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Abstract
Exploration and characterisation of the human proteome is a key objective enabling a heightened understanding of biological
function, malfunction and pharmaceutical design. Since proteins typically exhibit their behaviour by binding to other proteins, the
challenge of probing protein-protein interactions has been the focus of new and improved experimental approaches. Here, we
review recently developed microfluidic techniques for the study and quantification of protein–protein interactions. We focus on
methodologies that utilise the inherent strength of microfluidics for the control of mass transport on the micron scale, to facilitate
surface and membrane-free interrogation and quantification of interacting proteins. Thus, the microfluidic tools described here
provide the capability to yield insights on protein–protein interactions under physiological conditions. We first discuss the
defining principles of microfluidics, and methods for the analysis of protein–protein interactions that utilise the diffusion-
controlled mixing characteristic of fluids at the microscale. We then describe techniques that employ electrophoretic forces to
manipulate and fractionate interacting protein systems for their biophysical characterisation, before discussing strategies that use
microdroplet compartmentalisation for the analysis of protein interactions. We conclude by highlighting future directions for the
field, such as the integration of microfluidic experiments into high-throughput workflows for the investigation of protein
interaction networks.
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Introduction

Proteins form the molecular machinery of life and their inter-
actions control virtually all processes in living organisms
(Bork et al. 2004). Between 40,000 and 200,000 protein–
protein interactions (PPIs) are believed to exist in the human
interactome (Garner and Janda 2011), which are formed by
physical contacts between two or more protein molecules.
PPIs in both intra- and extra-cellular space are crucial mech-
anistic features that determine cellular function through DNA
replication, transcription, translation and protein folding, as
well as activating signalling cascades, controlling enzyme ki-
netics and facilitating molecular transport. They are

responsible for the regulation of the immune system and es-
sential for the vast number of processes associated with cell-
surface interactions and extracellular signalling pathways.
Conversely, aberrant protein–protein interactions underlie
the pathologies of protein misfolding conditions, such as
Alzheimer’s and Parkinson’s diseases (Dobson 2003; Chiti
and Dobson 2017).

Due to their central role in controlling biological function,
PPIs are an area of intense interest for the development of
pharmaceuticals with which to modulate cellular processes
(Bakail and Ochsenbein 2016). Furthermore, efforts to map
the protein interactome, the network of PPIs present within
cells, aim to provide an improved knowledge of the complex
and subtle variety of PPIs for a deeper understanding of the
molecular origins of disease (Ngounou Wetie et al. 2013;
Ngounou Wetie et al. 2014). To facilitate these approaches,
it is important for PPIs to be identified and characterised.
Parallelised microarray (Sutandy et al. 2013), yeast two-
hybrid (Lin and Lai 2017) and affinity-coupled MS (Morris
et al. 2014) methodologies can be used to identify PPIs in a
high-throughput manner: however, these methods are
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ineffective when quantifying the magnitude of PPIs. This is an
important parameter, since the strength of PPIs is related to
their biological role. Thus, many techniques have been devel-
oped for the quantification of PPIs in terms of the pairwise
dissociation constant (Kd) for each interaction. Such methods
include classical techniques such as nuclear magnetic reso-
nance spectroscopy (Liu et al. 2016), isothermal titration cal-
orimetry (Krainer et al. 2012; Velazquez-Campoy et al. 2015),
gel electrophoresis (Vergnon and Chu 1999; Wittig and
Schägger 2009) and surface-based approaches such as
enzyme-linked immunosorbent assay (ELISA) (Wittig and
Schägger 2009) and surface-plasmon resonance (SPR).
Commonly, such methods operate slowly, making them un-
suitable for the study of weak, transient interactions in a high-
throughput manner and require large quantities of reagents;
surface-immobilisation of PPI binding partners can modify
their affinity due to inhibition of binding sites (Goebel-
Stengel et al. 2011). Furthermore, surface-based approaches
are often challenged by non-specific binding and the need for
suitable antibody reagents (Güven et al. 2014).

