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Abstract—A new methodology is proposed for the small– and 
large–signal stability analysis of complex microwave systems, 
containing multiple active blocks. It is based on a calculation of the 
system characteristic determinant that ensures that this determinant 
does not exhibit any poles in the right–hand side of the complex plane 
(RHS). This is achieved by partitioning the structure into simpler 
blocks that must be stable under either open–circuit (OC) or short–
circuit (SC) terminations. Thus, the system stability is evaluated by 
means of a two–level procedure. The first level is the use of pole–zero 
identification to define the OC– or SC–stable blocks, which, due to 
the limited block size, can be applied reliably. In large–signal 
operation, the OC– or SC–stable blocks are described in terms of 
their outer–tier conversion matrices. The second level is the 
calculation and analysis of the characteristic determinant of the 
complete system at the ports defined in the partition. The roots of the 
characteristic determinant define the stability properties. The 
Nyquist criterion can be applied since, by construction, the 
determinant cannot exhibit any poles in the RHS. In addition, one 
can use pole–zero identification to obtain the values of the 
determinant zeroes. Because the determinant is calculated at a 
limited number of ports, the analysis complexity is greatly reduced.   
 

Index Terms—Stability analysis, Nyquist criterion, pole–zero 
identification, conversion–matrix approach. 

I. INTRODUCTION 

ESIGNERS of nonlinear circuits often find qualitative 
differences between the solution simulated and the 
solution measured [1]–[5]. This is due, in most cases, to 

the instability of the solution simulated [6]–[10], which may 
give rise to undesired oscillations and other phenomena [11]–
[16]. The prediction of the stability properties is essential when 
using frequency–domain methods, such as an analysis based on 
the scattering parameters, in the case of a linear circuit, or 
harmonic balance (HB), in the case of a nonlinear one [2],[16]–
[17]. This is because these methods only provide the steady–
state solution and are unable to predict the reaction of this 
solution to the small perturbations that are always present in real 
life. Thus, complementary stability–analysis techniques are 
necessary. The mu factor and stability circles [18], used for the 
potential instability analysis of a two–port network, are limited 
to small–signal operation [19]–[22]. They can only be applied 
if the two–port network is stable when unloaded (Rollet 
proviso) [23], which must be verified with a performant stability 
analysis. In view of these limitations [19]–[22], other methods 
are used. There are two major types of rigorous stability–
analysis methods: those based on the use of the Nyquist criterion 
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[2]–[3], [15], [20]–[22], [24]–[25] and those based on a pole–
zero analysis [26]–[33].  

The methods based on the Nyquist criterion [20]–[22], [24]–
[25] enable a global evaluation of the solution stability in a 
single analysis, which simultaneously accounts for the whole 
circuit structure, without any problems of observability. 
However, the Nyquist criterion cannot be applied to complex 
functions F(s) that are susceptible to exhibit both zeroes and 
poles in the right hand side of the complex plane (RHS) [24]. 
This is because the number T of clockwise encirclements around 
the origin of the Nyquist plot F(j), where  is the imaginary 
part of s, provides the difference between the number Z of RHS 
zeroes of F(s) and the number P of RHS poles of F(s), that is, 
T = ZP [20]–[22], [24]–[25]. If the chosen function F(s) can 
exhibit both RHS zeroes (agreeing with the characteristic roots 
that define the solution stability properties) and RHS poles, 
there can be a wrong prediction of the stability properties, due 
to the subtraction of P. Obtaining a function that cannot exhibit 
both RHS zeroes and RHS poles is not an easy task. For 
instance, an ordinary impedance or admittance function, 
calculated at a given circuit node or branch, can have both Z  0 
and P  0 [24]. This is because the derivatives of the intrinsic 
nonlinearities with respect to their control variables (responsible 
for the circuit activity) affect both the numerator and 
denominator. In contrast, the characteristic determinant 
calculated from the perturbed HB formulation [2], [16], [25] 
cannot exhibit RHS poles. This is because the Jacobian matrix 
of the intrinsic nonlinearities only affects the numerator of the 
determinant. Thus, the poles of this determinant can only come 
from the passive linear elements and are necessarily located in 
the left–hand side of the complex plane (LHS). RHS poles are 
not possible either in the normalized determinant function 
defined in [20]–[22]. This is obtained through the calculation of 
a sequence of open–loop transfer functions (one per active 
element) or, more recently, from an admittance representation 
of the network at the nodes of the nonlinear elements susceptible 
to give rise to instability. The method is accurate and complete 
when having access to the device intrinsic terminals. It is less 
reliable when the devices are described with black–box models 
containing linear and nonlinear elements.  

Unlike the methods based on the use of the Nyquist criterion, 
the pole–zero analysis [26]–[32] is applied to a closed–loop 
transfer function that can contain both RHS poles and RHS 
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zeroes. This is because the poles and zeroes are distinctly 
detected, which in the identification method is achieved by 
fitting the transfer function with a quotient of polynomials. The 
pole–zero analysis [26]–[32] relies on the fact that all the 
transfer functions that can be defined in a linear system share 
the same denominator and therefore should exhibit the same 
poles [26]–[31]. These poles agree with the roots of the 
characteristic determinant that define the stability properties. 
However, unlike the poles, the zeroes depend on the particular 
transfer function and cancellations/quasi–cancellations of RHS 
poles and RHS zeroes may take place [30]. If the quasi–
cancelled poles are invalid (due, for instance, to a too high 
identification order), one may believe that the circuit is unstable, 
when it is stable. However, the quasi–cancelled poles may also 
be due to a low observability of an existing instability. The 
recent method [32], based on projecting the closed–loop transfer 
function on an orthogonal basis of stable and unstable functions, 
prevents artificial quasi–cancellations that can result from the 
fitting with a rational function. However, this method can still 
miss instabilities due to a low observability. As stated in [32], 
the chance of missing instabilities is reduced through a 
sequential analysis of many different transfer functions. This 
may become demanding in complex multi–device structures 
[33].  

Here a two–level methodology for the stability analysis of 
complex systems is proposed, which formalizes an idea used in 
[34]–[35] for the small–signal stability analysis of non–Foster 
networks [36]–[37]. In addition, it addresses the significantly 
more complex case of the large–signal stability analysis. The 
new method relies on the calculation of the system characteristic 
determinant, thus coping with the observability limitations of 
the closed–loop stability analysis. The determinant is calculated 
in a manner that ensures that it does not exhibit any poles in the 
RHS. This is achieved by partitioning the system into simpler 
active blocks that are stable under either open–circuit (OC) or 
short–circuit (SC) terminations, connected through a passive 
linear network. In large–signal operation, the OC– or SC–stable 
blocks are described in terms of their outer–tier conversion 
matrices. Note that even if the composing blocks are stable, the 
complete system may be unstable [24], [38]–[45], due to 
feedback effects and/or variations in the loading conditions 
resulting from the block interactions. Thus, the method consists 
of a two–level procedure. The first level is the use of pole–zero 
identification [26]–[31] to define the OC– or SC–stable blocks, 
which, due to the limited block size can be applied reliably, 
without observability problems. The second level is the 
calculation and analysis of the characteristic determinant of the 
complete system at the reference ports defined in the partition. 
The use of a small number of ports facilitates the extension to 
the large–signal stability analysis.  

