
1549-7747 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2020.3034392, IEEE
Transactions on Circuits and Systems II: Express Briefs

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. XX, NO. X, MONTH 2020 1

An Efficient NB-LDPC Decoder
Architecture for Space Telecommand Links

Ángel Álvarez, Vı́ctor Fernández and Balázs Matuz, Member, IEEE

Abstract—In the framework of error correction in space
telecommand (TC) links, the Consultative Committee for Space
Data Systems (CCSDS) currently recommends short block-length
BCH and binary low-density parity-check (LDPC) codes. Other
alternatives have been discarded due to their high decoding
complexity, such as non-binary LDPC (NB-LDPC) codes. NB-
LDPC codes perform better than their binary counterparts over
AWGN and jamming channels, being great candidates for space
communications. We show the feasibility of NB-LDPC coding for
space TC applications by proposing a highly efficient decoding
architecture. The proposed decoder is implemented for a (128,64)
NB-LDPC code over GF(16) and the design is particularized
for a space-certified Virtex-5QV FPGA. The results prove that
NB-LDPC coding is an alternative that outperforms the stan-
dardized binary LDPC, with a coding gain of 0.7 dB at a
reasonable implementation cost. Given that the maximum rate
for TC recommended by the CCSDS is 2 Mbps, the proposed
architecture achieves a throughput of 2.03 Mbps using only
9615 LUTs and 5637 FFs (no dedicated memories are used). In
addition, this architecture is suitable for any regular (2,4) NB-
LDPC (128,64) code over GF(16) independently of the H matrix,
allowing flexibility in the choice of the code. This work places
NB-LDPC codes as the excellent candidates for future versions
of the telecommand uplink standard.

Index Terms—VLSI design, FPGA, non-binary LDPC codes,
decoder architecture, space communications.

I. INTRODUCTION

SHORT block-length error correcting codes have been
largely discussed and developed during the last years

regarding the transmission of telecommand (TC) messages in
the uplink channel in space communications. The Consultative
Committee for Space Data Systems (CCSDS) recommendation
for TC synchronization and channel coding [1] currently
proposes an outdated Bose-Chaudhuri-Hocquenghem (BCH)
(63,56) code and binary low-density parity-check (LDPC)
codes with block lengths (128,64) and (512,256). Short block
codes show a larger gap to the respective theoretic limits
than their long counterparts. Therefore, more sophisticated
decoders/code constructions are usually considered to mitigate
this gap. For example, LDPC under most reliable basis (MRB)
decoding [2] and non-binary LDPC (NB-LDPC) codes were
investigated by CCSDS. However, these were discarded due

Manuscript received Month XX, 2020; revised Month XX, 2020. This work
has been supported by Project TEC2017-86722-C4-3-R, funded by Spanish
MICINN/AEI.

A. Alvarez and V. Fernandez are with the Microelectronics Engi-
neering Group, University of Cantabria, 39005 Santander, Spain (e-mail:
{alvarez,victor}@teisa.unican.es).

B. Matuz is with the Institute of Communications and Navigation of
the German Aerospace Center (DLR), Münchner Strasse 20,82234 Weßling,
Germany (e-mail: balazs.matuz@dlr.de).

to hardware complexity limitations, which put a significant
constraint on the choice of the channel code.

NB-LDPC codes achieve higher coding gain, better burst
error correction capabilities and lower error floors than their
binary counterparts. The above makes them extraordinary
candidates for space communications. NB-LDPC codes with
excellent performance have been recently proposed by DLR
[3] and NASA [4]. However, these coding schemes are not
typically used in practice owing to the high cost in terms of
hardware resources of the state-of-the-art implementations.