These drawbacks present a demand for experimental tech-
niques that directly assess PPIs in free solution, operate rap-
idly within a short assay timescale and require minimal sam-
ple consumption. In this review, we discuss recent advances in
microfluidic methodologies that present potential solutions to
these challenges, by enabling rapid, native-state analysis of
PPIs. These approaches are often amenable to label-free assay
readout, and can be used to improve conventional resonance
energy transfer (FRET) or fluorescence-correlation spectros-
copy (FCS) experiments (Schuler and Hofmann 2013; Krainer
et al. 2019). Microfluidics is a rapidly expanding field based
upon the reduction of biological assays to the microscale, in
order to access the laminar flow conditions that typify fluid
behaviour at these lengthscales (Duncombe et al. 2015; Liu
and Liu 2016). Moreover, reagent consumption and experi-
mental timescales are much reduced in microfluidic systems,
whilst the potential for assay throughput and parallelisation is
enhanced, as described previously (Zhang et al. 2016a, b;
Convery and Gadegaard 2019). We thus focus on methodol-
ogies that utilise the highly predictable nature of molecular
transport under laminar conditions as an analytical tool in of
itself, within the context of PPI quantification.

Essential principles of microfluidics

At the microscale, fluid behaviour differs greatly to that ob-
served in bulk solution (Beebe et al. 2002; Squires and Quake
2005). The low ratio of inertial relative to viscous force at
small lengthscales results in laminar flow, where fluid mixing
occurs purely through diffusion with complete suppression of
chaotic turbulence, which is the primary contribution to
mixing in macroscale systems. The laminar regime is

characterised by the Reynolds number

Re ¼ inertial force
viscous force ¼ vρL

η (where ρ and η are the density and

dynamic viscosity of the medium, respectively, v is the veloc-
ity of the fluid and L is the characteristic length scale of the
fluid movement given by the hydraulic diameter (dH) of the
channel. Laminar conditions exist where Re ≤ 1800, ensuring
predictable flow conditions for microfluidic applications,
where values of Re << 1 are typical.
The Peclét number Pe ¼ Lv

D (describes the relative rates of molec-
ular convection relative to diffusion. Typically, microfluidic
experiments retain large values of Pe to prevent complete
diffusional mixing over the assay timescale. This facilitates
experimental strategies that are not feasible in the bulk phase,
andmeans that microfluidic assays intrinsically operate on fast
timescales. In bulk experiments, surfaces and solid matrices
are required to retain segregation of assay components, where-
as under microfluidic conditions, the slow rate of mixing
through diffusion alone means that the use of surfaces is not
necessary. Furthermore, the physical dimensions of
microfluidic devices and the micron-scale nature of molecular
transport allow a broad range of experimental lengthscales
ranging from Angstroms, as with the study of small mole-
cules, to micrometres in the investigation and manipulation
of cellular analytes. Microfluidic techniques are therefore well
suited to the study of PPIs in conditions close to the native
state. Typically, this is achieved through quantification or ma-
nipulation of changes in the size or charge of proteins and
protein complexes as they participate in PPIs, by exploiting
the diffusion-controlled mass transport of analytes to facilitate
analysis of PPI systems as they undergo rapid, in situ changes
i n s o l u t i o n c o n d i t i o n s , o r b y m i c r o n - s c a l e
compartmentalisation of assays for high-throughput study of
PPI in small volumes, experimental strategies that are the sub-
ject of this review. Due to their modular nature, microfluidic
devices can be combined for multi-step processes (Mazutis
et al. 2009) or integrated with electronic components (Cheng
and Wu 2012) and external hardware for mass-spectrometry
(Pedde et al. 2017) or synchrotron-enabled spectroscopy
(Bortolini et al. 2019), for example.

Exploiting diffusive mass transport
for analysis of PPIs

Diffusion analysis

As mixing under laminar conditions occurs solely through
diffusion (see above), the mixing rate of analytes under
microfluidic flow can be analysed to extract the diffusion co-

efficientD ¼ kBT
6πηRH

and thus the hydrodynamic radius (RH) of

biomolecules. This property has been utilised in the develop-
ment of techniques for the microfluidic diffusional sizing
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(MDS) of biomolecules and PPIs. By recording the change in
apparent RH that occurs through protein–protein binding, the
presence and strength of PPIs can be observed and calculated.
A variety of microfluidic device designs, including T
(Kamholz et al. 1999) and H-junction geometries, flow-
focussing mixers and capillary-based assay formats such as
Taylor dispersion analyses (Chamieh et al. 2017) have been
devised to achieve this in practice, yet all essentially function
by co-flow of the protein sample through the microfluidic chip
alongside a flanking buffer solution. Analysis of the time-
evolution of the protein diffusion profile, as it mixes into the
co-flow buffer at known fluid linear velocity, thus affords the
diffusion coefficient and RH.