The paper is organized as follows. Section II presents the 
methodology for the small–signal stability analysis. Section III 
presents the methodology for the large–signal stability analysis.  

II. SMALL–SIGNAL STABILITY ANALYSIS 

The new analysis method is based on partitioning the system 
into simpler active blocks that are stable under either open–circuit 
or short–circuit terminations. Note that the method does not 

impose the stability of the blocks that are connected together. 
Instead, what the method requires is a (virtual) decomposition 
of the system into (other) blocks that are stable under either OC 
or SC terminations. As will be shown, the number of analysis 
ports associated to each block can be increased to facilitate the 
fulfilment of the OC or SC stability. 

A. Open–circuit and short–circuit stability  

In a driving–point impedance function [38]–[41], the 
excitation corresponds to a small–signal current ( )I s  and the 

response is a voltage ( )V s : 

( ) ( )
( )

( ) ( )

V s p s
Z s

I s q s
           (1) 

where ( )Z s  is the transfer function and p(s) and q(s) are, 

respectively, the polynomials of the numerator and 
denominator. It is assumed that in (1) there are no cancellations 
of RHS poles and RHS zeroes, due to hidden instabilities. In the 
absence of the current source, ( ) 0I s   [open–circuit (OC) 

termination], one will have the following characteristic equation 
[38]: 

( ) ( ) 0q s V s             (2) 

where ( )q s  is the characteristic polynomial. The stability of the 

block itself (in the absence of input sources) is defined by the 
roots of ( )q s , or characteristic roots. Comparing (1) and (2), 

under an OC termination, these roots agree with the poles of the 
transfer function in (1). If all the characteristic roots are in the 
LHS, the analyzed block is OC–stable.  

Now, a system composed of two blocks (Block1 and Block2), 
in the absence of input sources, will be considered. The blocks 
are connected as shown in Fig. 1 and are assumed to be open–
circuit stable (OC–stable) [Fig. 1(a)]. In terms of the common 
branch current, one can write the following characteristic 
equation: 

 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0TZ s Z s I s Z s I s F s I s        (3) 

In this one–dimensional case, ( )F s  is conceptually equivalent 

to the characteristic determinant. Because Block1 and Block2 are 
OC–stable, neither Z1 nor Z2 can have any poles in the RHS. 
Representing Z1 and Z2 in a manner analogous to (1), one can 
express ( )F s  as: 

1 2
1 2

1 2

1 2 2 1

1 2

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

p s p s
F s Z s Z s

q s q s

p s q s p s q s

q s q s

   




    (4) 

The stability properties of the two–block system are defined 
by the zeroes of ( )F s . In agreement with the derivations in 

[38]–[41], the function ( )F s  cannot have any RHS poles 

because neither 1( )q s  nor 2 ( )q s can exhibit any RHS roots, 

since the respective blocks are OC–stable. Thus, the function 
F(s) will not suffer from any uncertainties associated with the 
possible cancellations or quasi–cancellations of RHS zeroes and 
poles. 
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Fig. 1. Open and short–circuit stability. (a) OC–stable blocks. Analysis in terms 
of impedances. (b) SC–stable blocks. Analysis in terms of admittances. 

 
Now, the perturbation behavior of the same system of two 

OC–stable blocks will be analyzed in terms of the common node 
voltage ( )V s . The characteristic equation is: 

 1 2( ) ( ) ( ) ( ) ( ) 0pY s Y s V s F s V s       (5) 

where the admittance functions 1 2( ), ( )Y s Y s  are the inverses of 

1 2( ), ( )Z s Z s . Taking this into account, one obtains: 

1 2
1 2

1 2

1 2 2 1

1 2

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

p

q s q s
F s Y s Y s

p s p s

p s q s p s q s

p s p s

   




    (6) 

The physical system is the same in the two cases, so, as 
expected, the zeroes of ( )pF s  (defining the system stability), 

agree with those of (4). However, unlike the situation in (4), the 
function ( )pF s  can exhibit RHS poles, coming from the zeroes 

of 1 2( ) ( )p s p s , or, equivalently, the zeroes of the OC–stable 

transfer functions (Z1, Z2) of the individual blocks.  
For the dual case of two stable blocks under a short–circuit 

termination (SC–stable), we will consider two other blocks 
(Block1’ and Block2’), shown in Fig. 1(b). Because these two 
blocks are SC–stable, their corresponding admittance functions 

1 2'( ), '( )Y s Y s  do not have any RHS poles. Expressing the 

characteristic system in terms of the common–node voltage, the 
stability properties are defined by the zeroes of the following 
function, agreeing with the characteristic roots: 

1 2
1 2

1 2

1 2 2 1

1 2

'( ) '( )
'( ) '( ) '( )

'( ) '( )

'( ) '( ) '( ) '( )

'( ) '( )

p s p s
F s Y s Y s

q s q s

p s q s p s q s

q s q s

   




    (7) 

In a manner analogous to (4), the function '( )F s  cannot 

exhibit any RHS poles, so it will not suffer from uncertainties 
associated with the possible cancellations or quasi–
cancellations of RHS zeroes and poles. 

In summary, to avoid the possible coexistence of RHS zeroes 
and RHS poles, OC–stable blocks should be represented in 
terms of impedances and SC–stable blocks should be 
represented in terms of admittances. On the other hand, a system 
composed of OC–stable blocks must be analyzed in terms of the 
branch currents and a system composed of SC–stable blocks 
must be analyzed in terms of the node voltages. 

B. New analysis methodology 

To generalize the analysis, a system with N active blocks 
(containing both linear and nonlinear elements), interconnected 
through a purely passive linear network, will be considered. For 
an insightful derivation, the simplest case of N one–port active 
blocks will be initially considered, as in the case of circuits 
coupled at their output ports. In general, depending on the block 
connections, two or more ports per active block may be 
necessary, and this multi-port case is treated later in this section. 
Initially, it will be assumed that the N one-port active blocks are 
OC-stable, so they will be described with their corresponding 
impedance functions ZA,n, where n = 1…N. In turn, the passive 
linear network will be described with its N × N impedance 
matrix [ZP].  

