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Abstract— A 1D MEMS (Micro-Electro-Mechanical Systems)
mirror for LiDAR applications, based on vertically asymmetric
comb-drive electrostatic actuators, is presented in this work
employing a novel fabrication process. This novel micromachin-
ing process combines typical SOI-based bulk micromachining
and grayscale lithography, enabling the fabrication of combs
actuators with asymmetric heights using a single lithography
step in the active layer. With this technique, the fabrication
process is simplified, and the overall costs are reduced since the
number of required lithography steps decrease. The fabricated
mirrors present self-aligned electrodes with a 2.8 um gap and
asymmetric heights of the movable and the fixed electrodes
of 20 pm and 50 pm, respectively. These asymmetric actuators
are an essential feature for the operation mode of this device,
enabling both in resonant and static mode operation. A mirror
field of view (FOV) of 54° at 838 Hz was achieved under low-
pressure, when resonantly operated, and a FOV of 0.8° in the
static mode.

Index Terms— Bulk-micromachining process, grayscale,
MEMS mirror, scanner, vertically asymmetric electrodes.

I. INTRODUCTION
OWADAYS , MEMS mirrors are present in many appli-
cations such as endoscopic imaging, fiberoptic commu-
nications, micro spectrometers, and laser scanner systems (i.e.,
LiDAR - Light Detection and Ranging, image projection,
displays, and head-up displays [1]). Devices fabricated by
surface and bulk micromachining are widely presented in
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the literature [2], mainly using electrostatic, electromagnetic,
thermal or piezoelectric actuation. Electrostatically actuated
MEMS mirrors are typically fabricated in simple fabrication
processes, being extremely compact and compatible with other
micromachining technologies [1], with the advantage of not
requiring rare materials, as is the case of piezoelectric and
electromagnetic devices, and have the capability of being
actuated at higher frequencies compared to thermal actuation.

MEMS mirrors using electrostatic actuators have been pre-
sented in literature, where the primary schemes can be divided
into vertical comb actuators and parallel-plate actuators.
In general, comb actuation allows for larger mirror angles (6)
and, consequently, a larger field of view (FOV) when com-
pared to parallel-plate actuation [2], because the electrodes
relative positions do not restrain displacement. Vertical comb-
drive actuators offer key advantages: it does not restrict the
maximum deflection angle such as the use of parallel-plates
and the pull-in associated with parallel-plates can be avoided.
Several ways of combining vertical comb-drive actuators with
micromirrors have been presented in the literature, mainly in
staggered vertical combs, SVC (same electrode dimensions
but with z-axis offset) [3] and [4], angular vertical combs,
AVC (same electrode dimensions but with an angular offset)
or vertically asymmetric combs-drives (different heights and
with z-axis offset) [5] and [6].

Typical vertically asymmetric comb electrodes fabrication
relies on the use of several lithography steps to define the
masks to fabricate electrodes with thickness asymmetry on
a single silicon layer, as presented in [5] that uses different
materials to create a two level mask and in [6] that uses two
layers of the same material defined in different lithographic
processes. These are often prone to misalignments between
actuators, and when designing a device with a minimal elec-
trodes gap (smaller than 3 xm given a 50 gm SOI layer), this
misalignment can compromise the final device performance
or process yield. More recently, new attempts to develop self-
aligned comb electrodes have been presented. In [7], higher
alignment tolerance is achieved by using dummy electrodes
and SOI-SOI wafer bonding. Other approaches use electrodes
with the same thickness and the offset is induced by out-of-
plane actuation [3] and [4] or by using suspended actuators
and mechanically deflecting those at the expense of complex
assembly procedures [8].
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Fig. 1. 3D schematic of the 1D MEMS mirror.

In this work, a 1D (one torsional axis) MEMS mirror is pre-
sented employing vertical asymmetric comb-drive electrostatic
actuation for automotive LiDAR applications, micromachined
using a novel self-aligned, dicing-free [9] and low-cost fab-
rication process, capable of achieving a FOV of 54° under
low pressure. This novel fabrication process combines typical
SOI-based bulk micromachining and grayscale (GS) lithog-
raphy to create a single mask with multilevel topography,
followed by a sequence of etching and mask thinning steps,
creating vertically asymmetric structures enabling a small
and self-aligned electrode gap of approximately 2.8 um.
This process when compared to previous references [3]-[8],
presents a simpler and cost-effective process to achieve
non-resonant torsional motion using a single layer device.