For sufficiently large differences in RH between PPI bind-
ing partners, microfluidic diffusional sizing (MDS) is capable
of resolving the sizes and relative concentrations of a range of
different protein species (Arosio et al. 2016). This was dem-
onstrated in the observation of the binding interaction between
fibrillar alpha-synuclein, an aggregation-prone protein associ-
ated with Parkinson’s disease, and a fluorophore-labelled an-
tibody, by flowing the protein sample between two streams of
flanking buffer solution in a flow-focussing assay format (Fig.
1(a)). Due to the large difference in RH between the sample
components, the resultant diffusion profile of the protein mix-
ture could be deconvoluted into the separate contributions
from both bound and fibril-associated nanobody, thus illustrat-
ing the nanobody-fibril PPI (Zhang et al. 2016a, b). Through
titration of one binding partner against the other, MDS allows
the relative proportion of bound vs. unbound ligand to be
determined, an approach employed recently (Scheidt et al.
2019) to quantify the dissociation coefficient between a mo-
lecular chaperone and amyloid-beta fibrils (Fig. 1(b)), protein
deposits that are implicated in the pathology of Alzheimer’s
disease.

MDS quantification of PPIs is particularly facile when
binding partners differ greatly in RH, enabling accurate
deconvolution of their respective diffusion profiles.
However, this feature is not a requirement for accurate analy-
sis of PPIs, which is possible even for binding partners of a
similar size, i.e. with values of RH within one order of magni-
tude. In this scenario, the average diffusion profile, compris-
ing the diffusive behaviour of all labelled sample components,
can be assessed as a function of protein concentration during
titration of one element of a PPI pair against the other. This
approach was used, for example, for the quantitative investi-
gation of the oligomerisation of molecular chaperone HSP70
(Wright et al. 2018), where real-time observation of aggrega-
tion kinetics revealed the co-operative nature of subunit asso-
ciation. A similar method has been employed for immunoas-
say of an antigen-antibody interaction in whole blood (Hatch
et al. 2001). Furthermore, diffusion-based techniques have
been employed for the analysis of protein aggregation in an-
tibody preparations (Hawe et al. 2011) and in the development

of a wash-free ELISA immunoassay (Kurmashev et al. 2019).
Moreover, the continuous-flow nature of MDS makes it suit-
able for uninterrupted analysis of PPIs occurring in real time,
as demonstrated by continuous observation of insulin aggre-
gation by flow-focussing MDS (Saar et al. 2016).

Label-free analysis of PPIs in microfluidic systems

In the examples discussed so far, the diffusion of interacting
protein species is observed through fluorophore labelling.
However, it is well known that fluorophore conjugation can
affect the biochemical properties of tagged proteins.
Therefore, a number of recent studies have sought to enable
label-free MDS, allowing analysis of wild-type protein inter-
actions in the native state. One such approach employs a
latent-labelling strategy (Yates et al. 2015), whereby wild-
type proteins and interacting protein mixtures undergo size-
dependent diffusion in an H-filter device, before in-situ label-
ling enables quantification of the extent of diffusion and thus
the diffusion coefficient (Fig. 1(c)). This method has been
used for the observation of a PPI between monomeric alpha-
synuclein and a nanobody (Yates et al. 2015), in the study of
protein-folding equilibria (Zhang et al. 2018) and in quantify-
ing the phospholipid-dependent binding interaction between
peptides relevant to the function of ion channel TRPA1
(Macikova et al. 2019).

An alternative approach to label-free analysis of PPIs is the
use of intrinsic fluorescence for the observation of molecular
mass transport. By illuminating samples with a UV source at
wavelengths below 300 nm, fluorescence imaging of
unlabelled proteins is possible through autofluorescence of
tyrosine, tryptophan and phenylalanine amino acid residues
(Lakowicz 2006). This method has been applied to study the
self-assembly of oligomeric alpha-B crystallin (Challa et al.
2018) and protein aggregation of lysozyme and silk fibroin
(Toprakcioglu et al. 2019). An additional example of label-
free PPI analysis utilised an electrochemical readout, to report
a weak binding interaction between free and membrane-
bound protein in a microfluidic diffusion-analysis assay (Tan
et al. 2012).