One must guarantee that there are no hidden instabilities in 
the blocks defined by ZA,n. With this aim, the OC–stability of 
each active block will be evaluated inside the block through 
pole–zero identification applied to a transfer function defined at 
a sensitive location (device terminals), ensuring observability. 
As usual, the stable behavior must be confirmed by repeating 
the analysis at different locations [26]–[31]. If the OC block is 
stable, none of its associated transfer functions can exhibit RHS 
poles (and this will also be the case for ZA,n). Considering, as 
stated, one–port active blocks, the characteristic system is: 

,1

,2

1

,

,11 ,1

, 1 ,

( ) 0 0

0 ( ) 0

0
0 0 ( )

0( ) ( )

( ) ( )

A

A

A N

NP P N

P N P NN

Z s

Z s

I
Z s

IZ s Z s

Z s Z s
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  
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                   




   
  


  



  (8) 

where s is the perturbation frequency and I1 to IN are the 
current increments at the connection branches. Note that (8) 
must respect the actual connection between the system blocks, 
that is, it must be a valid representation of the perturbed system 
(without eliminating any elements). The stability properties are 
defined by the roots of the characteristic determinant: 
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( ) ( )
0 0 ( )
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   (9) 

Obviously, under the OC–stability condition imposed to the 
N active blocks, the characteristic determinant (9) cannot 
exhibit any RHS poles, so the Nyquist criterion can be applied 
reliably. In some cases, the complexity of the Nyquist plot can 
be reduced multiplying (8) by the inverse of the passive linear 

matrix  ( )PZ s , which cannot introduce any RHS poles. 

Because the active blocks are stable (with no possibility of 
cancellation of RHS zeroes and with RHS poles), any instability 
resulting from the block connection should be detectable 
through (9). In case the blocks are SC–stable, the characteristic 
system should be written in terms of admittance matrices: 

,1

,2

1

,

,11 ,1

, 1 ,

( ) 0 0

0 ( ) 0

0
0 0 ( )

0( ) ( )

( ) ( )

A

A

A N

NP P N

P N P NN

Y s

Y s

V
Y s

VY s Y s

Y s Y s

  
  
                        
                   




   
  


  



   (10) 

where YA,n, where n = 1…N are the admittance functions of the 
SC–stable active blocks, which compose a diagonal matrix, 
[YP(s)] is the admittance matrix describing the purely passive 
linear network (we assume that this matrix is defined), and V1 
to VN are the voltage increments at the block ports. As in the 
case of (8), (10) must respect the actual connection between the 
system blocks, that is, it must be a valid representation of this 
system (without short–circuiting any elements). As in the 
previous case, the SC–stability is evaluated inside each block 
through pole–zero identification applied to a transfer function 
defined at a sensitive location, ensuring observability. Under the 
SC–stability condition imposed to the active blocks, the 
characteristic determinant associated with (10) cannot exhibit 
any RHS poles, so the Nyquist criterion can be applied reliably.  

The two systems (8) and (10) can be extended to the case of 
active blocks described with two–port networks (or, in general, 
L–port networks). In the case of OC-stable active blocks, 
impedance elements ZA,n in (8) will become matrices. The 
dimension of the passive linear matrix [Zp] will increase to 
accommodate the extra ports, but the analysis procedure will be 
analogous. An analogous procedure would also be applied in the 
case of the admittance-type analysis in (10). The extension of 
the formulation to a system containing both OC–stable and SC–
stable blocks is possible, though it will rarely be needed.  

Regarding the guarantee of existence of a system 
decomposition into OC/SC stable blocks, note that by defining 
the active-block ports in (10) at the intrinsic device terminals 
one would obtain the formulation in [2], [16], [25], providing a 
characteristic determinant that, by construction, cannot exhibit 
any RHS poles. Departing from the above limit case, one can 
argue that the OC/SC stability condition will be fulfilled by 
most transistors (including their extrinsic elements) at their 
external terminals, since it agrees with the Rollet proviso that 

enables the application of the widely-spread (though limited) 
Rollet criteria. On the other hand, it is highly unlikely that all 
the transistors become OC/SC unstable when adding some 
passive linear elements. Regarding the procedure for the 
decomposition, one should initially consider the ports of the 
active subcircuits responsible for particular functions, such as 
amplification, frequency multiplication etc... Particularizing, 
for instance, to an impedance analysis, if some of these 
subcircuits are OC unstable, one should define additional ports 
in these subcircuits. An example is presented in the following.         

The method has been applied to the small–signal stability 
analysis of a system composed by three Class–E power 
amplifiers (based on an ATF50189 transistor) under output 
coupling effects [see Fig. 2(a)]. In driven conditions, and when 
isolated from the system, the amplifier reaches a peak efficiency 
of 60% with an output power of 24 dBm. The coupled system 
in Fig. 2(a) can be representative of instability mechanisms due 
to output mismatch [46]–[49] and enables a reliable validation 
of the new analysis method with pole–zero identification. In a 
practical application, the output coupling may be due to antenna 
cross talk, intensively investigated these days due to its impact 
on MIMO systems [50]–[51]. Here, the aim is to implement a 
reliable demonstrator of the new mathematical procedure, 
instead of obtaining a model/description of a physical cross–talk 
effect. Thus, a versatile coupling network containing a /4 
transmission line at 800 MHz, bounded by inductors and 
resistors, is considered, with the initial values R = 5  and 
L = 4.7 nH.  

The three amplifiers in Fig. 2(a) are identical. However, for 
the small–signal stability analysis, series feedback, in the form 
of a parallel L–C network, has been introduced in the third 
amplifier [Fig. 2(c)]. This L–C network is purposely introduced 
to induce an instability. Initially, the system is partitioned into 
three active blocks (each corresponding to one amplifier under 
a single OC termination at the output port), plus the coupling 
network (Fig. 2). The stability is analyzed versus the gate–bias 
voltage VGS, which is very convenient to test the method 
capabilities, since one can expect qualitative stability changes 
versus this parameter. This is because the oscillations are 
quenched when decreasing VGS towards the conduction 
threshold.  

The stability analysis of the amplifier blocks is carried out 
through pole–zero identification [26]–[31]. For this analysis, a 
small–signal test current sI  at the perturbation frequency  is 

introduced in parallel at a sensitive circuit node. Then, a closed–
loop transfer function is defined as the ratio between the gate–
node voltage and the test current [26]–[31], doing: 

( ) ( ) /s s sZ V I   . Under sufficient observability, one can 

obtain the poles from any transfer function, since they all share 
the same denominator, agreeing with the characteristic 
determinant. In practical circuits, the number of poles can be 
very high. However, most of the poles will be in the LHS, far 
from the imaginary axis. Only a few poles will be critical or near 
critical, and these are the ones with the largest real parts 
(dominant poles). 
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Fig. 2. Definition of blocks in a system of three power amplifiers under output 
coupling effects. They are Class–E power amplifiers based on an ATF50189 
transistor. (a) Schematic of the full system. (b) Block representation of the first 
and second amplifiers. They are one–port OC–stable blocks. (c) Block 
representation of the third amplifier, with a series–feedback network. It is a two–
port OC–stable block. (d) Complete structure with four analysis ports to be 
analyzed with (9). Alternatively, the analysis based on the characteristic 
determinant of the admittance system (10) is applicable at the ports defined 
between the nodes “x” and ground. 

