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Thesis Title: Foraging for a foothold: Causes and consequences of dietary variation in a threatened 

avian pollinator 

 

Name: Caitlin Elizabeth Andrews 

 

Thesis Summary: 
 

Foraging is a central theme in ecology and underlies some of the most fundamental interactions among 

species. While diet has long been treated as uniform within species, a paradigm shift is now taking place 

as ecologists recognize that individuals vary. However, questions remain about why this intraspecific 

variation exists and what consequences it may have for individuals, populations, and ecosystems. This 

information may be particularly important for species that are threatened due to food limitation, as dietary 

variation could be used to inform conservation efforts. 

 

In this thesis, I used the hihi (Notiomystis cincta), a threatened New Zealand passerine, as a case study 

to explore the causes and consequences of dietary variation and possible implications for conservation. 

Because observing threatened species is often difficult in the wild, I first developed methodology to 

obtain more reliable dietary estimates from limited foraging observations. Using these improved metrics, 

I found that individual hihi specialize within the broader species diet. Generalists survived better than 

specialists, suggesting that dietary specialization may have consequences for fitness. 

 

I next explored whether an array of intrinsic and extrinsic factors could explain dietary variation. Results 

suggested a weak correlation between diet and sociality, so I then conducted an experiment to test how 

directly altering the social environment affects diet. Using two scheduled conservation translocations, I 

found that individual hihi shifted towards more generalist diets when they were moved from a highly 

competitive source site to a less competitive release site. This suggests hihi share the same inherent 

dietary preferences but must specialize to avoid competition in dense populations. Furthermore, 

individuals that were more generalist before the translocation were more likely to be seen five months 

later, but only if they remained at the source site; at translocated sites, generalists tended to be less 

likely to be seen than specialists. These results suggest that selectively translocating specialists may 

improve translocation success without jeopardizing the source population. 

 

Finally, I investigated how foraging behavior can shape the environment. Hihi are pollinators of several 

threatened native plant species, so conservation of hihi could promote ecosystem recovery as well as 

species recovery. However, little is known about how effectively hihi translocations restore lost 

pollination function and whether individuals vary in their pollination abilities. Through a multi-site 

pollinator exclusion experiment, I found that ecosystems may be able to partially adapt to the loss of 

hihi. Nevertheless, hihi bring unique benefits to pollination by improving seed quality. There was also 

some evidence that individual hihi vary in their efficiency as pollinators. 

 

Together, my findings demonstrate that foraging is inextricably linked to the environment: the ecosystem 

shapes individual variation, which, in turn, shapes ecological functions. A better understanding of dietary 

variation may also have important implications for threatened species and ecosystems, informing the 

design of conservation interventions. 
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Chapter 1 

General introduction 

 

~ 

 

Foraging is a cornerstone of ecology: it underlies one of the most universal needs of all animals 

as well as some of the most consequential intra- and interspecific interactions (Stephens and 

Krebs 1986; Perry and Pianka 1997; Stephens et al. 2007). Thus, it is not surprising that 

foraging played a pivotal role in the development of behavioral ecology as a field. Early theories 

examined how species’ diets are shaped by decisions regarding how to divide time amongst 

resources based on their relative profitability (MacArthur and Pianka 1966; Charnov 1976). 

Others uncovered how species with similar niches can coexist through resource partitioning 

(MacArthur 1958; Hardin 1960; R. Armstrong and McGehee 1980). Further work investigated 

more dynamic phenomena, such as how species’ niches expand and contract in response to 

changes in resource availability (J. Emlen 1966; MacArthur and Pianka 1966; Pulliam 1974) 

and community composition (MacArthur and Wilson 1967; Roughgarden 1972). Altogether, 

these studies set the stage for a rapid expansion of questions about foraging behavior (Perry 

and Pianka 1997), which, today, pervade all aspects of behavioral ecology, from disease 

transmission (e.g. Hall et al. 2007), to movement ecology (e.g. Owen-Smith et al. 2010), to 

cognition (e.g. Kamil and Roitblat 1985; Stephens 2008). 

 

Early foraging theories successfully explained much of the diversity seen across species, but 

they also recognized that diversity can exist within species. Some of the earliest adaptations 

of Optimal Foraging Theory acknowledged that individuals’ diets could be shaped by their 

satiety (J. Emlen 1966), experience (Krebs et al 1978; Hughes 1979), and ability to achieve 

optimality (Ritchie 1988). Partridge and Green (1985) expanded beyond these intrinsic factors 

to show how diets may also depend on extrinsic factors related to the social environment and 

ecosystem. This recognition of individual-level behavioral variation was forward-thinking, 

because ecologists historically tended to treat individuals as uniform within species. However, 
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in recent years, individual differences have risen to the forefront of behavioral ecology (Bolnick 

et al. 2003; Dall et al. 2012; Wolf and Weissing 2012). It is now widely established that 

individual variation is not a mere artifact of statistical noise; moreover, it can have 

consequences not only for individuals’ fitness but for population dynamics and ecosystem 

functioning (Bolnick et al. 2011; Benton 2012; Barabás and D’Andrea 2016; Costa-Pereira et 

al. 2019). This has given rise to new avenues of research into behavioral syndromes and 

personality (Gosling 2001; Dall et al. 2004; Sih et al. 2004; Brommer and Class 2017), but 

more traditional topics, such as foraging, are also being reexamined. 

 

Individual variation in foraging encompasses a wide range of behaviors, including habitat 

selection (e.g. Patrick and Weimerskirch 2014; Baylis et al. 2015; Rossman et al. 2015), search 

strategies (e.g. Kurvers et al. 2010; Patrick et al. 2014; Keynan et al. 2015), foraging skill (Sih 

et al. 2019), and innovativeness (e.g. Overington et al. 2011; Serrano-Davies et al. 2017). A 

direct result of this variation is that individuals often differ both in their access to resources and 

in their selection of available foods. This can lead them to consume different diets, such that a 

species’ niche is actually comprised of many distinct individual niches. When these dietary 

differences are consistent over time and cannot be attributed to age, sex, or morphology, they 

are referred to as ‘individual specializations’ (Bolnick et al. 2003). Today, specializations have 

been identified in a range of taxa, including reptiles (e.g. Pajuelo et al. 2016), amphibians (e.g. 

Araújo et al. 2009; Costa et al. 2015), birds (e.g. Woo et al. 2008; Pagani-Núñez et al. 2016; 

Phillips et al. 2017), and mammals (e.g. Estes et al. 2003; Lowrey et al. 2016). Among these 

are many species that were long considered generalist due to their broad diets but have since 

been found to be composed of a mix of ‘specialists’ (who consume only a narrow portion of the 

species’ niche) and ‘generalists’ (who consume most or all of the species' niche: Bolnick et al. 

2002; Bolnick et al. 2003; Araújo et al. 2011). Thus, our view of a species’ niche can be 

reshaped significantly through the quantification of individual variation. 

 

As more cases of dietary specialization have emerged, behavioral ecologists have begun 

delving into the causes of this variation. Individuals’ diets have been found to be shaped by a 

range of factors, from learning (e.g. Estes et al. 2003) and personality (e.g. Serrano-Davies et 

al. 2017) to dominance (e.g. Holbrook and Schmitt 1992) and competition (e.g. Sheppard et 

al. 2018). At the same time, there has been growing interest in investigating the consequences 

of dietary variation across different ecological levels. At the individual level, diet has been found 

to influence survival and reproduction. For example, in pheasants (Phasianus colchicus), 

individuals reared on complex diets survive better as adults than those reared on specialist 

diets (Whiteside et al. 2015), while in brown skuas (Catharacta antarctica lonnbergi), dietary 

specialization predicts the timing of breeding, a known indicator of reproductive success (O. 
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Anderson et al. 2009). The consequences of dietary variation can also scale up to affect 

populations, as those containing a greater diversity of specializations are thought to be more 

resilient to environmental change than those with less diverse members (Bolnick et al. 2011). 

When individuals vary in their diets, populations may also interact with a wider range of species, 

increasing their potential impact on complex ecological interactions, such as mutualisms, 

predation, and competition (Bolnick et al. 2011). Some dietary specializations may make 

individuals even more effective at performing these roles. For instance, common carp 

(Cyprinus carpio) have been found to vary in their propensity to ingest and digest seeds, 

potentially making some individuals better seed dispersers than others (Pollux 2017). 

 

Despite the advances made in recent years, behavioral ecologists are still only beginning to 

understand the full complexity of intraspecific dietary variation, leaving several key gaps in our 

knowledge. First, although some studies link diet to personality (see Toscano et al. 2016 for a 

review), further investigation into diet’s role in behavioral syndromes (Sih et al. 2004) could 

provide insight into the mechanisms underlying dietary variation and its broader consequences. 

Additionally, while the literature on dietary specialization (Bolnick et al. 2003) and behavioral 

variation in general (Dall et al. 2004; Sih et al. 2004; A. Bell et al. 2009) strongly emphasizes 

cases of variation that are repeatable across time and contexts, less is known about the extent 

to which even transient individual differences can have lasting consequences. This is 

especially important to consider given that some known determinants of diet, such as the social 

environment (Galef and Giraldeau 2001; Araújo et al. 2011), are dynamic. Furthermore, while 

behavioral ecologists have started exploring the consequences of individual variation for higher 

ecological levels, more work needs to be done to turn theory into evidence. Alongside this, it 

should also be considered how the effects of dietary specialization on the ecosystem could, in 

turn, influence how individuals forage, closing this feedback loop. 

 

A final and as-yet largely unexplored direction for dietary specialization research concerns its 

potential relevance to conservation. Given the escalating threats to biodiversity worldwide, it is 

increasingly important that behavioral ecologists seek out opportunities to meld their research 

with conservation priorities (Curio 1996; Caro 2007; Caro 2016). As populations shrink, more 

attention is being given to the behavioral tendencies of the remaining individuals and how 

interventions can promote desired behaviors and outcomes most effectively (Watters et al. 

2003; Watters and Meehan 2007; B. Bell 2016; Merrick and Koprowski 2017). However, dietary 

specialization has been overlooked as a potential tool for conservation, despite the fact that 

resource limitation driven by habitat loss (Didham 2010) and climate change (Renner and 

Zohner 2018; Damien and Tougeron 2019) presents a major challenge for many threatened 

species. If individuals vary in their diets, it could be important to account for this when designing 
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conservation interventions, particularly if remaining individuals do not represent their species’ 

full niche. Understanding the consequences of dietary variation for individuals could also be 

informative, as interventions could be used to promote specializations that are most favorable 

under current and projected future conditions. If diet’s consequences extend to higher 

ecosystem levels, interventions at the individual level could also be used to achieve broader 

restoration goals. 

 

In this thesis, I investigate some of the key remaining questions surrounding the causes and 

consequences of dietary variation in a species where this knowledge could have conservation 

implications: the hihi (Notiomystis cincta). In the next section, I give a brief introduction to hihi, 

their foraging behaviors, and current strategies for species recovery. I then provide a preview 

of the central questions and methodology of each thesis chapter. Finally, I present an overview 

of the objectives and structure of the thesis. 

 

 

 

1.1   STUDY SYSTEM: THE HIHI (NOTIOMYSTIS CINCTA) 
 

 

The hihi (Figure 1.1a–b) is a passerine endemic to the North Island of New Zealand and is 

currently classified as ‘vulnerable’ by the IUCN Red List (Birdlife International 2017) and 

‘nationally vulnerable’ by New Zealand’s Department of Conservation (H. Robertson et al. 

2016). While they were long thought to be part of the honeyeater (Meliphagidae) family, genetic 

analyses now place hihi as the sole extant member of Notiomystidae (Driskell et al. 2007). This 

family was nearly lost altogether when habitat loss, predation by introduced mammals, and 

disease drove hihi to mainland extinction around 1890. However, they persisted in a single 

remnant population (~3,100 individuals: Toy et al. 2018) on Te Hauturu ō Toi (Little Barrier 

Island Nature Reserve) and, over the past three decades, have been reintroduced successfully 

to seven additional sites (Ewen et al. 2013; Figure 1.1c). Nevertheless, habitat suitability has 

proven an ongoing barrier to achieving self-sustaining populations. All reintroduced 

populations (~40–250 individuals each) require habitat that is free of introduced mammalian 

predators and must be provisioned with sugar water to varying degrees throughout the year 

(Chauvenet et al. 2012; Thorogood et al. 2013; Doerr et al. 2017). Food limitation is a major 

challenge for species recovery, making foraging an important direction for research. 
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Figure 1.1. Adult (a) male and (b) female hihi. Most individuals in reintroduced populations 

(and all individuals in my main study population on Tiritiri Matangi Island) are color banded as 

nestlings to facilitate individual identification after fledging. (c) Map of the North Island of New 

Zealand showing the locations of all current hihi populations. Dates indicate year of 

establishment via translocation, except for the sole remnant population (Te Hauturu ō Toi). 

Study sites included in this thesis are underlined. Adapted from Thorogood et al. (2013). Photo 

credit: Christopher Stephens. 
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Most knowledge of hihi foraging comes from observations conducted on Te Hauturu ō Toi in 

the 1970s and 1980s. These studies revealed that the hihi diet consists of fruit, nectar, and 

invertebrates, with nectar use peaking at 56–75% of the diet in spring and dropping to 6% in 

autumn (Gravatt 1971; Angehr 1984; Rasch and Craig 1988). While less is known about the 

invertebrates consumed by hihi, they feed on numerous plant species exhibiting a wide range 

of fruit and flower forms (Castro and Robertson 1997; Perrott and Armstrong 2000). In addition 

to carbohydrates, these plants provide many vitamins and antioxidants known to improve hihi 

quality (Thorogood et al. 2013, Walker et al. 2014); therefore, although provisioned sugar water 

may act as a substitute energy source during times of resource scarcity (Chauvenet et al. 2012; 

Thorogood et al. 2013; Doerr et al. 2017), it does not replace the full suite of nutrients provided 

by natural foods. Preliminary results from my own fieldwork on Tiritiri Matangi Island confirm 

seasonal dietary trends. In autumn (my main study season), the species diet consists of 77% 

fruit (from 13 species), 11% nectar (from 10 species), and 12% invertebrates (Figure 1.2). In 

contrast, during the spring breeding season, the diet consists of 3% fruit, 70% nectar, and 27% 

invertebrates and is less diverse, with nectar from a single plant species (Geniostoma 

ligustrifolium) accounting for 65% of all observations (Figure 1.2). Thus, particularly during 

autumn, hihi consume a diverse array of foods: an important prerequisite for individual variation 

to arise. 

 

In addition to their broad species diet, hihi exhibit several other traits expected to drive dietary 

specialization. First, they are sexually dimorphic, with males larger and more brightly colored 

than females (Low et al. 2006), so intrinsic dietary differences could exist between the sexes; 

previously, males have been found to seek out more carotenoid-rich foods than females during 

the molting period, which may be necessary to produce their yellow plumage (Walker et al. 

2014). Other intrinsic differences may occur between age classes. Recently, juveniles and 

adults have been found to differ in their learning ability and foraging strategies (Franks and 

Thorogood 2018), which could affect their diets. Aspects of the social environment and 

ecosystem could also drive dietary differences. Hihi are highly territorial during the breeding 

season (Ewen et al. 2004), so, in heterogeneous environments, food availability may differ 

across territories. Dominance effects could also be particularly salient in hihi, as they exhibit 

intra- and interspecific dominance hierarchies, with the korimako (Anthornis melanura) and tūī 

(Prosthemadera novaeseelandiae) being their closest (and more dominant) competitors (Craig 

et al. 1981; Rasch and Craig 1988). While early researchers theorized that dominance could 

drive intraspecific dietary variation in all three species (Craig et al. 1981), and social behavior 

is an ongoing theme for hihi research (Richardson and Ewen 2016; Franks et al. 2019, 2020), 

the link between diet and sociality remains unexplored.
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Figure 1.2. Seasonal composition of the hihi diet (from foraging observations described in 

Chapter 2 and repeated in Spring 2017). Pie charts show the relative proportional composition 

of fruit (green), nectar (blue), and invertebrates (peach), in (a) autumn and (b) spring. For fruit 

and nectar, each shaded section indicates one plant species; invertebrates were not classified 

to the species level. Photos show three of the top fruit (1: Melicytus ramiflorus, 2: Geniostoma 

ligustrifolium, 3: Cordyline australis) and nectar (1: Melicytus ramiflorus, 2: Vitex lucens, 4: 

Muehlenbeckia australis) sources in autumn; and the top nectar source (Geniostoma 

ligustrifolium) in spring. Photo credit: Ang Wickham. 
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A better understanding of hihi foraging at the individual level could benefit conservation efforts. 

Translocations are the main method of species recovery for hihi (Thorogood et al. 2013), and 

conservation biologists continuously seek ways to improve the viability of reintroduced 

populations. If individuals exhibit dietary specializations and these predict their fitness, 

translocations could selectively match individuals to release sites based on their dietary type, 

with the aim of improving survival and reducing dependence on supplementary feeding. This 

would require insight into the causes of dietary variation and whether moving to a new 

environment will change how individuals forage. Studies of dietary variation could also help 

conservation biologists expand the benefits of translocations beyond hihi. Alongside the 

decline of native avifauna, New Zealand plants have also declined precipitously in recent 

decades (Kelly et al. 2010). As their diet includes nectar from several threatened native plants, 

hihi are thought to be one of the most important endemic pollinators (Craig et al. 1981; S. 

Anderson 2003; Kelly et al. 2006; S. Anderson et al. 2011). Therefore, assessing their 

effectiveness as pollinators and whether individuals vary in their pollination ability could help 

to inform the design of translocations that promote broader ecosystem recovery goals. 

 

In this thesis, I first adapt existing methodology for quantifying dietary variation to gain more 

reliable estimates from small sets of foraging observations. I then test whether dietary variation 

has any measurable consequences for hihi survival. Next, I explore the potential causes of 

dietary variation, focusing on social factors, both through a correlative study and by using 

translocations as experimental tests of changing social conditions. Finally, I use a pollinator 

exclusion experiment to evaluate the role of hihi in pollination, both at the species level and 

individual level. Most of this work was conducted within one hihi population on Tiritiri Matangi 

Island. This is an ideal study site, because all hihi nest in nest boxes, providing an opportunity 

to uniquely color band every chick so individuals can be identified after fledging. This 

population also serves as the main source population for translocations, and I was fortunate 

that my fieldwork coincided with three translocations: one to establish a new population at 

Rotokare Scenic Reserve in 2017, and two others to reinforce the Rotokare and Bushy Park 

Tarapuruhi populations in 2018. These provided unique opportunities to track changes in birds’ 

foraging behaviors as they moved between sites. 
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1.2   HOW CAN WE IMPROVE EXISTING DIETARY METRICS? 
 

 

Before exploring the causes and consequences of dietary variation, a critical step is ensuring 

that our dietary metrics are as reliable as possible. Despite the fact that dietary specialization 

has been measured in a range of taxa (Bolnick et al. 2003; Araújo et al. 2011), current methods 

are not amenable to all study systems. Stomach content (e.g. Bolnick and Paull 2009; Pires et 

al. 2011) and stable isotope analyses (Woo et al. 2008; Sheppard et al. 2018) can provide 

robust dietary estimates but may not be ethically or logistically feasible, particularly in 

threatened species. Observational data may be more practical but often yield small sample 

sizes when species are difficult to sight in the field. The challenge then lies in inferring dietary 

specializations from snapshots of individuals’ foraging behaviors, which can lead to biased 

estimates when individuals vary in the duration of their foraging bouts, the number of times 

they were resighted, or the timing and location of their observations (Bolnick et al. 2002; Araújo 

et al. 2011). Common strategies for reducing these biases include counting only the first food 

eaten in each foraging bout (Araújo et al. 2011), excluding individuals if they fall below an 

arbitrary sample size cutoff (e.g. De León et al. 2012; Szigeti et al. 2018), or restricting analyses 

to individuals with similar ranging patterns (e.g. Tinker et al. 2008). However, all of these 

options for correcting bias reduce datasets that may already be limited, raising the question of 

whether alternative solutions can enhance the reliability of metrics while allowing more data to 

be retained. 

 

In Chapter 2, I explore how the most common dietary specialization metric, the proportional 

similarity index (PSi: Bolnick et al. 2002) can be made more amenable to small observational 

datasets using hihi as a case study. PSi is a relative measure that ranks individuals along a 

specialist-generalist spectrum by comparing their diets to the average population member. 

However, it is vulnerable to overestimating specialization, particularly for individuals with few 

repeated observations (Bolnick et al. 2002; Araújo et al. 2011). Using foraging data I collected 

over two field seasons on Tiritiri Matangi Island, I first explore how the validity, reliability, and 

utility of PSi can be improved by applying a Bayesian adjustment (adapted from Coblentz et al. 

2017), accounting for the spatiotemporal availability of resources, and quantifying uncertainty. 

Then, finding evidence of dietary variation in hihi, I use this improved metric to test for a 

relationship between diet and survival. 
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1.3   HOW DOES DIET LINK TO SOCIAL FACTORS? 
 

 

Among the many factors proposed to shape individuals’ diets (Araújo et al. 2011; Phillips et al. 

2017), social factors are some of the most complex to evaluate in natural settings, because 

they arise from a confluence of intrinsic and extrinsic elements. On the one hand, diet can be 

shaped by an individual’s dominance and inherent sociality: dominants typically outcompete 

subordinates for preferred resources (Cody 1974; Whitten 1983; Gustafsson 1988; Holbrook 

and Schmitt 1992; Sol et al. 2005), and gregarious individuals tend to experience greater 

competition (Sheppard et al. 2018) but also more opportunities to pool information and foraging 

skills than solitary individuals (Morand-Ferron et al. 2016; Ashton et al. 2019). On the other 

hand, extrinsic social pressures imposed on all members of a population can also affect their 

foraging; for instance, while they may be free to act on their inherent resource preferences 

when unconstrained by competition, individuals often need to adjust their diets in dense 

populations or times of resource scarcity (Svanbäck and Bolnick 2005; Araújo et al. 2011; 

Tinker et al. 2012). Social influences on diet can also be challenging to evaluate in the field 

because diet can instead shape sociality (e.g. Beck et al. 2012) or be linked through a 

mediating factor (e.g. Aplin et al. 2014; Serrano-Davies et al. 2017) as part of a behavioral 

syndrome (Toscano et al. 2016). Experiments are needed to determine causality, but 

opportunities to observe dramatic social changes or directly manipulate social conditions are 

rare. 

  

Hihi are an excellent system for exploring the potential links between diet and sociality. Not 

only do they forage socially on natural foods, where direct competitive interactions are relatively 

infrequent, but they also visit crowded supplementary feeding stations, where they encounter 

conspecific and heterospecific competitors. Thus, in Chapter 3, I use these two unique foraging 

contexts to examine whether individuals vary in their sociality while foraging and test whether 

this relates to the dietary specializations measured in Chapter 2. Given some evidence for a 

correlation, I then set out to experimentally test the causality between diet and social factors in 

Chapter 4. Conservation translocations provide a unique opportunity to test this in a natural 

setting, because individuals are typically moved from an established population to a less 

populated area, either to found a new population or reinforce an existing one (Ewen et al. 2012; 

IUCN/SSC 2013). By tracking changes in the diets of hihi as they either remain at their natal 

site or move to a much less competitive site, I measure the effects of competitive release on 

diet at the population, cohort, and individual levels. 
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1.4   HOW DOES FORAGING INFLUENCE THE ECOSYSTEM? 
 

 

While much of the interest in behavioral variation surrounds its consequences for individuals, 

there is increasing recognition that individual variation can scale up to shape broader ecological 

dynamics (Bolnick et al. 2011; Raffard et al. 2017). Foraging behavior seems an ideal 

candidate, as it underlies many important interspecific interactions, including predation, 

competition, and mutualisms (Stephens and Krebs 1986; Perry and Pianka 1997; Stephens et 

al. 2007). Thus, if individuals vary in their diets and foraging patterns, they may also differ in 

their contributions to these ecological functions. For instance, in seed dispersing species, 

individuals can vary in their consumption, dispersal, and digestion of seeds, with implications 

for plant recruitment (Zwolak 2018; Snell et al. 2019). Such links between individual variation 

and ecosystem health are particularly crucial to explore today, given that some of the most 

devastating species declines are those that disrupt ecological functions (Eklöf and Ebenman 

2006; Tylianakis et al. 2008; Brodie et al. 2014). Translocations have historically been aimed 

at species recovery but are increasingly used to achieve broader restoration goals, such as 

when species are reintroduced to ‘rewild’ a landscape, or non-native species are introduced 

as ‘ecological replacements’ for extinct species (Lunt et al. 2013; Seddon et al. 2014; Pettorelli 

et al. 2019; Seddon and Armstrong 2019). On a most basic level, understanding the 

effectiveness of a species at performing its ecological role is essential to ensure these efforts 

achieve their restoration goals. But if individuals also vary in their effectiveness, this could 

provide greater control over the success of these efforts, as individuals could be translocated 

selectively, based on their functional efficiency.  

 

As known pollinators of several native plants (Craig et al. 1981; S. Anderson 2003; Kelly et al. 

2006; S. Anderson et al. 2011), hihi are often translocated with ecosystem recovery in mind 

(Smuts-Kennedy 2009; Frost 2012; Collins et al. 2015), but translocation planning and 

monitoring typically focus on species recovery goals. In Chapter 5, I use a pollinator exclusion 

experiment to quantify differences in pollination outcomes across hihi territories at my main 

study site of Tiritiri Matangi Island and test whether these differences are explained by the 

territory holders’ performance in a novel foraging task. In Chapter 6, I broaden out to the 

species level and compare pollination outcomes across sites with and without hihi. Combined, 

these studies aim to challenge our implicit assumptions that all hihi are equally effective 

pollinators and that adding hihi to a system achieves its intended ecosystem restoration goals. 
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1.5   THESIS OVERVIEW 
 

 

Apart from the General Introduction and Discussion, each chapter in this thesis has been 

prepared as a manuscript so is written in first person plural perspective, with some 

methodology repeated. Appendix 1 contains all supplementary materials referred to in the text, 

as well as details of permits. Chapter 2 has been published in Ecosphere in 2020 (Andrews et 

al. 2020). 

 

Each chapter focuses on one of the questions outlined above, but, together, they combine to 

explore diet’s role in a broader ecological feedback loop, as illustrated in Figure 1.3. If social 

factors shape individuals’ diets and foraging behaviors (Chapters 3 and 4), and these, in turn, 

shape the ecosystem (Chapters 5 and 6), the question then arises of whether the ecosystem 

influences social conditions. While not explicitly explored here, this final link is well-established: 

the abundance and distribution of resources are known to influence competition and social 

interactions (Crook and Gartlan 1966; S. Emlen and Oring 1977; Terborgh and Janson 1986). 

Thus, in the General Discussion, I will reflect on the two links tested in this thesis to evaluate 

diet’s role in the feedback loop, while also considering how this information can be applied to 

conservation. 
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Figure 1.3. Overview of thesis chapters and objectives. Chapter 2 aims to enhance existing 

dietary specialization metrics. Chapters 3 and 4 then use these improved metrics to explore 

links between social factors and dietary variation, with Chapter 4 explicitly testing social effects 

on diet. I then explore the impacts of foraging—first, at the individual level (Chapter 5), and 

then at the species level (Chapter 6)—on the ecosystem. The link between the social 

environment and ecosystem is well-established in the behavioral ecology literature and not 

explicitly tested here. Photo credits: Christopher Stephens (top), Stuart Attwood (bottom left), 

CA (bottom right).  
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Chapter 2 

Enhancing dietary specialization metrics  

in observational studies of wild animal populations 

Caitlin E. Andrews, John G. Ewen, & Rose Thorogood (2020) Ecosphere 11(9):e03255 

 

~ 

 

Studies of intraspecific dietary variation can greatly enrich our view of a species’ niche and role 

in the ecosystem, particularly when species with broad diets are found to be composed of 

generalist and specialist individuals. However, the current framework for quantifying dietary 

specialization leaves certain standards unformalized and is susceptible to overestimating 

specialization when there are few repeated observations per individual, as is often the case in 

observational studies of wild populations. Here, we use the hihi (Notiomystis cincta), a 

threatened New Zealand passerine, as a case study for demonstrating how existing statistical 

tools can be applied to strengthen the dietary specialization framework. First, we assess 

whether the reliability of common dietary measures can be improved through Bayesian 

adjustments and by using rarefaction to compare uncertainty levels of metrics calculated from 

different sample sizes. As diet links closely to environmental factors, we also demonstrate how 

adding phenological data and habitat assessments to standard protocols can help validate our 

dietary measures as evidence for resource selection rather than random foraging. Finally, in 

light of our finding that diet predicts survival in hihi, we discuss the utility of dietary specialization 

for elucidating broader behavioral syndromes. 
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2.1   INTRODUCTION 
 

 

Among behavioral ecologists, there is a growing interest in measuring behavioral variation 

within species (Sih et al. 2004; Dall et al. 2012; Brommer and Class 2017). Diet is one trait that 

has been found to vary individually in many taxa, enhancing our view of species’ niches and 

roles in the ecosystem (Bolnick et al. 2003; Araújo et al. 2011; Troxell-Smith and Mella 2017). 

Most studies quantify dietary variation using the proportional similarity index (PSi: Bolnick et al. 