This paper shows the feasibility of NB-LDPC coding for
space TC links as an alternative to the standardized binary
LDPC codes. We propose an optimized hardware implementa-
tion for a (128,64) (parameters in bits) NB-LDPC decoder over
GF(16). The designed architecture is suitable for any regular
(2,4) parity-check matrix of a GF(16) NB-LPDC code with
block length (128,64), giving flexibility to code designers. The
design is particularized for a space-grade Virtex-5QV FPGA
device. The results show that the implementation achieves a
0.7 dB coding gain over the binary LDPC code in the stan-
dard with affordable implementation complexity. The selected
algorithm will be detailed in the next sections. Although MRB-
decoded binary LDPC schemes achieve even higher coding
gain, the implementation cost turns out to be prohibitive for
the required throughput and target device, as detailed in the
results section. To the best of the authors’ knowledge, there are
no comparable implementations targeting short block-length
NB-LDPC codes for space applications at a reasonable cost.

The rest of this brief is organized as follows. In Section II,
the chosen NB-LDPC decoding method is introduced. Section
III describes the design procedure and proposed architecture
for the necessary modules and the overall NB-LDPC decoder.
The implementation results are given in Section IV. Finally,
the conclusions are drawn in Section V.

II. NB-LDPC DECODING ALGORITHM

NB-LDPC iterative decoding algorithms are based on mes-
sage passing between variable and check nodes along the
edges of a Tanner graph. Simplifications of the original belief
propagation (BP), also known as q-ary sum-product algorithm
(QSPA) [5], are needed in order to reduce the high complexity
of the check node operations. The decoding method of choice
for implementation is the Min-Max algorithm [6], which
operates in the logarithmic domain. In comparison with other
alternatives, such as BP with Fast Fourier Transform (BP-
FFT) [7] or extended min-sum (EMS) [8], it has the least
decoding complexity with very small loss of performance.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 25,2021 at 12:03:46 UTC from IEEE Xplore. Restrictions apply.

1549-7747 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2020.3034392, IEEE
Transactions on Circuits and Systems II: Express Briefs

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. XX, NO. X, MONTH 2020 2

Trellis versions of the algorithms [9]–[11] allow a higher
degree of parallelism, targeting throughputs far above the ones
used in telecommand links. Space telecommand rates vary
from hundreds of kbps to 2 Mbps, which is the upper limit
recommended by the CCSDS [12].

Next, the Min-Max algorithm is reviewed. Let H be the
M ×N parity-check matrix defining the code, with elements
hm,n from GF(q). Assume a is a symbol of GF(q). A q-
ary codeword transmitted over a binary-input AWGN channel
is denoted by c = (c1, c2, . . . , cN). M(n) is the set of
check nodes connected to the variable node n and N (m) is
the set of variable nodes connected to the check node m.
Ln(a) and Lpost,n(a) denote the a priori and a posteriori
information of the variable node n concerning the symbol
a. The configurations set L (m | an = a) is defined as the
set of sequences of GF(q) symbols verifying the equation of
the check node m: hm,na +

∑
n′∈N (m)\{n} hm,n′an′ = 0.

Messages exchanged within Min-Max decoding represent log-
likelihood ratios (LLRs). The messages from the check node
m to the variable node n, Rm,n, and the messages from the
variable node n to the check node m, Qm,n, concerning every
symbol of GF(q) are computed and exchanged in each iteration
until the algorithm converges to a codeword or a maximum
number of iterations is reached.

Min-Max NB-LDPC Decoding Algorithm:
Initialization
A priori information (initial LLRs):

Ln(a) = ln (P (cn = sn | channel)/P (cn = a | channel))

where sn is the most likely symbol for cn.
Iterations
Check node processing:

Rm,n(a) = min
an′∈L (m|an=a)

{
max

n′∈N (m)\{n}
Qm,n′(an′)

}
Variable node processing:

Q′m,n(a) = Ln(a) +
∑

m′∈M(n)\{m}

Rm′,n(a)

Qm,n(a) = Q′m,n(a)− min
a∈GF(q)

Q′m,n(a)

A posteriori information and hard decision:

Lpost,n(a) = Ln(a) +
∑

m∈M(n)

Rm,n(a)

The decision on cn is c̃n = argmaxa Lpost,n(a)