In each of the amplifier blocks, the test current sI  is 

introduced in parallel at the gate terminal. Fig. 3(a) presents the 
variation of the real part of the dominant poles and zeroes of the 
first and second amplifiers versus VGS. The poles are indicated 
with “×” and the zeroes are indicated with “o”. Because the two 
amplifiers are identical in standalone operation, only one has 
been analyzed. As seen in Fig. 3(a), there is a fast variation of 
the poles and zeroes near the conduction threshold. In this case, 
the dominant poles are a pair of complex–conjugate poles, so 
when traced versus the parameter (VGS), the real part is the same 
for both. For VGS below (above) the conduction threshold, the 
identification also detects one pair (two pairs) of dominant 
complex–conjugate zeroes, with no influence on the stability 
properties. The real part of the dominant (complex–conjugate) 
poles is always negative, so the amplifier is stable for all the VGS 
values. The same conclusion is obtained when the test current is 
introduced at other device terminals. Thus, the first and second 
amplifiers are stable under an output OC termination at the port 
indicated in Fig. 2(b).  

 

 
Fig. 3. Small–signal analysis. Open–circuit stability of the individual blocks in 
the system of Fig. 2(a), analyzed with pole–zero identification. Variation of the 
real part of the dominant poles (×) and zeroes (o) versus VGS. The stability 
information is in the poles. The zeroes have no impact on the stability properties. 
(a) First and second (identical) amplifiers. Only one is analyzed. It is stable for 
all the VGS values. (b) Third amplifier [in Fig. 2(c)] in OC conditions at Port 1 

only. It becomes unstable at VGS = 0.16 V. (b) Third amplifier in OC conditions 
at the two ports defined in Fig. 2(c). It is stable for all the VGS values. 
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When analyzing the stability of the third amplifier (including 
the purposely–introduced series feedback) under a single OC 
termination at the output port, one obtains the results shown in 
Fig. 3(b), where the real part of its dominant poles (and zeroes) 
has been represented versus VGS. The real part of a pair of 
complex–conjugate poles becomes positive at VGS = 0.16 V, so 
the amplifier in Fig. 2(c) is unstable for VGS > 0.16 V. To obtain 
an OC–stable block associated with the third amplifier, we will 
define a second port, as shown in Fig. 2(c). This second port 
breaks the connection of the source terminal to the capacitor of 
the L–C feedback network. Note that the removed capacitor will 
be absorbed in the passive linear impedance matrix [ZP] when 
applying (9). With the two ports defined in Fig. 2(c) in open–
circuit conditions, the third amplifier is OC–stable for all the 
VGS values. The resulting variation of the real part of the 
dominant poles versus VGS is shown in Fig. 3(c). 
  With the new procedure, the characteristic determinant is 
obtained calculating the determinant of the total impedance 
matrix at the four ports indicated in Fig. 2(d). This is consistent 
with our definition of the OC–stable active blocks and with the 
impedance-matrix formalism (8) and (9). Note that the capacitor 
that had been removed from the third amplifier is included in 
the passive linear network described with the matrix [ZP].   

Fig. 4(a) presents the Nyquist plots obtained for two different 
values of the gate–bias voltage (VGS), simultaneously varied in 
the three amplifiers, before and after a primary Hopf bifurcation 
[1]–[5], [52] that takes place at VGS = 0.165 V. Fig. 4(b) presents 
an expanded view about the origin of this plot. For 
VGS = 0.16 V, the plot (indicated with a label) does not encircle 
the origin, so it predicts a stable behavior. In contrast, for 
VGS = 0.17 V (indicated with a label) the plot encircles the origin 
in the clockwise sense, so it predicts unstable behavior. 

 
Fig. 4. Small–signal stability for two different gate-bias voltages, indicated with 
labels. (a) Nyquist analysis of the characteristic determinant (9), obtained by 
calculating the total impedance matrix at the four ports shown in Fig. 2(d). 
Nyquist plots for VGS = 0.16 V (stable) and VGS = 0.17 V (unstable). (b) 
Expanded view about the origin. (c) Analysis based on the characteristic 
determinant of the admittance system (10). The total admittance matrix is 
calculated at the ports defined between each node “x” and ground. (d) Expanded 
view about the origin.  

 To show the flexibility in the choice of the analysis ports, an 
alternative analysis based on the characteristic determinant of 
the admittance system (10) has also been performed. This 
analysis requires SC–stable active blocks. When the node(s) 
denoted with an “x” in each amplifier [Fig. 2(d)] are short–
circuited to ground, the newly defined active blocks are stable. 
Then, the stability of the whole structure can be analyzed using 
the total admittance matrix calculated at the four ports defined 
between each node “x” and ground. The Nyquist plots obtained 
for the same two values of gate–source voltage (VGS = 0.16 V 
and VGS = 0.17 V) are shown in Fig. 4(c) and Fig. 4(d). As 
expected, the stability predictions are the same as those obtained 
with (9).     

In addition, pole–zero identification has been applied to the 
characteristic determinant (9), which provides the results shown 
in Fig. 5. Note that the stability information is now in the zeroes 
of the determinant, agreeing with the characteristic roots. Again, 
the poles are indicated with “×” and the zeroes are indicated 
with “o”. Fig. 5(a) presents the variation versus VGS of the 
dominant zeroes and poles of the determinant in the plane 
defined by the real and imaginary parts. All the determinant 
poles (with no influence on the stability properties) are quite far 
from the dominant determinant zeroes (characteristic roots). 
This is more evident in Fig. 5(b), which presents the variation 
of the real part of the dominant zeroes and poles versus VGS. The 
change in the configuration of the zeroes occurs when the 
transistors turns on. As gathered from Fig. 5, the system is 
unstable from the Hopf bifurcation [14]–[15] occurring at 
VGS = 0.165 V. We emphasize that, by construction, the 
determinant cannot have any RHS poles, which avoids the 
problem of zero–pole cancellations or quasi–cancellations. The 
zeroes obtained from the identification of the characteristic 
determinant of the admittance–based system (10) are 
overlapped.  

