013.

[26] B. Zhang and M. Becker, “Code-based variability model extraction for
software product line improvement,” in 16th International Software
Product Line Conference (SPLC 2012), ACM, pp. 91–98, 2012.

[27] Bosch, Classic Sensor Software Process Introduction. Bosch Global
Network (Internal Information). Bosch Car Multimedia Portugal, S.A.
Braga. Classic Sensor Software Process Introduction, 2018.

[28] Bosch, J. Seidel, Personal interview. Bosch Global Network (Internal
Information). Bosch Car Multimedia Portugal, Braga. Classic Sensor
Software Process Introduction, 2018.

[29] Bosch, Sensor Software Process Variant 1. Bosch Global Network
(Internal Information). Bosch Car Multimedia Portugal, Braga, 2018.

[30] Bosch, SW Architecture. Bosch Global Network (Internal Information).
Bosch Car Multimedia Portugal, Braga, 2018.

[31] Bosch, Creating and handling SW variants. Bosch Global Network
(Internal Information). Bosch Car Multimedia Portugal, Braga, 2018.

[32] Bosch, SAS team. Group meeting. Bosch Global Network (Internal
Information). Bosch Car Multimedia Portugal, Braga, 2018.

[33] V. Alves, N. Niu, C. Alves, and G. Valença, “Requirements engineering
for software product lines: A systematic literature review,” Information
and Software Technology 52(8):806–820, 2010.

[34] K. Czarnecki, U. Eisenecker, and K. Czarnecki. “Generative
programming: methods, tools, and applications,” Reading: Addison
Wesley, 2000.

[35] R. F. Al-Msie’Deen, “Reverse engineering feature models from software
variants to build software product lines,” Ph.D. dissertation, University
of Montpellier, France, 2014.

292