Rapid sample preparation for single-molecule
spectroscopy by diffusive mixing

In addition to methods that quantify the diffusion of protein
complexes for PPI analysis, the well-defined nature of diffu-
sional mixing in microfluidics allows rapid sample prepara-
tion and the analysis of weak, transient PPIs. Through
diffusion-controlled mixing, analyte concentration can be re-
duced over many orders of magnitude within milliseconds, in
a predictable and controlled manner. This principle has been
used in combination with single-molecule microscopy to
probe weakly interacting, intrinsically disordered proteins
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involved in transcriptional regulation (Zijlstra et al. 2017).
Complex formation was conducted at 1 μM concentration,
before diffusional mixing rapidly diluted the sample to con-
centrations below 100 pM within 3 ms. Through single-
molecule FRET (smFRET) microscopy, the fast dissociation
of PPIs could be monitored, allowing quantitative analysis of
the dissociation kinetics (Fig. 1(d)). Importantly, diffusion-
controlled mixing enables predictable, rapid sample dilution
over μs to s timescales, providing high temporal resolution for
the quantification of PPI dissociation in weakly bound com-
plexes. Several studies have used this approach for the inves-
tigation of weakly bound PPIs within transient (Gambin et al.
2011) and pre-formed oligomers of alpha-synuclein (Horrocks
et al. 2012, 2013; Iljina et al. 2016), for example. Conversely,
a recent iteration of the microfluidic-dilution technique
utilised a passive mixing unit (Lee et al. 2016) for rapid,
diffusion-independent mixing, with complete sample dilution
within 20 ms. This allowed temporal smFRET analysis of

Hsp90 oligomer dissociation under conditions of constant
protein concentration (Hellenkamp et al. 2018).

Analysis of PPIs by microchip electrophoresis

In addition to passive analysis of PPIs through diffusional
sizing, molecular transport can be induced directly by the ap-
plication of an electric field. Electrophoretic methods have long
been a staple technique within molecular biology, which typi-
cally make use of a gel matrix in order to prevent the chaotic
mixing of sample compounds in bulk-scale experiments. Such
techniques usually require a significant quantity of sample, and
experiments take minutes to hours to run; biomolecular inter-
actions that do not persist over these timescales are therefore
challenging to study. In addition, proteins may interact with the
matrix and travel through the gel at different rates depending on
the solution composition. Gel electrophoresis relies on

Fig. 1 Microfluidic diffusional mixing for the analysis of PPIs. a
Microfluidic diffusional sizing (MDS) by observation of fluorophore-
labelled sample flowing between flanking buffer. The temporal change
of the Gaussian fluorescence profile is used to determine the diffusion
constant (Arosio et al. 2016). b (Upper) MDS data for heterogeneous
mixture of clusterin and amyloid-beta fibrils. (Lower) Binding curve for
clusterin association to amyloid-beta fibrils generated by MDS (Scheidt
et al. 2019). c Device schematic for latent-labelling MDS of proteins and
PPI systems. Analytes diffuse by an amount inversely proportional to
their hydrodynamic radius in the H-filter region (orange), before labelling

occur (yellow region) to afford label-free MDS (Yates et al. 2015). d
(Upper) Device schematic and computed diffusion profiles for rapid sam-
ple dilution for smFRET microscopy. Colour scale depicts relative con-
centration of the analyte. (Upper middle) Analyte concentration for posi-
tions shown in the schematic. (Lower middle) Dissociation reaction be-
tween proteins NCBD (donor) and ACTR (acceptor) labelled for FRET
microscopy. (Lower) FRET histograms for NCBD-ACTR interaction at
7.9 ms and 412 ms after the start of dilution, showing significant complex
dissociation within this timescale. Figure taken with permission from
Zijlstra et al. 2017
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measurements of sample migration relative to a set of reference
molecules, and results are therefore not readily comparable be-
tween solution conditions. Moreover, resolution is insufficient
to distinguish between species of similar MW.