For comparison, Fig. 6 presents the results of conventional 
pole–zero identification applied to a closed–loop transfer 
function. Three different functions have been considered for this 
analysis, calculated by introducing a test current sI  in parallel 

at a given node and obtaining the ratio between the node voltage 

sV  and sI  [26]–[31]. Fig. 6(a) presents the variation of the real 

part of the dominant poles and zeroes versus VGS when the test 
current nI  is connected at the gate terminal of the transistor in 

the first amplifier. The poles (providing the stability 
information) are quasi-cancelled with zeroes, which is due to 
the limited observability. Fig. 6(b) presents the variation of the 
real part of the dominant poles and zeroes when the test current 
is connected at the gate terminal of the third amplifier 
(responsible for the instability). As expected, the poles agree 
with the zeroes of the characteristic determinant. However, in 
Fig. 6(b) the RHS poles have nearby zeroes. This coexistence of 
RHS zeroes and poles is impossible with the new method. 
Finally, Fig. 6(c) presents the variation of the real part of the 
dominant poles and zeroes when the test current is introduced at 
the node where the third amplifier (responsible for the 
instability) is connected to the coupling network. The RHS 
poles are again quasi-cancelled with RHS zeroes. 
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Fig. 5. Small–signal analysis. Identification of the characteristic determinant (9)
. Note that the stability information is now in the zeroes  of the determinant, 
agreeing with the characteristic roots. By construction, the determinant cannot 
exhibit any RHS poles. (a) Variation of the zeroes (o) and poles (×) versus VGS, 
in the plane defined by the real and imaginary parts. (b) Variation of the real 
part of the dominant zeroes and poles versus VGS. 

 
As has been shown, the characteristic determinant can be 

analyzed through both the Nyquist criterion and pole–zero 
identification applied to (9)–(10). The possibility to use the two 
methods is interesting since they can be considered as 
complementary. In the Nyquist criterion the perturbation 
frequency is ideally swept from 0 to  (in practice, beyond the 
highest fmax of the transistors [20]–[22]), which is done at once, 
in a single sweep. Instead, pole–zero identification requires a 
partition of the frequency band into elementary bands [26]–[31] 
to ensure a sufficient accuracy of the least-squares identification 
algorithm. On the other hand, the Nyquist plot can be intricate 
(and difficult to interpret), whereas pole–zero identification 
directly provides the zeroes of the characteristic determinant.   

  

III. LARGE-SIGNAL STABILITY ANALYSIS 

The large-signal stability analysis will be applied to a 
periodic steady–state solution obtained with harmonic balance. 
Then, the circuit will be linearized about this solution with the 
conversion-matrix approach, to obtain the stability information. 
Section III.A presents a formal derivation of the characteristic 
determinant and demonstrates that it cannot exhibit RHS poles. 
Section III.B describes the practical calculation of the 
determinant from large–signal small–signal simulations in 
commercial software. Section III.C presents an application 
example.   

 
Fig. 6. Small-signal stability analysis based on the pole–zero identification of a 
transfer function. The stability information is in the poles. The real part of the 
poles (×) and zeroes (o) is represented versus VGS. (a) Test current at the gate 
terminal of the transistor in the first amplifier. (b) Test current at the gate 
terminal of the third amplifier (responsible for the instability). (c) Test current 
at the node where the third amplifier is connected to the coupling network. The 
unstable poles are quasi-cancelled with RHS zeroes. 

 

A. Formulation 

In the presence of a small-amplitude perturbation, there will 
be a mixing between the frequencies of the periodic solution 
jmo, where o is the fundamental frequency and M ≤ m ≤M, 
and the complex frequency s (associated with the perturbation), 
which will give rise to the sidebands: jmo + s [2], [10], [16], 
[25]. For an insightful exposition of the analysis method, a 
system composed by one-port active blocks that are either OC–
stable or SC–stable is considered. As in the small-signal case, 
the generalization to multi-port blocks is straightforward and the 
extension to blocks that are OC stable at some ports and SC 
stable at the other ports is possible, but will rarely be needed. 

Each active block will be represented with an outer-tier 
conversion matrix of either impedance or admittance type. The 
choice will depend on the stability properties of the active 
blocks under open-circuit (OC) and short-circuit (SC) 
terminations. The particular configuration of the blocks will 
give a hint on the convenience of either OC or SC stability. For 
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instance, in the case of Fig. 2(a), if the amplifiers are stable on 
their own, the OC–stability condition will be easily satisfied. 
Note that the stability verification (under either OC or SC) must 
be carried out linearizing the blocks about the periodic steady-
state solution of the complete system, in which all the blocks are 
connected. This solution is given by the full set of voltage and 
current values at the harmonic terms mo, where m goes from 
– M to M.  

Fig. 7 illustrates the procedure to analyze the OC or SC 
stability of the active blocks, showing the test current introduced 
for the pole–zero identification. The OC–stability test of a given 
block is carried out terminating all the sideband frequencies 
mo+ in open circuits, as sketched in Fig. 7(a). This open-
circuit termination should not affect the harmonic loads at mo, 
which is implemented through an ideal filter that is a short 
circuit at mo and open circuit at the sideband frequencies 
mo+ [Fig. 7(a)]. In turn, the SC–stability test of a given block 
[Fig. 7(b)] is carried out terminating all the sideband frequencies 
mo+ in short circuits. This termination should not affect the 
harmonic loads at mo, which is achieved using the ideal filter 
shown in Fig. 7(b). One should emphasize that the short-circuit 
termination should respect the block topology, that is, it must 
not short circuit any elements of the block itself.  

As stated, the OC or SC terminations disconnect the blocks 
at the sideband frequencies only; they are fully connected at the 
steady-state solution at mo, where M ≤ m ≤M. The OC or SC 
large-signal stability analysis of the composing blocks is carried 
out through pole–zero identification applied in a conventional 
manner [26]–[31]. That is, a small-signal test current sI  at the 

frequency Ω (incommensurable with o) is connected in parallel 
at a sensitive node of the block (in either OC or SC conditions 
at the sidebands). Then, the conversion-matrix approach is used 
to obtain a transfer function defined as the ratio between the 
node voltage sV  at Ω and sI . (The results must be validated 

repeating the analysis at several locations). If the stability 
condition is not fulfilled defining a one-port network, one can 
increase the number of ports, as done in Section II. This will 
also be needed if the block is connected to the system through 
more than one port.   

The case of a system composed by N blocks that are OC–
stable will be initially considered. For the calculation of the 
characteristic determinant, each block n will be described with 
an impedance-type outer-tier conversion matrix. The blocks are 
connected to the system at the steady-state frequencies mo, but 
in OC conditions at the sidebands. This way the block 
nonlinearities are in the same operation conditions as in the full 
system, with identical frequency-conversion effects.  

Fig. 8 illustrates the procedure to calculate the 
impedance/admittance outer-tier conversion matrices. To obtain 
the impedance matrix of a given block, a small-signal test 
current will be sequentially introduced in parallel at the 
frequencies mo+, where m = –M to M, at the open-circuited 
port. For instance, in the case of Fig. 7(a), the test current is 
introduced between the two terminals of the each open-circuited 
port, as shown in Fig. 8(a).  

 

 
Fig. 7. Large-signal stability analysis under open-circuit and short-circuit 
terminations. These terminations should not affect the harmonic loads at mo, 
where M ≤ m ≤M. The diagram shows the test current used to obtain the 

closed–loop transfer functions. (a) Open-circuit case. (b) Short-circuit case.   
 