2002), which measures individuals’ dietary similarity to the population as a whole. Specialists 

on a single food receive a PSi equal to that food’s proportional representation in the population 

diet; meanwhile, extreme generalists consume all foods in the same proportions as the 

population as a whole and receive a PSi of 1. However, even within this widely applied 

framework, certain standards remain unformalized: namely, (1) how many observations per 

individual are needed to achieve reliable measures of diet; (2) how to ensure the validity of 

these metrics as evidence for dietary preferences; and (3) how to account for measurement 

uncertainty when evaluating diet’s utility as an ecologically informative trait. Addressing these 

limitations will help to ensure that our shared dietary framework yields comparable measures 

across studies. 

 

Advocates of PSi caution that it can overestimate specialization in individuals with few repeated 

observations (Bolnick et al. 2002; Araújo et al. 2011). But without a formal criterion, sample 

sizes vary widely throughout the literature. Often, the largest datasets come from studies 

conducted in captivity or using advanced technologies such as stable isotope analysis or 

remote tracking. For example, Tinker et al. (2012) used radio telemetry to track southern sea 

otters (Enhydra lutris nereis) over six years, recording more than 60,000 feeding dives across 

74 individuals. However, these methods are not suitable for all species. Direct observation 

remains a valuable method for collecting detailed foraging records but often yields small 

sample sizes in species that are challenging to observe in the field. Nevertheless, measuring 

specialization could be important even when these data are difficult to collect, as dietary 

variation can be used to predict a population’s viability (Bolnick et al. 2003; Colles et al. 2009; 

Clavel et al. 2011) and model its effects on ecosystem health (Bolnick et al. 2011; Raffard et 

al. 2017). 

 

These benefits make it worth asking whether we can quantify or even correct for uncertainty in 

dietary estimates derived from small sample sizes. Currently, some studies exclude individuals 

falling below an arbitrary sample size cutoff (e.g. 6 in De León et al. 2012; 8 in Szigeti et al. 

2018), but this can significantly reduce statistical power, particularly in field studies where 
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sample sizes may already be limited (Garamszegi 2016). Existing statistical tools may enable 

us to retain more individuals. Coblentz et al. (2017) propose a Bayesian hierarchical method 

that shifts individuals’ PSis toward the population mean by an amount inversely proportional to 

their sample size; this helps to account for the uncertainty in inferring ‘true’ diets from a small 

number of observations. To measure the reliability of these ‘Bayesian PSis,’ they suggest 

recalculating the PSis of the most frequently observed individuals across a range of simulated 

sample sizes. Using this rarefaction procedure, Coblentz et al. demonstrate that the Bayesian 

method estimates diet reliably even at their lowest simulated sample size of five foods, while 

‘unadjusted’ PSis consistently overestimate specialization below 50 foods. However, this 

reliability test was used only on simulated data. Applying it to real-world data is an important 

next step toward integrating Bayesian methods into the dietary specialization framework. 

  

Once we are confident in the reliability of our behavioral measure, we still need to ensure that 

it truly captures our trait of interest (i.e. is ‘valid’: Martin and Bateson 1993). This is especially 

key for traits like diet that are closely linked to extrinsic factors. PSis are often interpreted as 

reflecting individuals’ intrinsic preferences when dietary variation could also arise from unequal 

access to resources (Bolnick et al. 2003; Araújo et al. 2011). In heterogeneous environments, 

individuals may be exposed to different resources through their ranging patterns (Buskirk and 

Millspaugh 2006; Coblentz 2020; Cunningham et al. 2018). This effect can be compounded by 

phenological changes. For example, Szigeti et al. (2018) found that pairs of Apollo butterflies 

(Parnassius mnemosyne) had more similar diets the closer in time they were observed to one 

another, suggesting that phenology at the time of observation can significantly influence diet 

scores. Yet, studies of dietary variation rarely include detailed habitat or phenology 

assessments. In a review of 87 resource selection studies, only 26% measured resource 

availability at the individual level (Thomas and Taylor 2006). These data could be important for 

validating our dietary metrics, allowing us to determine whether individuals have dietary 

preferences or are merely sampling foods randomly in proportion to their availability. 

  

Finally, a crucial step in placing dietary variation in a wider context is evaluating its utility as an 

ecologically informative trait. This could be particularly beneficial for species of conservation 

concern. Many threats are so urgent that even traits predicting fitness in the short-term could 

help conservation biologists tailor their management interventions to individuals’ needs (see 

Arcese 2003 for an opposing view). Because diet underlies some of the most fundamental 

ecological interactions, variation can also scale up to affect other species through competition, 

predation, and mutualisms (Bolnick et al. 2011; Dupont et al. 2011; Dall et al. 2012; Phillips et 

al. 2017; Raffard et al. 2017); thus, diet studies could also inform strategies for ecosystem 

restoration. However, just as studies quantifying dietary variation should account for 
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uncertainty, so, too, should studies examining the potential consequences of diet. This could 

be especially important in survival analyses, as factors driving uncertainty in dietary metrics 

may be confounded with individual health. For example, diseased individuals may be easier or 

more difficult to observe depending on how their illness affects their mobility or 

conspicuousness. As small sample sizes can lead to overestimates of specialization (Bolnick 

et al. 2002; Araújo et al. 2011), this could lead to a false correlation between diet and survival 

if uncertainty is not accounted for. 

 

In this study, we use the hihi (Notiomystis cincta), a threatened passerine endemic to New 

Zealand, as a case study to demonstrate how some of the current limitations to the dietary 

specialization framework can be addressed using existing analytical tools. Hihi have a broad 

species-level diet including fruit, nectar, and invertebrates (Rasch and Craig 1988), but early 

researchers hypothesized that individual diets may vary (Craig 1985), and there is some 

evidence that the sexes exhibit seasonal differences in resource use (Walker et al. 2014). Hihi 

also meet many criteria predicted to drive specialization (Bolnick et al. 2003; Araújo et al. 2011): 

their physiological needs change with age, they exhibit inter- and intraspecific dominance 

hierarchies, and their territories vary in quality (Thorogood et al. 2013). Because of their 

conservation status, hihi are closely monitored, making it possible to study individual behavioral 

differences and track long-term survival. Here, we begin by showing that individuals vary in 

their diets. We then go on to test (1) what dietary metrics and sample sizes yield reliable 

estimates; (2) whether dietary differences reflect individual preferences; and (3) whether diet 

predicts survival. 

 

 

 

2.2   METHODS 
 

 

Study site and population 

 

Tiritiri Matangi Island (36°36'00.7"S 174°53'21.7"E) is a 220-hectare nature reserve located 

3.5 km off the coast of New Zealand’s North Island. After being cleared for pastureland and 

farmed for over a century, the island was extensively replanted in the 1980s. Today, the 

vegetation consists of regenerating native bush with small patches of remnant mature forest. 

The island has been free of introduced mammalian predators since 1993, and hihi were 

reintroduced from Te Hauturu ō Toi (Little Barrier Island Nature Reserve) two years later. 

During our study, the population numbered ~170 adults. Every breeding individual nests in an 

intensively monitored nest box, so all chicks are of known age. Individuals are classed as 



Chapter 2: Enhancing dietary specialization metrics 

 
18 

juveniles after fledging in summer until they become adults in the following spring breeding 

season. At 21-days old, each nestling is given a unique combination of colored leg bands to 

facilitate individual identification after fledging, and sex is determined based on early signs of 

sexually dimorphic plumage (C. Smith et al. 2015). While the population’s productivity is 

enhanced by the provision of sugar water (D. Armstrong and Ewen 2001), hihi preferentially 

select natural foods when they are sufficiently available. Therefore, we chose to focus on 

natural foraging behaviors for the purposes of this study. 

 

 

Foraging observations 

 

Foraging observations were conducted by a single observer (CA) from 24th January–18th March 

2017 (215 hours) and 4th February–21st March 2018 (230 hours), coinciding with the end of the 

hihi breeding season. The observer walked transects which were evenly distributed across the 

island (Figure 2.1a) and included areas of high hihi presence (14 km; walked three times 

weekly) and low hihi presence (6 km; walked once weekly), as determined from regular 

population monitoring. Morning (c. 8:00–12:30) and afternoon (c. 12:30–16:30) sessions were 

balanced for each transect. 
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Figure 2.1. (a) Contour map of Tiritiri Matangi Island (from data obtained and modified from 

Land Information New Zealand Data Service on 1 July 2019) with foraging transects marked 

with blue lines (solid = high hihi presence; dotted = low hihi presence). Boxes indicate the 

locations of habitat assessment plots, with numbers corresponding to the habitat types in 

Supplementary Table 2.1. Hihi photos show examples of (b) a female foraging on houpara 

(Pseudopanax lessonii) fruit (photo by Martin Sanders), (c) a male foraging on hangehange 

(Geniostoma ligustrifolium) nectar (photo by Martin Sanders), and (d) a juvenile eating a cicada 

(Hemiptera: Cicadidae; photo by Steve Attwood). 
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During each session, the observer walked at a constant rate until a hihi was seen or heard 

within 10 meters of the transect. If the bird could be located within 10 minutes, the observer 

noted the individual’s band combination, recorded the local habitat type (from eight predefined, 

visually-distinct categories; Supplementary Table 2.1), and began a focal follow of the 

individual. Feeding events were recorded ad libitum, with each food classified as a fruit, nectar, 

or invertebrate (Figure 2.1b–d); while plant foods were identified to species level, invertebrates 

could not be classified more precisely because of their small size and the distance between 

the observer and focal birds. When multiple birds were in view, the group was scanned to 

capture as many foods eaten as possible. Focal individuals were abandoned if they moved too 

quickly to follow through the dense understory, or if they became inactive (preening or resting) 

or moved out of sight for five minutes. 

 

 

Habitat assessments and phenology 

 

To assess the abundance of each known hihi food plant expected to have fruits or flowers 

available during the study period (determined from Perrott and Armstrong 2000 and personal 

communications with site managers; Supplementary Table 2.2), we conducted habitat 

assessments and phenological surveys. For each of the eight habitat types, we selected four 

representative plots distributed as evenly across the island as possible (Figure 2.1a). In each 

plot, we designated five 25 m sampling lines radiating evenly from a central point. Every 5 m 

along each line, we counted and identified (to species level) all plants of reproductive size 

within a 1 m radius. This resulted in 25 sampling points per plot, or 100 per habitat type. The 

counts for each species were then summed across these 100 sampling points to arrive at a 

measure of abundance for each food plant within each habitat type. Next, 15 specimens (or 

fewer if unavailable) were selected for each food plant species and as evenly distributed along 

the foraging transects as possible. Once every two weeks, we estimated the numbers of fruits 

and flowers on each plant (following the methods of Perrott and Armstrong 2000) and averaged 

these values across all monitored specimens of that species. We multiplied this number by our 

species counts within each habitat type to calculate an absolute abundance for each food item 

in each habitat type for a given two-week period. We converted this to a relative abundance by 

dividing by the total number of food items of all types available in that habitat type and time 

period.  
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Population surveys 

 

Ongoing management of the Tiritiri Matangi hihi population includes biannual, constant-effort 

(about 40 hours in five days) surveys in September and February, in which an experienced 

observer attempts to sight as many individuals as possible. For the purposes of this study, two 

additional surveys of about 40 hours each were completed in April and May. 

 

 

Data analysis 

 

All analyses were conducted in R (version 3.5.1; R Core Team 2018) unless noted otherwise. 

When means are reported, they are accompanied by their standard errors. 

 

Foraging Variation 
 

Within each season, we tallied foods eaten by type and calculated two dietary specialization 

metrics for each bird we observed. First, we used the R package RInSp (version 1.2.3; 

Zaccarelli et al. 2013) to calculate a proportional similarity index (‘unadjusted PSi’) for each 

individual (Bolnick et al. 2002). When calculating the population diet, we avoided giving greater 

weight to birds that were observed eating more foods by using the averaging method proposed 

by Zaccarelli et al. (2013). This method first calculates each individual’s proportional use of the 

various food types, then averages these proportions across all individuals to arrive at the 

population diet. Each individual’s diet is then compared to the population diet to assign the 

individual a PSi, calculated as: 

1 − 0.5 ∑ |𝑝𝑖𝑗 − 𝑞𝑗|𝑗 , 

where 𝑝𝑖𝑗 is the proportional use of food type j by individual i and 𝑞𝑗 is the proportional use of 

food type j by the average population member (Bolnick et al. 2002). We also calculated an 

adjusted ‘Bayesian PSi’ for each individual following the methods of Coblentz et al. (2017). We 

modified this method to match the population diet averaging technique described above, as 

the original version was less suited to populations with highly variable sample sizes per 

individual (Zaccarelli et al. 2013). 

 

To assess the degree of variation in the population, we calculated the means and standard 

errors for unadjusted and Bayesian PSi scores in each year. The RInSp package tests the 

significance of specialization by comparing these means to 10,000 means calculated through 

a Monte Carlo resampling procedure in which all foods eaten by the population are randomly 

redistributed across individuals. We also compared PSi distributions between years and 
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methods using Student’s t-tests where distributions were normal and variances were equal, 

and Welch’s t-tests where distributions were normal but variances unequal. 

 

Because our classification of invertebrates as a single food type could affect the accuracy of 

our dietary estimates, we recalculated Bayesian PSis using only plant foods for individuals that 

ate some (but not only) invertebrates. These were highly correlated (r = 0.94, P < 0.001) to the 

PSis including invertebrates. Combined with the fact that invertebrates comprised only a small 

portion of foods eaten in each year (about 12%; result not presented), this suggested that 

retaining individuals with invertebrates in their diets would not affect further analyses. However, 

because we could not check this correlation for individuals that only ate invertebrates, we 

excluded these individuals (n2017 = 11, n2018 = 19) from all remaining analyses. 

 

Reliability 
 

To determine how many foods are needed to achieve reliable measures of diet, we carried out 

a rarefaction procedure (similarly to Coblentz et al. 2017) with the 47 birds from our 2018 

dataset that had been observed eating at least 20 food items (we did not use 2017 data, as 

only one bird met this criterion). For every 𝒙 ≤ 20, we randomly resampled 𝒙 foods from each 

bird’s observed diet and used these simulated diets to recalculate their unadjusted PSis. We 

chose not to update the population diet in these recalculations, because we made the 

simplifying assumption that our observed population diet was an accurate representation of 

the true population diet. We repeated the resampling procedure 100 times, then conducted a 

paired t-test comparing each individual’s mean simulated PSi with their original PSi. We 

repeated the entire rarefaction procedure using the Bayesian PSi method. 

 

We assessed the reliability of our dietary measures using two criteria. For Criterion 1, we 

examined the P-values from the paired t-tests and accepted sample sizes yielding simulated 

PSis that, on average, did not differ significantly (P ≥ 0.05) from the original PSis. However, an 

average difference of zero says nothing about the magnitude of these differences. Therefore, 

for Criterion 2, we quantified the magnitude percent difference between each individual’s 

simulated PSi and original PSi, calculated as: 

|
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑃𝑆𝑖 −  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑖

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑖
| × 100 

and calculated the mean across individuals for each simulated sample size. To reduce the 

likelihood that individuals’ original sample sizes would significantly impact their PSi rank relative 

to other individuals, we a priori designated a maximum acceptable threshold of 18.15%, which 

represented half of the average between-individual difference in original PSi scores (36.30%; 
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result not presented). Thus, all simulated sample sizes with a mean magnitude percent 

difference no greater than 18.15% were considered to have satisfied Criterion 2. After applying 

both reliability criteria, we repeated our assessment of population-level specialization in each 

year as before and compared our new mean PSi estimates to our previous estimates using t-

tests. 

 

Validity 
 

We investigated whether the observed dietary variation was a reflection of individual 

preferences or random sampling of available foods. In other words, birds could vary in their 

visitation rates to different habitat types but indiscriminately eat the foods they encounter in 

them. If so, we would expect birds’ diets to match the resource availability that they uniquely 

experience based on their use of different habitats and the phenology at the time they visit. 

 

Because phenology data were only available for fruits and flowers, we excluded invertebrates 

from these analyses. From the remaining observations, we noted the habitat type that each 

feeding event occurred in. For each bird that met our reliability cutoff (five foods eaten; see 

Results), we tallied their use of each habitat type within each two-week period. We multiplied 

these values by the proportional availability of each food in each habitat type during that period 

(from our phenology data) and summed across all periods to arrive at an experienced 

abundance of each food item for each bird. This represented their expected diets if they were 

randomly eating foods in proportion to their availability. Note, any food types that were not 

detected in phenology assessments during a two-week period were given an arbitrarily low 

proportional availability (10−6) to avoid calculation errors due to values of 0. 

 

In the adehabitatHS package (version 0.3.14; Calenge 2006), the compana function uses a 

Wilks’ lambda to assess whether a population exhibits habitat selection. Here, we adapted it 

for resource selection by comparing individuals’ observed diets to their expected diets if they 

were foraging randomly. As our dataset follows the structure of a Design III resource selection 

model (i.e. resource use and availability measured at the individual level; Manly et al. 1993), 

we also used the widesIII function as an additional, χ²-based measure of population-wide 

resource selection and a test for resource selection at the individual level. 

 

Utility 
 

We tested whether dietary specialization could be used to predict survival in hihi. As dominance 

of different age-sex classes may influence the effects of dietary specialization on survival 

(Whitten 1983; Langen and Rabenold 1994; Dennehy 2001), we conducted a preliminary 
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analysis (using Akaike information criterion model selection: Symonds and Moussalli 2011; 

Mazerolle 2017) to assess whether PSi varied by age or sex. As we found only weak evidence 

(a model containing an interaction between age and sex was within 2 AICc units of the null 

model; Supplementary Table 2.3), we did not consider age or sex in any further analyses. 

For each bird that met our reliability cutoff (n2017 = 25; n2018 = 82) and that remained in the 

population following conservation translocations to other populations (21 birds observed were 

removed in 2017, 33 in 2018; Franks et al. 2019), we used our population survey data to 

construct an encounter history. We analyzed the two years separately, with any birds seen in 

both years appearing as two separate entries: one associated with their 2017 PSi and one 

associated with their 2018 PSi. Birds were noted present in February of the year they were 

observed and either present (1) or absent (0) in the following April, May, September, and 

February surveys. 

 

Using a live-recaptures model (Cormack-Jolly Seber, CJS) in Program MARK (version 6.2; 

White and Burnham 1999), we tested the dietary and time dependence of monthly survival 

probability (ϕ) (for each inter-survey interval) and resighting probability (ρ) (for each sampling 

occasion). Our global model explaining individuals’ encounter histories was ϕ(PSi  time)ρ(PSi 

 time), which we compared to successively reduced models using Akaike information criterion 

(AICc) values. AICcs for the 2017 model selection were corrected for a small degree of 

overdispersion (ĉ = 1.10) using quasi-likelihood AICcs (QAICcs). Goodness-of-fit testing 

indicated underdispersion (ĉ < 1) for the 2018 model selection, so we did not apply any 

corrections, following common practice for Program MARK. When two or more models 

emerged as equally well-supported ((Q)AICc < 2), we used model averaging to examine the 

relationship between PSi and monthly survival during the first three inter-survey intervals; 

otherwise, we extracted estimates from the single top model. Using these monthly estimates, 

we calculated seven-month (February–September) survival estimates for each study year. 

95% confidence intervals (restricted between 0 and 1) were derived in R by applying the delta 

method (Powell 2007) to the confidence intervals of the monthly estimates using the msm 

package (Jackson 2011, version 1.6.2). 

 

To account for the uncertainty inherent to the Bayesian PSi method, we repeated our survival 

analyses using modified PSi scores. Each PSi was randomly increased or decreased by a 

percentage within the 95% confidence interval of the mean magnitude percent difference for 

the individual’s sample size of foods eaten (see Results). For individuals with sample sizes 

greater than 20 (the maximum tested in our rarefaction procedure), the 95% confidence interval 
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for a sample size of 20 was used. This procedure represents a more conservative estimate of 

the relationship between survival and PSi. 

 

 

 

2.3   RESULTS 
 

 

Foraging variation 

 

In 2017, 127 individuals (45 females, 82 males; 75 juveniles, 52 adults) were observed eating 

538 food items of 15 types (Supplementary Table 2.2) over 364 discrete encounters (totaling 

22 hours). In 2018, 164 hihi (69 females, 95 males; 84 juveniles, 80 adults) were observed 

eating 2,362 food items of 23 types (Supplementary Table 2.2) over 838 discrete encounters 

(totaling 66 hours). The number of foods eaten per individual varied widely in each year (1–30 

in 2017, 1–88 in 2018), with most falling toward the lower ends of these distributions (x̄2017 = 

4.24 ± 0.41; x̄2018 = 14.40 ± 1.11; Figure 2.2). The number of discrete encounters per bird was 

also highly variable, ranging from 1–14 in 2017 (x̄ = 2.87 ± 0.20) and 1–17 in 2018 (x̄ = 5.11 ± 

0.32). 

 

 

 

 

Figure 2.2. Distribution of the number of foods eaten per individual in (a) 2017 and (b) 2018. 
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In both years, dietary variation differed significantly from what would be expected by chance 

(Monte Carlo P < 0.001), regardless of the method used to calculate PSi. Individuals were 

somewhat specialized (PSi < 0.5) on average, with a mean unadjusted PSi of 0.22 ± 0.01 in 

2017 and 0.30 ± 0.01 in 2018, and mean Bayesian PSi of 0.45 ± 0.01 in 2017 and 0.42 ± 0.09 

in 2018 (Figure 2.3). The population was significantly more specialized in 2017 than in 2018 

whether unadjusted PSis (Student’s t-test: t = −4.64, df = 289, P < 0.001) or Bayesian PSis 

(Welch’s t-test: t = 3.17, df = 255.49, P = 0.002) were used. The Bayesian method consistently 

yielded less specialized estimates (higher PSis) than the unadjusted method in both 2017 

(Welch’s t-test: t = 17.22, df = 168.76, P < 0.001) and 2018 (Welch’s t-test: t = 8.02, df = 301.38, 

P < 0.001). 

 

 

 

 

 

Figure 2.3. Distribution of dietary specialization scores in 2017 and 2018 calculated as (a) 

unadjusted PSis and (b) Bayesian PSis. In (b), distributions show PSis before (black bars) and 

after (gray bars) the reliable sample size cutoff of five foods eaten was applied. 
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Reliability 

 

The unadjusted PSi method consistently overestimated specialization (underestimated PSi) at 

all simulated sample sizes (x̄simulated < x̄original, P < 0.05 for all paired t-tests; Figure 2.4a). In 

contrast, while the Bayesian method underestimated the range of PSis in the population at low 

sample sizes, it satisfied Criterion 1 at all sample sizes by accurately estimating the population 

mean (P > 0.05 for all paired t-tests; Figure 2.4b). For both methods, sample sizes of five or 

more foods satisfied Criterion 2 by yielding PSi scores that were on average less than 18.15% 

different from their corresponding original PSis (Figure 2.5). However, as only the Bayesian 

method met Criterion 1, we applied a cutoff of five foods eaten and used only Bayesian PSis 

in further analyses. Thirty-seven individuals met the reliability cutoff in 2017 and 114 individuals 

in 2018. Applying this cutoff did not change the mean Bayesian PSi significantly in 2017 

(Welch’s t-test: t = −0.78, df = 47.72, P = 0.44) or 2018 (Student’s t-test: t = 0.04, df = 276, P 

= 0.97; Figure 2.3b), but it raised the mean number of discrete encounters per bird to 4.78 ± 

0.46 in 2017 and 6.13 ± 0.34 in 2018. 
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Figure 2.5. Mean magnitude percent difference between original PSis and (a) unadjusted PSis 

or (b) Bayesian PSis at each simulated sample size (foods eaten per individual). Dotted 

horizontal line represents our designated acceptable difference of 18.15%. 
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Validity 

 

Both methods for quantifying resource selection found evidence for significant resource 

selection in 2017 (Wilks’ λ = 0.0056, P = 0.002; χ² = 1082, df = 73, P < 0.001) and 2018 (Wilks’ 

λ = 0.0025, P = 0.002; χ² = 5810, df = 173, P < 0.001). Resource selection was evident in 95% 

of individuals in 2017 (35/37) and 96% in 2018 (110/114), while the remaining individuals 

appeared to be randomly eating foods in proportion to their availability. 

 

 

Utility 

 

In both study years, the survival analyses indicated a possible relationship between diet and 

monthly survival (ϕ). In 2017, this relationship was weak. Our initial model selection did not find 

PSi to be a significant predictor of survival (Supplementary Table 2.4a), and all individuals were 

predicted to have a 71% (95% CI = 55%–86%) chance of survival over a seven-month period, 

regardless of diet (Figure 2.6a). However, when rerun with uncertainty-corrected PSis, a model 

containing PSi appeared in the top model set alongside four others (Supplementary Table 

2.4b). After averaging these models, seven-month survival ranged from 69% (95% CI = 25%–

100%) for the most specialist individuals (PSi = 0.28) to 79% (95% CI = 57%–100%) for the 

most generalist individuals (PSi = 0.65), but uncertainty was high (Figure 2.6a). 

 

In 2018, a larger dataset enabled us to estimate survival with more certainty and for a wider 

range of PSis. A strong relationship between PSi and survival emerged, as the two top models 

both included PSi in the survival term (Supplementary Table 2.5a). Seven-month survival 

ranged from 48% (95% CI = 14%–83%) in the most specialist individuals (PSi = 0.13) to 98% 

(95% CI = 93%–100%) in the most generalist individuals (PSi = 0.67) and began to plateau as 

PSi approached 0.70 (Figure 2.6b). A second model selection using uncertainty-corrected PSis 

identified the same two top models (Supplementary Table 2.5b) and found a similar range in 

seven-month survival probabilities, from 49% (95% CI = 13%–85%) in the most specialist 

individuals (PSi = 0.11) to 98% (95% CI = 93%–100%) in the most generalist individuals (PSi 

= 0.68; Figure 2.6b).  
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Figure 2.6. Estimates of seven-month (February–September) survival probability as a function 

of dietary specialization (PSi) in (a) 2017 and (b) 2018. Solid black curves are estimates derived 

from our Bayesian PSis. Dashed gray curves are more conservative estimates derived from 

Bayesian PSis that were randomly corrected to account for the uncertainty inherent to each 

individual’s sample size of foods eaten. 95% confidence intervals (restricted between 0 and 1) 

are shaded in gray. 
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2.4   DISCUSSION 
 

 

While diet has historically been treated as uniform within species, many populations have now 

been found to contain a diverse array of specialists and generalists (Bolnick et al. 2003; Araújo 

et al. 2011). In our study, we demonstrated how the current dietary specialization framework 

could be enhanced and made more amenable to a range of sample sizes using the hihi, a 

threatened New Zealand passerine, as a case study. We first demonstrated that individual hihi 

vary in their use of foods within the broad species diet. Next, by applying a Bayesian adjustment 

(adapted from Coblentz et al. 2017) to the proportional similarity index (PSi), we improved the 

reliability of our dietary estimates, particularly for individuals with the fewest repeated 

observations. We also showed that dietary variation did not arise from individuals randomly 

selecting foods in proportion to their availability, ensuring the validity of PSi as a measure of 

individual preferences. Finally, a rarefaction procedure helped us decide which individuals to 

exclude from further analyses while providing a measure of uncertainty for the PSis we 

retained. Even after accounting for this uncertainty, we found that diet predicted survival in at 

least one of our study years, highlighting the utility of diet as an ecologically informative trait. 

 

Having a common dietary metric is crucial if we are to compare results across studies. Over 

the past two decades, PSi has become the most widely used metric, but it may be vulnerable 

to overestimating specialization when sample sizes are small (Araújo et al. 2011). Our 

rarefaction procedure supported these concerns. However, a Bayesian adjustment enabled us 

to correct this error and expand upon the findings of Coblentz et al. (2017) by showing that this 

method can estimate a population’s mean PSi reliably even below sample sizes of five foods. 

While judging reliability is still somewhat subjective, there are two ways that this method 

improves upon the current practice of using an arbitrary sample size cutoff (or none at all). 

First, to maximize objectivity, an uncertainty threshold can be set a priori, informed by the 

variability in one’s PSi data. Second, the procedure enables uncertainty to be quantified and 

considered in further work, as we did in our survival analyses. Thus, future studies could benefit 

from using Bayesian PSis, but they will need to exercise caution when comparing results to 

previous studies. In our case, comparing our mean Bayesian PSis (0.42–0.45) to the mean of 

0.47 reported in a review of 142 studies (Araújo et al. 2011) may have led us to conclude that 

hihi are similarly specialized to other taxa. However, if the Bayesian adjustment were applied 

consistently, the PSis in these past studies could shift higher and hihi could lie at the specialist 

end of the spectrum. 
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Despite the benefits of the Bayesian method, it does have limitations which may be important 

to consider depending on the aims of a study. Studies vary widely in their reasons for exploring 

dietary variation. Some calculate individual-level specialization but focus their discussion on 

population or species means; for example, Araújo et al. (2007) compared mean PSi values 

across four Brazilian frog species, finding that individuals are more specialized in species with 

broader diets. Other studies use dietary differences among individuals to explain variation in 

other traits; for example, in the spectacled salamander (Salamandrina perspicillata), Costa et 

al. (2015) showed that specialists exhibit better body condition than generalists. In our 

analyses, the Bayesian method always estimated the population’s mean PSi accurately but 

tended to underestimate the range of PSis in the population at low sample sizes. Therefore, 

while Bayesian PSis may be well-suited to questions relating to higher ecological levels (e.g. 

populations or species), studies attempting to explain individual differences may need to 

consider that these differences could be underestimated. Nevertheless, the accuracy with 

which the Bayesian method calculates population means still makes it the most useful method 

currently available. 