Since building and storing the set of configurations is
complicated in practice, the check node processing will be
implemented with a forward-backward (FB) method, which
recursively operates as shown in the algorithm below (the i-
th connected variable node is denoted by ni and the check
node degree by dc). Although the FB algorithm is a serial
process due to data dependency, we will later show that the
required throughput for the target application can be reached
and exceeded. The complexity of the Min-Max algorithm is
dominated by O(q2) comparison operations for each check

Forward-Backward Algorithm:
Initialization:
F1(a) = Qm,n1(h

−1
m,n1

a); Bdc(a) = Qm,ndc
(h−1m,ndc

a);
Forward Process:
for i = 2 to dc − 1 do

Fi(a) = min
a=a1+hm,ni

a2

max {Fi−1(a1), Qm,ni
(a2)}

end for
Backward Process:
for i = dc − 1 to 2 do

Bi(a) = min
a=a1+hm,ni

a2

max {Bi+1(a1), Qm,ni
(a2)}

end for
Merging Process:
Rm,n1

(a) = B2(a); Rm,ndc
(a) = Fdc−1(a)

for i = 2 to dc − 1 do
Rm,ni(a) = min

hm,ni
a=a1+a2

max {Fi−1(a1), Bi+1(a2)}

end for

node processing, q being the Galois field cardinality. The
architecture in the following section is designed for NB-LDPC
codes over GF(16) since they offer a good trade-off between
correcting performance and complexity, when compared with
codes over other fields [13]. The degrees of the variable and
check nodes are (dv, dc) = (2, 4), a common choice for short
length NB-LDPC codes.

III. PROPOSED DECODER ARCHITECTURE

In the following subsections, the design of the most im-
portant modules and the top-level architecture is explained.
Based on [14], messages are quantized with 5 bits in the
iterative algorithm with negligible degradation of performance
with respect to a floating point representation.

A. Check Node Unit (CNU)

The biggest bottleneck of NB-LDPC decoding is the check
node processing. In the FB algorithm, the processing is made
up of elementary steps (1) which take two input vectors L1

and L2 and compute an output vector Lo.

Lo(a) = min
a=a1+a2

max {L1(a1), L2(a2)} (1)

In order to get an efficient architecture for computing
the elementary min-max step, the LLRs in message vectors
are stored according to their corresponding GF symbol in
power representation [15]. By storing the LLRs of L1, L2

and Lo into shift registers inside the min-max module and
taking advantage of the power representation, it is possible
to implement a fixed interconnection network between the
‘min’ and ‘max’ comparators (while an expensive switching
network would be needed with LLRs ordered in polynomial
representation). Moreover, the multiplications and divisions by
the non-zero elements of H can be integrated into the check
node processing with no overhead other than a shift of the
LLRs in one of the input vectors in the first elementary step
of the forward and backward stages. If this technique is not
applied, finite field multipliers or barrel shifters are required.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 25,2021 at 12:03:46 UTC from IEEE Xplore. Restrictions apply.

1549-7747 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2020.3034392, IEEE
Transactions on Circuits and Systems II: Express Briefs

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. XX, NO. X, MONTH 2020 3

Fig. 1. Column vectors to compute in the forward-backward algorithm for
the code of interest (dc = 4) and data dependency between them.

Min-Max
Elementary
Computation

1

2

16	Shift
Registers

16	Shift
Registers

load_1,	shift_1 load_2,	shift_2
selection_1
selection_2

load_L1,	shift_L1
load_L2,	shift_L2

zero
write_selection

Fig. 2. Proposed low-area architecture for a Check Node Unit (CNU). Signals
represent q=16 element vectors.

For a regular GF(16) NB-LDPC code with dc = 4, the FB
algorithm for the processing of one check node must compute
the elementary step six times. Data dependency is shown in
Fig. 1. Numbers above the columns denote dependency –
column vectors marked with ‘1’ have to be computed before
those marked with ‘2’. Vectors F3 and B2 are directly the first
and last output messages, respectively. Every message vector
contains q = 16 elements (5 bits each).