For each m, one will perform a conversion-matrix analysis 

[53]–[54] to calculate the voltage drop at the frequencies lo+, 
where l = –M to M. The element , ( , )A nZ l m  of the matrix is the 

ratio between voltage drop at lo+ and the current at mo+. 
When using commercial software, one should take into account 
that *( ,1) ( , 1)I m I m   . The impedance-type outer-tier 

conversion matrix describing the block n will be: 

, ,

,

, ,
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A n A n

A n

A n A n

Z M M Z M M
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Z M M Z M M

   
      
  


  


  (11) 

which relates the increments of the sideband voltages and 
currents as follows: 

, ,

, ,

( ) ( , ) ( , ) ( )

( ) ( , ) ( , ) ( )

A n A n

A n A n

V M Z M M Z M M I M
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 (12) 

where ( ) ( )oV m V m    , ( ) ( )oI m I m    . Then, the 

characteristic system is written as: 
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  (13) 

where , ,P n sZ    are the M × M submatrices composing the 

passive linear matrix  ( )PZ s  and nI  is composed by the 

sideband currents at the nth block. They are given by: 
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 (14) 
 

Because the active blocks are stable under open-circuit 
terminations, none of the functions , ( , )A nZ l m  can have any 

poles in the RHS. Note that the elements , ( , )A nZ l m  actually 

correspond to transfer functions calculated within the same 
block and sharing the same denominator. Thus, the 
characteristic determinant associated with system (13) cannot 
exhibit any poles on the RHS. The characteristic system can be 
compactly written as: 

    ( ) ( ) 0A PZ s Z s I         (15) 

The characteristic determinant is: 

    det ( ) ( ) 0A PZ s Z s        (16)  

As in small-signal conditions, a normalization effect can be 
achieved multiplying system (15) by the inverse of the passive 

linear matrix  ( )PZ s , which cannot introduce any RHS poles.  

Now the case of a system composed by N blocks that are SC–
stable will be considered. Each block n will be described with 
an admittance-type conversion matrix. For this calculation, the 
block is connected to the system at the steady-state frequencies 
only, that is, at mo, where m = M to M. Then, a small-signal 
test voltage will be sequentially introduced in series at the 
frequencies mo+, where m = M to M [Fig. 8(b)], at the 
branch that was previously short-circuited in Fig. 7(b). For each 
m, one will calculate the current through a voltage excitation at 
the frequencies lo+, where l = M to M. The element 

, ( , )A nY l m  of the matrix is the ratio between the current at lo+ 

and the voltage at mo+.  
 

 
Fig. 8. Calculation of the outer-tier impedance/admittance conversion matrices 
of the individual blocks. Note that the blocks are connected at the periodic 
steady state only (frequencies mo, where M ≤ m ≤M). (a) OC–stable case. The 

element , ( , )A nZ l m  of the impedance matrix is the ratio between the voltage at 

lo+ and the current at mo+. (b) SC–stable case. The element , ( , )A nY l m  of 

the admittance matrix is the ratio between the current at lo+ and the voltage 
at mo+. 

 
When using commercial software, one should take into 

account that *( ,1) ( , 1)V m V m   . Following a procedure 

analogous to (11)-(16), one obtains the characteristic system: 

    ( ) ( ) 0A PY s Y s V           (17) 

where V  is the vector of sideband components of the node 
voltages. And the characteristic system is:  

    det ( ) ( ) 0A PY s Y s        (18) 

As stated, it is possible to consider two or more ports per 
active block, which will simply involve increasing the 
dimension of the matrices in (16) and (18).  

B. Practical implementation  

Section III.A demonstrated the absence of RHS poles in the 
characteristic determinant. In practice, one may directly 
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calculate      T A PZ Z Z  , in the case of OC–stable blocks, 

or      T A PY Y Y  , in the case of SC–stable blocks. This 

requires a template in commercial software and an in-house 
program to import the data and build-up the outer-tier 
impedance/admittance matrix.  

Fig. 9 presents a template example to illustrate the 
implementation in ADS [55]. For briefness, only the case of 
OC–stable blocks is considered, since the extension to SC–
stable blocks is straightforward. As shown in Fig. 9(a), the 
analysis ports (corresponding to those of the OC–stable blocks) 
are defined between the nodes Vtest_pn and ground, where n 
goes from 1 to N. The circuit is analyzed with the conversion–
matrix approach, or large–signal small–signal analysis. The test 
currents [Fig. 9(b)] used to calculate the full outer–tier 
impedance matrix are denoted Istab_pi_k, where i, going from 
1 to N, refers to the injection node and k refers to the injection 
frequency. In Fig. 9 the injection node is 1, though an analogous 
analysis should be carried out injecting at the two other nodes. 
The test currents [Fig. 9(b)] are introduced sequentially at the 
mixing frequencies (–M, 1), (–M+1, 1), …, (0, 1), (M, 1), where 
M is the number of harmonic terms considered in the HB 
simulation. These frequencies are ranked in growing order. 
Thus, the index k in Istab_pi_k, goes from 1 to Q = 2M+1. To 
keep the schematic in Fig. 9 at a reasonable size, the number of 
harmonic terms has been limited to M = 3 (only for this 
illustration), which provides a total of Q = 7 test currents. These 
currents are activated sequentially by means of the sweep shown 
in Fig. 9(b). Depending on the value of aux_index, only one of 
the parameters Ipk, where k goes from 1 to 7, is different from 
zero, and activates the test current Istab_pn_k.  

In the large–signal small–signal simulation, the small–signal 
frequency (associated with the index 1 of the mixing terms) 
should be swept from near DC to the fundamental frequency. 
To calculate the full outer–tier impedance matrix, for each 
Istab_pi_k one should obtain the voltage increment in each node 
n (going from 1 to N) at each analysis frequency q (going from 
1 to Q). The excitation at port i and frequency k allows 
calculating the column (i–1)Q+k of the impedance matrix. The 
elements of this column are directly obtained by reading the 
voltage at each node n and frequency q, and calculating the 
ratio: 

Z[(n–1)Q+q, (i–1)Q+k] = Vtest_pn(q)/Istab_pi_k (19) 
Remember that the index q indicates the particular frequency in 
the ordered set of frequencies with mixing indexes (–M, 1), (–
M +1, 1), …, (0, 1), …, (M, 1). In practice, a common real value 
of Istab_pi_k is used to facilitate the calculation. A sequence of 
identical analyses is carried out injecting the test currents at the 
nodes i = 1 to N. If a normalization is wished, the same 
procedure should be applied considering only the linear network 
that connects the OC–stable blocks. This will allow the 
calculation of  PZ .  

The template is generated only once and reutilized for other 
systems. The Matlab script reads the tab–delimited ASCII files 
exported from ADS. The data read in Matlab must be rearranged 
due to the particular structure of the file produced by ADS when 
exporting the simulation results. The values of the swept 
parameters are placed in columns in the exported files and the 
impedance values (19) are interleaved in the form of successive 

vectors. At each value of the swept perturbation frequency , 
the vectors must be suitably arranged to build the impedance 
matrix.  