 

Regardless of the ecological level they examine, many studies interpret PSis as indicators of 

intrinsic dietary preferences without controlling for extrinsic factors such as environmental 

heterogeneity (Bolnick et al. 2003; Coblentz 2020). Some circumvent the need for this control 

by limiting their analyses to certain individuals. For example, Lowrey et al. (2016) focused their 

analysis of cougar (Puma concolor) diets on seven individuals with significantly overlapping 

home ranges so that resource availability could be assumed to be equal for all. Similarly, in a 

comparison of two sea otter (Enhydra lutris nereis) populations, Tinker et al. (2008) selected 

focal individuals so that each group had approximately equal spatial concurrence; this helped 

to ensure that an equal amount of dietary variation could be attributed to environmental 

variability in each population. In both examples, the number of individuals had to be limited to 

control for environmental heterogeneity. While phenology and habitat assessments can be 

time-consuming, adding these data (when feasible) could provide greater control over 

environmental effects and allow more individuals to be examined. In our study, we were able 

to demonstrate that very few hihi foraged randomly, and instead, most seemed to select foods 

based on individual preferences. Because our method provides a measure of the relative 

strengths of these preferences, it could enable us to explore the factors driving individual 

selectivity in future work. 

 

Linking behavioral variation to fitness can provide key insights into ecological and evolutionary 

dynamics (Dingemanse and Réale 2005; B. Smith and Blumstein 2008). In at least one study 

year, we found that generalists survived significantly better than specialists over a seven-month 
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period including winter, a resource-limited time for hihi (D. Armstrong and Ewen 2001) and 

many other animals. These results align with a broader trend at the species level, where 

generalist species tend to survive better than specialists in the face of climate change (Clavel 

et al. 2011; but see Colles et al. 2009). Generalization in other traits, such as habitat use, has 

also been shown to give species an advantage in anthropogenically-disturbed landscapes 

(Börschig et al. 2013; Devictor et al. 2008). The most common explanation for this ‘generalist 

advantage’ is that generalists are better equipped than specialists to respond flexibly to 

changing resource availabilities (Beever et al. 2017). However, it is difficult to determine the 

direction of causality between diet and survival based on an observational study like ours. In 

the case of hihi, a generalist diet could increase one’s chance of survival, or individuals could 

shift toward more specialist diets when they are old or diseased, as they may be less able to 

forage efficiently or compete successfully for preferred resources. Similarly, in the wandering 

albatross (Diomedea exulans), foraging behavior is considered a key indicator of senescence; 

after a foraging trip, older males exhibit increased corticosterone, likely reflective of decreased 

foraging efficiency (Lecomte et al. 2010). 

 

Alternatively, diet and survival may not be related causally but could be linked as part of a 

broader behavioral syndrome (Réale et al. 2007; Sih et al. 2012; Raffard et al. 2017). Dietary 

specialization could have wide-reaching effects by shaping an individual’s developmental 

trajectory (Dall et al. 2012), predation risk (Toscano et al. 2016), or mate choice (Merrick and 

Koprowski 2017). Réale et al. (2007) also suggest that foraging behavior may be one of several 

component traits within a broader syndrome of boldness; instead of directly impacting fitness 

itself, foraging could act as an indicator of an individual’s boldness, which influences fitness via 

effects on dominance, dispersal, or antipredator behaviors (see Figure 2 in Réale et al. 2007). 

In fact, Richardson et al. (2019) recently found that bold hihi are more likely to survive to 

adulthood than shy hihi, suggesting that boldness may confer an advantage when individuals 

compete to establish territories or exploit risky food sources. To better understand the 

mechanisms linking diet to fitness, future work should examine possible correlations between 

diet and other traits, such as boldness, and examine whether generalists survive better in all 

environments. 

 

To conclude, by applying statistical enhancements to the existing dietary specialization 

framework, we have outlined a path forward that could enable more taxa and methodologies 

to be assessed with greater accuracy. We have also identified a new case of dietary variation 

within a generalist species—adding to the growing literature on this phenomenon—and found 

evidence that dietary specialization can be used to predict survival. This highlights the value of 
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dietary specialization as an ecologically meaningful trait that is worthy of greater consideration 

in the broader literature on behavioral variation.



 

 
36 

 

Chapter 3 

Foraging with friends and foes: Individual dietary variation 

predicts sociality in a threatened passerine 

 

~ 

 

Individuals within species often vary in their diets along a specialist-generalist spectrum, raising 

questions about why they pursue different diets and what consequences these specializations 

have for them. While many studies have related diet to intrinsic factors or the spatiotemporal 

availability of resources, linking diet to variation in other behavioral traits could provide further 

insight into its causes and consequences. Here, we tested for possible links between diet and 

sociality in the hihi (Notiomystis cincta), a threatened New Zealand passerine in which 

individuals have previously been found to vary in their diets and social tendencies. We found 

that small-bodied and presumably subordinate individuals were more likely to forage socially if 

they were generalists rather than specialists, with no significant relationship in larger (likely 

dominant) birds. Given past evidence that generalist hihi survive better than specialists, this 

result could suggest that foraging in a group helps subordinates obtain higher-quality diets than 

they could obtain alone, or that subordinates with better diets are more capable of enduring 

the competitive costs of group living. However, the relationship between diet and sociality was 

absent in a more competitive foraging context, with no evidence that diet predicts an 

individual’s gregariousness or the strength of its social bonds at crowded supplementary 

feeding stations. Thus, the relationship between diet and sociality appears to be mediated by 

dominance, but its context-dependence warrants further investigation to determine whether it 

constitutes a behavioral syndrome with broader consequences for the individual.  
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3.1   INTRODUCTION 
 

 

In recent years, intraspecific dietary variation has gained recognition as a crucial factor 

underpinning species’ niches and ecological interactions (Bolnick et al. 2011; Dall et al. 2012; 

Raffard et al. 2017). The refinement of methods for quantifying dietary specialization (Bolnick 

et al. 2002; Coblentz et al. 2017; Chapter 2) has led to the discovery that many species contain 

both specialist and generalist foragers (Bolnick et al. 2003; Araújo et al. 2011). However, as 

more cases of dietary specialization emerge, questions arise about whether this variation 

reflects statistical noise or ecologically-based differences. Some studies have related 

individuals’ diets to intrinsic factors, such as their age, sex, and morphology (e.g. Rothman et 

al. 2008; Garduño-Paz and Adams 2010; Nsi Akoue et al. 2017; Szigeti et al. 2020), or to 

aspects of the ecosystem, such as the spatiotemporal distribution of resources (e.g. Buskirk 

and Millspaugh 2006; Pagani-Núñez et al. 2016; Coblentz 2020). However, less attention has 

been given to examining whether dietary specialization links to variation in other behavioral 

traits (but see Dall et al. 2012; Toscano et al. 2016; Troxell-Smith and Mella 2017). If such links 

exist, it could provide insight into longstanding evolutionary questions about how behavioral 

variation is maintained within populations (Sih et al. 2004; Réale et al. 2007) and how it might 

shape the trajectory of an individual’s life (Dall et al. 2012; Toscano et al. 2016). 

 

Sociality is a key behavioral trait that could influence diet, as many species forage socially 

(Stephens and Krebs 1986; Giraldeau and Caraco 2000; Galef and Giraldeau 2001). Past 

studies examining social effects on diet have focused mainly on social pressures imposed on 

an entire population; for instance, in highly competitive environments, all individuals may need 

to shift toward specialist diets to avoid competing directly with one another (Svanbäck and 

Bolnick 2005; Araújo et al. 2011; Tinker et al. 2012). However, individuals may also experience 

different social pressures within the same population. Some individuals may be inherently more 

gregarious than others and therefore forage in larger groups, where their diets may be 

constrained by greater competitive pressures (e.g. Sheppard et al. 2018) but also enhanced 

by opportunities to share information, pool skills, and forage cooperatively (e.g. Morand-Ferron 

and Quinn 2011; Dumke et al. 2018; Majer et al. 2018; Ashton et al. 2019). The identities of an 

individual’s groupmates can also alter the social conditions they experience. Individuals that 

forage consistently with the same groupmates may form stronger social bonds, which can 

facilitate greater social learning and information sharing (Lachlan et al. 1998; Schwab et al. 

2008; Atton et al. 2014) than in groups with variable membership. Within social groups, 

dominance hierarchies can also give rise to dietary differences, as dominant individuals 

typically receive preferential access to the most profitable feeding sites (Cody 1974; Whitten 
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1983; Gustafsson 1988; Holbrook and Schmitt 1992; Sol et al. 2005). Thus, an individual’s diet 

may arise from a confluence of social factors, including its inherent sociability, its competitive 

ability, and the quantity and identities of its social partners. 

 

Although sociality may influence diet, however, it is also possible for the two to be linked 

through other means. In some cases, diet may shape sociality. Theory predicts that generalist 

species will be more central to interaction networks than specialists, because their foraging 

brings them into contact with a wider range of interaction partners (Martín González et al. 2010; 

Bolnick et al. 2011); similarly, while searching for a broad array of foods, generalist individuals 

may encounter a greater number of conspecifics, making them appear more social than 

specialists. Certain diets may also favor different social groupings. For instance, orca (Orcinus 

orca) subpopulations that hunt primarily for seals tend to forage in smaller groups than those 

foraging on herring, as the risk of detection by seals is greater than for other prey types (Beck 

et al. 2012). Finally, diet and sociality may not be related causally at all but through another 

mediating factor, such as personality. For example, in great tits (Parus major), an individual’s 

‘pace of life’ explains both its dietary composition and its sociality: fast-exploring (proactive) 

individuals tend to select different foods (Serrano-Davies et al. 2017) and be less gregarious 

at supplementary feeding stations (Aplin et al. 2014) than slow-exploring (reactive) individuals.  

 

While it is not possible to determine causality without an experiment, testing for correlations 

between traits of interest in multiple contexts can help to elucidate the mechanisms connecting 

these behaviors. Here, we explore the potential links between dietary variation and sociality in 

the hihi (Notiomystis cincta), a threatened passerine endemic to New Zealand. Because of 

their conservation status, hihi are monitored closely, providing us with a unique opportunity to 

measure diet at the individual level and track sociality across different foraging contexts. Hihi 

have a broad species diet of fruit, nectar, and invertebrates, but individuals within a population 

on Tiritiri Matangi Island exhibit dietary variation across a specialist-generalist spectrum 

(Chapter 2). In this population, generalists also survive significantly better than specialists over 

a seven-month period including winter (Chapter 2), a food-limited time for many birds, including 

hihi (D. Armstrong and Ewen 2001). While this could indicate that diet affects survival, diet 

could instead be correlated with other traits that directly impact survival. Although males are 

known to consume more carotenoid-rich foods than females (Walker et al. 2014), and past 

work suggests that adult females may be slightly more specialist than other age-sex classes 

(Chapter 2), little is known about why individuals pursue different diets. Sociality could be a 

key factor to explore, because hihi often forage socially and are known to exhibit intra- and 

interspecific dominance hierarchies (Craig et al. 1981; Craig 1985; Rasch and Craig 1988). 
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Our study tested for a relationship between dietary specialization and sociality in three main 

ways. First, we examined whether individuals’ diets vary with the size of their social groups 

while foraging on natural food sources. Second, because direct social interactions were 

relatively rare in this context, we also examined sociality at permanent supplementary feeding 

stations used only by hihi and their closest and more dominant competitor, the korimako 

(Anthornis melanura: Craig et al. 1981; Craig 1985; Rasch and Craig 1988). Both species visit 

the feeders frequently, allowing us to test whether individual hihi with certain diets are more 

likely to visit a crowded resource in the presence of conspecifics or dominant heterospecifics. 

Third, we constructed social networks from our feeder observations to explore whether diet 

predicts the strength of an individual’s social bonds and whether individuals tend to associate 

with others sharing similar diets. Throughout these analyses, we also considered possible 

interactions between diet and dominance by accounting for differences based on age, sex, and 

body size. 

 

 

 

3.2   METHODS 
 

 

Study population 

 

Tiritiri Matangi Island (36°36'00.7"S 174°53'21.7"E) is a 220-hectare nature reserve located 30 

km northeast of Auckland, New Zealand. The island is home to a hihi population of about 220 

individuals. All breeding adults nest in intensively monitored nest boxes, so all individuals are 

of known age and are banded with a unique combination of colored leg bands at 21-days old. 

At the same time, they are sexed based on early signs of sexually dimorphic plumage (C. Smith 

et al. 2015) and their tarsus length (tarsometatarsal notch to the base of the toes) is measured; 

tarsus length remains unchanged beyond banding age in hihi (Low et al. 2006) and is a 

common proxy for body size in passerines (Senar and Pascual 1997). Once fledged, 

individuals are classified as juveniles until they become adults in the following spring breeding 

season, and color bands enable individual behavioral differences to be tracked.  

 

 

Quantifying dietary variation 

 

To quantify dietary variation among individuals, foraging observations were conducted during 

the New Zealand summer of 2017 (24th January–18th March; 215 hours) and 2018 (4th 

February–21st March; 230 hours). A single observer walked transects through areas of high 
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hihi presence (14 km) three times weekly and low hihi presence (6 km) once weekly (hihi 

presence determined from regular population monitoring). Morning (c. 8:00–12:30) and 

afternoon (c. 12:30–16:30) sessions were balanced for each transect. During these sessions, 

the observer walked at a constant rate until a hihi was seen or heard within 10 meters. If the 

bird could be located and identified within 10 minutes, the observer conducted a focal follow of 

the individual. Each food eaten was classified as an invertebrate, fruit, or nectar; plant foods 

were identified to species level, but invertebrates could not be classified more precisely due to 

their small size. When multiple birds were in view, the group was scanned to capture as many 

foods eaten as possible. Focal individuals or groups were abandoned if the birds moved too 

quickly to follow through the dense understory, or if all birds became inactive (preening or 

resting) or moved out of sight for five minutes. 

 

Within each year, we calculated each bird’s (n2017 = 127; n2018 = 164) proportional use of the 

different food types (2017: 15 types; 2018: 23 types) and the average proportional use across 

the entire population. Individuals varied greatly in the number of foods they were observed 

eating (2017: 1–30; 2018: 1–88), so we applied a Bayesian adjustment (Coblentz et al. 2017; 

Chapter 2) to shift each individual’s dietary proportions toward the population’s mean values 

by an amount inversely proportional to the individual’s sample size. These adjusted values 

were then used to calculate a Bayesian-adjusted Proportional Similarity Index (PSi) for each 

individual. PSi is calculated as:  

1 − 0.5 ∑ |𝑝𝑖𝑗 − 𝑞𝑗|𝑗 , 

where 𝑝𝑖𝑗 is the proportional use of food type j by individual i and 𝑞𝑗 is the proportional use of 

food type j by the average population member (Bolnick et al. 2002); a specialist on a single 

food type j receives a PSi of qj, while a generalist whose diet exactly matches that of the 

average population member receives a PSi of 1. 

 

Previous work has demonstrated that Bayesian-adjusted PSis provide reliable dietary 

estimates from as few as five foods eaten (Coblentz et al. 2017; Chapter 2) and that classifying 

invertebrates as a single food type does not affect accuracy, although this cannot be confirmed 

for individuals specializing exclusively on invertebrates (Chapter 2). Thus, to ensure the 

reliability of our dietary metrics, we excluded birds that were observed eating fewer than five 

foods (n2017 = 90, n2018 = 48) or only invertebrates (n2018 = 2) in a given year. Because adult 

females were underrepresented in the remaining dataset (n2017 = 2, n2018 = 11; mean PSi = 0.34 

± 0.04 S.E.) and past work suggested that they may have slightly more specialist diets than 

other age-sex classes (weak evidence for an agesex effect on PSi: Chapter 2), we excluded 

them from all further analyses. Six adult males (mean PSi = 0.43 ± 0.03 S.E.) were excluded 
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because their tarsus lengths (a predictor used across all further analyses) were missing from 

our long-term database. This resulted in a dataset of 132 birds (n2017 = 34, n2018 = 98; mean 

PSi = 0.43 ± 0.01 S.E.). 

 

 

Quantifying sociality 

 

From our foraging data, the number of unique hihi seen in each focal follow was counted and 

assigned as the ‘group size’ for that follow. This variable was highly skewed toward group sizes 

of one (individuals traveling alone), so we transformed it into a binary variable indicating 

whether an individual was seen alone or with at least one conspecific. We then defined an 

individual’s ‘grouping tendency’ as the proportion of its follows in which it was observed with at 

least one conspecific. 

 

All reintroduced hihi populations currently depend on supplementary feeding to varying 

degrees throughout the year (Chauvenet et al. 2012; Thorogood et al. 2013), and our study 

population is provided sugar water ad libitum in six feeder cages across the island. These 

feeders are visited not only by hihi but by korimako (Tiritiri Matangi population: ~2,000 

individuals), providing an opportunity to observe intra- and interspecific social interactions. In 

each of the two study years, a single observer conducted 48 hours of feeder observations (less 

19 minutes in 2017; two sessions were cut short due to weather) consisting of one hour per 

feeder per week across eight weeks, with morning and afternoon sessions balanced for each 

feeder. The observer noted the number of hihi and korimako inside the feeder cage at the start 

of each session and recorded a running commentary of every entrance and exit from the feeder 

during the hour-long observation; individual hihi were identified from their band combinations, 

while korimako were identified to the species level only. To help characterize the competitive 

environment at the feeder, agonistic interactions at the feeders were also noted ad libitum (n2017 

= 855, n2018 = 2,371). In preliminary observations, most aggression occurred outside the feeder 

cage, so we recorded interactions inside and within a 3 m radius of the feeder cage, noting the 

species identity (hihi or korimako) of the aggressor and recipient involved in every ‘chase’ (Bird 

A pursues Bird B in flight), ‘displacement’ (Bird A approaches Bird B and Bird B moves away), 

and ‘snap’ (Bird A leans toward Bird B while snapping its beak). 

 

In 2017, we recorded 3,262 entrances to the feeder by at least 208 unique hihi (the visitor could 

not be identified on 19% of entrances) and 17,900 by korimako. In 2018, there were 2,519 

entrances by at least 172 unique hihi (visitor unidentifiable on 9% of visits) and 17,563 by 

korimako. From the transcribed audio recordings, we determined the number of hihi and 
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korimako in the feeder at the time of each hihi entrance and the duration of each visit (in 

seconds). To assess the strength of an individual’s associations with other hihi, we also created 

a social network from this entrance data. Using the asnipe package (Farine 2013) in R (version 

4.0.0; R Core Team 2020), we used the gmmevents function to identify periods of activity 

across feeder entrances (Psorakis et al. 2015) and produce an association matrix with a simple 

ratio index (‘SRI’) for each pair of birds. SRI represents the probability that individual A and B 

are seen together across all times A or B are observed. While other association metrics can 

account for imperfect detection of individuals (Whitehead 2008; Farine and Whitehead 2015), 

SRI may be preferred when calibration data are unavailable (Hoppitt and Farine 2018); given 

our imperfect identification of feeder visitors, we accepted that SRI would likely estimate 

associations conservatively. Using our association matrix, we constructed a weighted social 

network (Farine 2017; visualized using a force-atlas layout with the Gephi program, version 

0.9.2: Bastian et al. 2009), which was used to extract a weighted degree centrality (‘network 

degree’) value for each bird, reflecting both the strength and number of its associations. In both 

years, our observed network differed significantly from 1,000 randomized networks 

(constructed by randomly swapping individuals’ feeder entrances: Croft et al. 2011; Farine and 

Whitehead 2015; Farine 2017) with respect to mean network degree (P2017 = 0.03, P2018 = 

0.007) and the coefficient of variation (P2017 < 0.001, P2018 < 0.001), confirming that associations 

were non-random. 

 

 

Data Analysis 

 

All analyses were conducted in R (version 4.0.0; R Core Team 2020) using an Akaike 

information criterion (AICc) model selection approach (Symonds and Moussalli 2011; 

AICcmodavg package: Mazerolle 2017). Model sets were constructed based on the global 

models described below, with successively simplified models included to test the significance 

of each interaction and additive effect; because adult females were absent from our dataset 

(see above), interactions between age and sex were excluded. Unless noted otherwise, all 

models included year as a covariate (to account for interannual variation) in addition to the 

main effects, and models were structured either as Generalized Linear Mixed Models (GLMMs) 

with a bound optimization by quadratic approximation (BOBYQA) optimizer to reduce 

convergence errors (where necessary) or as Linear Mixed Models (LMMs) fit using a maximum 

likelihood approach. In some model selections, the total number of hihi (ntotal) differed from the 

number of unique hihi (nunique), because some individuals were observed in both years and 

therefore appeared twice in the dataset, once associated with their 2017 PSi and once with 
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their 2018 PSi; in these cases, models included a random effect of bird identity to account for 

repeated individuals. 

 

In each model set, the model with the lowest AICc value and any models within 2 AICc units 

were considered the top models. Effect sizes and 95% confidence intervals were obtained from 

the single top model or calculated via model averaging (MuMIn package: Bartoń 2009) where 

there were multiple top models. A parameter was considered to have a significant effect if its 

confidence interval did not span zero. 

 

Is diet correlated with dominance factors? 
 

Using our complete dataset (ntotal = 132, nunique = 123), we first checked whether dietary 

specialization was correlated with intrinsic factors expected to influence dominance. This was 

important to determine whether these variables could be included in interaction with PSi in 

future model sets where dominance might be important. Because PSis were normally 

distributed, models were structured as LMMs. The global model explained PSi by a three-way 

interaction between age, sex, and tarsus length. Age and sex were included as proxies for 

dominance, because female hihi are known to be subordinate to males and juveniles to adults 

(Craig 1985). Tarsus length was included as a proxy for body size, an important factor 

determining dominance in many bird species (e.g. Koenig et al. 2011; Funghi et al. 2015). In 

this and all further analyses, tarsus length was scaled within sex across all individuals in our 

complete dataset, as, otherwise, tarsus and sex could be confounded (male hihi are larger than 

females: Thorogood et al. 2013). 

 

There was no evidence that dietary specialization depended on any dominance factors. While 

models containing age and tarsus length appeared in the top model set, the null model was 

supported best (Supplementary Table 3.1), and no effects were significant after model 

averaging (95% CI: scaled tarsus length = −0.013 – 0.026, age = −0.019 – 0.067). This 

indicated that interactions between PSi and age, sex, and tarsus could be included in further 

analyses. 

 

Does diet vary with group size while foraging on natural food sources? 
 

We used our complete dataset (ntotal = 132, nunique = 123) to investigate whether dietary 

specialization varied with an individual’s grouping tendency (proportion of focal follows 

observed with at least one conspecific) while foraging on natural food sources. Because 

grouping tendency is a proportion, models were structured as GLMMs with a binomial family 

and logit link function. The model set was constructed from global models representing all 
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possible three-way interactions between PSi, age, sex, and tarsus length, excluding age-sex 

interactions (as above) and models without PSi (our main variable of interest). 

 

Does diet vary with sociality at a crowded artificial resource? 
 

Before examining individuals’ sociality at supplementary feeding stations, we first confirmed 

that our analyses would not be biased because individuals differed in their feeder use based 

on diet. Past work in another hihi population found a positive correlation between feeder 

visitation and invertebrate consumption (D. Armstrong et al. 1999), suggesting that frequent 

feeder visitors may fulfill their carbohydrate needs quickly, enabling them to specialize on other 

nutrients away from feeders. Using the same models and dataset as in the previous analysis, 

we tested whether diet predicted the total number of feeder watch sessions (out of 48) in which 

an individual was observed entering the feeder in a given year; because the response variable 

was a count skewed toward zero, models were structured as negative binomial models. We 

then used GLMMs with a Poisson family to explain an individual’s total number of feeder 

entrances from the same set of predictors. In both cases, no effects were significant after model 

averaging (Supplementary Table 3.2, Supplementary Table 3.3; model averaging results not 

presented), indicating that individuals did not vary in their feeder use based on diet. 

 

Next, to characterize the social dynamics at feeders (Figure 3.1a), we completed a model 

selection examining the relationship between feeder visitation and aggression. Each model 

explained the rate of korimako visitation (feeder entrances per hour) by the rate of aggression 

(aggressive acts per hour) observed (i) between korimako, (ii) between hihi, (iii) by korimako 

toward hihi, or (iv) by hihi toward korimako during each of the 96 feeder watches (48 per year). 

Models were structured as linear models with year as a fixed effect to account for interannual 

variation. Korimako visitation was best explained by korimako-korimako aggression 

(Supplementary Table 3.4): as rates of aggression among korimako increased, more korimako 

entered the feeder (estimate: 3.440 ± 0.877 S.E.; t = 3.925; P < 0.001; Figure 3.1b). We then 

used a linear model to test the effect of korimako-korimako aggression on hihi visitation and 

found an opposite trend: as aggression increased among korimako, fewer hihi entered the 

feeders, although this effect was marginally non-significant (estimate: −0.374 ± 0.196 S.E.; t = 

−1.906; P = 0.0597; Figure 3.1c). This justified our further use of the number of korimako inside 

the feeder as a proxy for the perceived ‘riskiness’ of the social environment (from the 

perspective of hihi), as higher numbers of korimako inside the feeder correlated with elevated 

aggression rates, and there was some evidence that these deterred hihi from entering. 
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Figure 3.1. (a) A supplementary feeder on Tiritiri Matangi Island (photo by CA). (b–c) 

Relationship between the number of (b) korimako or (c) hihi entrances and the number of 

aggressive acts among korimako (inside and within a 3 m radius of the feeder cage) observed 

per hour in a feeder watch session. Solid lines are regression lines (95% confidence intervals 

shaded in gray), with a significant slope (P < 0.001) in (a) and a marginally non-significant 

slope (P = 0.0597) in (b). Each point (from the raw data) represents one feeder watch session. 

Photos (by CA) show each focal species next to the corresponding axis.
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Finally, we tested whether dietary specialization varied with three social metrics measured at 

feeders. In each model selection, each row of data consisted of one entrance to the feeder 

(entrances: n = 1,006; hihi: ntotal = 84; nunique = 79). Model sets were constructed from global 

models representing all possible three-way interactions between PSi, age, sex, and tarsus 

length, excluding age-sex interactions and models without PSi (as above). All models included 

a random effect of session number to control for possible differences in sociality across 

sessions. In the first model selection, the response variable was binary, indicating whether the 

focal bird entered the feeder with (1) or without (0) a conspecific already inside, so models 

were structured as GLMMs with a binomial family and logit link function. The second model 

selection repeated this analysis but included the number of heterospecifics inside the feeder 

as an additive effect in all models; based on the analyses above, we predicted that a greater 

number of heterospecifics would increase the perceived riskiness of the feeder, making it more 

likely that hihi (particularly subordinates) would benefit by entering with conspecifics. The third 

model selection tested only the number of heterospecifics present inside the feeder. Because 

the response variable was a count, models were structured as GLMMs with a Poisson family. 

 

Does diet vary with the strength of social bonds? 
 

We considered whether dietary specialization varied with the strength of an individual’s social 

ties, as measured by their network degree. A preliminary examination showed that individuals’ 

network degrees were positively correlated with their feeder visitation rates (r = 0.608, P < 

0.001), suggesting that infrequent feeder visitors may not have had the opportunity to accrue 

social bonds in the network. Thus, we removed individuals from the dataset if they visited the 

feeder fewer than nine times (n = 84; mean PSi = 0.44 ± 0.01 S.E.), which eliminated the 

correlation (r = 0.251, P = 0.086). Given the small resulting sample size (ntotal = nunique = 48; 

mean PSi = 0.43 ± 0.02 S.E.), candidate models were restricted to single two-way interactions 

between PSi and age, sex, or tarsus length and additive models with up to three terms (age-

sex interactions and models without PSi excluded, as above). Because network degree was 

normally distributed, models were structured as linear models with a fixed effect of year; a 

random effect of bird identity was not needed, as there were no repeated birds in this dataset. 

 

Lastly, we calculated an assortativity coefficient for all individuals that were observed visiting 

the feeder at least once and that had a qualifying PSi score (n2017 = 26; n2018 = 58). Using the 

assortnet package in R (Farine 2014), we used the assortment.continuous function to calculate 

an assortativity coefficient from a weighted network composed of only those birds that met our 

qualifying criteria. This analysis tested whether individuals were more likely to associate with 

conspecifics with similar dietary specializations. 
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3.3   RESULTS 
 

 

Does diet vary with group size while foraging on natural food sources? 

 

Dietary specialization (PSi) varied with group size while foraging on natural food sources. The 

model selection identified two top models (Supplementary Table 3.5). After model averaging, 

an individual’s grouping tendency (the proportion of times it was observed with at least one 

conspecific) was explained by its age and a significant interaction between its PSi and tarsus 

length (Table 3.1). Adults were observed in groups significantly less frequently than juveniles 

(95% CI:  −1.352 – −0.617), averaging 55% of their observations in groups versus 76% for 

juveniles. While neither the PSi (95% CI: −0.695 – 2.605) nor tarsus terms (95% CI: −0.149 – 

1.383) were significant on their own, the interaction between them was significant (95% CI: 

−3.624 – −0.290). In other words, the relationship between diet and grouping tendency 

depended on an individual’s body size. Individuals with smaller tarsi were more likely to forage 

in groups if they were generalists than if they were specialists; for individuals with a scaled 

tarsus length of −1 (one standard deviation below the mean for their sex), this equated to an 

approximately 40% higher grouping tendency for extreme generalists than extreme specialists. 