To address these challenges, micro-scale electrophoresis
techniques have become ever more prevalent. A principal ad-
vantage of microfluidic electrophoresis over traditional gel-
based methods is that the slow, diffusion-limited mixing pres-
ent at the micro-scale precludes the need for a gel separation
matrix. Thus, biomolecules and biomolecular mixtures can be
analysed and fractionated in their native state, with electro-
phoresis occurring without mediation by a solid support.
Due to the micron-scale dimensions and the requirement to
maintain high Pe, as outlined above, experiments can be con-
ducted on sub-second timescales, allowing weak and transient
biomolecular interactions to be analysed. Furthermore, the
lack of matrix means that the electrophoretic mobility

μ ¼ ν
E ¼ qD

kBT
¼ q

6πηRH
, where v and q are the electrophoretic

drift velocity and net molecular charge, can be determined
quantitatively and directly, without recourse to a reference
measurement. Moreover, for species of known size, an accu-
rate measure of effective charge can be extracted.

Micro-capillary electrophoresis (MCE) represents the most
commonly applied micro-scale electrophoresis technique,
whereby the sample mixture is introduced to a microcapillary
before an electric field is applied parallel to the capillary axis,
causing electrophoretic migration of the sample components
through the microchannel (Fig. 2(a)) (Ouimet et al. 2017;
Farcaş et al. 2017; Olabi et al. 2018; Voeten et al. 2018). For
example, a capillary electrophoresis platform has been used to
quantitatively screen modulation of PPIs by small molecules
in a drug-discovery context (Fig. 2(b)). The interaction be-
tween chaperone HSP70 and co-chaperone BAG3, in the
presence and absence of drug candidates, was observed
through MCE fractionation of free and complex-bound
HSP70, allowing high-throughput identification of hit com-
pounds (Rauch et al. 2013). MCE has recently been employed
for the quantification of PPIs between serum albumins and
heparinoids (Mozafari et al. 2018), and for the characterisation
of the binding interaction of an anti-lyzosyme antibody and
dimerisation of HSP70 through a cross-linking approach
(Ouimet et al. 2016). MCE has also been used in the analysis
of the PPI between actin-scavenger protein Gc-globulin and
free actin (Pedersen et al. 2008) (Fig. 2(c)), and the fraction-
ation and quantitation of aggregated and monomeric amyloid-
beta (Picou et al. 2012). Further examples include an MCE
immunoassay for the quantitation of cancer biomarker alpha-
fetoprotein in human serum (Liu et al. 2017) (Fig. 2(d)), and a
competitive immunoassay based upon MCE of anti-thrombin
aptamer, for the determination of binding affinities and
binding-site identification for distinct anti-thrombin antibod-
ies (Huang et al. 2005).

Furthermore, to MCE, free-flow electrophoresis (μFFE) is
an additional subset of microfluidic electrophoresis that has
been applied to the investigation of PPIs. μFFE functions by
flowing a sample stream, flanked by an auxiliary buffer,
through a microfluidic chip whilst an electric field is applied
perpendicular to the direction of flow ((Fig. 2(e))) (Fonslow and
Bowser 2005: Turgeon and Bowser 2009; Herling et al. 2013;
Saar et al. 2017). The resultant electrophoretic deflection of the
sample stream can be analysed to afford the electrophoretic
mobility, an approach that has been used for the analysis of
protein-ion and protein-ligand interactions ((Fig. 2(f, g)). Due
to the free-solution, native-state conditions accessible by this
method, quantitative values of the absolute electrophoretic mo-
bility and net molecular charge of analytes can be recorded.
This method has been used to quantify the binding constant
between modulation and creatine kinase and explore the
calcium-dependence of this PPI, for example (Herling et al.
2016) ((Fig. 2(h)). Notably, by monitoring the change in mo-
bility caused by protein-association of one binding partner, this
approach can determine PPIs even when fractionation of free
and complex–bound proteins is not possible, and due to its
gentle nature is suitable for the analysis of weakly interacting
PPIs. Furthermore, μFFE is capable of analysing interactions
such protein–ion binding (Herling et al. 2015) that are inacces-
sible to size-based methods such as MDS, which are unsuitable
in this context due to the negligible increase in hydrodynamic
radius that occurs upon association.