II. 1D MEMS MIRROR MODEL AND DESIGN

The MEMS mirror schematic is depicted in Fig. 1. A 1 x 1
mm? mirror is attached to two torsional springs and four pairs
of vertically asymmetric electrodes. The mechanical model

that represents the mirror motions is presented in equation (1):
(1)

where J is the mirror moment of inertia, B the damping
coefficient, k the torsional spring constant, 7 the torque
necessary to the mirror movement, and 6 the mirror angle.
The correspondent natural frequency fy is estimated by the
equation (2), and as can be seen, is influenced by the torsional
spring elastic constant and the mirror moment of inertia.

fo = 5=vETT
/4

Each electrode pair consists of fixed and movable combs
actuators, and an electrostatic torque is generated when a
voltage is applied between the comb electrodes thus rotating
the mirror around the springs’ axis. The implementation of
vertical comb-drive electrostatic actuators is an essential fea-
ture for the operation of this device, enabling it to be operated
both in resonant and static mode, unlike the symmetrical
actuators which only allow the resonant mode. In resonant
operation asymmetric actuators require higher voltages than
equivalent symmetric actuators to achieve the same FOV
(to achieve the same electrostatic torque given the smaller

JO+BO+kO =T

)

TABLE I
MEMS MIRROR DESIGN FEATURES

Mechanical Features 1D MEMS Mirror

Mirror area (1 X w) 1000 pm x 1000 pm

Springs dimensions (I x w x h) 600 pm X 20 pm x 50 pm

Number of electrostatic electrodes 100

Electrodes dimensions (I x w x h) Fixed 500 pm X 20 pm x 50 pm
Movable 500 pm x 20 pm x 20 pm

Electrodes gaps 2 um

overlapping area). The device static mode operation is due to
the height asymmetry between the movable and fixed in the
rest position that enables a vertical displacement of the mirror
structure, allowing an out-of-plane, pull in safe motion. When
a DC voltage is applied between both electrodes, a constant
electrostatic torque is generated, twisting the mirror to a fixed
angle around the springs’ axis. The higher the DC actuation
voltage, the greater the torque applied; until the equilibrium
between the torque produced and spring restoring elastic
torque. The maximum angle attainable in static mode is geo-
metrically defined. Table. I presents the designed dimensions
and mechanical features.

III. MICROFABRICATION PROCESS

A. Grayscale Lithography

Standard lithography is a process that creates a pattern on
photo-resist, a photo-sensitive polymeric material, to be used
as a sacrificial layer in etching or deposition processes of sur-
face and bulk micromachining. This photoresist is polymerized
using ultra-violet light and this exposure can be done either by
using a pre-existent hard mask and a collimated light source or
using a direct-write-laser (DWL). A development step follows,
in which the pattern is revealed by removal of the exposed
region (a positive photoresist is assumed, while the unexposed
material is removed in the case of a negative photoresist) thus
creating a binary level mask and uncovering selected regions
of the underlying substrate for further processing.

On the other hand, grayscale (GS) lithography enables
the creation of masks with multiple levels of photoresist
thickness. In GS lithography, the photoresist layer is exposed
using a lateral variation of the exposure dose using an
intensity-controlled laser beam. The local development rate
of the exposed photoresist changes according to the exposure
dose, as represented in Fig. 2, and the desired resist topography
is created during the development process, resulting in a mul-
tilevel mask with different thickness levels on the photoresist.

Grayscale lithography is often used to pattern micro-lenses,
diffractive optical elements, computer-generated holograms,
among others [10]. However, this can also be used to create
discrete photoresist levels, as shown in Fig. 2 (a), that when
combined with a sequential bulk micromachining process,
transpose this discrete mask to the substrate. This technique
enables the patterning of perfectly aligned (no alignment
between separate lithography steps is required) asymmetric
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Fig. 2. GS lithography process schematic (a). Grayscale characterization
curve, showing that at least 80 different GS levels are possible (b).

structures that, in this particular application, enables the cre-
ation of self-aligned electrostatic combs where each GS level
corresponds to a different thickness to be patterned on the
silicon substrate. The fact that no alignment between separate
lithography steps is required, bypasses most misalignment
sources from the lithography process, that may arise due to
the resolution of the system camera or from the alignment
marks quality, among others.