Meanwhile, there was little effect of dietary specialization on grouping tendency in larger 

individuals (Figure 3.2). This result could also be interpreted by examining how the relationship 

between body size and grouping tendency depended on dietary specialization: specialists 

tended to have similar grouping tendencies regardless of body size, while small-bodied 

generalists were more likely to be observed in groups than large-bodied generalists (Figure 

3.2).
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Table 3.1. Results of model averaging the two best supported GLMMs explaining grouping 

tendency (proportion of focal follows an individual was observed with at least one conspecific) 

while foraging on natural food sources by dietary specialization (PSi), scaled tarsus length, and 

age (juvenile versus adult). In both models, year was included as a covariate to control for 

interannual variation. Significant P-values are starred. 

 

Predictor Estimate S.E. z P-value 

(Intercept) 1.050 0.434 2.394 0.017 * 

PSi 0.955 0.834 1.134 0.257  

tarsus 0.617 0.387 1.579 0.114  

age [Adult] −0.985 0.186 5.248 <0.001  *** 

year [2018] −0.287 0.221 1.287 0.198  

PSi : tarsus −1.957 0.842 2.301 0.021 * 

age [Adult] : tarsus 0.144 0.187 0.759 0.448  
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Figure 3.2.  Relationship between grouping tendency (proportion of focal follows an individual 

was observed with at least one conspecific) while foraging on natural food sources and dietary 

specialization (PSi) for juveniles (left panel) and adults (right panel). Solid curves (with shaded 

95% confidence intervals) were extracted by model averaging the two top-ranked models in 

Supplementary Table 3.5, which explain grouping tendency by an interaction between PSi and 

tarsus length (scaled within sex) and an additive effect of age. Colors represent the relationship 

for individuals with a scaled tarsus length of −1 (gray; tarsus length 1 S.D. below sex’s mean), 

0 (orange; tarsus length equal to sex’s mean), or 1 (blue; tarsus length 1 S.D. above sex’s 

mean). Each point (from the raw data) represents one individual observed in a given year, with 

size indicating scaled tarsus length.  
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Does diet vary with sociality at a crowded artificial resource? 

 

While dietary specialization varied with sociality during natural foraging, there was no evidence 

for a similar relationship at a crowded artificial resource. In a model selection testing whether 

individuals with certain diets were more likely to enter the supplementary feeder if there was 

already a conspecific inside, the null model appeared in the top model set alongside nine other 

models including PSi, age, sex, and scaled tarsus length as predictors (Supplementary Table 

3.6). No main effects were significant after model averaging; generalists were no more likely 

than specialists to enter the feeder with a conspecific (95% CI: −0.602 – 3.343; Figure 3.3a), 

nor did PSi have a significant effect in interaction with other variables (95% CI: PSi:age = 

−3.332 – 1.519; PSi:sex = −6.151 – 0.934; PSi:tarsus = −1.712 – 0.716). Results were nearly 

identical when the number of heterospecifics in the feeder was included as an additive effect 

in all models (Supplementary Table 3.7; 95% CI: PSi = −0.908 – 3.887; PSi:age = −3.381 – 

1.473; PSi:sex = −6.360 – 0.749; PSi:tarsus = −1.690 – 0.737). Furthermore, an individual’s 

diet did not predict its likelihood of entering the feeder with more heterospecifics inside (Figure 

3.3b). The null model appeared in the top model set alongside four other models involving PSi, 

age, and sex (Supplementary Table 3.8). After model averaging, no main effects were 

significant, including those involving PSi (95% CI: PSi: −0.685 – 0.777; PSi:age: −1.055 – 0.731; 

PSi:sex: −1.726 – 0.726).  

 

 

Does diet vary with the strength of social bonds? 

 

There was no evidence that PSi varied with the strength of an individual’s associations within 

the social network (Figure 3.4). In a model selection explaining network degree by a 

combination of PSi, age, sex, and scaled tarsus length, the null model was supported best 

(Supplementary Table 3.9). Moreover, individuals did not assort within the social network 

based on their dietary specializations, either in 2017 (r = 0.159, S.E. = 0.131) or in 2018 (r = 

−0.070, S.E. = 0.059). However, uncertainty was high in both cases, likely due to our small 

sample sizes. 
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Figure 3.3. Relationship between sociality while foraging at supplementary feeding stations 

and dietary specialization (PSi). Each point is from the raw data and represents one feeder 

entrance, with color indicating the sex of the focal individual and shape indicating age. In (a), 

PSi does not explain whether a focal individual entered the feeder with (1) or without (0) a 

conspecific already inside. In (b), PSi does not explain the number of heterospecifics in the 

feeder at the time of entry. Regression lines (with 95% confidence intervals shaded in gray) 

were derived by model averaging the top-ranked models identified in Supplementary Table 3.6 

(top panel) and Supplementary Table 3.8 (bottom panel); no main effects were significant after 

model averaging.  
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Figure 3.4. Visualization of the social network derived from entrances to the supplementary 

feeding stations in (a) 2017 and (b) 2018, with node color indicating the individual’s dietary 

specialization (PSi; white indicates PSi unavailable) and node size indicating their network 

degree. In each year, individuals clustered into two groups: a smaller cluster that predominantly 

used the island’s two southerly feeders and a larger cluster that frequented the four more 

northerly feeders. (c) Relationship between network degree and dietary specialization (PSi). 

Each point is from the raw dataset, including only those individuals observed visiting the feeder 

at least nine times (to eliminate the correlation between network degree and visitation rate), 

with color indicating sex and shape indicating age. The regression line (with 95% confidence 

interval shaded in gray) was derived from a model predicting network degree from PSi (slope 

not significant; AICc = 2.19 from top (null) model; Supplementary Table 3.9).  
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3.4   DISCUSSION 
 

 

Quantifying dietary variation can enhance our understanding of a species’ niche. However, 

determining why individuals vary is crucial for explaining how this variation might arise and 

what consequences it has for individuals and those around them. Nevertheless, studies often 

focus on relating diet to intrinsic factors or the ecosystem, overlooking potentially informative 

links to other behaviors (Dall et al. 2012; Toscano et al. 2016; Troxell-Smith and Mella 2017). 

Here, we took advantage of the close monitoring of a threatened species, the hihi, to conduct 

a rare investigation of the potential links between diet and sociality at the individual level. 

Individuals’ dietary specializations (measured using the Proportional Similarity Index: Bolnick 

et al. 2002) varied with their tendency to travel in a group (with at least one conspecific) while 

foraging on natural food sources. This effect depended on body size: small-bodied individuals 

were more likely to forage in groups if they were generalists than if they were specialists, while 

there was little effect of diet on sociality for larger individuals. However, when we tested for 

effects of diet on social behavior at crowded supplementary feeding stations, we found no 

evidence that diet explained an individual’s tendency to visit the feeders in the presence of 

conspecifics or more dominant heterospecifics. Furthermore, diet did not predict their position 

within a social network derived from these feeder observations. Thus, while sociality and 

dietary variation appear to be connected in hihi, the relationship may be context dependent. 

 

Our study raises intriguing questions about the mechanisms linking diet to sociality. The fact 

that generalists were more gregarious than specialists, but only if they were small-bodied, 

suggests that dominance may play an important role. Body size is a proxy for dominance in 

many birds (e.g. Koenig et al. 2011; Funghi et al. 2015), so small hihi are likely subordinate to 

larger individuals. Combined with past evidence that generalist hihi survive better than 

specialists (Chapter 2), our results could indicate that foraging in a group helps subordinate 

(smaller) hihi obtain higher-quality (more generalist) diets than they could obtain alone. Indeed, 

despite the costs of competition (Giraldeau and Caraco 2000; Ward and Webster 2016), 

foraging socially can bring subordinates unique benefits, including opportunities to scrounge 

on dominant individuals’ discoveries (Chiarati et al. 2012; Keynan et al. 2015), a reduced risk 

of foraging failure (Baker et al. 1981), and more optimal foraging time (Monaghan and Metcalfe 

1985). Meanwhile, dominant individuals typically have priority access to preferred foods (Cody 

1974; Whitten 1983; Gustafsson 1988; Sol et al. 2005), regardless of the social context, so 

their diets may depend less on sociality. Even if causality runs in reverse, with diet driving 

sociality, dominance could still explain the observed trend. Consuming a high-quality diet can 

improve an individual’s competitive ability (Lomborg and Toft 2009; Poulos and McCormick 
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2015; Łukasiewicz 2020), so small-bodied generalists may be more likely to forage in groups 

than specialists of the same size because their diets enable them to withstand the negative 

effects of competition. Further work to characterize dominance at the individual level in hihi 

would be beneficial so that subtle differences within body size classes can be discerned. 

 

Given that dominance appears to mediate the relationship between diet and sociality, our 

results could suggest that diet is nested within a broader dominance-related syndrome. 

Behavioral syndromes, defined as suites of correlated behaviors (Sih et al. 2004), can have 

potentially far-reaching consequences for individuals’ fitness and how they interact with others 

(Dall et al. 2012; Toscano et al. 2016; Troxell-Smith and Mella 2017). However, they require 

consistency across time and contexts (Sih et al. 2004), and our data did not provide the power 

to test the repeatability of diets across years. Moreover, we did not find any evidence for a 

relationship between diet and sociality in a more competitive foraging context (at 

supplementary feeding stations), where we might predict that a dominance-mediated 

syndrome would be even stronger. This could suggest that the social pressures experienced 

at feeders differ not only in strength but in kind from those experienced during natural foraging. 

Anecdotally, heterospecific interactions were very rare while hihi foraged on natural foods, so 

their high frequency at feeders may have introduced new dominance effects, altering the 

relationship between diet and sociality. Past studies have shown that aggression is highest 

between species (e.g. Rasch and Craig 1988) and individuals (e.g. Robinson 1985; Kitchen et 

al. 2005) of similar dominance status, so dominant hihi may be perceived as a greater threat 

to korimako than subordinates and receive more aggression; thus, the social pressures 

experienced by dominant and subordinate hihi could be more equal at feeders than during 

natural foraging. Furthermore, the social pressures at feeders may also be complicated by the 

fact that they represent a sort of foraging bottleneck, bringing together members of different 

social groups at just six small foraging patches across the island 

 

Associating with the same individuals consistently is hypothesized to be beneficial because it 

can increase the reliability and transmission of social information (Lachlan et al. 1998; Schwab 

et al. 2008; Atton et al. 2014). However, we found no evidence that individuals’ diets predicted 

the strength of their social bonds. Additionally, within the social network, individuals did not 

associate with conspecifics sharing a similar diet, as we might expect if there were a benefit to 

foraging with others on the same foods or if associations arose as a byproduct of individuals 

with similar diets foraging in the same location. Instead, this result might suggest that 

individuals benefit by foraging in groups of mixed dietary specializations, either as a way to 

avoid competition (Giraldeau and Caraco 2000) or pool mixed knowledge and skill sets 

(Giraldeau 1984; Morand-Ferron and Quinn 2011). Nevertheless, like many studies on 
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passerine birds (e.g. Aplin et al. 2014; Farine et al. 2014; Evans et al. 2018), we derived the 

social network from visits to supplementary feeding stations when it would have been ideal to 

measure social associations in the same context as individuals’ diets. Future work would 

benefit from building more robust social networks for hihi foraging on natural food sources; this 

would provide a better sense of their sociality during natural foraging and would improve 

statistical power by ensuring that every individual has both a diet and network score. 

 

Why else might the link between diet and sociality be absent at feeders? First, our assumption 

that hihi perceive feeders as competitive resources might need reexamination as, despite high 

rates of aggression, sugar water is provided ad libitum; thus, hihi may actually perceive this 

unlimited resource to be a low-competition (albeit chaotic) social environment. Alternatively, it 

could be that the link between diet and sociality is actually context dependent, and hihi behave 

differently while foraging on natural versus artificial resources. We did not find any evidence 

for a relationship between an individual’s natural diet and its use of the feeders, suggesting 

that foraging is unrelated between these contexts. More importantly, early work on food 

provisioning showed that plentiful and easily-accessible artificial food sources can erode 

natural sociality among birds by reducing the benefits of foraging socially (Szekely et al. 1989; 

but see: Kubota and Nakamura 2000). The unique features of artificial food sources could be 

important to consider in studies of sociality more broadly, because there is a widespread trend 

toward using social metrics derived from feeders to predict broader behavioral strategies, 

particularly in birds (Aplin et al. 2014; Jones et al. 2017; Evans et al. 2018). Wherever possible, 

we encourage others to test whether links between sociality and other traits hold whether 

sociality is measured at feeders or in natural foraging contexts. 

 

Despite its apparent context-dependence, the link we found between diet and sociality could 

have implications for hihi conservation. As for many threatened species (Seddon et al. 2014), 

translocations are a key strategy for hihi recovery and are known to disrupt the social 

environment (Letty et al. 2007; Ewen et al. 2012; Franks et al. 2019). Recent evidence also 

suggests that hihi whose social networks are more greatly disrupted by translocation exhibit 

lower post-release survival (Franks et al. 2019). If sociality influences diet, then the social 

disruptions caused by translocations might also affect how individuals forage, explaining why 

translocated individuals struggle in an unfamiliar environment. This could underscore the 

importance of maintaining a consistent social environment across translocations (as much as 

possible) to ensure that disruptions to foraging are minimized. Meanwhile, if diet determines 

sociality, then this could also provide a means for improving translocation success, as social 

relationships favorable at the release site could be achieved by selecting individuals for 

translocation based on diet. Experiments to tease apart the causality between diet and sociality 
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could be relatively easy to incorporate into translocation programs. Individuals are often 

provided food in temporary captivity (IUCN/SSC 2013), providing an opportunity to manipulate 

diets so that potential effects on sociality can be examined after release (e.g. Whiteside et al. 

2015; Oudman et al. 2016). Furthermore, the social environment often differs significantly 

between release sites and source sites due to different food abundances and competitor 

densities, so social effects on diet can be assessed as individuals are moved between sites. 

Thus, as well as attempting to conserve species, translocations could also provide ideal 

experimental settings for testing the causality between diet and sociality, a possibility worth 

pursuing for the mutual benefit of behavioral ecologists and conservation biologists.
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Chapter 4 

Foraging for a foothold: Using conservation translocations to 

test dietary responses to competitive release 

 

~ 

 

Competition is thought to be a major force shaping dietary specialization, but its effects can 

depend on individuals’ inherent resource preferences. Observing how individuals respond to a 

release from competition can elucidate competitive pressures on diet, but opportunities to 

experimentally test this under natural conditions are rare. Conservation translocations provide 

a unique opportunity to do so, as release sites typically have smaller populations than source 

sites. Here, we measured dietary specialization in three populations of hihi (Notiomystis cincta), 

a threatened New Zealand passerine, and found that dietary specialization was highest in the 

densest population. We then tracked 40 juveniles as they were translocated from the densely 

populated site to one of the less dense sites and found a significant shift toward generalization 

after release. This finding held even after controlling for seasonal effects on diet; juveniles 

remaining at the source site also trended toward generalization, but not significantly. Thus, the 

dietary changes experienced by the translocated cohort support the ‘shared preferences 

model’ of dietary variation: individuals specialize to avoid competition but converge on a 

generalist diet of shared, preferred foods once competition is reduced. Lastly, we assessed 

whether individuals’ pre-translocation diets predicted their survival after release. Specialists 

were more likely to survive to the next breeding season than generalists, with an opposite trend 

among individuals remaining at the source site. Therefore, diet could potentially be used as a 

behavioral indicator for selecting individuals for translocation, improving the viability of 

translocated populations without weakening the source population. 
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4.1   INTRODUCTION 
 

 

There is growing recognition that individuals within species often differ in their use of resources 

within a broader population diet (Bolnick et al. 2002, 2003; Araújo et al. 2011). Some studies 

explain these dietary specializations by linking them to variation in other traits as part of a 

behavioral syndrome (Sih et al. 2012; Toscano et al. 2016; Troxell-Smith and Mella 2017; 

Chapter 3). However, diet can also be influenced by the environment in which it is measured 

(Pagani-Núñez et al. 2016). It has long been known that the social environment, particularly 

competition, is a powerful force shaping diet (Roughgarden 1972; Schoener 1974; Pianka 

1981; Partridge and Green 1985; Stephens and Krebs 1986). Even if individuals have intrinsic 

dietary preferences, they may be unable to obtain their preferred resources in highly 

competitive environments, particularly if they are subordinate (e.g. Cody 1974; Craig et al. 

1981; Holbrook and Schmitt 1992) or unskilled (e.g. Heinrich 1976) compared to other foragers. 

Thus, examining how individuals forage under different levels of competition can provide a 

deeper understanding of a species’ niche and the mechanisms driving dietary diversity. 

 

Theory predicts two alternative outcomes for how diet will respond to a change in competition, 

both of which depend on individuals’ inherent food preferences (Svanbäck and Bolnick 2005; 

Araújo et al. 2011). In the ‘shared preferences’ model (and its variant, the ‘competitive refuge’ 

model; Figure 4.1a), individuals prefer the same foods, but there are not enough of these foods 

for all individuals when competition is high. Therefore, individuals must seek out unique 

specializations as ‘refuges.’ If competition relaxes, however, they can then converge on a 

shared, generalist diet of their most highly preferred foods. In contrast, in the ‘distinct 

preferences’ model (Figure 4.1b), individuals inherently prefer different subsets of available 

resources but are prevented from acting on these preferences while competitors are present. 

Reducing competition should allow individuals to shift from a generalist diet to distinct 

specializations reflecting their true resource preferences. Some studies attempt to distinguish 

which of these models drives dietary diversity by comparing populations living under different 

competitive conditions (e.g. Tinker et al. 2012). Others track changes within a population as 

individuals respond to seasonal fluctuations in resource availability (e.g. Mori et al. 2019) or 

interannual changes in population density (e.g. Svanbäck and Persson 2004). However, these 

approaches may confound dietary changes with other factors, such as genetic differences 

between populations or seasonal changes in nutritional needs. Without experimentally 

manipulating competition, it can be difficult to attribute dietary changes to the environment. 

Nevertheless, opportunities to do so are rare outside of a laboratory setting (e.g. Bolnick 2001; 

Fontaine et al. 2008), so these two theories remain largely untested in natural populations. 
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Figure 4.1. Visualization of the two preference models of dietary variation. In both cases, 

individuals begin in a highly competitive environment (left), where resources indicated by red 

Xs are monopolized by competitors, and each individual in the population (colored ovals) 

consumes a subset of the available resources. Once competition is reduced, individuals either 

(a) become more generalist as they converge on shared preferred foods (‘shared preferences 

model’), or (b) become more specialist as they pursue unique food preferences (‘distinct 

preferences model’). 
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Behavioral ecologists could look to the field of conservation biology for an alternative approach. 

Many conservation interventions intentionally or unintentionally alter the competitive landscape 

that individuals experience. For example, translocations have become a vital tool for species 

recovery and often involve moving animals between disparate social environments (Sarrazin 

and Barbault 1996; D. Armstrong and Seddon 2008; Ewen et al. 2012; IUCN/SSC 2013). In 

translocations for the purpose of species reintroductions, individuals typically experience a 

sharp reduction in competition as they are moved from existing populations to unpopulated 

areas (IUCN/SSC 2013). Thus, individuals experience a strong competitive release over a 

short period: exactly the environmental change needed to distinguish between the two 

competing models of dietary specialization. However, only rarely have these (or other) 

behavioral ecology theories been tested in the context of translocation. One notable exception 

is Tinker et al.’s (2008) study of sea otters (Enhydra lutris), which found support for the shared 

preferences model by comparing dietary specialization between individuals at a food-poor 

source site and a food-rich release site. However, the authors were unable to track individual 

responses to competitive release, because the population at the release site was established 

over a decade prior to the study. Therefore, the speed and consistency of dietary responses 

at the individual level and possible founder effects in the diets of translocated populations 

remain unknown. 

 

In addition to enabling tests of foraging theory, translocations could also provide a valuable 

opportunity for behavioral ecologists to contribute directly to conservation. Finding food in an 

unfamiliar environment is a major challenge for translocated populations (Berger‐Tal et al. 

2020). While this can be mitigated by choosing release sites that best satisfy species’ needs 

(D. Armstrong and Seddon 2008; IUCN/SSC 2013), for many species, our only knowledge of 

their diets comes from environments where their foraging may be constrained by competition, 

or from degraded habitats that no longer reflect their ideal conditions (Ewen and Armstrong 

2007). Observing how diets change when individuals are released from competition could 

provide insight into their inherent resource preferences, which could be used to identify suitable 

release sites for future translocations. If individuals vary in their diets or dietary flexibility, and 

these traits predict survival, we may also be able to improve a population’s chance of 

establishment by selectively translocating individuals with the most favorable traits. 

 

In this study, we used two planned conservation translocations to test the competing models 

of dietary variation in a species that could benefit from this knowledge. The hihi (Notiomystis 

cincta; Figure 4.2a) is a threatened passerine that was once widespread across the North 

Island of New Zealand before being reduced to a single offshore island (Te Hauturu ō Toi/Little 

Barrier Island Nature Reserve) around 1890. Subsequently, seven additional populations have 
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been established through intensive translocation efforts (Thorogood et al. 2013; Panfylova et 

al. 2016; Franks et al. 2019), but habitat suitability presents an ongoing barrier to achieving 

self-sustaining populations; for example, all reintroduced populations depend on 

supplementary feeding to support them through periods of food scarcity (Chauvenet et al. 

2012; Thorogood et al. 2013). Previously, individual hihi were found to specialize within the 

broad species diet of fruit, nectar, and invertebrates, with generalists surviving better than 

specialists over winter on Tiritiri Matangi Island (Chapter 2), the main source site for 

translocations. Diet has also been linked to possible dominance effects (Chapter 3), suggesting 

a social basis for resource selection. Thus, we predicted that the competitive changes 

experienced during a translocation could strongly influence diet and related fitness outcomes 

in translocated individuals. 

 

In 2018, 40 hihi were translocated from Tiritiri Matangi, a highly competitive site, to two less 

competitive mainland sites: Rotokare Scenic Reserve (30 birds) and Bushy Park Tarapuruhi 

(10 birds). Our aims were to (1) explore which of the two preference models explains dietary 

variation across hihi populations, while also determining (2) how dietary changes across a 

translocation manifest at the individual level, and (3) what impacts these changes have on 

survival. Under the shared preferences model, we would expect translocated birds to become 

more generalist as they move from a highly competitive source site to a less competitive 

release site. In contrast, the distinct preferences model predicts a shift toward specialization 

as competition is released. However, individuals may also differ in their dietary flexibility, so we 

predicted that some may respond more strongly and immediately to this competitive change 

than others, which could potentially improve their chances of survival.  

 

 

 

4.2   METHODS 
 

 

Study sites and populations 

 

Tiritiri Matangi Island (‘Source Site’; 36°36'00.7"S 174°53'21.7"E; Figure 4.3a) is a 220-hectare 

nature reserve located 3.5 km off the coast of New Zealand’s North Island. The island is free 

of introduced mammalian predators and consists mainly of regenerating native bush, the result 

of extensive replanting efforts in the 1980s. A hihi population (~200 individuals) was 

established through a translocation of birds from Te Hauturu ō Toi in 1995 and serves as the 

main source population for translocations today (Thorogood et al. 2013). All individuals nest in 

intensively monitored nest boxes, so each chick is of known age and is uniquely color banded 
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at 21-days old to facilitate individual identification. Once fledged, these individuals experience 

high levels of competition from conspecifics (~0.91 birds/ha) and their two main heterospecific 

competitors (~8.6 birds/ha): tūī (Prosthemadera novaeseelandiae: Figure 4.2b) and korimako 

(Anthornis melanura: Figure 4.2c; Figure 4.2d). This is reflected in a strong reliance on 

supplementary feeding compared to other sites; in April and May 2017 (one year prior to our 

study), sugar consumption was estimated to be 0.83 liters per hihi per month (Figure 4.3e). 

 

Rotokare Scenic Reserve (‘Release Site 1’; 39°27'15.4"S 174°24'33.0"E; Figure 4.3b) is a 230-

hectare predator-free (fenced) sanctuary located in remnant mature forest on the mainland of 

the North Island. Hihi were extirpated from the region in the late 1800s but were reintroduced 

to Rotokare in 2017 with a translocation of 40 birds from Tiritiri Matangi (Franks et al. 2019). 

At the start of our study, the population density was ~0.17 hihi/ha, or one fifth that of the Source 

Site (Figure 4.2d). Heterospecific densities are also lower (~6.9 birds/ha), primarily due to a 

low density of korimako (Figure 4.2d). While the forest is similar in size to the Source Site, it 

differs significantly in structure (PERMANOVA: P = 0.003, see Supplementary Materials 4.1 

for methodology), with a higher canopy and sparser understory (Figure 4.3d). This mature 

forest structure matches the historic habitat of hihi more closely than the regenerating forest of 

the Source Site and indicates a potentially greater abundance of resources. Combined with its 

low competitor density, Release Site 1 therefore represents a much less competitive 

environment than the Source Site. This is supported by the population’s lower consumption of 

sugar water (~20% that of the Source Site; Figure 4.3e). Conditions are similar at Bushy Park 

Tarapuruhi (‘Release Site 2’; 39°47'47.9"S 174°55'51.2"E; Figure 4.3c), a 100-hectare forest 

located 65 km southeast of Release Site 1. Bushy Park is home to a small hihi population (~40 

adults) established in 2013 with a translocation of birds from Tiritiri Matangi. Heterospecific 

competitors are scarce (<0.17 birds/ha: Figure 4.2d), the forest structure differs significantly 

from the Source Site (PERMANOVA: P = 0.003) but not Release Site 1 (PERMANOVA: P = 

0.626, see Supplementary Materials 4.1; Figure 4.3d), and sugar consumption is low (~12% 

that of the Source Site; Figure 4.3e). 
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Figure 4.2. The social environments of the three study sites. Estimated densities 

(birds/hectare) of (a) hihi, (b) tūī, and (c) korimako are displayed for each site in (d). Dashed 

lines indicate total bird densities adjusted for the hihi removed from (Source Site) or added to 

(Release Sites) the population due to translocation during our study. All data are derived from 

transect surveys (Source Site: Stewart and Milton 2018; Hihi Conservation Charitable Trust, 

unpublished data; Release Site 1: D. P. Armstrong, unpublished data; Drummond and 

Armstrong 2019; Hihi Conservation Charitable Trust, unpublished data; Release Site 2: 

Bombaci et al. 2018; Hihi Conservation Charitable Trust, unpublished data). Photo credit: CA. 
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Figure 4.3. The foraging landscapes of the three study sites: (a) the ‘Source Site’ (Tiritiri 

Matangi Island); (b) ‘Release Site 1’ (Rotokare Scenic Reserve); and (c) ‘Release Site 2’ 

(Bushy Park Tarapuruhi). (d) Biplot of the first two components of a Principal Component 

Analysis (Supplementary Materials 4.1) explaining variance in the structure and composition 

of habitat plots (points), which are grouped by site (shaded polygons). Axes are labeled with 

the percentage of variance explained by each component. Arrows represent habitat variable 

loadings. (e) Cross-site comparison of sugar water consumption (liters per hihi per month) from 

April–May 2017, one year prior to the main study period. Raw consumption data provided by 

the Hihi Conservation Charitable Trust (unpublished data) have been reduced by 85% at the 

Source Site to account for visitation by korimako (Chapter 3), but not at the two Release Sites, 

where only hihi use the feeders. Photo credit: CA. 
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Pre-translocation foraging observations 

 

From 4th February–21st March 2018, a single observer conducted 230 hours of foraging 

observations at the Source Site by walking foraging transects that were evenly distributed 

around the island. Fourteen kilometers of transects through areas of high hihi presence (based 

on regular population monitoring) were walked three times weekly, while an additional 6 km 

through areas of low hihi presence were walked once weekly. Morning (c. 8:00–12:30) and 

afternoon (c. 12:30–16:30) sessions were balanced for each transect. During each session, 

the observer walked at a constant rate and stopped only when a hihi was seen or heard within 

10 meters of the transect. If the bird could be located within 10 minutes, the observer began a 

focal follow of the individual, recording its band combination and any feeding events ad libitum. 

Each food eaten was classified as an invertebrate, fruit, or nectar; plant foods were identified 

to the species level, but invertebrates were too small to be classified more precisely. If multiple 

birds came into view, the group was scanned to capture as many foods eaten as possible. 

Focal individuals were abandoned if they moved too quickly to follow through the dense 

understory, or if they became inactive (preening or resting) or moved out of sight for 5 minutes. 

 

 

Translocations 

 

From 9th April–11th April 2018, 42 hihi were caught at the Source Site using mist nets and 

catching mechanisms at permanent supplementary feeding stations. Individuals were targeted 

for catching based on age and sex; typically, only juvenile hihi are translocated (Thorogood et 

al. 2013) to minimize demographic impact on the source population, and catching continues 

until an even sex ratio is achieved. After capture, individuals were distributed evenly among 

three 40 m3 aviaries, where they were provided with food and water for four days while awaiting 

disease screening results (Ewen et al. 2018). At the end of this period, all birds had passed 

disease screening, and one surplus male and female were released. The remaining 40 

individuals were transported to the mainland overnight by boat and van, with 30 released at 

Release Site 1 and 10 released at Release Site 2 the following morning (15th April). 

 

 

Post-release observations 

 

For six weeks following the translocation, foraging observations were collected at each of the 

three sites by a team of observers. All observers completed interobserver reliability testing to 

ensure food items were identified with 100% accuracy. At the Source Site, observations 

followed the pre-translocation methods and were collected by a single observer from 16th April–
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24th May 2018, for a total of 105 observation hours. Observations at the two Release Sites 

were collected from 17th April–26th May 2018, with 230 hours at Release Site 1 (by two 

observers) and 125 hours at Release Site 2 (by one observer). The disparity in observation 

hours across sites was necessary to achieve similar sampling effort due to the challenging 

terrain and lower hihi density at Release Site 1. Both mainland sites contain a network of 

monitoring transects (spaced 50 m apart), which were walked about once weekly at Release 

Site 1 and twice weekly at Release Site 2. In September 2018, constant-effort population 

surveys (about 40 hours each) were conducted at all sites, during which an experienced 

observer attempted to sight as many individual hihi as possible. 