In order to widen the design space exploration at the
top-level decoder architecture, high-throughput and low-area
versions of the CNU and VNU are designed. A maximum-
throughput check node architecture is implemented using 4
min-max elementary units, exploiting the maximum degree
of parallelism available. On the other hand, a low-area archi-
tecture is designed with only one min-max elementary unit
(Fig. 2). We focus on the low area version, since we will
later decide to use it in the proposed decoder as a result
of a latency-area analysis. In the FB serial processing, the
forward and backward stages are typically computed first and
the results are finally combined in the merging process. For
this particular dc = 4 case, we propose a different ordering
which allows to avoid the storage of the intermediate vectors
produced in the first forward and backward steps (F2 and B3).
The new scheduling is described in Fig. 3, showing the input
(L1, L2) and output (Lo) vectors of the min-max unit in every
step. In some steps, the input vectors to L1 and L2 have been
interchanged so that, in case one vector is used in consecutive
steps, it is needed in the same register array in which it is
already stored inside the min-max unit. Then, reading the
messages requires less memory accesses. Also, the size of
the multiplexors is reduced since a lower number of different
message vectors needs to be connected to a single input of the
min-max unit. Notice that every signal in the architecture of
Fig. 2 represents a q = 16 element vector.

FW	1 BW	1FW	2 BW	2 MERGE	1MERGE	2Step:

Fig. 3. Proposed serial scheduling for the check node architecture with one
min-max elementary unit (low-area architecture).

16
Registers

A

B

Min	Tree
(value	and	index
propagation) hard

decision

Mode	Selection

Fig. 4. Proposed low-area architecture for a Variable Node Unit (VNU).
Signals represent q=16 element vectors.

B. Variable Node Unit (VNU)

Variable nodes of degree dv = 2 are connected to two
check nodes. The message, Q, to be sent to a check node
is computed as addition of the message received from the
other check node and the a priori information from the channel
(element-wise addition of two 16-element vectors). Then, the
message vector is normalized so that all the values represent
log-likelihood ratios with respect to the most likely symbol. As
the lowest LLR value is associated with the highest probability,
the minimum value in the vector must be found and subtracted
to all elements. Only the a priori information vectors Ln

are sent when decoding starts. The architecture proposed in
Fig. 4 is capable of computing the above operations in one
clock cycle per message. To reuse both the logic (adders and
comparators) and computed data, this architecture is also used
to get the hard decision symbol associated to the variable node
with just an additional clock cycle. By storing the last sum
vector in a register array, just one more addition is needed to
get the a posteriori information and the most likely symbol
(hard decision) is found by reusing the comparators tree. A
minimum latency VNU (all operations in a cycle) can be built
if the hardware chain is replicated.

C. Parity Check Module

Within the decoding process, it is checked whether the hard
decision verifies all parity-check equations imposed by the
check nodes. As dc = 4, there are 4 non-zero elements in a
row of H. Then, evaluating the m-th parity-check equation∑32

n=1 hm,ncn = 0 reduces to 4 products and 3 additions
over GF(16). When a hard decision symbol belonging to the
tentative codeword is generated in the VNU, it is stored (e.g.
in a shift register) until the 32 symbols are available. All non-
zero elements of H and their position inside the matrix are also
stored in a ROM. Multiplications are carried out with look-
up tables, with 4 asynchronous ROM implemented as logic in
the FPGA LUTs. Additions are implemented in polynomial
representation with bitwise XOR operations.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 25,2021 at 12:03:46 UTC from IEEE Xplore. Restrictions apply.