The final thickness of photoresist after being developed, for
each intensity level, was characterized to ensure the optimum
laser intensity that would be needed during the process. For
this calibration, an initial AZP4110 photoresist layer with a
thickness of 2.2 xm was used. The calibration curve is shown
in Fig. 2 b) and presents over 80 grayscale levels in the linear
region defined between thickness 2.2 um and 0 um. However,
in this particular design, only three GS levels were used to
define the asymmetric comb electrodes, which presented a final
thickness of 0 ym (maximum level), 1.1 gm (medium level)
and 2.2 ym (null level).

B. Micromachining Process

The devices were fabricated on a 50 um-thick SOI wafer,
Fig. 3 (a), where initially a thin layer (500 nm) of AlSiCu was
sputtered and patterned through Reactive Ion Etching (RIE)
on the wafer front-side (FS), Fig. 3 (b), to create the device
electrical contacts, the mirror coating, and the FS alignment
marks. The AlSiCu coating patterned on the mirror surface
aims to increase the mirror reflectivity for the near-infrared
laser, wavelength used in the LiDAR application.
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Fig. 3. MEMS mirrors main fabrication steps. (a) SOI Wafer; (b) AlSiCu
thin-film patterning; (c) FS and BS SiO; layer deposition; (d) BS hard-mask
lithography; (e) BS hard-mask patterning and FS GS lithography; (f) FS GS
hard-mask patterning; (g) FS Ist DRIE; (h) FS GS hard-mask thinning; (i) FS
2nd DRIE; (j) BS DRIE; (k) HF structures release.

With the target interelectrode gap aspect ratio of the MEMS
mirror of 25 (on FS, 50 um deep/2 um wide), the difficulty to
obtain the multilevel topography in the silicon without remov-
ing and damaging the GS photoresist mask increases, given
the etch rate of both materials and the resulting selectivity
during the etching process. In order to address this constraint
and work with a better selectivity rates, hard-mask layers were
employed. Thus, a thick layer of silicon oxide (3 um of SiO,)
was deposited on both sides of the SOI wafer by Plasma-
Enhanced Chemical Vapor Deposition (PECVD), Fig. 3 (c¢).

The back-side (BS) oxide layer was then patterned by RIE,
Fig. 3 (d), to define the BS hard-mask for the subsequent sili-
con patterning. In this layer, the BS mirror cavities combined
with the BS alignment marks (aligned to the front side marks)
were patterned. These marks are essential to ensure that the
BS mask is aligned with the FS mask already patterned and
to ensure a final functional device.

For the FS mirror design (mirror structure, springs, and elec-
trodes) a GS mask with three different thickness of photoresist
was exposed, Fig. 3 (e).

The multilevel photoresist mask previously developed was
then transferred to the SiO; layer through a sequential process
of silicon oxide etching by RIE and photoresist mask thinning
through O plasma strip to achieve the multilevel topogra-
phy on the hard-mask layer, Fig. 3 (f), with three different
levels/thicknesses: 3 um, 1.5 um, and 0 um. Each mask step
height must include extra thickness to compensate for the mask
material removed during the etching of the substrate material.

Taking advantage of a high substrate to mask selectivity
of the etching process, a sequential iterative etching process
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Fig. 4. SEM images of the thinned electrodes (a) before and (b) after the
cleaning of the organic residues due to the DRIE process.
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Fig. 5. Cross-section schematic overview of the MEMS mirror components,
such as, (a) mirror surface, (b) asymmetric electrodes, (c) mirror cavity,
(d) electrical contacts, (e) mirror frame and dicing-free features.

was used to etch the FS silicon layer to different discrete
depths in the various regions defined by the multiple GS mask
levels. The exposed substrate is etched, in different steps,
through DRIE (Deep Reactive Ion Etching), based on the etch
time, Fig. 3 (g). Each substrate etching step is followed by a
hard-mask thinning process to expose the substrate in the next
GS region, Fig. 3 (h), enabling further etching of the substrate,
and by a cleaning process of the organic residues due to the
DRIE process, Fig. 4, since this during the substrate thinning
can become a mask and pattern the silicon.

In the first etching step, a depth of 30 um is defined in
the substrate, creating the necessary depth ratio that allows
in the next etch process, to achieve the desired substrate
topography. The SiO> mask on top of the thinner electrodes
is then removed, exposing the substrate in these regions.
Subsequently, during the second etching process, the exposed
substrate is etched, resulting in a 20 um thickness in the
electrodes, while in the previously partially etched regions the
BOX (buried oxide) is reached, decoupling the movable from
the fixed asymmetric electrodes, Fig. 3 (i).