 

 

Data analysis 

 

All analyses were conducted in R (version 4.0.0; R Core Team 2020). When means are 

reported, they are accompanied by their estimated standard errors. 

 

Accounting for uncertainty in dietary estimates 
 

Within each site and time period (pre- or post-translocation), we tallied the number of foods 

eaten by type for each bird. To account for variation in the number of foods eaten per individual 

(x̄ ± S.E. = 16.9 ± 1.1), we used a Bayesian adjustment (Coblentz et al. 2017; Chapter 2) to 

shift each individual’s food counts toward the population’s mean values by an amount inversely 

proportional to the individual’s sample size of foods eaten. Previous work found that this 

adjustment helps to correct for the uncertainty in diets inferred from a small number of foraging 

observations and can produce reliable dietary estimates from as few as five foods eaten 

(Coblentz et al. 2017; Chapter 2), so we excluded individuals with fewer than five observed 

foods from all further analyses. 

 

Testing the shared preferences and distinct preferences models 
 

To determine whether the shared preferences or distinct preferences model explains dietary 

variation across our study populations, we compared the three sites only in the post-

translocation period to eliminate seasonal effects. Using the WTdMC function in the R package 

RInSp (Zaccarelli et al. 2013), we used our Bayesian-adjusted food counts to calculate 

Roughgarden’s Total Niche Width (TNW) for each population (Roughgarden 1972; Bolnick et 

al. 2002). For discrete food types, TNW is estimated using the Shannon diversity index 

(Shannon 1948) and can be divided into two components of variance: a within-individual (WIC) 

component representing the breadth of individuals’ diets and a between-individual component 
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(BIC) representing the overlap between individuals’ diets. The ratio of WIC/TNW indicates the 

level of dietary specialization in the population: values near 0 indicate a specialist population 

where individuals consume distinct, narrow diets, while values near 1 indicate a generalist 

population where individuals eat broader, overlapping diets. 

 

Using the WTdMC function, we compared the WIC/TNW value of each population (Source 

Site, Release Site 1, Release Site 2) to 999 Monte Carlo permutations in which the population 

diet was randomly redistributed among individuals. This tested whether each population was 

significantly more specialized than expected by chance. However, there are no statistical tests 

to compare WIC/TNW values across populations, so we compared them qualitatively only. To 

assess the effects of age and residency on population-level dietary specialization, we also 

compared WIC/TNW values between subsets of each population: (i) adults versus juveniles 

(all sites); (ii) newly-translocated versus resident individuals (Release Sites only); and (iii) 

newly-translocated versus resident juveniles (Release Sites only). 

 

Examining dietary responses to competitive release 
 

Next, we assessed dietary changes across the translocation within smaller cohorts based on 

(i) age (juvenile or adult) and (ii) post-translocation site. This resulted in four cohorts: Source 

Site Adults, Source Site Juveniles, Release Site 1 Juveniles (translocated during the study), 

and Release Site 2 Juveniles (translocated during the study). Within each time period (pre- or 

post-translocation), we measured each individual’s dietary specialization relative to other 

members of their cohort using the Proportional Similarity Index (PSi). PSi compares each 

individual’s proportional use of foods (adjusted following the Bayesian correction outlined 

above) to the average cohort member’s diet (Bolnick et al. 2002) and is calculated as: 

1 − 0.5 ∑ |𝑝𝑖𝑗 − 𝑞𝑗|𝑗 , 

where 𝑝𝑖𝑗 is the proportional use of food type j by individual i, and 𝑞𝑗 is the proportional use of 

food type j by the average cohort member (Bolnick et al. 2002). A specialist on food type j 

receives a PSi of qj, while a generalist whose diet exactly matches the cohort average receives 

a PSi of 1. 

 

Because only six individuals translocated to Release Site 2 had sufficient observations in either 

time period (five foods eaten: see above), the Release Site 1 and Release Site 2 cohorts were 

pooled into a single cohort of ‘Translocated Juveniles.’ This allowed us to treat the two Release 

Sites as replicates while we focused on our hypotheses of interest. We then tested the effects 

of cohort (Source Site Adults, Source Site Juveniles, Translocated Juveniles) and time (pre- 

vs. post-translocation) on PSi in a stepwise fashion using Likelihood Ratio Tests. A model 
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containing an interaction between cohort and time was compared to a simplified model without 

the higher-order effect. Models were structured as Linear Mixed Models (LMM) with a random 

effect of individual bird identity and post-translocation site (to account for differences between 

the two Release Sites). The interaction was significant (see Results), so we conducted post-

hoc t-test comparisons: (1) between cohort pairs before the translocation, (2) between cohort 

pairs after the translocation, and (3) within cohorts before vs. after the translocation. A fourth 

comparison tested whether cohorts differed in the change in mean dietary specialization 

experienced across the translocation. 

 

Changes in dietary specialization at the cohort level could be explained by different patterns 

among individuals. For instance, if the cohort mean does not change, individuals’ diets may 

have been stable across the translocation, or all individuals may have flipped to the opposite 

end of the specialist-generalist spectrum. Therefore, in our next analysis, we examined the 

consistency of individuals’ dietary changes within each cohort. We first calculated each 

individual’s PSi change across the translocation (post-translocation PSi minus pre-

translocation PSi), including only those individuals seen eating at least five foods in both 

periods. From a preliminary examination of the relationship between PSi change and pre-

translocation PSi, we identified a potential regression-to-the-mean effect: across all cohorts, 

individuals with extreme diets tended to converge toward the cohort mean in their post-

translocation measure. To account for this effect, we followed the methods of Barnett et al. 

(2004) to adjust individuals’ post-translocation PSis by their pre-translocation deviation from 

the cohort mean (‘pre-translocation differential’). We then used a Likelihood Ratio Test to test 

whether individuals’ post-translocation diets depended on an interaction between their pre-

translocation differential and cohort. Because the interaction was not significant (see Results), 

we examined the significance of each factor in the additive model (pre-translocation differential 

+ cohort) using t-tests. Models were structured as above but without a random effect of bird 

identity (each bird appeared only once in this dataset). This analysis measured the consistency 

of dietary changes within cohorts (represented by the slope). To test the direction of these 

changes, we compared the intercept for each cohort to its mean pre-translocation PSi using a 

z-test. 

 

Predicting post-release survival 
 

Because dietary generalists were previously found to survive better than specialists over winter 

at the Source Site (Chapter 2), we tested whether this generalist advantage held in 

translocated individuals. However, we predicted that an individual’s diet at the Source Site (i.e. 

pre-translocation PSi) would not be the best predictor of its survival in a new environment, 
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where there may be different selection pressures. Instead, we expected that translocated 

individuals’ survival would depend on how they foraged in the initial period after release (i.e. 

post-translocation PSi) or their dietary flexibility (i.e. change in PSi across the translocation). 

 

Because there were insufficient surveys at the Release Sites to conduct a more formal survival 

analysis, we instead used an individual’s presence in the September 2018 survey (five months 

post-translocation) as a proxy for survival. This timeframe equates to recruitment into the next 

breeding season and overlaps with the interval previously examined at the Source Site 

(Chapter 2), but only juveniles were examined here to eliminate potential age effects. Although 

this analysis does not account for possible differences in detection based on diet, it provides a 

preliminary sense of which individuals would be most favorable to translocate; even if 

individuals not seen in the survey were actually alive, it could indicate undesired behaviors, 

such as dispersal away from the core protected areas of the reserve.  

 

We conducted Likelihood Ratio Tests to assess whether an individual’s presence in the 

September survey depended on its cohort (Source Site Juveniles or Translocated Juveniles) 

and three dietary metrics: (i) pre-translocation PSi; (ii) post-translocation PSi; and (iii) PSi, 

calculated as: 

(𝑃𝑜𝑠𝑡−𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑆𝑖−𝑃𝑟𝑒−𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑆𝑖)

𝑃𝑟𝑒−𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑆𝑖
 . 

Models containing the interaction of interest (cohortdietary metric) were compared to 

successively simplified models without the higher-order effect. As the response variable was 

binary (present/absent), models were structured as Generalized Linear Mixed Models 

(GLMMs) with a binomial family and logit-link function. A random effect of post-translocation 

site was included to account for possible differences between the two Release Sites. 

 

 

 

4.3   RESULTS 
 

 

Testing the shared preferences and distinct preferences models 

 

In the post-translocation period, all observed populations and cohorts were significantly more 

specialized than expected by chance (Monte Carlo simulations: P < 0.001). The three 

populations had similar Total Niche Widths, with a TNW of 1.97 at the Source Site (n = 61 

individuals), 2.03 at Release Site 1 (n = 42 individuals), and 2.10 at Release Site 2 (n = 32 

individuals). However, TNW was explained by different relative contributions of within- and 

between-individual variation at each site. WIC/TNW at the Source Site (0.35) was 44% lower 
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than at Release Site 1 (0.62) and 36% lower than at Release Site 2 (0.55). This indicates 

greater dietary specialization at the more competitive Source Site, consistent with the shared 

preferences model of dietary variation. 

 

Across sites, there were different effects of age and residency on specialization. Juveniles (n 

= 25) and adults (n = 36) were equally specialized at the Source Site (WIC/TNW = 0.38) but 

differed at the two Release Sites: juveniles (n = 29, WIC/TNW = 0.56) were more specialist 

than adults (n = 13, WIC/TNW = 0.78) at Release Site 1 and slightly more generalist than adults 

at Release Site 2 (juveniles: n = 12, WIC/TNW = 0.59; adults: n = 20, WIC/TNW = 0.55; Figure 

4.4a). At Release Site 1, there were no major differences in specialization based on residency 

(translocated: n = 22, WIC/TNW = 0.62; resident: n = 20, WIC/TNW = 0.66), but newly-

translocated individuals (n = 6; WIC/TNW = 0.70) were more generalist than residents (n = 26; 

WIC/TNW = 0.53) at Release Site 2 (Figure 4.4b). When only juveniles were considered, 

residents (Release Site 1: n = 7, WIC/TNW = 0.47; Release Site 2: n = 6, WIC/TNW = 0.56) 

tended to be 20–25% more specialist than newly-translocated individuals (Release Site 1: n = 

22, WIC/TNW = 0.62; Release Site 2: n = 6, WIC/TNW = 0.70; Figure 4.4c) at both Release 

Sites. 
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Figure 4.4. Comparisons of dietary specialization in the post-translocation period between (a) 

age cohorts, (b) residency cohorts, and (c) juvenile residency cohorts within each site. Dietary 

specialization is represented by the proportion of the population’s total niche width (TNW) that 

is explained by the dietary breadth of individuals (within-individual component of variation: 

WIC); lower values reflect a specialist population where individuals consume distinct, narrow 

diets, and higher values reflect a generalist population where individuals consume broad, 

overlapping diets. Dashed lines indicate WIC/TNW for (a–b) the full population or (c) the 

juvenile subset of the population. 
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Examining dietary responses to competitive release 

 

Individual dietary specialization (PSi) depended on an interaction between an individual’s 

cohort and the time period (cohorttime: χ2
 = 13.87, df = 2, P < 0.001; Figure 4.5). Before the 

translocation, mean dietary specialization did not differ significantly among the three cohorts: 

Source Site Adults (n  = 29, mean PSi = 0.42 ± 0.02) were equally specialized as Source Site 

Juveniles (n = 21, mean PSi = 0.37 ± 0.02) and Translocated Juveniles (n = 26, mean PSi = 

0.43 ± 0.02; Table 4.1a). However, after the translocation, all cohorts differed significantly: 

Source Site Adults were the most specialist (n = 27, mean PSi = 0.33 ± 0.03), followed by 

Source Site Juveniles (n = 21, 0.43 ± 0.04) and Translocated Juveniles (n = 27, 0.51 ± 0.02; 

Table 4.1b). Within cohorts, Source Site Adults changed significantly across the translocation, 

becoming more specialist, while Translocated Juveniles became significantly more generalist 

(Table 4.1c). Meanwhile, Source Site Juveniles did not change significantly but trended weakly 

toward generalization (Table 4.1c); as a result, the change in PSi across the translocation did 

not differ significantly between juvenile cohorts (Table 4.1d). Notably, compared to the other 

two cohorts, where individuals were distributed along a continuum of PSis, Source Site 

Juveniles diverged after the translocation into being either more generalist or more specialist 

(Figure 4.5). 
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Figure 4.5. Change in mean dietary specialization (PSi) across the translocation for each of 

the three focal cohorts: adults remaining at the Source Site, juveniles remaining at the Source 

Site, and juveniles translocated to one of the two Release Sites. Gray points are the raw data 

(PSis calculated within cohort), with shape indicating the individual’s location after the 

translocation (circle = Source Site; triangle = Release Site 1; square = Release Site 2). Means 

and standard error bars are colored to indicate the time period (blue = pre-translocation; red = 

post-translocation). Letters indicate significant differences between all mean PSis, and stars 

indicate significant interactions (cohorttime). 
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Table 4.1. Pre- and post-translocation PSi comparisons within and between cohorts. 

 

Comparison Estimate ± S.E. t P-value 

 

(a) Between Cohorts: Pre-Translocation    
 

Source Site Adults vs. Source Site Juveniles 0.051 ± 0.035 1.448 0.150  

Source Site Adults vs. Translocated Juveniles −0.008 ± 0.033 −0.241 0.810  

Source Site Juveniles vs. Translocated Juveniles −0.059 ± 0.036 −1.636 0.104  

 

(b) Between Cohorts: Post-Translocation     

Source Site Adults vs. Source Site Juveniles −0.091 ± 0.036 −2.572 0.011 * 

Source Site Adults vs. Translocated Juveniles  −0.174 ± 0.033 −5.245 <0.001 *** 

Source Site Juveniles vs. Translocated Juveniles  −0.083 ± 0.036 −2.334 0.021 * 

 

(c) Within Cohort: Pre- vs. Post-Translocation     

Source Site Adults −0.089 ± 0.033 −2.708 0.008 ** 

Source Site Juveniles 0.054 ± 0.038 1.423 0.157  

Translocated Juveniles 0.078 ± 0.034 2.322 0.022 * 

     

(d) Between Cohorts: Change in PSi     

Source Site Adults vs. Source Site Juveniles −0.142 ± 0.050 −2.849 0.005 ** 

Source Site Adults vs. Translocated Juveniles  −0.166 ± 0.047 −3.553 <0.001 *** 

Source Site Juveniles vs. Translocated Juveniles  −0.024 ± 0.050 −0.482 0.631  

 

Note: Results of pairwise comparisons from an LMM predicting dietary specialization (PSi) 

from an interaction between cohort (Source Site Adults, Source Site Juveniles, Translocated 

Juveniles) and time (pre vs. post-translocation). Comparisons are made (a) between cohorts 

before the translocation; (b) between cohorts after the translocation; (c) within cohorts before 

vs. after the translocation; and (d) between dietary changes experienced by cohorts across the 

translocation. Significant P-values are indicated in bold. 
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Individuals’ diets after the translocation differed by cohort but did not depend on their diet 

relative to the cohort mean before the translocation (cohortpre-translocation differential: χ2
 = 

0.963, df = 2, P = 0.618; pre-translocation differential: estimate =  −0.135 ± 0.184, t = −0.734, 

P = 0.466). Regardless of whether they were more or less specialist than other cohort members 

before the translocation, adults remaining at the Source Site became significantly more 

specialist than the cohort mean after the translocation (intercept < mean pre-translocation PSi; 

z = −2.851, P = 0.004). Translocated juveniles showed the opposite effect, becoming 

significantly more generalist than the cohort’s starting mean (intercept > mean pre-

translocation PSi; z = 2.072, P = 0.038). Meanwhile, juveniles remaining at the Source Site 

were more split in their dietary changes; although they tended to become slightly more 

generalist, this trend was not significant (z = 1.601, P = 0.109; Figure 4.6). 
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Figure 4.6. Relationship between individuals’ post-translocation dietary specializations (PSis) 

and their pre-translocation diet relative to the cohort mean (‘pre-translocation differential’). 

Regression lines (solid lines) and 95% confidence regions (shaded areas) are extracted from 

an LMM with cohort and pre-translocation differential as additive fixed effects; slopes are not 

significant. Dashed horizontal lines represent each cohort’s mean PSi before the translocation, 

with significance stars next to the cohort name indicating that this mean differs significantly 

from the intercept of the regression line. Points are the raw data (PSis calculated within cohort), 

with shape indicating the individual’s post-translocation site (circle = Source Site; triangle = 

Release Site 1; square = Release Site 2). 
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Predicting post-release survival 

 

There was a significant relationship between an individual’s dietary specialization before the 

translocation and their five-month survival (sighting in September 2018 survey), but this 

depended on their cohort (pre-translocation PSicohort: χ2
 = 15.73, df = 1, P < 0.001; Figure 

4.7a). For juveniles remaining at the Source Site (n = 31), individuals were more likely to 

survive if they were more generalist before the translocation (estimate = 15.4 ± 5.7, z = 2.691, 

P = 0.007). Among translocated juveniles (n = 32), there was a trend in the opposite direction, 

with specialists more likely to survive, but this was not quite significant (estimate = −6.5 ± 3.6, 

z = −1.814, P = 0.070). Survival was also predicted by the dietary change that an individual 

experienced across the translocation in interaction with their cohort (PSicohort: χ2
 = 6.47, 

df = 1, P = 0.011; Figure 4.7b). At the Source Site (n  = 19), juveniles that shifted toward a 

more specialist diet (PSi < 0) were more likely to survive than those that became more 

generalist (estimate = −4.5 ± 2.0, z = −2.241, P = 0.025), with no significant relationship in 

translocated juveniles (n = 22; estimate = 0.46 ± 1.15, z = 0.398, P = 0.690). Meanwhile, there 

was no significant relationship between survival and post-translocation PSi (χ2
 = 0.085, df = 1, 

P = 0.771) or cohort (χ2
 = 1.56, df = 1, P = 0.212). 
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Figure 4.7. Relationship between individuals’ presence in the September 2018 survey (five 

months post-translocation) and their (a) dietary specialization before the translocation (pre-

translocation PSi, calculated within cohort) or (b) proportional change in dietary specialization 

across the translocation (PSi). Juveniles that remained at the Source Site are presented on 

the left, and juveniles translocated to one of the two Release Sites are presented on the right. 

Regression lines (solid lines) and 95% confidence regions (shaded areas) are extracted from 

a GLMM with an interaction between cohort and the respective dietary metric. Points are the 

raw data (PSis calculated within cohort), with shape indicating the individual’s post-

translocation site (circle = Source Site; triangle = Release Site 1; square = Release Site 2). 
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4.4   DISCUSSION 
 

 

Measuring dietary responses to competitive release can provide insight into the structure of a 

population’s niche and the inherent preferences of individuals (Svanbäck and Bolnick 2005; 

Araújo et al. 2011; Bolnick et al. 2011). Here, we used two translocations of hihi, a threatened 

New Zealand passerine, to experimentally test how individuals’ diets changed when they were 

moved from a highly competitive Source Site to two less competitive Release Sites. After the 

translocation, individuals at the Release Sites consumed broader, more overlapping diets than 

those remaining at the Source Site, suggesting that individuals share the same inherent 

resource preferences but must specialize to avoid competition in denser populations 

(Svanbäck and Bolnick 2005; Araújo et al. 2011). By tracking dietary changes across the 

translocation, we also found a consistent response to competitive release within the 

translocated cohort: translocated juveniles shifted consistently and significantly toward more 

generalist diets. Meanwhile, depending on their age, individuals remaining at the Source Site 

either did not change significantly (juveniles) or became more specialist (adults). There was 

also evidence that individuals’ diets may have consequences for survival. Individuals that were 

generalist before the translocation exhibited higher five-month survival than specialists, but 

only if they remained at the Source Site; at the two Release Sites, generalists had lower 

survival than specialists. Overall, our study demonstrates that translocations can provide 

behavioral ecologists with a rare opportunity to test the causes and consequences of dietary 

variation, with potential implications for conservation. 

 

Our results provide strong evidence that competition and resource limitation drive dietary 

differences among hihi. Consistent with the shared preferences model (Svanbäck and Bolnick 

2005; Araújo et al. 2011), hihi consume generalist diets under low competition but differentiate 

into distinct dietary specializations under high competition. This pattern is consistent with past 

findings in a range of mammals (e.g. Tinker et al. 2008; Tinker et al. 2012; A. Robertson et al. 

2015), fish (e.g. Svanbäck and Persson 2004; Svanbäck and Bolnick 2007; Araújo et al. 2014), 

birds (e.g. Pagani-Núñez et al. 2016) and reptiles (e.g. Santamaría et al. 2020), but the 

mechanisms by which hihi achieve specialization may differ from other species. In general, 

intraspecific competition tends to favor the expansion of a population’s total niche as individuals 

broaden their diets to include foods that would normally be ignored (e.g. Svanbäck and 

Persson 2004; Svanbäck and Bolnick 2007). However, our three study populations all had 

similar total niche widths after the translocation. This suggests that specialization in hihi is 

shaped mainly by the expansion and contraction of individuals’ niches, while the population’s 

niche remains fixed. The high degree of interspecific competition at the Source Site could 
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explain this result, as dominant heterospecifics can constrain a population’s niche by making 

certain resources unattainable (Araújo et al. 2011). If hihi must specialize to avoid competing 

with each other but are forced to do so within a restricted population niche, individuals may not 

be able to meet their dietary needs from their narrow specializations. This could potentially 

explain the source population’s high reliance on supplementary feeding (Thorogood et al. 

2013). 

 

There was also some evidence that diet depended not only on the social environment but on 

age. While only translocated juveniles’ diets changed significantly across the translocation, all 

juveniles trended toward more generalist diets. This could suggest that juveniles have a natural 

tendency to become more generalist in the post-translocation period, which is amplified by 

competitive release. Alternatively, it could show that, like their translocated peers, juveniles 

remaining at the Source Site also experienced a small degree of competitive release due to 

the translocation. While we know that removing 40 individuals has minimal impacts on the 

demographics of the source population (D. Armstrong and Ewen 2013), we may have 

underestimated the social impact, particularly for juveniles. Juvenile hihi aggregate after 

fledging in juvenile-dominated ‘gangs,’ largely isolating them from the adult social structure 

(Franks et al. 2020). Because only juveniles were translocated, removing 40 individuals (about 

25% of the juvenile cohort) could have impacted the degree of competition experienced by 

juveniles, while adults remained largely unaffected. Furthermore, if translocated juveniles were 

selected non-randomly with respect to gang membership, some Source Site juveniles may 

have experienced a greater competitive release than others. This may be why Source Site 

juveniles clustered into two distinct dietary groups after the translocation—one more specialist 

and one more generalist—which may reflect the degree of competitive release they 

experienced. Unfortunately, our foraging observations did not measure social groupings in 

sufficient resolution to assess this, but it would be worthwhile to incorporate measures of social 

connectivity into future studies. 

 

When using translocations to test foraging theory, it is important to consider that the 

translocation process itself imposes unique challenges on individuals (Dickens et al. 2010; 

IUCN/SSC 2013) that could influence foraging. After the translocation, we found distinct 

differences in dietary specialization between newly-translocated and resident juveniles at the 

Release Sites: both were more generalist than Source Site juveniles (as predicted by the 

shared preferences model), but the translocated birds were even more so. This suggests that 

the act of being translocated may have caused birds to shift beyond the level of generalization 

normally favored at their release site. Why might this be? Anecdotally, translocated birds 

concentrated in just a few small areas in the initial weeks after release. Remaining in a group 
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could be beneficial to birds navigating an unfamiliar environment, because foraging socially 

can help individuals discover new food sources (Galef and Giraldeau 2001) and reduce 

predation risk (Sorato et al. 2012). Alternatively, these post-release aggregations could be a 

byproduct of our translocation methods; we released individuals in only two locations at each 

site, and translocated individuals sometimes exhibit strong site fidelity to release locations 

(Banks et al. 2002; Berger-Tal and Saltz 2014). Regardless of the cause, these post-release 

groupings may explain why newly-translocated individuals exhibited such generalist diets, as 

they were foraging on a common pool of resources in a small area. Over time, as they disperse 

and begin to form territories (typically within four weeks for hihi: Richardson and Ewen 2016; 

Metcalf et al. 2019), their generalization may decrease in line with residents’ diets. 

 

In addition to serving as a test of behavioral ecology theory, our study could also inform future 

translocation efforts. Habitat suitability and food limitation are major factors affecting 

translocation success (Magdalena Wolf et al. 1998; Berger‐Tal et al. 2020), so selecting a 

release site that meets a species’ dietary needs is a critical decision (Seddon et al. 2007; D. 

Armstrong and Seddon 2008; IUCN/SSC 2013; Seddon et al. 2014). Observing how individuals 

responded to competitive release helped to reveal inherent food preferences, which could 

guide the selection of release sites for future translocations of hihi. However, if diets shift in 

response to changing competition, then a population’s needs may also change over time. As 

the population (and competition) grows, individuals may need to seek refuge through 

specialization, so there could be a longer-term need for diverse, less preferred resources to 

support dietary diversification. Thus, it is important to consider how individuals will respond not 

only to the immediate environmental changes associated with translocation (Owen-Smith 

2003; Silver and Marsh 2003; Ewen and Armstrong 2007; B. Bell 2016) but also to longer-term 

changes associated with population establishment. 

 

Another challenge for conservation biologists is how to select individuals for translocation to 

give them their best chance of success. In recent years, there has been increasing interest in 

using individuals’ behaviors at the source site to predict their success after release (Arcese 

2003; Sinn et al. 2014; May et al. 2016; Germano et al. 2017; Merrick and Koprowski 2017). 

However, while studies of captive-reared animals suggest that early-life diet can influence post-

release survival (Whiteside et al. 2015), to our knowledge, diet has not yet been explored as a 

candidate trait for selecting wild-born individuals for translocations. Here, we found a benefit of 

translocating juvenile hihi with more specialist pre-translocation diets. Regardless of how their 

diets changed, these birds tended to be more likely to survive to their first breeding season 

than generalists. Meanwhile, specialists remaining at the Source Site were less likely to survive 

the same period, so selectively translocating them would not weaken the source population—
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a common concern in translocations (D. Armstrong and Seddon 2008). Past work suggested 

that generalist hihi may have a competitive advantage over specialists at the Source Site 

(Chapter 3), but, in many species, competitively dominant individuals are less innovative than 

subordinates (Reader and Laland 2001; Thornton and Samson 2012; Aplin et al. 2013; Keynan 

et al. 2015). Thus, specialist hihi may be disadvantaged at the Source Site but better equipped 

to adapt to a novel foraging environment, increasing their chances of survival. Further 

investigation is needed to confirm that the survival result holds after accounting for differences 

in detection based on diet, as we did not have sufficient data to do so here. 

 

Overall, our study suggests that competitive release drives hihi toward more generalist diets, 

in line with the shared preferences model of dietary variation. We have also demonstrated how 

translocations can provide behavioral ecologists with opportunities to test theories that might 

otherwise be challenging to examine in a natural setting. Translocations do have their 

limitations: they often involve small sample sizes, and, as conservation priorities take 

precedence, there may be little control over which individuals are translocated. In our case, 

translocating a greater number of individuals may have enabled us to detect a stronger effect 

of diet on survival, and translocating a mixed cohort of juveniles and adults may have allowed 

us to control for age effects. Nevertheless, a major benefit of using translocations to test theory 

is that it allows behavioral ecologists to contribute to conservation in novel ways. By setting 

shared goals from the beginning of a translocation program, these interventions may be 

designed so that behavioral ecologists and conservation biologists can both answer their 

questions of interest. Given the fragile state of biodiversity today, there has never been a more 

important time for these two fields to merge to their mutual benefit and to the benefit of the 

species we all value. 
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Chapter 5 

Flower power? Testing the ecological implications of individual 

traplining tendencies 

 

~ 

 

Intraspecific behavioral differences can shape individuals’ fitness and population dynamics, but 

less is known about how this variation scales up to affect higher ecological levels. Here, we 

tested the consequences of behavioral variation for pollination, a mutualism with far-reaching 

effects on ecosystem health. Previously, several effective pollinator species have been found 

to exhibit a specialized foraging pattern called ‘traplining,’ where plants are checked for nectar 

in a systematic sequence. This can improve pollen diversity and dispersal distance, but it is 

unclear how much individuals vary in their traplining tendencies and whether this impacts 

pollination. Using the hihi, a threatened avian pollinator endemic to New Zealand, as a case 

study, we presented individuals with an open-field analogue of a radial arm maze consisting of 

a pentagonal array of novel feeders. Consistent with traplining, individuals tended to search 

the array systematically, favoring adjacent turns between feeders. They also avoided repeat 

visits to empty feeders, but males and older individuals did so more successfully than females 

and younger individuals. Meanwhile, females were more persistent in the task, continuing to 

search until they found food, while males gave up more frequently. These results show that 

individual hihi vary in traits previously found to predict pollination efficiency at the species level. 

Yet, when we measured pollination outcomes on individuals’ territories, we found no evidence 

that performance in the foraging task predicted territory holders’ contributions to pollination. 

Overall, our study provides a rare test of how individual variation can influence ecological 

function and suggests that traits known to be consequential at the species level may differ in 

their consequences at the individual level. 
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5.1   INTRODUCTION 
 

 

With the knowledge that individuals within species often vary in their behaviors (Bolnick et al. 