As in MCE, sample mixtures may be fractionated during
μFFE due to differences in mobility between the sample com-
ponents (Turgeon et al. 2010; Arter et al. 2018); this approach
has been used, for example, to observe binding of pro-SPC
brichos, a molecular chaperone, to fibrils of aggregated
amyloid-beta (Saar et al. 2017) (Fig. 2(i)). In this experiment,
fractionation of the fibril-bound and unbound brichos enables
in-situ observation and quantification of the extent of chaperone-
fibril binding. As outlined above, such analyses can be carried
out with the use of intrinsic fluorescence microscopy, enabling
label-free electrophoretic investigation of PPIs (Wright et al.
2019). Due to its ability to continuously fractionate samples, in
contrast to sequential fractionation inMCE,μFFE is particularly
well-suited to preparative applications followed by down-stream
analysis of PPIs (Justesen et al. 2013; Eichacker et al. 2014;
Wildgruber et al. 2014). Furthermore, μFFE and MCE has
shown promise as a facile method for in-line MS analysis of
heterogeneous protein mixtures (Figeys and Aebersold 1998;
Song et al. 2010; Park et al. 2015).

Analysis of PPIs following microdroplet
compartmentalisation

In addition to the aqueous-phase microfluidic approaches de-
scribed above, bi-phasic droplet microfluidics represent
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another, large class of micro-scale techniques for biochemical,
biophysical and biomedical analysis. In micro-droplet

experiments, aqueous sample solutions are partitioned into
fL to nL droplets by a continuous oil phase and stabilised

Fig. 2 Electrophoretic methods to probe PPIs. a Schematic showing
operational principle of micro capillary electrophoresis (MCE). b
Capillary electrophoresis data showing association of BAG3 to HSP70,
and corresponding determination of BAG3-HSP70 dissociation constant.
Figure taken with permission from (Rauch et al. 2013). c Capillary elec-
trophoresis data showing association between Gc-globulin and G-actin,
with globulin-actin molar ratios of (i) 1:0.17, (ii) 1:0.22, (iii) 1:0.33, (iv)
1:0.67, (v) 1:1 and (vi) 1:2, respectively. Figure taken with permission
from (Pedersen et al. 2008). d MCE electropherograms for antibody (1)
binding to biomarker alpha-fetoprotein (2) in (upper) normal human se-
rum and (lower) human serum obtained from a cancer patient.
Figure taken with permission from (Liu et al. 2017). e Schematic showing
principle of micro free-flow electrophoresis (μFFE). f Micrographs

showing electrophoretic deflection of sample stream in μFFE (Herling
et al. 2016). g Intensity profiles for electrophoretic deflection of
fluorophore-labelled calmodulin (CaM) in the absence and presence of
creatine kinase-B (CKB) (Herling et al. 2016). hQuantitation byμFFE of
dissociation constants between CaM and CKB in the presence and ab-
sence of Ca2+ (Herling et al. 2016). i μFFE fractionation of Alexa488-
labelled pro-SPC brichos from fibrillar amyloid-beta (Saar et al. 2017).
(Upper panels) Labelled brichos only, in the absence and presence of
applied electric field perpendicular to flow (left and right panels, respec-
tively). (Lower panels) Labelled brichos in the presence of amyloid fi-
brils, in the absence and presence of applied electric field perpendicular to
flow (left and right panels, respectively)
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against coalescence by the presence of surfactant; each droplet
represents a unique micro-reactor environment in which bio-
chemical assays can be conducted. Droplets are commonly
generated at frequencies of between 0.1 and 1 kHz, although
rates of above 1 MHz are feasible (Shim et al. 2013), and
droplet compositions can be varied arbitrarily on a drop-to-
drop basis (Abate et al. 2010). Thus, droplet microfluidics
enable rapid, high-throughput and massively parallel interro-
gation of biological systems. These properties, together with
the fast mixing present in microdroplets (Chen et al. 2018),
have been applied to the investigation of a variety of PPI
s y s t e m s . F o r e x a m p l e , r a p i d m i x i n g a n d
compartmentalisation, together with FRET microscopy, were
used to study the binding kinetics between an antibody and
angiogenin (ANG), a polypeptide implicated in angiogenesis
and in tumour growth (Srisa-Art et al. 2009) (Fig. 3↓(a, b)).
Analogously, rapid quantitation of the ANG-antibody binding
interaction and that between chromatin-regulatory proteins
and post-translationally modified histone peptides has been
achieved via droplet microfluidics, combined with assay read-
out by fluorescence polarisation spectroscopy [Choi et al.
2012; Cheow et al. 2014).