 

 
Fig. 9. Template example illustrating the calculation of the outer–tier impedance 
matrix. (a) The analysis ports (corresponding to those of the OC–stable blocks) 
are defined between the nodes Vtest_pn and ground, where n goes from 1 to N. 
(b) Sequential activation of the test currents by means of a sweep. Depending 
on the value of aux_index, only one of the parameters Ipk, where k goes from 1 
to 7, is different from zero, and activates the test current Istab_pn_k. 

C. Application example 

 For the large–signal stability analysis of the system in Fig. 
1(a), the feedback network that had been added to the third 

(b)

(a)

(c)
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amplifier is removed. Thus, the three power amplifiers are 
stable for all the VGS values. The analysis will be carried out 
versus the input voltage Vin at the frequency fin = 800 MHz and 
gate–bias voltage VGS = 0.12 V. Initially, the coupling resistor is 
R = 5 . Taking into account that the three power amplifiers are 
stable in standalone operation, the OC stability of the circuit 
blocks was initially evaluated and, as shown in the following, 
this OC–stability test was successful.  

The OC stability of the three identical amplifiers (taken as 
active blocks) is analyzed by disconnecting them from the 
coupling network at the sideband frequencies mo+ (Fig. 10), 
though they are kept connected at the frequencies mo of the 
periodic steady state. Although the three amplifiers are 
identical, they are not in the same operation conditions: the 
outermost power amplifiers are coupled to the middle amplifier 
only, whereas the middle amplifier is coupled to the two 
outermost amplifiers.  

 
Fig. 10. Large–signal analysis. Verification of the open–circuit stability of the 
power amplifiers in Fig. 2(a) through conventional pole–zero identification, 
applied to a transfer function. The stability information is in the poles (×). The 
open–circuit condition is imposed at the sidebands only; the amplifiers are 
coupled at the periodic steady state obtained for each Vin. (a) Real part of the 
dominant poles and zeroes (o) versus Vin for the first amplifier (in equivalent 
operation conditions to the third). (b) Real part of the dominant poles and zeroes 
versus Vin for the middle amplifier.  

 
Under open–circuit terminations, the three amplifiers are 

stable for all the Vin values, as verified with pole–zero 
identification. This identification is applied in a conventional 
manner to a transfer function calculated by connecting a small–
signal test current at the frequency  (incommensurable with 
in = 2fin) in parallel at the transistor gate terminal. Fig. 10(a) 
presents the variation of the real part of the dominant poles of 
the first and third amplifier (having equivalent operation points) 
versus Vin. Identical results are obtained, so only one of the 
analyses in presented. Fig. 10(b) presents the variation of the 
real part of the dominant poles in the middle amplifier versus 
Vin. The three amplifiers are stable in open–circuit conditions 

for all the Vin values. The same conclusion is obtained when the 
test current is introduced at other device terminals. Thus, the 
stability of the entire system can be analyzed using the 
impedance–based determinant (16).  

Fig. 11 presents the Nyquist plots obtained for two different 
Vin values before and after the first Hopf bifurcation that gives 
rise to instability. For Vin = 1.07 V [Fig. 11(a)] the Nyquist plot 
does not encircle the origin, so the system is stable. In contrast, 
for Vin = 1.075 V [Fig. 11(b)], the Nyquist plot encircles the 
origin in clockwise sense, so the system is unstable. Fig. 12 
presents the identification of the characteristic determinant (16) 
for the same two Vin values. Thus, as in the case of the small–
signal stability analysis, it is possible to use both the Nyquist 
criterion, which has the advantage of requiring a single 
frequency sweep, and pole–zero identification.  

 

 
 

Fig. 11 Large–signal stability analysis of the circuit in Fig. 2(a), without series–
feedback in the third amplifier, through the characteristic determinant in (16). 
(a) Nyquist plot for the input voltage Vin = 1.07 V (stable operation). Expanded 
view in the inset. (b) Nyquist plot for the input voltage Vin = 1.075 V (unstable 
operation).  

 
Fig. 13(a) presents the variation of the dominant zeroes and 

poles of the characteristic determinant (16) versus Vin. As can 
be seen, the coupling effects give rise to two secondary Hopf 
bifurcations [12], [15]–[16], occurring at the Vin values 1.075V 
and 1.145 V. At the first bifurcation (1.075V), a pair of complex 
conjugate zeroes at 561 MHz crosses the imaginary axis to the 
RHS. At the second bifurcation (1.145V), a second pair of 
complex conjugate zeroes at 237 MHz crosses the imaginary 
axis to the RHS. As stated, although the power amplifiers are 
identical, they are not in the same operation conditions and the 
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two Hopf bifurcations take place at different Vin values. For 
better insight, Fig. 13(b) presents the variation of the real part 
of the dominant zeroes of (16) versus Vin. 
 

 
Fig. 12. Large–signal stability analysis. Pole–zero identification of the 
characteristic determinant for the two cases considered in Fig. 10. The stability 
information is in the zeroes. (a) Poles (×) and zeroes (o) for Vin = 1.07 V (stable 
operation). (b) Expanded view about the dominant zeroes. (c) Input voltage 
Vin = 1.075 V (unstable operation). (d) Expanded view about the dominant 
zeroes.   

 
The above result has been validated through pole–zero 

identification, applied in a conventional manner to a transfer 
function calculated at the gate terminal of the transistor in the 
middle amplifier. Fig. 13(c) presents the variation of the real 
part of the dominant poles versus Vin. Even though the identified 
functions are very different, there is a full agreement between 
the poles obtained through conventional pole–zero 
identification (applied to a transfer function) and the zeroes of 
the characteristic determinant (16).    

When increasing the coupling resistor, or equivalently, 
decreasing the coupling effects, the standard pole–zero 
identification faces a problem of limited observability. To show 
this, the coupling resistor between the second and third 
amplifier will be increased to R = 330 Ω in the next experiment. 

Fig. 14 presents the stability analysis of the whole system 
when identifying the characteristic determinant [in (a)] and 
when applying conventional pole–zero identification at two 
different nodes of the third amplifier [in (b) and (c)]. These 
nodes are the gate terminal, in Fig. 14(b), and the node at which 
the third amplifier is connected to the coupling network, in Fig. 
14(c). The zeroes of the determinant, shown in Fig. 14(a), and 
the poles in Fig. 14(b) are identical. However, the latter are 
quasi–cancelled with RHS zeroes due to the limited 
observability. The situation is more severe in the Fig. 14(c), 
where the unstable poles have completely disappeared and the 
instability cannot be detected.   