2003; Sih et al. 2004; Réale et al. 2007), ecologists are increasingly interested in determining 

the consequences of this variation. Most studies focus on linking behavioral variation to 

individual fitness (Dingemanse and Réale 2005; B. Smith and Blumstein 2008; Costa-Pereira 

et al. 2019). However, variation can also scale up to influence broader ecosystem dynamics 

(Bolnick et al. 2011; Wolf and Weissing 2012; Raffard et al. 2017), particularly when behaviors 

underlie key interspecific interactions. For instance, animal-plant mutualisms provide many 

opportunities for behavioral variation to impact ecological function. Plants that depend on these 

interactions, being immobile, effectively derive their own movement patterns and reproductive 

success from the behaviors of their animal mutualists (Snell et al. 2019); therefore, if individual 

pollinators or seed dispersers vary in their effectiveness, it could impact the fitness of the plants 

they encounter (Zwolak 2018; Snell et al. 2019). Through their influence on plants, animals can 

also drive long-lasting structural changes to the ecosystem, with cascading effects on other 

species. This effect has been underscored by the current biodiversity crisis; worldwide, 

declines of animal mutualists are threatening the stability of the ecosystems they contribute to 

(Kelly et al. 2010; Potts et al. 2010; Neuschulz et al. 2016). If individuals vary in their 

contributions to ecological function, conservation biologists could potentially harness this 

variation to improve the effectiveness of behavior-based interventions. However, this would 

require a better understanding of how individual differences translate into ecological 

consequences, and most work on this topic remains theoretical. 

 

There has been a recent rise in studies investigating how variation across a range of behavioral 

traits affects seed dispersal quality (see Zwolak 2018 for a review). For instance, in small 

mammals, an individual’s boldness, docility, and stress response have been found to predict 

the distance it disperses seeds and the quality of sites where it deposits them (Brehm et al. 

2019; Feldman et al. 2019). Meanwhile, most work on pollination remains focused on traits 

such as body size (Willmer and Finlayson 2014; Jauker et al. 2016), age, or sex (G. Smith et 

al. 2019; Fuster and Traveset 2020), with less attention given to behavior (but see: Thomson 

and Chittka 2009; Maruyama et al. 2016). This is somewhat surprising given that behavioral 

differences have long been used to explain variation across pollinator species, with many of 

these behaviors now known to vary at the individual level. Perhaps most prominently, several 

effective pollinator species exhibit a unique foraging pattern called ‘traplining,’ in which plants 

are checked for nectar in a systematic sequence (Janzen 1971; D. Anderson 1983). From the 

pollinator’s perspective, this strategy helps to maximize the efficiency of their route and 
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minimize repeat visits to depleted flowers (Thomson 1996; Thomson et al. 1997; Williams and 

Thomson 1998; Ohashi et al. 2006; Saleh and Chittka 2007). From the plant’s perspective, 

traplining enhances reproduction by increasing pollen diversity and dispersal distance (Ohashi 

and Thomson 2009). Another trait that can influence the amount of pollen transported is a 

pollinator’s persistence (Laverty and Plowright 1988), or likelihood to continue searching until 

they find nectar. While some studies evaluating traplining have found evidence that individuals 

may vary (Thomson 1996; Saleh and Chittka 2007; Tello-Ramos et al. 2015), less is known 

about variation in persistence. Furthermore, differences in traplining and persistence have 

rarely been tested explicitly or evaluated to see whether they predict quantifiable pollination 

outcomes. 

 

In this study, we tested for individual variation in pollination ability in a system where this 

information could inform conservation. The hihi (Notiomystis cincta) is a threatened passerine 

endemic to New Zealand, where it is thought to have been one of the most important pollinators 

(Craig et al. 1981; S. Anderson 2003; Kelly et al. 2006; S. Anderson et al. 2011) before habitat 

loss, predation, and disease nearly drove it to extinction in the late 1800s. Today, hihi exist in 

one remnant population on Te Hauturu ō Toi (Little Barrier Island Nature Reserve) and seven 

reintroduced populations across the North Island. The species’ broad annual diet includes fruit, 

invertebrates, and nectar (Craig 1985; Rasch and Craig 1988; Chapter 2), but nectar 

dominates in spring (Gravatt 1971; Angehr 1984; Rasch and Craig 1988; Chapter 1), coinciding 

with the flowering period for most native plants. Many of these plants are threatened, 

themselves (Kelly et al. 2010). Thus, hihi translocations aimed primarily at species recovery 

often cite the restoration of pollination function as an added potential benefit (Smuts-Kennedy 

2009; Frost 2012; Collins et al. 2015). However, these efforts typically assume that all hihi are 

equally effective at achieving restoration goals, when there is evidence for individual variation 

in dietary specialization (Chapter 2) and age differences in learning ability (Franks and 

Thorogood 2018). If behavioral variation drives differences in pollination ability, conservation 

biologists could promote ecosystem recovery by selectively translocating individuals with 

favorable pollinator traits, just as other translocations have used behavior to predict post-

release survival (e.g. Sinn et al. 2014; May et al. 2016; Germano et al. 2017). 

 

We first conducted a pollinator exclusion experiment across 50 hihi territories on Tiritiri Matangi 

Island, home to the main source population for hihi translocations (Thorogood et al. 2013). Hihi 

are socially monogamous, and males defend their territories from intra- and interspecific 

intruders during the breeding season (Ewen et al. 2004; Low 2005); thus, conducting the study 

on territories ensured that plant visitation by birds was limited to the two hihi territory holders 
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as much as possible. After measuring birds’ contributions to fruit set, we then examined 

whether these contributions were predicted by the territory holders’ performance in a novel 

foraging task, presented in the following season to avoid disrupting natural foraging during the 

pollination experiment. The task consisted of an open-field analogue of a classic radial arm 

maze (Healy and Hurly 1995; Foreman and Ermakova 1997) and captured three key pollinator 

behaviors: an individual’s search sequence and avoidance of depleted flowers (two 

components of traplining), and its persistence. Using these metrics, we (1) assessed the 

traplining abilities and persistence of hihi as a species; (2) evaluated age, sex, and individual 

differences; and then (3) investigated whether the most successful trapliners enhanced 

pollination to a greater degree on their territories. Through these questions, we aimed to 

conduct a rare assessment of whether individual differences in foraging behaviors link to 

measurable differences in pollination outcomes. 

 

 

 

5.2   METHODS 
 

 

Study site and population 

 

Tiritiri Matangi Island (36°36'00.7"S 174°53'21.7"E) is a 220-hectare nature reserve home to a 

hihi population (~200 individuals) established through translocation in 1995. Located 3.5 km 

off the coast of the North Island mainland, the island was farmed for over a century but was 

extensively replanted in the 1980s. Today, it consists mainly of regenerating native bush, which 

supports a high density of remnant and reintroduced native bird species. Due to a shortage of 

natural tree cavities, all hihi on the island nest in artificial nest boxes, with two boxes (within 10 

m of each other) per territory, and territories estimated to be at least 30 m apart (Ewen et al. 

2018). Nest boxes are intensively monitored during the breeding season to identify territory 

holders and track breeding activities. At 21-days old, nestlings are sexed based on early signs 

of sexually dimorphic plumage (C. Smith et al. 2015) and uniquely color banded to facilitate 

individual identification after fledging. As in all other reintroduced populations (Chauvenet et 

al. 2012; Thorogood et al. 2013; Doerr et al. 2017), the hihi at this site rely on supplementary 

feeding to varying degrees throughout the year, with sugar water provided ad libitum in six 

feeder cages across the island. 
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Pollinator exclusion experiment 

 

For the purposes of this study, we focused on pollination of hangehange (Geniostoma 

ligustrifolium), a gynodioecious (Rattenbury 1980) native understory shrub. Like many New 

Zealand plants, hangehange was long assumed to be insect-pollinated due to its small (< 4 

mm), inconspicuous pale-green flowers. However, it is now known to receive much of its 

pollination from birds, including hihi (Castro and Robertson 1997; S. Anderson 2003). 

Hangehange is particularly suitable for experimentation on Tiritiri Matangi because it is 

widespread across the island and flowers during the hihi breeding season. During peak 

flowering in October, hangehange nectar makes up about 65% of the hihi diet (Chapter 1). 

 

A pollinator exclusion experiment was set up from 14th September–20th September 2017, at 

the start of the hangehange flowering period and just prior to the start of the hihi breeding 

season. Fifty hihi territories with a high chance of occupancy based on trends over the last 

three breeding seasons were selected across the island. On each territory, up to five mature 

hangehange plants (x̄ ± S.E.: 4.08 ± 0.21; for a total of 204 plants across the island) were 

selected within 20 m of the nest boxes. We attempted to select only female plants, which can 

be identified based on the presence of moderate to high numbers of dry fruit capsules 

remaining from the previous reproductive cycle. If we accidentally selected any hermaphrodite 

plants, self-pollination rates would be accounted for by our pollination metric (see below), which 

compared outcomes across branchlets within the same plant. 

 

On each focal plant, we assigned one branchlet containing at least 10 unopened buds to each 

of the following pollinator conditions (Kearns and Inouye 1993; Figure 5.1a): 

(1) Insect Pollinators Only: branchlet enclosed in a 2x2 cm wire mesh cage to exclude 

birds but allow insects (mesh size selected following S. Anderson 2003; continued 

insect visitation confirmed by Schmidt-Adam et al. 2009; no birds observed attempting 

to forage through mesh during anecdotal observations); 

(2) Insect + Bird Pollinators: branchlet left open to natural pollination; 

(3) Hand-Pollinated: branchlet left open to natural pollination and pollinated by hand during 

the receptive period (following the methods of S. Anderson 2003). 

All territories were revisited once flowers were open and receptive (about three weeks later) to 

complete the hand-pollination treatment, once flowers had passed receptivity (about six weeks 

after the start of experiment) to remove coverings, and in late December 2017 to count fruits 

on each branchlet. Dividing this count by the original number of buds provided a measure of 

fruit set (proportion of buds that developed into fruits). We restricted this value to be below 1, 

as values greater than 1 suggest that additional buds formed after the initial bud count.  
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Figure 5.1. Overview of the study phases. (a) In Year 1, a pollinator exclusion experiment was 

conducted on Tiritiri Matangi Island. Flowers on 204 hangehange plants were exposed to three 

pollination treatments: insect pollinators only (enclosed in wire mesh to exclude birds), 

insect+bird pollinators (left open), or hand-pollinated (left open and brushed with pollen during 

the receptive period). To isolate the effects of hihi (a, right) on pollination as much as possible, 

the experiment was conducted on 50 hihi territories. (b–c) In Year 2, a novel foraging task was 

introduced on 33 hihi territories. Territory holders were first trained using a familiar feeder (b, 

left) for 1.5 days, then introduced to a novel ‘flower’ feeder (b, right: Retraining Phase flower) 

for up to two hours. The novel flower was then replaced by an array of five flowers (c, left: Test 

Phase; c, right: Retest Phase), with a single rewarding flower (yellow arrow) moved randomly 

within the array each time a hihi visited over a five hour period. Image credits: bush adapted 

from public domain image, hihi photo by Martin Sanders, all other photos by CA. 
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Novel foraging task 

 

From 20th September–13th November 2018, a novel foraging task was presented on 33 hihi 

territories on Tiritiri Matangi. We targeted individuals who, in the previous season, had been 

resident on territories involved in the pollinator exclusion experiment. Many now resided on 

new territories with different partners. Even if they did not have pollination data, we included 

these new partners in the task to increase our sample size for assessing species-level 

traplining tendencies and differences across age-sex classes. Each territory had an active nest 

throughout each phase of the task. 

 

Training Phase 
 

In early afternoon (c. 15:00), a 0.1 m3 feeder cage was placed on the focal territory at least 10 

m from both nest boxes. The cage was supported by 1 m tall wooden posts and was built from 

2x2 cm plastic mesh, with two 4x4 cm holes (marked with an ‘X’ and ‘O’ for another study) on 

one side allowing birds to enter. Inside was a hummingbird-style feeder consisting of a red 

base topped with a 1.5 L translucent brown bottle containing 20% sugar solution. Some territory 

holders had encountered this feeder design (Figure 5.1b) in a previous study (Franks et al. 

2018), and all had experience feeding on the same sugar solution at the island’s permanent 

supplementary feeding stations. 

 

The training feeder was left in place the entire next day to allow territory holders to associate 

the location with a reward. On the following morning (c. 8:00), the feeder was removed and 

replaced by five 1 m tall wooden posts in a pentagonal array of 0.6 m radius. An additional post 

at the center of the pentagon was topped with a ‘novel flower’ feeder (Figure 5.1b) consisting 

of a red plastic tube (12 cm high, 5 cm diameter). The bottom of the tube was sealed with a 

plunger. The top opening was covered in yellow duct tape, with three yellow ‘petals’ (4 cm 

diameter half-circles of duct tape) around the edges and a 0.75 cm diameter hole in the center, 

large enough to allow feeding but small enough to prevent visual inspection of the tube’s 

contents. A perch consisting of a 7 cm long dowel (0.75 cm diameter) resting on a small 

wooden platform (4.5x6 cm, covered in plastic mesh for traction) was affixed 3 cm below the 

top of the tube. As part of another study on visual cue learning, the tube was tied with a small 

piece of pink flagging tape, and the perch platform was colored pink; however, no birds learned 

to associate these cues with food during the Test Phase. 

  

The observer filled the tube with 20% sugar solution, then sat under cover of vegetation at least 

5 m away. Of the 33 territories, 31 completed training, which varied in length due to weather 

and logistical constraints. On 27 territories, one (female only: n = 9; male only: n = 9) or both 
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(n = 9) territory holders fed from the novel flower within 79 minutes (x̄ ± S.E. = 23 ± 4) and 

proceeded to the Test Phase. On four territories, neither territory holder fed within 93 minutes 

(54 ± 15), but these territories progressed to the Test Phase because territory holders were 

highly active in the vicinity of the novel flower. Two territories were excluded from the Test 

Phase, because neither territory holder fed from, or came within proximity of, the novel flower 

within two hours. At the end of the Training Phase, the novel flower was removed, leaving the 

central post bare. 

 

Test Phase 
 

The observer randomly placed the novel flower from the Training Phase on one of the five 

posts in the pentagonal array and topped it up with sugar solution. This became the ‘rewarding 

flower’ in the Test Phase. An additional flower was placed on each of the four remaining posts, 

oriented with the perch side closest to the center of the array (Figure 5.1c). These ‘unrewarding 

flowers’ were identical to the rewarding flower, except they were not marked with pink flagging 

tape or a pink perch base, and they remained empty throughout the Test Phase.  

 

The observer returned to the hide and waited for a territory holder to arrive and land on one of 

the flowers, marking the start of a trial. During each trial, the observer recorded the sequence 

in which the focal bird landed on each flower and whether they probed it (dipped beak into the 

hole). The trial ended when the bird moved at least 5 m away and began another activity (e.g. 

natural foraging or visiting the nest box), remained within view but did not return to the array 

within two minutes, or flew out of sight. The observer then approached the array, topped up 

the rewarding flower (if needed), and repositioned it to one of the other posts. The new position 

was determined from a pseudorandom sequence, which avoided placing the rewarding flower 

on the same post more than twice in a row. While intended to ensure that no bird experienced 

a long run with the rewarding flower in the same position (which could influence their search 

strategy), territory holders often alternated their visits to the array, so birds occasionally 

received more than two successive trials with the rewarding flower in the same position (across 

1,291 trials: n = 8 runs of 3 successive trials, n = 3 runs of 4 successive trials). The non-

rewarding flowers were also randomly repositioned to avoid cue use based on subtle visual 

differences among the flowers. The observer then returned to the hide and waited for the next 

bird’s arrival. Testing continued for five hours on all territories except one, where testing was 

abandoned after neither territory holder visited the array in the first 1.5 hours. 
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Retraining and Retest Phases 
 

Twenty of the territories involved in the Training Phase were retrained following the same 

methods four to six weeks later, with the feeder cage in the same location. For the concurrent 

study on cue use, the rewarding flower now had inverted coloration, with a yellow tube and red 

petals, while the nonrewarding flowers remained red with yellow petals (Figure 5.1c). Eighteen 

territories completed retraining. On 16 territories, one (female only: n = 5; male only: n = 4) or 

both (n = 7) territory holders fed from the novel flower within 25 minutes (12 ± 2 S.E.). On two 

territories, neither territory holder fed within 15 minutes, but the territory progressed to the 

Retesting Phase because territory holders were highly active near the novel flower and had 

participated in the initial Training and Test Phases. Two other territories that had participated 

in the initial Test Phase were excluded from retesting, because neither territory holder fed from, 

or came within proximity of, the novel flower during two hours of retraining. Retesting followed 

the Test Phase procedure and lasted for five hours, except on one territory, where retesting 

was abandoned after neither territory holder came into view within the first 30 minutes. 

 

Control for scent cues 
 

In the concurrent study on visual cue use, seven birds (4 males, 3 females) probed the 

rewarding flower first on seven of ten consecutive trials in the Retest Phase, indicating they 

had learned to associate the yellow tube with a reward. This necessitated an adjustment during 

data analysis (see below) but also provided an opportunity to control for scent cues. On these 

birds’ territories, at the end of the Retest Phase, the rewarding flower was repositioned and 

replaced with an identical flower that had never contained sugar water. Six of the seven birds 

probed the yellow flower first on their next visit, suggesting that hihi in this task rely primarily 

on visual (rather than scent) cues. This was also supported by the fact that empty flowers 

accounted for 67% of the 3,557 flowers probed throughout the study, suggesting that birds 

needed to probe the flowers to determine if they were empty. 

 

 

Data Analysis 

 

All analyses were conducted in R (version 4.0.0; R Core Team 2020). Where means are 

presented, they are accompanied by their estimated standard errors. 
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Evaluating performance in the novel foraging task 
 

For birds that met the learning criterion in the concurrent study on visual cue use (n = 7; see 

above), all trials (17.14 ± 1.72 trials/bird) from the point of learning onward were excluded from 

further analyses so as not to bias other performance metrics. From the remaining trials (n = 

1,171), we calculated three metrics related to traplining for each bird (n = 51) that participated 

in the task. First, an individual’s search sequence was determined by classifying each 

movement between two probed flowers as ‘adjacent’ (moving to one of the two nearest flowers 

in the array) or ‘non-adjacent’ (moving to one of the two farthest flowers) across all trials in the 

Test and Retest Phases. Birds searching the array randomly would be expected to make 50% 

adjacent and 50% non-adjacent turns, while those searching systematically could favor either 

adjacent or non-adjacent turns. Second, to quantify avoidance of empty flowers, we 

categorized each instance in which an empty flower was probed as a ‘known empty’ (focal bird 

had probed that flower earlier in the same trial) or ‘unknown empty’ (focal bird had not probed 

that flower already). Third, as a measure of persistence, we counted the total number of trials 

in which the focal bird probed the rewarding flower at least once (i.e. persisted) and the number 

of trials in which they never probed the rewarding flower (i.e. did not persist). Here, we excluded 

trials in which the rewarding flower was probed first (5.53 ± 0.57 trials/bird), because 

persistence requires observing whether an individual continues to search the array after 

probing an empty flower. 

 

Using a one-sample t-test, we tested whether hihi searched the array systematically by 

comparing the mean proportion of adjacent turns made by each bird to 50% (chance 

expectation). Two males and two females were excluded from this analysis because they had 

no recorded turns as a result of probing only one flower per trial. We then assessed variation 

in each metric qualitatively using histograms and tested for effects of age and sex using 

Generalized Linear Mixed Models (GLMMs). Each response variable was a weighted 

proportion: (i) the number of adjacent turns as a proportion of all turns made by the focal bird, 

(ii) the number of known empty flowers as a proportion of all empty flowers visited by the focal 

bird, and (iii) the number of trials in which the focal bird persisted as a proportion of all trials in 

which they did not probe the rewarding flower first. For the first two metrics, the focal bird’s 

total number of trials was included as an additive fixed effect in all models to account for a 

possible effect of visitation rate on performance (this never explained a significant amount of 

variation; result not presented); this was not needed for the third metric because it was already 

accounted for in the response variable. All models used a binomial family and logit link function 

and included territory ID as a random effect. For each metric, we used Likelihood Ratio Tests 
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to compare a model with the interaction of interest (agesex) against successively simplified 

models and tested the significance of each effect using z-tests. 

 

Predicting pollination outcomes from traplining performance 
 

Of the 204 plants included in the pollinator exclusion experiment, 45 were excluded from further 

analyses due to the territory being unoccupied by hihi during the breeding season (n = 11 

territories), 34 due to total fruit set failure (no fruit set in insect, insect+bird, and hand-pollination 

conditions), and eight due to plant damage. For the remaining 117 plants (territories: n = 37; 

3.16 ± 0.21 plants/territory), the contribution of birds to fruit set was estimated by calculating a 

bird pollination index (BPI): 

1 −
𝑓𝑟𝑢𝑖𝑡 𝑠𝑒𝑡𝑖𝑛𝑠𝑒𝑐𝑡

𝑓𝑟𝑢𝑖𝑡 𝑠𝑒𝑡𝑖𝑛𝑠𝑒𝑐𝑡+𝑏𝑖𝑟𝑑
 . 

When a plant set more fruit in the insect condition than insect+bird condition (suggesting birds 

reduced fruit set; n = 18 plants) or did not set fruit in either condition (indicating neither insects 

nor birds improved fruit set; n = 16 plants), we reassigned BPI (negative or undefined in the 

calculation) a value of 0. As a result, the value of BPI can be interpreted as the proportional 

contribution of birds to fruit set, ranging from 0 (birds did not benefit fruit set) to 1 (birds were 

responsible for all fruit set). A preliminary examination of the distribution of BPIs found a mean 

value of 0.42 ± 0.04, suggesting birds were responsible for 42% of fruit set on the average 

plant. However, there was bimodality around extreme values, so we transformed BPI into a 

binary variable indicating whether birds did (1) or did not (0) benefit fruit set. Original BPIs 

equal to 0 (n = 58 plants) were left unadjusted, but those greater than 0 (n = 59 plants) were 

reassigned a value of 1. 

 

Lastly, we investigated whether individuals’ performance in the novel foraging task predicted 

pollination outcomes on their territories. Unfortunately, only 39 plants from 12 territories had 

foraging task data for the male territory holder, so we restricted analyses to females. This 

resulted in a dataset of 65 plants from 21 territories. GLMMs were used to test the effect of 

each traplining or persistence metric on BPI. A Likelihood Ratio Test was used to compare a 

model containing the metric of interest against a null model, and a z-test was used to examine 

the significance of the effect. Because BPI is binary, models used a binomial family and logit 

link function. A random effect of territory ID was included in all models to account for differences 

in pollination outcomes across territories. In the systematic search analysis, three plants (from 

two territories) were excluded because the female territory holder had no recorded turns as a 

result of probing only one flower per trial. 
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5.3   RESULTS 
 

 

Of the 33 males and 33 females presented with the novel foraging task, 26 males and 25 

females from 30 territories (male and female: n = 21; male only: n = 5; female only: n = 4) 

participated, for an average of 22.96 ± 1.87 trials per individual (excluding post-learning trials; 

see Methods). Overall, hihi exhibited strong traplining tendencies. Participants deviated from 

a 50-50 ratio of adjacent to nonadjacent turns expected if they were searching the array 

randomly (t = 17.36, df = 46, P < 0.001). Instead, they appeared to search systematically, 

making 86% ± 2% of turns to adjacent flowers (Figure 5.2a); all but one individual favored 

adjacent turns. Individuals also exhibited a strong tendency to avoid empty flowers they had 

already probed; only 4.0% ± 0.7% of empty flowers probed had already been probed earlier in 

the same trial (Figure 5.2b). Furthermore, when they began a trial by probing an empty flower, 

individuals persisted in their search until they found food on 65% ± 4% of trials (Figure 5.2c).  

 

Individuals varied in their traplining tendencies and persistence. In the case of systematic 

search, individual differences could not be explained by age or sex; a null model was best 

supported (age vs. null: χ2
 = 1.928, df = 1, P = 0.165; sex vs. null: χ2

 = 0.425, df = 1, P = 0.515; 

Figure 5.2d). However, there was evidence that an individual’s avoidance of empty flowers 

depended on both age and sex (age+sex vs. age: χ2
 = 19.58, df = 1, P < 0.001; age+sex vs. 

sex: χ2
 = 10.35, df = 1, P = 0.001; Figure 5.2e). Across all ages, males re-probed about half as 

many empty flowers as females (sex: estimate = −0.885 ± 0.209, z = −4.240, P < 0.001). 

Meanwhile, older individuals re-probed fewer empty flowers than younger individuals (age: 

estimate = −0.317 ± 0.108, z = −2.945, P = 0.003), although this effect was less certain because 

most individuals were either 2 (n = 15) or 3 (n = 18) years old (younger: n = 2; older: n = 16). 

There was also a small but significant effect of sex on persistence (sex vs. null: χ2
 = 11.57, df 

= 1, P < 0.001; Fig 5.2f), with males persisting on approximately 66% of trials and females on 

approximately 78% of trials (sex: estimate = −0.611 ± 0.181, z = −3.385, P < 0.001).  

 

Across the 21 territories with pollination data and female traplining data, half of plants 

measurably benefited from bird pollination (BPI = 1, n = 33 plants) and half did not (BPI = 0, n 

= 32). On average, bird pollination improved fruit set on 48% ± 6% of plants on each territory. 

Despite this variation, we could not detect any significant consequences of females’ 

performance in the novel foraging task for pollination outcomes on their territories. Birds did 

not contribute to pollination to any greater degree on territories where the female searched 

more systematically (proportion of adjacent turns vs. null: : χ2
 = 1.293, df = 1, P = 0.256; 

estimate: −4.977 ± 4.477, z = −1.112, P = 0.266; Figure 5.2g), avoided empty flowers better 
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(proportion repeat empty flowers probed vs. null: χ2
 = 0.318, df = 1, P = 0.573; estimate: −2.267 

± 4.026, z = −0.563, P = 0.573; Figure 5.2h), or persisted more often (proportion of trials 

persisted vs. null: χ2
 = 1.869, df = 1, P = 0.172; estimate: 1.045 ± 0.777, z = 1.345, P = 0.179; 

Figure 5.2i) in the novel foraging task. 
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Figure 5.2. Results from the novel foraging task and pollinator exclusion experiment. (a–c) 

Individuals varied in (a) their systematic search of the novel flower array (deviating from the 

50% of adjacent turns expected by chance); (b) their avoidance of empty flowers; and (c) the 

proportion of trials in which they persisted until they found food. (d–f) Each of these metrics 

was then tested for effects of age and sex. Solid lines are regression lines (with 95% confidence 

intervals) from a model including additive effects of age and sex (red = females; blue = males); 

each point represents one individual. Neither variable significantly predicted (d) an individual’s 

systematic search, but (e) both had significant effects on avoidance of empty flowers, and (f) 

sex had a significant effect on persistence. (g–i) For each female with data from the pollinator 

exclusion experiment, her performance in the novel foraging task was then used to predict 

whether plants benefited (Bird Pollination Index = 1) or did not benefit (BPI = 0) from bird 

pollination on her territory. Regression lines are from a model including only the effect labeled 

on the x-axis, and points indicate one plant. None of these relationships were significant.  
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5.4   DISCUSSION 
 

 

While most traplining studies examine bees (e.g. Ohashi et al. 2006; Buatois and Lihoreau 

2016; Klein et al. 2017) or hummingbirds (e.g. Temeles et al. 2006; Tello-Ramos et al. 2015, 

2019), our study adds hihi to a short list of other taxa (e.g. primates: Janson et al. 1981; bats: 

Lemke 1984) known to exhibit behaviors characteristic of traplining. In the novel foraging task, 

hihi searched systematically rather than randomly (favoring adjacent turns, as in Thomson et 

al. 1997; Tello-Ramos et al. 2015) and avoided repeat visits to empty flowers (as in Pyke 1979; 

Healy and Hurly 1995). In most trials, they also persisted until they found food (as in Laverty 

and Plowright 1988). All of these behaviors can improve pollination quality (Laverty and 

Plowright 1988; Ohashi and Thomson 2009), suggesting that hihi are specialized for pollination 

not only through their diet (Castro and Robertson 1997; S. Anderson 2003) and morphology 

(i.e. brush-tipped tongues: Kelly et al. 2010) but through their behavior. More work is needed 

to determine whether hihi fully qualify as trapliners, however, as our study was not long enough 

to track whether individuals develop repeatable search sequences, a defining feature of 

traplining (Thomson et al. 1997). 

 

Despite their strong performance on average, individuals varied in their success in our novel 

foraging task, with key differences emerging between age-sex classes. Males and older birds 

avoided revisiting empty flowers more successfully than females and younger individuals, 

which could indicate superior spatial memory. Similar results have been found in 

scatterhoarding species (reviewed in: Zwolak 2018): spatial memory is often better in males 

than females (Galea et al. 1996; Dunlap et al. 2006; Barkley and Jacobs 2007) and can be 

positively correlated with age if it improves with ontogeny and experience (Clayton 1992; 

Clayton 1994) or is subject to natural selection (Sonnenberg et al. 2019). Alternatively, these 

trends could be caused by differences in attention rather than cognition. Female and juvenile 

hihi are more vulnerable to predation and aggression than males (Craig 1985; Castro et al. 