1549-7747 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2020.3034392, IEEE
Transactions on Circuits and Systems II: Express Briefs

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. XX, NO. X, MONTH 2020 4

0 10000 20000 30000 40000 50000
Area [LUTs]

0

200

400

600

800

1000

1200

1400

1600

1800

2000
L

at
en

cy
 [

C
yc

le
s

pe
r

ite
ra

tio
n]

Parallel & Min Latency
Parallel & Min Area
Serial & Min Area
Serial & Min Latency
4 CNU, 32 VNU
4 CNU, 16 VNU
4 CNU, 8 VNU
4 CNU, 4 VNU
4 CNU, 2 VNU
4 CNU, 1 VNU
8 CNU, 32 VNU
8 CNU, 16 VNU
8 CNU, 8 VNU
8 CNU, 4 VNU
8 CNU, 2 VNU
8 CNU, 1 VNU
16 CNU, 16 VNU
16 CNU, 8 VNU
16 CNU, 4 VNU
16 CNU, 2 VNU
16 CNU, 1 VNU

8 CNUs

16 CNUs

1 CNU, 1 VNU

1 CNU, 1 VNU

16 CNUs, 32 VNUs

4 CNUs

Fig. 5. Area-latency comparison of the candidate architectures for implemen-
tation of the (128,64) NB-LDPC decoder over GF(16).

D. Overall Architecture of the NB-LDPC Decoder

Next, the top-level decoder architecture is discussed and
options with different latency-area ratio are compared. Min-
imum area and minimum latency versions of the CNU and
VNU modules have been designed. Also, different degrees of
parallelism can be employed. In a (128,64) NB-LDPC code
over GF(16), the H matrix has dimension 16 × 32. Fully
parallel (16 CNUs and 32 VNUs) and fully serial (1 CNU
and 1 VNU) architectures can be built using both minimum
area or latency components. They are represented in the
latency-area graph in Fig. 5. These extreme options will be
discarded for practical applications, except for meeting special
requirements. In between, several partial-parallel architectures
with a better trade-off arise. The architectures with 8 and 16
CNUs and 1-to-8 VNUs are particularly efficient, as they are
closer to the origin in the graph. Partial-parallel architectures
represented in Fig. 5 are built with the low area modules
since they meet typical telecommand throughputs while using
the least hardware resources. Area overhead from memories,
interconnections and control is not included in the graph. The
needed additional resources have low impact and they affect
all options in a similar way.

The architecture with 16 CNUs and 1 VNU, denoted with a
red solid circle in Fig. 5, is chosen for implementation. It is the
lowest-area choice meeting the 2 Mbps constraint. To calculate
the throughput, a maximum of 18 decoding iterations has been
selected, with performance shown in Section IV. Architectures
with fewer CNUs do not comply with the throughput, and
using less decoding iterations quickly leads to a performance
degradation. The chosen point has some additional advantages
when compared to other architectures. First, architectures with
16 CNUs don’t need the large shift registers at the input of the
CNUs, because the shift can be implemented hard wired due to
having a dedicated CNU for every row of H. Secondly, having
just one dedicated VNU means less interconnection overhead

1 1.5 2 2.5 3 3.5 4 4.5 5

E
b
/N

0
 [dB]

10-5

10-4

10-3

10-2

10-1

100

C
E

R

Floating Point QSPA NB-LDPC GF(16) · 200 iter.
Floating Point Min-Max NB-LDPC GF(16) · 200 iter.
Quantized Min-Max NB-LDPC GF(16) · 18 iter.
Quantized Normalized Min-Sum B-LDPC · 90 iter.

Fig. 7. Performance of proposed Min-Max implementation for the (128,64)
NB-LDPC code over GF(16), on AWGN channel and BPSK modulation.

between processors and message memories and some costly
multiplexors can be avoided. One RAM is employed to store
the a priori information and 16 dual port RAMs are used to
store the algorithm messages, so that every CNU can read
and write data in parallel. Moreover, an advantage of the (16
CNUs,1 VNU) architecture is the fact that it is suitable for any
(128,64) NB-LDPC code with (dv, dc) = (2, 4) over GF(16)
with no memory conflicts and changes in the architecture.
As a consequence, performance-oriented modifications or a
novel code can be proposed by code designers while using
the same architecture. Depending on the position of the non-
zero elements in H, other partial-parallel architectures may
present issues such as various VNUs having to access the same
message memory (when columns being processed in parallel
contain non-zero elements in the same row of H). This may
result in extra hardware or latency and redesign of the control
logic. The schematic of the proposed top-level architecture is
shown in Fig. 6.