The BS was etched (DRIE), to open the mirror cavities
to allow a free movement of the mirror, Fig. 3 (j). Finally,
the structures were released using hydrogen fluoride (HF)
vapor etching, Fig. 3 (k), removing the sacrificial buried
oxide (BOX) layer that is exposed and the remaining oxide
hard-masks. Fig. 5 presents a cross-section schematic of the
MEMS mirror, illustrating also the HF dicing-free designed
features (described in [9]), which consist of FS and BS
overlapping trenches around each device and FS grid supports.
During the HF process, the BOX layer between the supports

1000 pm
|
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==t 50 um Thickness

L
Self-aligned Vertical
Comb Electrodes

Fig. 6.  Optical microscopic images of the fabricated devices, showing
self-aligned electrodes with 2.8 xm gaps.

and the handle layer is removed, leaving each die suspended by
the FS supports on the wafer. These features bypass the need
for an extra dicing step, and consequently increasing functional
devices yield since these are not submitted to dicing stress.

C. Fabricated Devices

The mechanical characterization of the fabricated devices
was performed to ensure that all the designed features meet
the fabrication specifications.

Using an optical microscope, the fabricated devices were
inspected, and as depicted in Fig. 6. The gaps between the two
electrodes are entirely aligned, i.e., the gaps are equal in both
sides of the electrodes. This is a crucial feature in electrostatic
actuation since when an actuation voltage is applied, the
in-plane electrostatic forces must be in equilibrium, and only
the out-of-plane force should induce the torsional motion of
the mirror. It can also be noticed that the gap of 2 ym was over
etched, resulting in a gap of 2.8 um in the final manufactured
devices. This over-etch of the trenches in respect to the mask is
typical of DRIE processes and geometry/depth dependent and
was accounted for in order to not compromise the performance
of the mirror.

All the other mechanical features, such as spring dimensions
and mirror area, are within the design specifications with
variations below 4 % and 0.08 % respectively.

Fig. 7 presents SEM images of the mirror and its actuators.
The two silicon levels are easily identified in both figures
(a) and (b), where the lower electrodes present a lighter grey
color (20 um), and the full silicon thickness ones a darker
grey color (50 xm).

The fabricated devices presented the desirable features
concluding that this dicing free process combined with this
manufacturing process simplified by the grayscale lithography
ensured a good yield and the proof of concept of this new
low-cost process.
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(b)

Fig. 7. SEM images of the fabricated devices: (a) Overall MEMS mirror;
(b) Close-view SEM image of the electrostatic actuators.

IV. EXPERIMENTAL CHARACTERIZATION AND RESULTS
A. Packaging of MEMS Mirror

The devices were arranged in a PCB chip-carrier, and the
MEMS mirror connections between the chip-carrier pads and
the device pads were performed through wire-bonding.

In order to experimentally characterize the device under low
pressure, the chip carrier pin-out used was compatible with
the vacuum chamber. In these tests, the devices were placed
in the vacuum packaging with a glass cover, to enable the
laser path to the mirror surface, and using a vacuum pump,
the device was submitted to low pressure conditions reducing
the damping coefficient and increasing the quality factor.

B. Experimental Setup

The resonance frequency of the device was experimentally
characterized, using a laser scanner vibrometer. Here, it was
possible to track the mechanical resonant modes amplitude,
when the mirror is electrically excited with low voltage white
noise signal. The mirror presented a first resonance mode (tor-
sional) frequency, fy, of 838 Hz. This frequency was then
used to test and characterize the device with higher voltages
to increase the FOV taking advantage of the mechanical
amplification due to intrinsic high quality-factor of these type
of mechanical structures.

In order to evaluate the mirror performance and FOV,
an experimental setup using a laser source (1) and a linear

MEMS Z-axis
Mirfar  Y-axis
 X-axis

.’/

Fig. 8. Experimental setup overview.

CCD camera (3) was assembled to characterize the mirrors
for larger deflection angles. An overview schematic of the
experimental setup is shown in Fig. 8. This setup has a laser
source pointing to the MEMS mirror (2) that can be inside the
vacuum packaging to keep the mirror under low pressure. The
mirror reflects the beam onto a linear CCD, aligned perpen-
dicular to the beam, enabling a precise measurement of the
FOV that the mirror is achieving using simple trigonometric
calculations. The mirror deflection angle corresponds exactly
to half of the FOV since the incident angle changes with the
mirror motion and results in a FOV range twice larger than the
mirror deflection angle range. Multiple linear stages are also
integrated in the setup, to precisely adjust the distance between
the mirror and the linear CCD, aligning the reflected beam
with the CCD camera with a minimal error below 13.4 m°.