1996; Low and Pärt 2009), and the stress from these perceived risks can impede spatial 

memory (Mastrangelo et al. 2009). Sex also predicted individuals’ persistence in the task: 

males were more likely than females to give up before finding food. According to Optimal 

Foraging Theory, individuals tend to give up faster if they are satiated or perceive higher 

resource availability (Charnov 1976; Gill and Wolf 1977). Female hihi have high energetic 

demands across all breeding stages, as they build the nest and incubate eggs without 

assistance (Ewen and Armstrong 2000) and provision nestlings three times more often than 

males (Castro et al. 1996); these demands could have increased their threshold for satiation 

and persistence in our foraging task. Because these behaviors require frequent visitation to 
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the nest box, their foraging may also be restricted to a smaller area than males’, reducing 

perceived resource availability. Nevertheless, the magnitude of this sex difference was small 

and may be less biologically meaningful than the one for individuals’ avoidance of empty 

flowers. 

 

Combined with the results of our novel foraging task, our pollinator exclusion experiment calls 

into question some of the common assumptions about the ecological implications of traplining. 

Hihi appeared to be strong trapliners overall, and bird pollination improved fruit set by 42% on 

average, in line with the global average of 46% for bird-pollinated plants (Ratto et al. 2018). 

However, while half of plants in our study relied mostly or entirely on birds, the other half 

showed no benefit of bird pollination. Such bimodality could arise if pollinators fail to visit certain 

plants altogether or visit all plants but pollinate some ineffectively; thus, trapliners may not 

benefit all plants equally. A similar pattern could also arise if individual trapliners vary in their 

effectiveness, as has been suggested in other species (Thomson 1996; Saleh and Chittka 

2007; Tello-Ramos et al. 2015). However, despite individual variation in our novel foraging 

task, we found no evidence that a female’s traplining tendencies or persistence predicted 

pollination outcomes on her territory. This could indicate that these traits are not consequential 

in our study system, perhaps because traplining does not vary substantially enough in hihi to 

drive differences in pollination efficiency. Any benefits of enhanced traplining ability could also 

be neutralized if traplining has detrimental effects on other aspects of plant reproduction 

(Ohashi and Thomson 2009), such that stronger trapliners bring no net benefit to pollination.  

 

While our results suggest that individual traplining tendencies and persistence do not affect 

pollination, some uncertainty remains. First, the small size of our dataset may have limited our 

power to detect a significant relationship in females and prevented us from conducting a similar 

analysis in males. Second, conducting the study on territories may have helped to isolate the 

effects of individual birds, but potentially also excluded important sources of variation. 

Territoriality has emerged as a key influence on seed dispersal quality (Zwolak 2018), with 

non-territorial individuals tending to disperse seeds farther than territorial individuals 

(Rawsthorne et al. 2010; Jadeja et al. 2013). Seed dispersal can also differ greatly between 

areas used by multiple individuals (e.g. leks) and areas defended by a single individual (e.g. 

territories; Krijger et al. 1997; Karubian and Durães 2009; Karubian et al. 2012). Recent 

evidence suggests similar effects in pollinators, with territory intruders depositing more 

compatible pollen than territory holders (Maruyama et al. 2016). Given the potential benefits of 

intruders to pollination, territory holders that defend their territories more successfully may 

actually reduce pollination, even if they are effective trapliners. Thus, future work should 
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consider how pollination outcomes might arise from the additive effects of different behavioral 

traits and from interactions among individual pollinators. 

 

To conclude, while we could not explain differences in pollination outcomes across hihi 

territories, their strong performance in the novel foraging task indicates that the species is 

behaviorally specialized for pollination. Testing traplining abilities across a wider range of 

species, using more consistent methodology, could help us assess how rare these abilities 

are. If hihi are unique in their traplining tendencies among endemic avian pollinators, it could 

underscore their value to the ecosystem. Nevertheless, the variation in pollination outcomes 

across territories warrants further investigation. If these differences arise from behavior, 

conservation biologists may need to account for behavioral variation when predicting the 

success of ecosystem recovery efforts. In translocations aimed at restoring lost pollination 

function, success may depend on which individuals are translocated and which survive. 

However, behavioral variation could also serve as a tool for enhancing ecosystem recovery if 

individuals can be selected for translocation based on favorable pollinator traits. Given the 

degraded state of mutualisms worldwide (Kelly et al. 2010; Potts et al. 2010; Neuschulz et al. 

2016), targeted interventions like these could prove invaluable for restoring lost functions more 

efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~ 

 

The pollinator exclusion experiment in this chapter was improved by advice on methodology 

from Sandra Anderson.
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Chapter 6 

Does translocation of a lost avian pollinator restore  

ecosystem function? 

 

~ 

 

Given escalating threats to biodiversity worldwide, there is an increasing need for conservation 

interventions that promote broader ecosystem restoration alongside species recovery goals. 

Translocation is a common intervention with the potential to promote ecosystem health by 

restoring lost ecological functions. However, few translocation programs explicitly state or 

monitor function as a fundamental objective, limiting our ability to learn from past efforts and 

design more effective interventions. Here, we tested whether translocations of hihi (Notiomystis 

cincta), a threatened New Zealand passerine, achieve their implicit goal of restoring lost 

pollination function. Through a pollinator exclusion experiment, we attempted to isolate the 

contribution of hihi to pollination by measuring fruit set and seed quality across sites with and 

without hihi. Results suggested that hihi improved the germination probability of viable seeds, 

but plants at non-hihi sites appeared to shift their reproductive investment to produce a greater 

quantity of low-quality fruits. As a result, the same proportion of seeds germinated overall, 

regardless of hihi presence. Therefore, although our study confirms that hihi bring unique 

benefits to the ecosystem by improving seed quality, it also raises important questions about 

the complexity of ecological functions. If ecosystems can partially compensate for the loss of 

a mutualist, it is even more important that functional objectives are stated and monitored in 

conservation programs so that future interventions can be targeted at ecosystems with the 

most need and potential to benefit.  
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6.1   INTRODUCTION 
 

  

The decline of one species can have cascading impacts on many others through the disruption 

of important ecological functions (Soulé et al. 2003; Tylianakis et al. 2008; Kelly et al. 2010; 

Brodie et al. 2014). This raises the stakes for conservation, but it also presents an opportunity: 

because species are so interconnected, interventions that target single species can also be 

used to achieve broader ecological objectives (Simberloff 1998). Conservation translocations 

typically focus on single-species recovery, but also offer an opportunity to promote ecosystem 

health by restoring lost mutualisms, reintroducing keystone species, or introducing ecological 

replacements (Lipsey and Child 2007; Seddon 2010; Ewen et al. 2012; IUCN/SSC 2013; Lunt 

et al. 2013; Seddon et al. 2014). For example, lost seed dispersal functions have been restored 

successfully through the reintroduction of brown howler monkeys (Alouatta guariba clamitans: 

Genes et al. 2018) and red-rumped agoutis (Dasyprocta leporine: Mittelman et al. 2020) in 

Brazil and the ecological replacement of extinct giant tortoises by extant species in Mauritius 

(Griffiths et al. 2011) and the Galápagos (Hunter et al. 2013). Given translocation’s potential 

as a tool for ecosystem recovery, however, it is surprising that the number of translocations 

asking ecological questions has not increased in recent decades (Taylor et al. 2017). IUCN 

guidelines highlight ecological function as an important consideration for translocations 

(IUCN/SSC 2013), but only 6% of recently reviewed case studies explicitly state ecosystem 

restoration as an objective (Seddon and Armstrong 2019; see also: Chauvenet et al. 2016; 

Taylor et al. 2017), and those that do rarely evaluate whether this objective is achieved (Ewen 

et al. 2014). In practice, more emphasis seems to be placed on the harms that a translocated 

species may bring to an ecosystem rather than its potential ecological benefits (D. Armstrong 

and Seddon 2008; Polak and Saltz 2011). 

 

One possibility for why ecological function is rarely stated or monitored explicitly is because it 

is assumed to be a byproduct of more focused species recovery goals. Species recovery, 

however, may not always equate to ecosystem recovery. Populations that achieve minimum 

viable sizes, a common benchmark for species recovery (Shaffer 1981; Gilpin and Soulé 1986; 

but see: Flather et al. 2011) are not always large enough to carry out their ecological functions 

effectively (Conner 1988; McConkey and Drake 2006; Sanderson 2006; Akçakaya et al. 2018; 

Brodie et al. 2018; Akçakaya et al. 2020). Evaluating translocation success only by species 

benchmarks could therefore result in a ‘half-empty forest’ (Redford and Feinsinger 2001), or 

one in which species have technically recovered but key functions remain missing. Additionally, 

many threatened species declined so long ago that we may not fully understand their ecological 

roles (e.g. Culliney et al. 2012; Gordon and Letnic 2016). If the environment has changed, they 
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may no longer be able to fulfill these roles, or another species may have replaced them and 

repaired the functional deficiency (Akçakaya et al. 2020). Translocations are costly and not 

without risk (D. Armstrong and Seddon 2008; IUCN/SSC 2013; Berger‐Tal et al. 2020), so, if 

ecological function is an objective, then stating and monitoring it explicitly could help ensure 

these interventions are targeted at places with the most need and potential for restoration. 

 

Animal-mediated pollination is one mutualism that is currently facing serious threats worldwide, 

putting the stability of many ecosystems at risk (Potts et al. 2010). Yet, of the 291 faunal 

reintroduction case studies published by the IUCN (Soorae 2008, 2010, 2011, 2013, 2016, 

2018), only two mention that the translocated species is a known pollinator, and neither sets 

the restoration of pollination function as a core objective or measured outcome. Translocations 

have long been used to restore floral species threatened by pollinator declines (Abeli and Dixon 

2016), but few have explored the possibility of translocating the pollinators themselves 

(Cariveau et al. 2020; but see LaBar et al. 2014 for a theoretical exploration). Conservation 

biologists may be hesitant to translocate pollinators due to the relative costliness (Dixon 2009) 

and complexity of manipulating animals versus plants (Morton and Rafferty 2017). Predicting 

restoration success could be difficult, because plant visitation does not always translate into 

high-quality pollination (King et al. 2013; Hervías-Parejo and Traveset 2018; Bestea et al. 

2019); thus, translocated species would need to be selected carefully to ensure they not only 

visit target plants but also pollinate them effectively. Furthermore, the loss of a pollinator can 

be compensated by plant adaptations (Schleuning et al. 2016) or increased visitation by other 

pollinators (e.g. Hallett et al. 2017), including non-native species (Pattemore and Wilcove 

2011), so the ecological need for restoration must be evaluated carefully. 

  

Despite these challenges, translocation will likely become a necessary tool for restoring 

pollination as it grows increasingly difficult for extirpated pollinators to recolonize areas without 

assistance. Perhaps nowhere is this more evident than in New Zealand, where rapid declines 

of native birds due to disease, deforestation, and predation by introduced mammals have 

coincided with devastating declines of native plants (Kelly et al. 2010). Historically, birds were 

thought to make only incidental contributions to pollination, as the majority of native plants 

appear entomophilous (Godley 1979; Clout and Hay 1989). However, more recent studies 

have found several native birds to be important (S. Anderson 2003; Kelly et al. 2010) and, in 

some cases, essential (e.g. S. Anderson et al. 2011) to pollination. Translocations are 

frequently used to restore native bird populations, and many are motivated at least in part by 

ecosystem restoration goals (Parker 2013), but few actively test whether these ecological goals 

are realized. 



Chapter 6: Restoring pollination function 

 

 
107 

The hihi (Notiomystis cincta), a threatened endemic bird, is thought to have been one of the 

most important pollinators in New Zealand before its widespread decline and near-extinction 

in the late 1800s (Craig et al. 1981; S. Anderson 2003; Kelly et al. 2006; S. Anderson et al. 

2011). Frequent translocations to establish new populations cite the restoration of pollination 

function as a potential benefit (Smuts-Kennedy 2009; Frost 2012; Collins et al. 2015) but do 

not include it as a fundamental objective or assess whether it is achieved. Thus, questions 

remain about: 

(1) The species’ role:  

How much do hihi contribute to pollination compared to other species?  

(2) The ecological need: 

How significantly is pollination reduced at sites where hihi are absent? 

(3) Translocation’s effectiveness:  

How successfully do hihi translocations restore pollination function? 

While these questions could be examined by comparing ecological function immediately before 

and after a translocation, ecological restoration may require more time to become evident (Choi 

2004; Hilderbrand et al. 2005; Pullin et al. 2013). Thus, we employed an alternative strategy, 

the ‘elimination approach’ (Akçakaya et al. 2020), in which ecological function is compared 

across sites with different densities of a species to evaluate its importance to the ecosystem. 

Through a pollinator exclusion experiment, we compared pollination outcomes across sites 

where hihi have been reintroduced and sites where they remain absent. To ensure our 

monitoring protocol captured the various ways that hihi could potentially influence pollination, 

we monitored outcomes at three levels: fruit set, seed viability, and seed germination. If past 

assumptions about the benefits of hihi translocations hold true, we would expect that plants at 

sites with hihi would (i) be less pollen-limited (more maximally pollinated) and (ii) receive a 

greater proportion of their pollination from birds compared to plants at sites without hihi. 

 

 

 

6.2   METHODS 
 

  

Study species 

  

The hihi is the sole extant member of the Notiomystidae family (Driskell et al. 2007; Figure 

6.1a). Although they were once widespread throughout the North Island of New Zealand, they 

became reduced to a single remnant population on Te Hauturu ō Toi (Little Barrier Island 

Nature Reserve) by 1890. Since the 1990s, translocations have been used to establish seven 
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additional populations at sites where introduced mammalian predators have been excluded 

(Thorogood et al. 2013; Franks et al. 2019). All reintroduced populations depend on 

supplementary provisioning of sugar water to varying degrees throughout the year (Chauvenet 

et al. 2012; Thorogood et al. 2013; Doerr et al. 2017). However, hihi preferentially select natural 

foods when they are sufficiently available and eat a broad diet of invertebrates, fruit, and nectar 

(Craig 1985; Rasch and Craig 1988; Roper 2012; Walker et al. 2014; Chapter 2). Nectar use 

peaks at ~56% of their diet in spring (Rasch and Craig 1988), coinciding with the hihi breeding 

season and the flowering season for many native plants. 

  

For the purposes of this study, we chose to focus on the mutualistic relationship between hihi 

and hangehange (Geniostoma ligustrifolium), a gynodioecious (Rattenbury 1980) native 

understory shrub. Hangehange is common, making it amenable to cross-site comparisons, but 

it is nonetheless thought to be pollen-limited (McNutt 1998), suggesting a potential need for 

pollination to be restored. Its flowers form in inflorescences in spring and are small (<4 mm), 

scented, and pale green, so it was long assumed to be pollinated primarily by insects, including 

beetles (Coleoptera), flies (Diptera), butterflies and moths (Lepidoptera), and bees 

(Hymenoptera: Norton 1984; S. Anderson 2003). It has since been shown to depend heavily 

on birds, including hihi and the two native honeyeaters: tūī (Prosthemadera novaeseelandiae) 

and korimako (Anthornis melanura). Among these species, hihi are presumed to be the primary 

pollinators; only hihi and korimako have the potential to meet their energetic demands while 

foraging on hangehange (Castro and Robertson 1997), and hihi visit it more frequently (Roper 

2012) and probe more flowers per visit than korimako (Castro and Robertson 1997). A fourth 

species, the tauhou (Zosterops lateralis), has been suggested to be another important 

pollinator (Burns 2013), but its preference for forest edges (Barbaro et al. 2012) may make it 

less likely to encounter hangehange, and its recent colonization of New Zealand (c. 1856) 

means its role in pollination may be less likely to represent an evolved mutualism.  
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Figure 6.1. (a) A male hihi foraging on hangehange (Photo: Martin Sanders). (b) Map of the 

North Island of New Zealand showing the locations of the four study sites (Photos: Auckland 

Hihi+: CA, Hihi−: Sharon Kast; Wellington: Christopher Stephens). (c) A hangehange plant in 

the pollinator exclusion experiment showing the two pollinator-exclusion treatments: self-

pollination (all pollinators excluded by a fine mesh bag: solid circle) and insect-only pollination 

(bird pollinators excluded by a 2x2 cm wire cage: dashed circle; Photo: CA). 
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Study sites 

  

The study was conducted in the Auckland and Wellington regions of New Zealand’s North 

Island, approximately corresponding to the northern and southern extremes of the hihi’s historic 

range. Within each region, we selected one nature reserve containing hihi (Hihi+) and a second 

that did not contain hihi (Hihi−) but was otherwise ecologically similar. Each site consists 

primarily of regenerating broadleaf forest with small patches of remnant mature native bush, 

reflecting a long history of farming followed by intensive habitat restoration over the last ~40–

100 years. Relative abundances of hihi, the other main avian pollinators of hangehange, and 

kākāriki, a known nectar robber (Cyanoramphus novaezelandiae: Kelly et al. 2010) are noted 

for each site in Table 6.1. 

 

 

 

Table 6.1. Estimated relative abundances of hangehange pollinators and a known nectar 

robber (kākāriki) at each of the four study sites. Values reflect the number of times each species 

was seen or heard in transect surveys (Auckland Hihi+: Feb.–Mar. 2018, Stewart and Milton 

2018; Wellington Hihi−: Sept. 2013, Greater Wellington Regional Council, unpublished data) 

or five-minute bird counts (Auckland Hihi−: Jan. 2018, M. Maitland and T. Lovegrove, Auckland 

Council, unpublished data; Wellington Hihi+: Sept. 2013, Zealandia Ecosanctuary, 

unpublished data) as a proportion of the total times any of the five focal species were seen or 

heard. 

 

  

Auckland Wellington 
  Hihi+ Hihi− Hihi+ Hihi− 

Hihi 0.18 0.00 0.18 0.00 

Korimako 0.53 0.54 0.02 0.02 

Tūī 0.13 0.35 0.62 0.70 

Tauhou 0.01 0.10 0.10 0.28 

Kākāriki 0.15 0.01 0.08 0.00 

 

  



Chapter 6: Restoring pollination function 

 

 
111 

In Auckland, the Hihi+ site was Tiritiri Matangi Island (36°36'00.7"S 174°53'21.7"E; Figure 

6.1b), a 220-hectare nature reserve located 3.5 km offshore. After being farmed for over a 

century, the island was extensively replanted in the 1980s, and introduced mammalian 

predators were eliminated in 1993. Today, the island provides sanctuary to many native birds. 

A population of hihi was established with a translocation from Te Hauturu ō Toi in 1995 and 

numbered ~150 adults during our study. The Auckland Hihi− site was Tāwharanui Regional 

Park (36°22'12.6"S 174°49'54.9"E; Figure 6.1b), a 588-hectare reserve located 25 km north of 

the Auckland Hihi+ site. Tāwharanui is considered a ‘mainland island’ (Saunders and Norton 

2001), as it is a peninsula separated from adjacent land by a predator-exclusion fence, 

protecting native wildlife from all introduced mammalian predators except mice. 

 

Another mainland island served as the Hihi+ site for the Wellington region. Located in 

Wellington city center, Zealandia Ecosanctuary (41°17'24.4"S 174°45'13.4"E; Figure 6.1b) is a 

225-hectare forest surrounded by a predator-exclusion fence. The forest has been 

regenerating since farming ended in the early 1900s and contains a large reservoir that was 

once an important part of the city’s water catchment area. A hihi population was established 

through translocation in 2005 and numbered ~120 adults during our study. Approximately 15 

km northeast, Belmont Regional Park (41°12'07.2"S 174°52'32.0"E; Figure 6.1b) was chosen 

as the corresponding Hihi− site. Although much larger than Zealandia at 3,500 hectares, 

Belmont is dominated by pastureland with small patches of regenerating and remnant native 

bush. Our study was carried out in the Korokoro Dam area, which is similar to Zealandia in its 

forest structure and history as a water catchment area. Unlike the other two mainland sites, 

Belmont is unfenced, but site managers use bait stations and traps to control introduced 

mammalian predators. At the start of our study, tracking rates (percent of tracking tunnels with 

evidence of mammalian predators) in the study area were ~20% for rats and ~22% for mice 

(Uys 2017a, 2017b). 

 

 

Pollinator exclusion experiment 

 

At each of the four study sites, 30 mature hangehange plants were selected for a pollinator 

exclusion experiment. An additional 18 plants were included at the Auckland Hihi+ site to 

account for the island’s drier climate, as we anticipated that water stress could lead to total fruit 

set failure in some plants (reducing our usable dataset). As hangehange is gynodioecious and 

hermaphrodite individuals set seed only rarely (Rattenbury 1980), we attempted to select only 

female plants. Prior to the flowering season, females can be identified reasonably based on 

the presence of moderate to high numbers of dry fruit capsules remaining from the previous 



Chapter 6: Restoring pollination function 

 

 
112 

reproductive cycle. However, to account for potential identification errors, we also quantified 

and controlled for self-pollination rates within each plant (see below). 

 

Focal plants were distributed evenly across 10 territories at each site, with three to five plants 

per territory at the Auckland Hihi+ site and three per territory at all other sites. At the Hihi+ 

sites, selecting plants on hihi breeding territories helped limit bird visitation to hihi as much as 

possible; hihi are known to chase intra- and interspecific intruders off their territories (Ewen et 

al. 2004; Low 2005). At both Hihi+ sites, almost all hihi nest in intensively monitored nest boxes, 

so breeding territories were defined conservatively as a 20 m radius around a nest box. 

Because plants were selected prior to the start of the hihi breeding season, site managers were 

consulted to ensure that selected territories had a high chance of occupancy based on trends 

over the past three breeding seasons. At the Hihi− sites, focal plants were located on 10 plots 

of 20 m radius chosen for their ecological similarity to hihi territories. 

  

Following established methods (Kearns and Inouye 1993), for each focal plant we assigned 

one branchlet containing at least 10 unopened buds to each of the following pollinator 

conditions: 

(1) Self-Pollination: branchlet enclosed in a fine organza bag to exclude all pollinators; 

(2) Insect Pollinators Only: branchlet enclosed in a 2x2 cm wire mesh cage to exclude 

birds but allow insects (mesh size selected following S. Anderson 2003; continued 

insect visitation confirmed by Schmidt-Adam et al. 2009; no birds observed attempting 

to forage through mesh during anecdotal observations at the study sites); 

(3) Insect + Bird Pollinators: branchlet left open to natural pollination; 

(4) Hand-Pollinated: branchlet left open to natural pollination and pollinated by hand during 

the receptive period (following the methods of S. Anderson 2003). 

All sites were visited at the start of the flowering season in September 2017 to select 

branchlets, count buds, and apply coverings for the pollinator-exclusion conditions (Figure 

6.1c). Sites were revisited approximately three weeks later (once flowers were open and 

receptive) to complete the hand-pollination treatment. Six to eight weeks after coverings 

were first applied, all flowers had passed receptivity, so coverings were removed. 

Wellington sites were always visited about 2–3 weeks after Auckland sites to account for 

latitudinal differences in phenology. 

 

 

 

 

 



Chapter 6: Restoring pollination function 

 

 
113 

Site assessments 

  

To evaluate regional habitat differences and test our assumption that paired Hihi+/Hihi− sites 

were ecologically similar, we conducted a habitat assessment on each focal territory. We 

focused on understory vegetation, because hangehange is an understory plant and hihi 

generally forage in the understory (Gravatt 1971; Roper 2012). On each territory, we 

designated five 20 m transects radiating evenly from a central point. At five sampling points 

along each transect, we counted and identified (to species level) every mature plant 

intersecting an imaginary cylinder of 1 m radius extending from the ground to a height of 2 m. 

Summing these counts across all 25 sampling points and dividing by the total sampling area 

(25π m2) provided an estimate of understory density and hangehange density. As a measure 

of species richness and evenness, we calculated a Shannon diversity index (Shannon 1948) 

as: 

− ∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑅
𝑖=1 , 

where R is the total number of unique species present and pi is the proportion of plants 

belonging to species i. Lastly, we completed a vertical habitat assessment (adapted from Scott 

1965; Makan et al. 2014) at each sampling point by extending an imaginary cylinder of 10 cm 

radius from the ground to the canopy, identifying all species with intersecting foliage, and 

estimating the canopy height. Combined with the data from our understory assessments, this 

provided a count of the total number of unique species and an average canopy height for the 

territory. 

  

Pollinator visitation rates were assessed at each site during five hour-long sessions conducted 

during the period of flower receptivity. Observations were conducted over three days at the 

Auckland Hihi+ site and one day at all other sites, with sessions spread evenly throughout the 

morning and afternoon. During each session, an observer sat quietly under cover of vegetation 

on one of the focal territories with five mature hangehange plants in view and at least 5 m 

away. Each bird that visited one of the plants and foraged (probed or consumed flowers) was 

counted and identified to species level. At the end of the session, the number of flowers on 

each plant was estimated by multiplying the number of open flowers (estimated to the nearest 

10) on one branchlet by the number of branchlets (estimated to the nearest 5) on the plant. 

These counts were used to calculate a visitation rate for each bird species, which was 

standardized to visits per hour per 10,000 flowers. 
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Pollination outcomes 

 

All sites were visited in late December 2017 to count fruits on each treated branchlet. 

Comparing this count to the original number of buds provided a measure of fruit set (proportion 

of buds that developed into fruits). For a subset of plants (11 per site), fruits were also collected 

from the insect and/or insect+bird conditions in mid-February (Auckland) to early March 

(Wellington). These were placed in paper bags and transported to the Wellington Botanic 

Garden for germination and seed viability testing. After being stored at room temperature for 

up to two months, fruits were removed from each bag and rubbed on a paper towel to separate 

the seeds from the capsules. Across all fruits collected from a treated branchlet, 80 seeds 

(where available) were selected randomly so that eight replicate germination tests of 10 seeds 

each could be performed; where fewer seeds were available (13/56 branchlets), all seeds (x̅ ± 

S.E. = 33.6 ± 6.5) were taken and divided among replicates. Seeds were plated on 1% water 

agar in 90 mm plastic petri dishes divided into four sections (each containing one replicate). 

Dishes were incubated at 15/25°C alternating temperature in a 16/8 hour dark/light cycle and 

were inspected every 14 days for contamination and agar desiccation. At least four weeks after 

plating, seeds were inspected for germination (radical protrusion of at least 1 mm; 

Supplementary Figure 6.1a), and ungerminated seeds were dissected to assess viability. 

Seeds were considered viable if they contained a structured endosperm and unviable if they 

were mushy or lacking a clear structure (Supplementary Figure 6.1b-c). These data provided 

up to eight replicate measures per sampled plant of seed viability (proportion of all seeds which 

were viable), germination probability of viable seeds (proportion of viable seeds which 

germinated), and germination probability of all seeds (proportion of all seeds which germinated; 

see Supplementary Table 6.1 for replicate sample sizes). 

 

 

Data analysis 

 

All analyses were conducted in R (version 4.0.0; R Core Team 2020). 

 

Assessing habitat differences 
 

We first conducted a Principal Component Analysis (PCA) to quantify the ecological similarity 

of our four study sites. Habitat variables measured on focal territories were pooled across sites 

and standardized prior to analysis to account for the variables’ different scales. The minimum 

number of components needed to explain at least 70% of the variance were examined visually 

using biplots, with convex hulls drawn around all datapoints (territories) belonging to each site. 

Using the vegan package (Oksanen et al. 2019), site differences were then tested 
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quantitatively with a permutational multivariate analysis of variance using Euclidean distance 

matrices (M. Anderson 2001). As this analysis indicated significant differences among sites 

(see Results), post-hoc pairwise comparisons between sites were performed using a pairwise 

permutation MANOVA (PERMANOVA) with 1,000 permutations (RVAideMemoire package: 

Hervé 2020). Our study design assumed paired Hihi+/Hihi− sites to be ecologically similar, so, 

to avoid increasing the likelihood of Type II errors, we did not correct the resulting P-values; 

thus, our results may overestimate differences among sites. 

  

While PCA is useful for visualizing and quantifying the degree of similarity between groups, it 

can make it difficult to interpret which variables are responsible for group differences (Jolliffe 

and Cadima 2016). Therefore, we followed our PCA with a conditional inference tree analysis. 

The ctree function (party package: Hothorn et al. 2020) performs a binary recursive partitioning 

procedure. Here, we used it to test the dependence of site on each of the habitat variables, 

performed a binary split of the data based on the variable with the strongest significant 

association with site, and continued until site was no longer associated with any of the 

remaining variables (Hothorn et al. 2006). 

  

Comparing pollination outcomes 
 

Before comparing pollination outcomes across conditions and sites, a few modifications were 

needed for our data. From our original dataset of 138 plants, 31 were excluded due to total fruit 

set failure (insect+bird and hand-pollinated conditions yielded no fruit). As predicted based on 

its drier climate, a greater proportion (16/48) of plants were excluded at the Auckland Hihi+ site 

compared to the other sites (Auckland Hihi−: 2/30; Wellington Hihi+: 5/30; Wellington Hihi−: 

8/30). For each branchlet, the fruit count was truncated so it did not exceed the original number 

of buds, which would suggest that extra buds formed after the initial bud count. Within each 

plant, if proportional fruit set was lower for the hand-pollinated condition than the insect+bird 

condition (suggesting an error in the hand-pollination treatment: Larson and Barrett 2000), the 

hand-pollinated fruit count was raised to make the two fruit sets equal; if this resulted in a 

decimal, the fruit count was rounded up, as whole numbers were needed for analyses. 

 

We assessed the significance of our main hypotheses in a stepwise fashion using Likelihood 

Ratio Tests, where we compared a model containing the interaction of interest (pollination 

conditionhihi presence) against a simplified model without the higher-order effect (pollination 

condition+hihi presence). If the interaction was not significant, we tested the significance of 

each factor in the additive model using z-tests. For models testing fruit set as the pollination 

outcome, fruit count was the response variable with an offset of log(bud count), and negative 
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binomial models were used to account for overdispersion (glmmTMB package: Brooks et al. 