IV. IMPLEMENTATION RESULTS

The codeword error rate (CER) performance of a NB-LDPC
code over GF(16) with parameters (128,64) (in bits) on a
binary input AWGN channel is presented in Fig. 7. The NB-
LDPC code’s parity-check matrix was obtained by a circulant
version of the progressive edge growth algorithm. Results
in Fig. 7 include: (i) the QSPA and Min-Max floating-point
models, (ii) the proposed quantized Min-Max implementation
and (iii) the (128,64) CCSDS binary LDPC code under quan-
tized min-sum decoding – with a maximum of 200, 18 and
90 decoding iterations, respectively. The iterations limit in
quantized versions is chosen to meet the required throughput
for the maximum (not average) number of iterations, with
a small performance loss. Remarkably, the non-binary code
shows a coding gain of 0.7 dB with respect to its binary
competitor from the CCSDS standard.

In Table I, implementations of different decoding alterna-
tives for the CCSDS telecommand recommendation are com-
pared. In the first column, the proposed NB-LDPC decoder is

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 25,2021 at 12:03:46 UTC from IEEE Xplore. Restrictions apply.

1549-7747 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2020.3034392, IEEE
Transactions on Circuits and Systems II: Express Briefs

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. XX, NO. X, MONTH 2020 5

Symbol
LLR

Generator

LDR	MEM
RAM	32x80 VNU

Parity
Check

MSG	MEM1
RAM	8x80

MSG	MEM2
RAM	8x80

MSG	MEM16
RAM	8x80

CNU1

CNU2

CNU16

Control	Unit

Channel
LLRs
from

Demodulator
GF16
Symbol
LLRs

M
U
X
	1
6	
to
	1

hard	decision

80

808080

80

80

80

80

80

80

80

80

80

Control	signals

H	matrix	nonzero	elements

GF16
Symbol
LLRs

16 elements x 5 bit quantization

Fig. 6. Top-level proposed NB-LDPC decoder architecture. Signals represent q=16 element vectors.

presented. Our implementation uses 9615 Slice LUTs (11.7%
out of the total) and 5637 FFs (6.9%) on a space-grade Virtex-
5QV FPGA. The achieved throughput is 2.03 Mbps, exceeding
the limit of 2 Mbps currently recommended for CCSDS
agencies in high rate TC transmissions [12]. Using dedicated
BRAMs would require data redundancy (e.g. triple vote) as
a protection mechanism in space. Instead, memories have
been implemented as distributed memory in the FPGA logic,
which is protected against radiation. Therefore, memories
are included in the above LUT utilization. In the second
column, the implementation of the binary LDPC code which is
currently in the standard is summarized. The design has been
area optimized under normalized min-sum decoding and the
same constraint of 2 Mbps. In the third column we consider
binary LDPC with MRB decoding, motivated by its great error
correcting capabilities. Assuming a throughput constraint of 1
Mbps and a 100 MHz clock, the authors in [2] indicate the
number of processing units to be used. The amount of required
LUTs and FFs is far bigger than the number available in the
target FPGA, proving the MRB proposal to be only feasible for
much slower applications (e.g. deep space communications).