 
Fig. 13. Large–signal stability analysis. (a) Variation of the dominant zeroes (o) 
and poles (×) of the characteristic determinant (16) versus Vin. The stability 
information is in the zeroes. (b) Variation of the real part of the dominant zeroes 
of (16) versus Vin. (c) Variation of the real part of the dominant poles obtained 
through conventional pole–zero identification applied to a transfer function. 
This is obtained by introducing the test current at the gate terminal of the third 
amplifier. The stability information is in the poles. 

 
One of the advantages of the new method is that, by 

construction, it prevents the coexistence of RHS zeroes and 
RHS poles and, thus, the zero–pole cancellations or quasi–
cancellations that are the main limitation of the powerful pole–
zero identification [26]–[31]. Here the conventional pole–zero 
identification is applied to verify the OC or SC stability of the 
composing blocks, which can be done reliably due to the limited 
block size and complexity. Then, the full system stability is 
analyzed at once using the characteristic determinant. With 
conventional pole–zero identification, the analysis of the whole 
structure would be carried out through several evaluations at 
different locations, which may be subject to problems of limited 
observability.  
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Fig. 14. Large–signal stability analysis under weak coupling effects between the 
second and third amplifier (R = 330 Ω). (a) Analysis versus Vin through the 
identification of the characteristic determinant (16). The stability information is 
in the zeroes (o). (b) Pole–zero identification when the test current is connected 
in parallel at the gate terminal of the third amplifier. The stability information is 
in the poles (×). (c) Pole–zero identification when the test current is introduced 
at the node where the third amplifier is connected to the coupling network. The 
unstable poles have completely disappeared, so the instability cannot be 
detected. 

Fig. 15 presents a photograph of the practical implementation 
of the coupled system. It was manufactured on RO4003C 
substrate (r = 3.5, h = 32 mil), with Avago® ATF50189 FETs, 
air core inductors by Coilcraft® and ATC® ceramic capacitors. 
All the amplifiers and coupling networks are identical, with 
R = 5 . As stated, when measured in standalone operation, the 
amplifier exhibits 24 dBm output power and 60% efficiency. 
However, the performance is strongly affected by the coupling 
network. Fig. 16(a) presents the measured spectrum at the input 
frequency 800 MHz and amplitude Vin = 1 V, which is compared 
with the one obtained in HB simulations. In agreement with the 
predictions of the stability analysis of Fig. 13, the spectrum 
corresponds to a (stable) periodic solution, with lines at 
multiples of the input frequency 800 MHz. There is a good 
correspondence between the simulated and measured results, 
which indicates that the models are reliable. For the rest of 
measurements, a 10 dB coaxial directional coupler is used, 
which ensures the same loading conditions in the three 

amplifiers. 
 

 
 

Fig. 15. Practical implementation of the coupled system with identical 
amplifiers and coupling networks. They were manufactured on RO4003C 
substrate (r = 3.5, h = 32 mil), with Avago® ATF50189 FETs, air core 
inductors by Coilcraft® and ATC® ceramic capacitors. The output spectrum 
was measured through a NARDA 4011C–10 coaxial directional coupler.  

 
When the periodic solution (at the input frequency) obtained 

with default HB is unstable, this solution coexists with a 
different (stable) steady–state solution. The stable solution is the 
one observed in the measurements. Thus, the qualitative change 
in the measured solution defines the stability limit of the 
periodic solution obtained with HB. In the case of the system 
considered here, when increasing Vin, the periodic solution is 
measured up to Vin = 1.1 V. From this voltage value, the 
measured solution is not periodic, but quasi–periodic [Fig. 16(b) 
and Fig. 16(c)], due to the mixing of the input signal with two 
self–generated oscillations. Thus, the measured stability limit is 
Vin = 1.1 V. From Fig. 13, the simulated stability limit, at which 
the first pair of complex–conjugate zeroes cross to the RHS, is 
Vin = 1.075 V, so there is a good correspondence. 

In general, one can gather the type of steady–state solution 
that will be obtained in the measurements from the roots of the 
characteristic determinant of the (default) periodic solution. In 
the stability analysis of Fig. 13(a), a pair of complex–conjugate 
zeroes at 561 MHz cross to the RHS at Vin = 1.07 V, and a 
second pair of complex–conjugate zeroes at 237 MHZ cross to 
the RHS at Vin = 1.145 V. In the spectrum of Fig. 16(b), 
obtained for Vin = 1.12 V, there are two concurrent oscillation 
frequencies, which is consistent with the two pairs of complex–
conjugates zeroes crossing to the RHS in Fig. 13(a). The 
frequencies of these two pairs of zeroes, 561 MHz and 
237 MHz, are close to a 2:1 relationship. Although the 
oscillation generated at Vin = 1.145 V in Fig. 13(a) will be 
initially unstable, after the occurrence of two secondary Hopf 
bifurcations, concurrent stable oscillations are likely to be 
observed experimentally, as described in [56]–[57]. In the 
measurement of Fig. 16(b), the two oscillations are locked, as 
gathered from the frequency values shown in the spectrum. Fig. 
16(c) presents the spectrum obtained for Vin = 1.26 V, which 
also corresponds to a quasiperiodic solution, in agreement with 
Fig. 13. Thus, there is a very good consistency between 
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simulations and measurements. Nevertheless, the most reliable 
validation is the one performed versus an independent analysis 
method, such as pole–zero identification, as done through the 
entire manuscript. This is the only way to ensure that there are 
no discrepancies in the input elements and parameters resulting 
from inaccuracies in the models of the active and passive 
elements. 

 

 
Fig. 16. Experimental measurements. (a) Spectrum for the input voltage 
Vin = 1.1 V, measured without the 10 dB coaxial directional coupler (stable 
behavior). It is compared with the one obtained in HB. (b) Spectrum for 
Vin = 1.12 V (unstable behavior, with two locked self–generated oscillations). 
(c) Spectrum for Vin = 1.26 V (unstable behavior). 

 

CONCLUSIONS 

A method has been presented for the small– and large–signal 
stability analysis of complex systems, composed by multiple 
active blocks. The method is based on a definition of the 
individual blocks that ensures that these blocks are stable under 
either open–circuit terminations or short–circuit terminations. 
This is verified with pole–zero identification, considering one 
or more ports per block. The total set of block ports constitute 
the N reference ports considered in the calculation of the system 

characteristic determinant. The stability properties are defined 
by the zeroes of this determinant, which, by construction, cannot 
exhibit any poles in the right–hand side of the complex plane. 
The extension to large–signal regime requires the calculation of 
an outer–tier conversion matrix per active block. The stability 
properties can be obtained by applying the Nyquist criterion or 
pole–zero identification to the characteristic determinant of the 
full system. The procedure has been successfully validated with 
independent simulations and with measurements. It can be 
implemented on commercial HB and provides a determinant 
function that does not suffer from any uncertainties associated 
with the possible cancellations or quasi–cancellations of RHS 
zeroes and poles.   
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