C. Performance Analysis

Both static and resonant performance were optically charac-
terized to validate the analytical behavior that was expected to
achieve. The performance analysis was divided in two steps:

1) Static Mode: A constant actuation voltage was applied
between the asymmetric combs at ambient pressure. In this
mode, the air damping coefficient does not affect the mirror
behavior. The actuation voltage was varied from 0 V to 80 V.
Fig. 9 presents the correspondent mirror performance, and it is
possible to conclude that the mirror deflection angle presents
a linear behavior with the applied torque. The quadratic
characteristic between the angle and the applied voltage is
due to the electrostatic torque since this is proportional to the
square of the applied voltage, as stated in equation (3) where
V is the voltage applied, C is the capacitance of the combs
and 6 is the angle deflection of the mirror.

1 _,o0C
Teiectrostatic = ) Vv 20 (3)



GARCIA et al.: FABRICATION OF A MEMS MICROMIRROR BASED ON BULK SILICON MICROMACHINING 739

Static Mirror Field of View

* Angle measurements
= = Electrostatic Force Equilibrium

0.8~  Fitting curve

0.6

FOV (deg)

0.2

0=

0 10 20 30 40 50 60 70 80
DC Actuation Voltage (V)

Fig. 9.  Static mirror deflection performance, for an applied DC voltage
between 0 V and 80 V, showing a maximum static angle of 0.8°.

60 Resonant Mirror Field of View

= FOV measurements
Fitting curve

Field of View (deg)
s (%] [#] .-y (%)
o o o o (=]

o
-

-10
0 5 10 15 20 25 30

Voltage (Vpp)

Fig. 10. Resonant mirror FOV, for an applied AC voltage between O Vpp and
30 Vpp, with a frequency equal to the mirror natural resonance frequency,
showing a maximum FOV of 54°, under low pressure.

The mirror achieved, as analytically expected, a static
maximum deflection angle of 0.8° at 70 V since this is
the mechanical alignment between the asymmetric electrodes,
and in this point the generated electrostatic forces are in
equilibrium.

2) Resonant Mode: In this case, to electrically excite the
mirror, a signal generator was used, applying a phase syn-
chronized signal in the mirror right and left actuators inde-
pendently. This experiment was performed under low pressure
(below 5e-5Smbar) to reduce the damping coefficient, using the
vacuum chamber. The FOV for an applied AC voltage between
0 Vpp and 30 Vpp, is presented in Fig. 10. A maximum FOV
of 54° was achieved, with 30 Vpp at the resonance frequency.

V. CONCLUSION

The fabrication and characterization of a 1D MEMS mirror
for LiDAR application, based on vertical asymmetric elec-
trostatic actuation, was presented. It was introduced a novel

micromachining technique to create the asymmetry between
the vertical comb actuators, merging typical SOI-based bulk
micromachining processes and grayscale lithography. This
technique simplifies and reduces the overall fabrication costs
by also reducing the number of required lithography steps.
Moreover, it bypasses the misalignment problems arising from
using separate lithography steps for the different sets of
electrodes with different heights.

The asymmetric combs electrodes have consistent and
reproducible 2.8 um gap, which proves this process to be
an effective way to fabricate self-aligned and robust structures
with different silicon levels, enabling both operation modes of
the fabricated devices, static mode and resonant mode.

The mirrors were optically characterized and resonantly
actuated, in a low-pressure chamber to reduce the damping
coefficient, achieving a reflection FOV of 54°, at a resonance
frequency of 838 Hz. When operated in the static mode,
these devices achieved a maximum FOV of 0.8° at 70 V,
corresponding also to the combs’ electrostatic force alignment
angle due to the different electrodes’ heights.

In the future, this novel self-aligned multilevel microma-
chining process will be used in a 2D MEMS mirror that can
be optimized in order to fabricate devices with more than three
levels, as well as to enable the patterning of different materials,
such as the metal layer and the silicon structures in a single
GS mask. A typical fabrication process for this specific device
would require four different lithographic processes. This has
the potential to reduce the number lithography steps required
for processing such MEMS structures to two (one for the front-
side and another for the backside of the SOI wafer). This
process could also be optimized to create more levels in the
SOI device layer, such as to create membranes or springs with
thinner or varying heights, which are self-aligned with the rest
of the MEMS structure.
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