When present at sufficiently low concentration, assay com-
ponents can be encapsulated on a single-molecule or single-
particle basis (Collins et al. 2015; Mankowska et al. 2016).
This enables the high-throughput study of phenomena rele-
vant to PPIs on the single-molecule level, for example in the
directed evolution of peptide binders against MDM2, a nega-
tive regulator of the tumour suppressor protein p53 (Iwakuma
and Lozano 2003; Cui et al. 2016) (Fig. 3(c)). In this study, a
library of DNA templates coding for a large variety (i.e. 105

DNA sequences) of short peptide sequences were encapsulat-
ed on a single-molecule basis, before candidate peptide spe-
cies were transcribed in-situ. Using a two-hybrid system
(Zhou et al. 2014), the strength of peptide-binding to the co-
encapsulated MDM2 target was reported by fluorescence.
Droplets displaying high fluorescence were then enriched by
droplet sorting (Xi et al. 2017), and their DNAwas sequenced
to elucidate the identity of the highest affinity peptides for
MDM2 binding (Fig. 3(d)).

The small volumes of microdroplets have been further
exploited for the study of primary nucleation in protein
aggregation. In bulk-phase studies, aggregation reactions
are dominated by secondary effects that rapidly amplify
the rate of protein misfolding (Knowles et al. 2009),
which mask the observation of rare, stochastic primary
nucleation events. In one study, the primary nucleation
rate of insulin aggregation was quantitatively assessed
by confinement of aggregation reactions in pL volumes,
so that single nucleation events could be observed on a
drop-by-drop basis, an approach that also enabled obser-
vation of the spatial and temporal propagation of insulin
fibrillisation (Knowles et al. 2011) (Fig. 3(e, f)). Similarly,

a study investigated ultrasensitive quantitation of pre-
formed insulin aggregates, by employing single-particle
encapsulation followed by target-driven signal amplifica-
tion to observe the presence of amyloid propagons on a
digital basis (Pfammatter et al. 2017), with a further work
utilising intrinsic fluorescence to investigate protein-
misfolding events in microdroplets in a label-free manner
(Toprakcioglu et al. 2019).

Conclusion

The continued investigation of PPIs and interaction net-
works are crucial tasks for an improved understanding of
biological and pathological function. Microfluidic tech-
niques present a facile route towards the analysis of
PPIs in a native, label-free manner and on a timescale
and in solution conditions relevant to their biological
function, whilst requiring minimal sample consumption
through the use of low-cost, miniaturised assays.

While a wide range of techniques presented here are in their
infancy, even relatively well established methodologies such
as MCE are yet to be readily adopted as the go-to technique
for standard practice, where techniques such as MS and gel
electrophoresis remain the laboratory workhorses. One issue
preventing broader application of microfluidic approaches is
that many fluidic methods are yet to be integrated into
parallelised, high-throughput workflows as have become the
norm in e.g. plate-reader assays via robotic automation.
Indeed, assay parallelisation represents an essential criteria if
microfluidic methods are to find success in the investigation
of broader protein interaction networks, rather than being lim-
ited to the study of binary PPIs as is presently typical (Liu and
Lu 2016). Although microfluidic platforms that enable high-
throughput, parallel investigation of PPI networks have been
demonstrated (Gerber et al. 2009), these approaches currently
require surface-immobilisation of protein reagents. The inte-
gration of solution-phase microfluidic techniques, as
discussed here, with parallelised, high-throughput assay
workflows remains a critical challenge. Furthermore, current
efforts to provide meaningful insight into PPIs using
microfluidic techniques rely upon strong collaborative efforts
in order to bring together the necessary expertise and facilities
for both cutting-edge microfluidic studies, involving
microfluidic engineering, fabrication and operation and rele-
vant, high-quality experiments in the life sciences.
Microfluidic tools themselves may present a means to address
challenges regarding throughput and automation, as has been
demonstrated by high-speed capillary electrophoresis (Floris
et al. 2010; Pan et al. 2018) and the use of droplet
microfluidics for rapid front-end sample processing (Ouimet
et al. 2019), for example. Moreover, a variety of commercial
microfluidic platforms relevant to the study of protein–protein
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interactions have recently become available, which are pre-
dicted to broaden access to microfluidic methodologies to

non-expert users in the future (Volpatti and Yetisen 2014;
Chiu et al. 2017; Macikova et al. 2019). As this review
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illustrates, many studies have demonstrated the advantages of
microfluidic techniques and their proof-of-concept application
to the investigation of PPIs, presenting researchers in the field
with the opportunity to adapt microfluidic approaches to their
own systems of interest, so as to access parameter space and
conduct experiments inaccessible with incumbent techniques.
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