V. CONCLUSION

This work presents an efficient architecture which proves the
feasibility of NB-LDPC coding for error correction in space

TABLE I
COMPARISON BETWEEN DIFFERENT DECODING IMPLEMENTATIONS

Class NB-LDPC Binary LDPC Binary LDPC

Code (128,64)
GF(16)

(128,64)
(CCSDS)

(128,64)
(CCSDS)

Algorithm Min-Max Normalized
Min-Sum MRB4

Device Virtex-5QV Virtex-5QV Virtex-5QV

Slice LUTs 9615 2446 >available

Slice Registers 5637 560 >available

BRAM 0 0 0

Max. Iterations 18 90 NA

Max. fCLK 60.9 MHz 51.0 MHz 100 MHz

Throughput 2.03 Mbps 2.01 Mbps 1 Mbps

telecommand communications. This scheme outperforms the
standardized LDPC code over AWGN and jamming channels.
Despite NB-LDPC codes not being included in the CCSDS
recommendation for TC due to their high decoding complexity,
the proposed decoder exceeds the maximum throughput of 2
Mbps recommended by the CCSDS for TC links while using
only 9615 LUTs and 5637 FFs (including all memories) on a
Virtex-5QV FPGA. To the best of our knowledge, this is the
first implementation for short block-length NB-LDPC codes
targeting space telecommand links at a reasonable cost. The
results in this work show that NB-LDPC codes are a suitable
alternative for the upcoming version of the CCSDS standard.

REFERENCES

[1] CCSDS 231.0-B-3. “TC Synchronization and Channel Coding”. Blue
Book, Sep. 2017.

[2] M. Baldi et al., “On the use of ordered statistics decoders for low-density
parity-check codes in space telecommand links”, Journal Wireless
Communications and Networking 2016, Art. 272, Nov. 2016.

[3] G. Liva et al., “Codes on high-order fields for the CCSDS next
generation uplink”, Advanced Sat. Mult. Systems Conf. (ASMS) and
Signal Proc. Space Comm. Workshop (SPSC), Baiona, 2012, pp. 44-48.

[4] B. Chang, D. Divsalar and L. Dolecek, “Non-binary protograph-based
LDPC codes for short block-lengths”, 2012 IEEE Information Theory
Workshop, Lausanne, Switzerland, 2012, pp. 282-286.

[5] M. C. Davey and D. MacKay, “Low-density parity check codes over
GF(q)”, IEEE Commun. Letters, vol. 2, no. 6, pp. 165-167, Jun. 1998.

[6] V. Savin, “Min-Max decoding for non binary LDPC codes”, Proc. IEEE
Intl. Symp. on Info. Theory, Toronto, Canada, Jul. 2008.

[7] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(2q)”, Proc. IEEE Inf. Theory Workshop, Paris, 2003, pp. 70-73.

[8] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary
LDPC Codes Over GF(q)”, IEEE Transactions on Communications, vol.
55, no. 4, pp. 633-643, Apr. 2007.

[9] E. Li, K. Gunnam and D. Declercq, “Trellis based Extended Min-Sum
for decoding nonbinary LDPC codes”, ISWCS, Aachen, 2011, pp. 46-50.

[10] Y. Ueng et al., “A High-Throughput Trellis-Based Layered Decoding
Architecture for Non-Binary LDPC Codes Using Max-Log-QSPA” IEEE
Transactions on Signal Processing, vol. 61, no. 11, pp. 2940-2951, 2013.

[11] M. Li et al., “An Efficient High-Rate Non-Binary LDPC Decoder
Architecture With Early Termination”, IEEE Access, vol. 7, 2019.

[12] CCSDS 401.0-B-28. “Radio Frequency and Modulation Systems – Part
1”. Blue Book, Feb. 2018.

[13] D. Divsalar and L. Dolecek, “Non-binary Protograph LDPC Codes for
Short Blocklengths”, CCSDS Fall Meeting, Oct. 2012.

[14] X. Zhang and F. Cai, “Efficient Partial-Parallel Decoder Architecture for
Quasi-Cyclic Nonbinary LDPC Codes”, IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 58, no. 2, pp. 402-414, Feb. 2011.

[15] F. Cai and X. Zhang, “Efficient Check Node Processing Architectures
for Non-binary LDPC Decoding Using Power Representation”, 2012
IEEE Workshop on Signal Processing Systems, pp. 137-142, Oct. 2012.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 25,2021 at 12:03:46 UTC from IEEE Xplore. Restrictions apply.