2017). For seed-level outcomes, response variables were proportions (accounting for the 

number of seeds in each replicate), and models were structured as Generalized Linear Mixed 

Models (GLMMs) with a binomial family, logit link function, and bound optimization by quadratic 

approximation (BOBYQA) optimizer to reduce convergence errors. Regardless of the 

pollination outcome being tested, all models contained region as a covariate (to account for 

regional differences) and individual plant ID, territory, and site as random effects. An 

observation-level random effect was included in seed viability models to correct for 

overdispersion (Harrison 2014). 

  

The self-pollination condition produced fruits in only six focal plants, so this condition was 

excluded from the initial fruit set analyses. To check that self-pollination rates did not affect our 

results, we repeated analyses with fruit counts for the insect and insect+bird conditions reduced 

in proportion to the plant’s self-pollination rate; the hand-pollination condition was not adjusted, 

as it was intended to represent maximal pollination, including selfing. Results were 

quantitatively similar, so we present analyses with the full dataset. 

  

All figures present predicted values from the minimal model. Predicted fruit counts were 

converted to proportions by dividing by the original number of buds on each treated branchlet 

and truncating, if needed, to restrict values between 0 and 1. Reported means for each 

condition were derived from the model predictions and are accompanied by their estimated 

standard errors. These means were also used to calculate a pollen limitation index (PLI: Larson 

and Barrett 2000), calculated as: 

1 −
𝑓𝑟𝑢𝑖𝑡 𝑠𝑒𝑡𝑖𝑛𝑠𝑒𝑐𝑡+𝑏𝑖𝑟𝑑

𝑓𝑟𝑢𝑖𝑡 𝑠𝑒𝑡ℎ𝑎𝑛𝑑−𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑒𝑑
 . 

PLI is bounded between 0 and 1, with a value of 0 indicating that plants receive maximal 

pollination and higher values suggesting that plants are pollen-limited. We used a similar 

approach to quantify the proportion of fruit set attributable to bird pollination, or ‘Bird Pollination 

Index’ (BPI), calculated as:  

1 −
𝑓𝑟𝑢𝑖𝑡 𝑠𝑒𝑡𝑖𝑛𝑠𝑒𝑐𝑡

𝑓𝑟𝑢𝑖𝑡 𝑠𝑒𝑡𝑖𝑛𝑠𝑒𝑐𝑡+𝑏𝑖𝑟𝑑
 . 

A BPI of 0 indicates that bird pollinators do not improve fruit set, while a value of 1 indicates 

that they are responsible for all fruit set. 
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6.3   RESULTS 
 

  

Site comparisons 

 

The Principal Component Analysis identified strong associations between habitat variables 

measured across all sites. PC1 and PC2 explained a cumulative 70% of the variance among 

territories (Table 6.2). All habitat variables loaded positively on PC1, with total species and 

hangehange density having the strongest loadings. Understory density had a strong negative 

loading on PC2, while Shannon diversity and canopy height loaded positively. A biplot of PC1 

and PC2 (Figure 6.2a) identified a strong positive correlation between canopy height and 

Shannon diversity.  

 

The habitat differed significantly across sites (ADONIS: R2 = 0.45, P < 0.001). Although paired 

Hihi+/Hihi− sites were selected to be as ecologically similar as possible, only the two Wellington 

sites could not be distinguished (PERMANOVA: P = 0.072; Auckland sites: P = 0.001). A 

visualization of the PCA (Figure 6.2a) identified understory density as the primary difference 

between the Auckland sites, which was confirmed by the conditional inference tree analysis: 

the Auckland Hihi+ site had a consistently denser understory (>0.993 plants/m2; P < 0.001) 

than any of the other sites (Figure 6.2b). Meanwhile, the two Wellington sites were 

distinguished from the Auckland Hihi− site by their lower canopy (≤6.92 m; P = 0.002; Figure 

6.2b). 

 

Plant watches confirmed that hangehange visitation rates (standardized to visits per hour per 

10,000 flowers) were higher at each Hihi+ site compared to its corresponding Hihi− site and 

that hihi were the primary visitors where they were present. At the Auckland Hihi+ site, hihi 

visited hangehange twice as often (0.66 visits/h) as korimako (0.33 visits/h). Visitation at the 

Auckland Hihi− site was less frequent and was restricted to korimako (0.08 visits/h). In 

Wellington, only hihi were observed visiting hangehange at the Hihi+ site (0.11 visits/h), while 

no visits by any species were observed at the Hihi− site. 
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Table 6.2. Results of the Principal Component Analysis (PCA) of habitat variables measured 

on focal territories across the four study sites. The first two components explained a cumulative 

70% of variance among territories, while the three remaining components (PC4 and PC5 not 

presented) explained only 30% of variance. Variables with the strongest loadings on each 

component are indicated in bold. 

 

  PC1 PC2 PC3 

Total species 0.58 −0.25 0.09 

Understory density 0.39 −0.70 −0.06 

Shannon diversity 0.39 0.46 0.70 

Hangehange density 0.49 0.15 −0.09 

Canopy height 0.36 0.47 −0.70 

  
 

  

Eigenvalue 2.30 1.20 0.74 

Proportion of variance explained 0.46 0.24 0.15 
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(Figure caption on following page) 
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Figure 6.2. Habitat comparisons across the four study sites. Sites are labeled by region and 

hihi presence (+) or absence (−). (a) Biplot of the first two components from the Principal 

Component Analysis (PCA), with axes labeled with the percentage of variance explained by 

the component. Arrows represent the loadings for the habitat variables, which have been 

scaled prior to analysis. Points represent territories grouped by site (shaded polygons). Letters 

within polygons indicate significant differences among sites (PERMANOVA, see Results). (b) 

Results of a conditional inference tree analysis confirming ecological similarity between the two 

Wellington sites and a significant difference based on understory density between the two 

Auckland sites. P-values within each oval indicate the significance of each binary split of the 

data. Histograms indicate the proportion of data points (y-axis) at the terminal node belonging 

to each site (x-axis). 
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Pollination outcomes 

 

In the pollinator exclusion experiment, the treatment conditions affected fruit set as expected. 

Across all sites, only six plants (Auckland Hihi+: 4; Wellington Hihi+: 2) set fruit in the self-

pollination condition. In the other conditions, fruit set was lowest for flowers exposed to insects 

only (Hihi+: 0.26 ± 0.02; Hihi−: 0.11 ± 0.01), was improved by bird visitation (Hihi+: 0.41 ± 0.03; 

Hihi−: 0.38 ± 0.03), and was highest for hand-pollinated flowers (Hihi+: 0.57 ± 0.03; Hihi−: 0.53 

± 0.03). There was a significant relationship between fruit set and pollination condition 

depending on hihi presence (conditionhihi: χ2
 = 11.92, df = 2, P = 0.003; Figure 6.3). Although 

natural (insect+bird) fruit set did not differ significantly between Hihi+ and Hihi− sites, the 

relative contributions of birds and insects varied based on hihi presence. In contrast to the 

prediction that reintroducing hihi restores pollination function, bird visitation explained a greater 

proportion of fruit set at Hihi− sites (BPI = 0.71) than Hihi+ sites (BPI = 0.36; Table 6.3a). 

Furthermore, while we predicted that plants would be more pollen-limited at sites without hihi, 

hand pollination did not improve fruit set significantly more at Hihi− sites than Hihi+ sites (Table 

6.3a). In other words, plants experienced an equal degree of pollen limitation (PLI: Hihi+ = 

0.28, Hihi− = 0.29) regardless of hihi presence. 
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Figure 6.3. Differences in fruit set (proportion of buds which set fruit) by pollination condition 

and hihi presence (+/−). Means and standard error bars are presented, with letters indicating 

significant differences across all means, and stars indicating significant differences between 

conditions (lines) and interactions with hihi presence (arcs). The shape of each data point 

indicates the region (circle = Auckland, triangle = Wellington). 
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Table 6.3. Results of a GLMM using pollination condition, hihi presence (+/−), and region to 

predict (a) fruit set, (b) seed viability, (c) germination of viable seeds, and (d) germination of all 

seeds. Predictor estimates are from the minimal model identified through a Likelihood Ratio 

Test (a, c, d: conditionhihi+region; b: condition+hihi+region). In all cases, results are 

presented for an intercept of insect+bird (natural pollination) and Auckland Hihi+ site. 

Significant P-values are indicated in bold. 

 

Predictor Estimate S.E. z P-value 

(a) Fruit set  

(Intercept) −1.19 0.17 −7.05 <0.001 *** 

condition[insect] −0.47 0.14 −3.25 0.001 ** 

condition[hand-pollinated] 0.39 0.12 3.18 0.002 ** 

hihi[−] −0.07 0.21 −0.34 0.731  

region[Wellington] 0.27 0.18 1.54 0.124  

condition[insect]:hihi[−] −0.80 0.26 −3.08 0.002 ** 

condition[hand-pollinated]:hihi[−] −0.01 0.18 −0.06 0.952  

      

(b) Seed viability  

(Intercept) 1.49 0.33 4.50 <0.001 *** 

condition[insect] −0.49 0.08 −5.77 <0.001 *** 

hihi[−] 1.24 0.39 3.21 0.001 ** 

region[Wellington] −0.75 0.39 −1.93 0.054  

      

(c) Germination of viable seeds 

(Intercept) 2.16 0.33 6.57 <0.001 *** 

condition[insect] −0.74 0.16 −4.72 <0.001 *** 

hihi[−] −0.80 0.38 −2.09 0.037 * 

region[Wellington] −1.31 0.37 −3.54 <0.001 *** 

condition[insect]:hihi[−] 0.67 0.23 2.97 0.003 ** 

  

(d) Germination of all seeds      

(Intercept) 0.88 0.33 2.71 0.007 ** 

condition[insect] −0.62 0.10 −6.38 <0.001 *** 

hihi[−] 0.01 0.38 0.02 0.989  

region[Wellington] −1.23 0.38 −3.26 0.001 ** 

condition[insect]:hihi[−] 0.48 0.16 3.04 0.002 ** 
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Patterns of seed viability also contrasted with the prediction that hihi improve pollination. Birds 

at Hihi+ sites did not improve seed viability significantly more than birds at Hihi− sites 

(condition*hihi: χ2 = 10-4, df = 1, P = 0.99; Figure 6.4a; Table 6.3b). Regardless of pollination 

condition, seed viability was also significantly higher at Hihi− sites than Hihi+ sites (Table 6.3b). 

However, benefits of hihi visitation were evident in terms of seed germination. Viable seeds 

were more likely to germinate at Hihi+ sites than Hihi− sites, and birds made significantly 

greater contributions to this probability at the Hihi+ sites (conditionhihi: χ2 = 8.53, df = 1, P = 

0.004; Figure 6.4b). At Hihi+ sites, viable seeds that had been pollinated by birds had a 21% 

greater chance of germinating than those that had been exposed to insects only (Table 6.3c). 

At Hihi− sites, bird pollinators did not improve viable seed germination (estimate = 0.07 ± 0.16, 

z = 0.41, P = 0.68); additionally, there was much more variability in germination probabilities at 

Hihi− sites compared to Hihi+ sites (Figure 6.4b). Overall, however, although viable seeds were 

less likely to germinate at Hihi− sites, because a greater proportion were viable to begin with, 

the same proportion of all seeds germinated as at Hihi+ sites (Table 6.3d). Nevertheless, birds 

were responsible for a significantly greater portion of germination (BPI = 0.26) at the Hihi+ sites 

(condition*hihi: χ2 = 9.19, df = 1, P = 0.002; Figure 6.3c) than at the Hihi− sites (BPI = 0.11), 

where birds did not improve germination significantly (estimate = 0.14 ± 0.13, z = 1.13, P = 

0.3). 



Chapter 6: Restoring pollination function 

 

 
125 
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Figure 6.4. Differences in seed-level pollination outcomes by pollination condition and hihi 

presence. Means and standard errors bars are presented, with the shape of each data point 

indicating the region (circle = Auckland, triangle = Wellington). (a) Seed viability. Letters 

indicate significant differences by pollination condition (AB) and hihi presence (CD). (b) 

Germination probability of viable seeds. Stars indicate significant differences between 

conditions (lines) and interactions with hihi presence (arcs). (c) Germination probability of all 

seeds. Stars indicate significance as in (b). 
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6.4   DISCUSSION 
 

 
Despite their value as a tool for broader ecosystem restoration, translocations rarely state and 

monitor ecological goals explicitly (Ewen et al. 2014; Chauvenet et al. 2016; Taylor et al. 2017; 

Seddon and Armstrong 2019). Even when restoration is an implicit objective, translocations 

often rely on assumptions about how much an ecological function needs to be restored and 

how well translocated species can achieve this goal. Therefore, here we tested whether past 

assumptions about the ecological benefits of translocations hold true for the hihi, a threatened 

New Zealand passerine suggested to be a key pollinator missing from native habitats (Craig et 

al. 1981; S. Anderson 2003; Kelly et al. 2006). Using a pollinator exclusion experiment on 

hangehange, a common native plant, we found that birds made greater contributions to seed 

quality at sites where hihi have been reintroduced, primarily by improving germination of viable 

seeds. However, at sites without hihi, seeds were more likely to be viable to begin with, such 

that the same proportion of all seeds germinated. Furthermore, fruit set was equally pollen-

limited regardless of hihi presence, and birds had a greater effect on fruit set at the non-hihi 

sites. 

 

Our results suggest that hihi bring unique benefits to pollination by improving seed quality, but 

interpreting their overall effectiveness as pollinators is less straightforward. On average, plants 

at hihi sites experienced only a 36% reduction in fruit set when birds were excluded, compared 

to 71% for plants at non-hihi sites and 46% for bird-pollinated plants globally (Ratto et al. 2018). 

Thus, the differential effects of hihi on fruit set and seed quality could cancel out such that no 

net benefit is achieved. However, species can compensate for their deficiency at one stage of 

an ecological process by benefiting a more consequential stage. For example, in Bolivia, the 

purplish jay (Trochocercus cyanomelas) appears to be a lower-quality seed disperser than the 

chestnut-eared araçari (Pteroglossus castanotis) based on its shorter dispersal distances, but 

it promotes plant population growth more successfully overall by improving seedling 

emergence and depositing seeds in higher quality habitats (Loayza and Knight 2010). The 

positive impact of hihi on seed quality could therefore make them important drivers of plant 

populations, despite their relative unimportance to fruit set. Nevertheless, to further clarify the 

benefits of hihi to the system, future work should trace their effects through to later stages of 

plant recruitment (e.g. seedling survival) and consider other benefits they bring to the system 

as dual-mutualists (pollinators and seed dispersers; see Burns 2013). 

 

While we attempted to isolate the effects of hihi on pollination as much as possible, mutualists 

occur in complex ecosystems where their effects may be masked by other species (Bronstein 

et al. 2003). Therefore, some of our results suggesting conflicting contributions of hihi could 
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instead be the result of unexpected impacts of antagonistic species. Hihi are particularly 

sensitive to habitat quality, so they tend to be reintroduced to sites that have already undergone 

extensive restoration (Ewen and Armstrong 2007). For instance, the kākāriki, a known nectar 

robber (Kelly et al. 2010), is similarly sensitive to habitat quality so may become more prevalent 

at restored sites through translocation (Ortiz-Catedral and Brunton 2010) or unassisted 

recolonization (Ortiz-Catedral et al. 2009). Indeed, anecdotal observations at the Auckland hihi 

site included kākāriki foraging destructively on flowers, so it is possible that hihi do benefit fruit 

set, but this benefit is negated by kākāriki. This may call into question how we view restored 

ecosystems; if restoration promotes both mutualistic and antagonistic species, overall 

functionality at these sites may be no greater than at sites where both species remain absent. 

However, antagonists likely benefit the ecosystem in other ways, so this may underscore the 

need for restoring historic assemblages in their entirety to ensure that the negative effects of 

antagonists are balanced by mutualists. 

 

Just as ecosystems change with restoration, ‘broken’ ecosystems are also dynamic and, in 

some cases, may be able to recover lost functions without intervention. Several studies have 

found that diminished pollination function can be restored at least partially through increased 

visitation by other native (e.g. Hallett et al. 2017) or introduced species (e.g. Pattemore and 

Wilcove 2011; Stavert et al. 2018; O’Rourke et al. 2020). Similar compensatory visitation could 

explain why functionality was unexpectedly high at the non-hihi sites. Although not detected in 

our plant watches, tauhou seem the most likely candidates, as they have been found to visit 

hangehange more frequently than hihi at sites with both species (Burns 2013). However, our 

results suggest that the species replacing hihi may provide lower-quality pollination, because 

birds improved fruit set but not seed quality at the non-hihi sites. Particularly for plants with 

multi-seeded fruits (such as hangehange), individuals exposed to a range of pollination 

qualities often preferentially invest in setting fruit and seed from high-quality pollination. 

Meanwhile, plants will set fruit and seed even from low-quality pollination if this is all that is 

available (Winsor et al. 1987; Craig and Stewart 1988; Vaughton and Carthew 1993), but 

resulting seeds may exhibit lower quality (Stephenson 1981), seedling growth (Schmidt-Adam 

et al. 2000), or seedling survival (A. W. Robertson et al. 2011). This mirrors the results we 

observed: plants at hihi sites appeared to preferentially invest in bird-pollinated seeds, while 

those at non-hihi sites set similar quality seed regardless of the pollination received. Thus, the 

functional similarity observed across sites may reflect hangehange’s ability to compensate for 

the loss of its primary pollinator by changing its reproductive investments, rather than the 

effective replacement of hihi. Moreover, the higher viability of seeds, regardless of pollination 

condition, at non-hihi sites suggests that these plants may also benefit from better water or 

nutrient availability than those at hihi sites, which they use to further maximize their fitness. 
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Given that pollination may be able to partially recover without a hihi translocation, our study 

raises important considerations for how we assess the ecological need for restoration. 

Conservation biologists increasingly debate whether ecosystems need to be restored to their 

natural state if functionality can be achieved through other means (Perring et al. 2015; Corlett 

2016). Recently, it has also been argued that historic species assemblages may not always be 

able to restore natural function, particularly if they require ongoing support themselves (Heinen 

et al. 2020). For example, supplementary feeding could interfere with a species’ ability to 

restore lost pollination and seed dispersal functions by dividing its attention between natural 

and artificial food sources (Heinen et al. 2020). All reintroduced hihi populations depend on 

supplementary feeding (Chauvenet et al. 2012; Thorogood et al. 2013), so it could be argued 

that this prevents hihi from reaching their full potential as pollinators. However, supplementary 

feeding is also what enables hihi to exist within damaged ecosystems. If artificial support allows 

hihi to benefit plants in the short-term, it might also be what enables them to gradually shape 

their own ideal ecosystems, such that supplementary feeding is no longer needed, and 

pollination is restored to a fully natural state. 

 

Overall, our study suggests that the return of a lost pollinator via translocation can bring 

measurable benefits to an ecosystem. However, it also highlights the challenges of predicting 

how effectively one species can restore an ecological process and how well conservation 

interventions can promote functional restoration. Ecological functions are complex processes 

that species can influence at many stages (Schupp et al. 2017), and they occur in complex 

ecosystems where multiple species can have conflicting effects (Bronstein et al. 2003). 

Additionally, the beneficiaries of a function are not passive bystanders. When the providers of 

a function are lost, the receivers may be able to compensate, such that ‘broken’ ecosystems 

may not be as broken as they once were. The difficulty of predicting, and then monitoring, 

species’ contributions to ecological function may explain why it is so rarely done. However, 

given ecological function is increasing as a justification for translocation, it should be treated 

explicitly. Making predictions and evaluating outcomes against defined objectives are essential 

steps for conservation decision-making (Ewen and Armstrong 2007; Seddon et al. 2007; 

Nichols and Armstrong 2012) and would allow the success of functional objectives to be 

improved through adaptive management (Canessa et al. 2016). 

 

 

 

~ 

 

This chapter involved contributions from Sandra Anderson (guidance on methodology) and 

Karin van der Walt (laboratory work). 
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Chapter 7 

General discussion 

 

~ 

 

In this thesis, I explored the causes and consequences of dietary variation through a case 

study of the hihi, a threatened New Zealand passerine. I first used Bayesian statistics to 

improve the reliability of existing dietary specialization metrics, making them more amenable 

to small, observational datasets (Chapter 2). Using these improved metrics, I then found 

evidence for a link between diet and social factors: individuals’ diets predicted the size of their 

foraging groups (Chapter 3), and competitive release brought on by translocation caused 

individuals to shift toward more generalist diets (Chapter 4). Across these studies, diet 

predicted survival, with generalists surviving better than specialists when they remained at their 

natal site (Chapters 2 and 4) but an opposite trend among translocated individuals (Chapter 

4). I then asked whether the consequences of foraging extend to higher ecological levels. 

When presented with a novel foraging task, individual hihi varied in their search patterns and 

persistence, with key differences emerging between age-sex classes (Chapter 5). While this 

variation did not predict pollination outcomes at the territory level (Chapter 5), further work 

confirmed that reintroducing hihi to damaged ecosystems brings measurable benefits to 

pollination function by improving seed quality (Chapter 6). 

 

In this chapter, I revisit the ecological feedback loop first presented in Chapter 1 (updated in 

Figure 7.1) to ask how the results of this thesis inform our understanding of the links between 

diet and social factors and the consequences of foraging for the ecosystem. I then conclude 

by considering the implications of this research for conservation, while also reflecting on how 

the fields of behavioral ecology and conservation biology can come together more effectively, 

to their mutual benefit. 
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Figure 7.1. Evidence gathered in this thesis in support of an ecological feedback loop 

connecting social factors, foraging, and the ecosystem. Using dietary specialization metrics 

developed in Chapter 2, Chapter 3 showed that individual sociality and diet are linked through 

a possible mediating factor of dominance. Chapter 4 found that competition shapes dietary 

specialization. Chapters 5 and 6 explored the impacts of foraging on the ecosystem through a 

case study of pollination. A species’ foraging behaviors can lead it to have unique impacts on 

the ecosystem through pollination (Chapter 6). While there is some evidence that individuals 

vary in their pollination efficiency, the traits underlying these differences are yet to be identified 

(Chapter 5). The effects of pollinators on plants could, in turn, shape the competitive landscape 

by altering the abundance and distribution of resources. Photo credits: Christopher Stephens 

(top), Stuart Attwood (bottom left), CA (bottom right). 
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7.1   HOW DOES DIET LINK TO SOCIAL FACTORS? 
 

 
In Chapter 3, I found a relationship between dietary specialization and foraging group size. 

Generalists were more gregarious than specialists, but only among small-bodied individuals. 

Because body size is a proxy for dominance in many birds (e.g. Koenig et al. 2011; Funghi et 

al. 2015), I proposed that these findings could suggest that diet is linked to sociality through a 

dominance-related behavioral syndrome (Sih et al. 2004). For instance, Toscano et al. (2016) 

previously conceptualized how dominance, diet, and sociality could all be linked as 

downstream effects of personality: an individual’s inherent sociability and boldness can shape 

its dominance and gregariousness, which can give rise to differences in resource selection 

(see Figure 1 in Toscano et al. 2016). A similar syndrome has been found in great tits (Parus 

major), where an individual’s exploratory tendency explains both its resource selection 

(Serrano-Davies et al. 2017) and gregariousness (Aplin et al. 2014). However, consistency 

across contexts is a hallmark of behavioral syndromes (Sih et al. 2004). In my study, diet and 

sociality were not linked in a more competitive context at supplementary feeding stations, which 

could suggest that there is no syndrome in hihi. Nevertheless, artificial food sources can disrupt 

natural sociality (as in Szekely et al. 1989), so perhaps there is a syndrome but it is limited to 

natural contexts. Linking traits to behavioral syndromes can give deeper insight into their 

causes and consequences (Sih et al. 2004; Dall et al. 2012; Brommer and Class 2017), so 

further investigation into the relationship between diet and sociality in other natural foraging 

contexts would be beneficial. 

  

Regardless of whether a syndrome exists, the dominance effect that I observed could help 

elucidate the mechanisms linking diet and sociality. I suggested two main possibilities, both 

drawing on my earlier finding that generalist diets appear to confer a survival advantage 

(Chapter 2). If small-bodied (likely subordinate) individuals are generalist while foraging in 

groups, it could suggest that foraging socially enables them to obtain higher-quality diets, or 

that consuming a better diet helps them to endure the competitive costs of group living. 

Meanwhile, the diets of dominant individuals should be less dependent on group size, because 

they typically have preferential resource access regardless of the competitive context (Cody 

1974; Whitten 1983; Gustafsson 1988; Sol et al. 2005). Without a better understanding of the 

costs and benefits of group foraging in hihi, it is difficult to disentangle these two possibilities. 

However, my findings add to a growing literature on the role of dominance in behavioral 

correlations (Réale et al. 2007; Toscano et al. 2016) by demonstrating how the strength of 

these correlations can differ between dominant and subordinate individuals. In another recent 

study, Rudin et al. (2017) found that behavioral correlations can also depend on the stability of 

dominance hierarchies; correlations disappear in individuals that have undergone a recent 



Chapter 7: General discussion 

 

 
133 

change in status. Thus, there are many more questions to be explored about how dominance 

affects not only the direction of behavioral correlations but their strength and stability. 

  

As a correlative study, Chapter 3 could not determine causality between diet and social factors 

but identified this link as worthy of further investigation. Therefore, in Chapter 4, I set out to 

explicitly test causality using conservation translocations as a rare opportunity to observe 

individual responses to changing social conditions. I tracked individuals’ dietary changes as 

they either remained at their natal site or were moved to a less competitive release site and 

found that translocated juveniles immediately shifted toward more generalist diets. Although 

this effect appeared to arise partly from a natural, seasonal shift toward generalization, it was 

amplified by the competitive release experienced across the translocation. When individuals 

become more generalist in response to competitive release, it suggests that they share the 

same inherent resource preferences (‘shared preferences model’: Svanbäck and Bolnick 2005; 

Araújo et al. 2011) but must specialize to avoid competition in highly competitive environments 

(as in Tinker et al. 2012; Pagani-Núñez et al. 2016; Santamaría et al. 2020). This finding 

provides important insight into the inherent dietary preferences of individuals and the role of 

competition in shaping dietary specialization. Furthermore, while past studies of competitive 

effects on diet have mostly compared populations living under different competitive conditions 

(e.g. Tinker et al. 2012), tracking dietary responses within individuals allowed me to 

demonstrate that dietary variation can be highly plastic and responsive to competitive changes. 

 

The translocation study also provided insight into the selective pressures acting on dietary 

specialization. Although generalist hihi survived better than specialists when they remained at 

the source site (Chapter 2), specialists became more generalist and survived better when 

translocated (Chapter 4). This was somewhat surprising, given that studies of diet at the 

species level suggest that generalists are better equipped to respond to environmental 

changes (Devictor et al. 2008; Börschig et al. 2013; Beever et al. 2017). However, other 

research shows that individuals that are competitively disadvantaged under normal conditions 

may be better prepared to tackle novel foraging challenges. For instance, in Arabian babblers 

(Turdoides squamiceps), subordinates exhibit a higher degree of innovativeness in a novel 

foraging task compared to dominants (Keynan et al. 2015). Similarly, in blue tits (Cyanistes 

caeruleus), juvenile females are the most likely to learn new foraging skills, and subordinate 

males learn more successfully than dominant males (Aplin et al. 2013). Therefore, specialist 

hihi, who are disadvantaged in a familiar environment, may have traits that make them better 

able to cope with sudden challenges. Future research should explore whether dietary 

specialization is associated with innovativeness or other traits that would be beneficial in a 

novel environment. 
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Overall, Chapters 3 and 4 demonstrated that individual sociality links to diet through a possible 

mediating factor of dominance (Chapter 3; Figure 7.1) and that dietary specialization is shaped 

by competitive conditions (Chapter 4). These results confirm that there are, indeed, social 

effects on diet (Figure 7.1) and highlight the complex links between diet and individual sociality 

as an important direction for future research. 

 

 

 

7.2   HOW DOES FORAGING INFLUENCE THE ECOSYSTEM? 
 

 
The next two chapters examined how foraging behaviors can affect the ecosystem, using the 

hihi’s role in pollination as a case study (Craig et al. 1981; S. Anderson 2003; Kelly et al. 2006; 

S. Anderson et al. 2011). In Chapter 5, I presented hihi with a novel foraging task derived from 

a radial arm maze (Foreman and Ermakova 1997) and found that they exhibited several traits 

common in high-quality pollinator species: they persisted until they found food (Laverty and 

Plowright 1988), searched systematically rather than randomly (Janzen 1971; D. Anderson 

1983), and avoided repeat visits to empty flowers (Pyke 1979; Healy and Hurly 1995). Although 

individuals varied in their performance (explained, in part, by age and sex), none of these 

metrics predicted pollination outcomes on females’ territories (males could not be examined 

due to a small sample size). This result illustrates that traits that make a species an effective 

pollinator may not necessarily influence pollination efficiency at the individual level. Thus, as 

behavioral ecologists look to use intraspecific behavioral variation to explain individuals’ roles 

in the ecosystem (Thomson and Chittka 2009; Zwolak 2018; Snell et al. 2019), they should 

explicitly test whether these traits translate into measurable differences in ecological outcomes. 

While my study explored only a few behaviors known to influence pollination function, it 

provides a framework for putting the ecological consequences of behavioral variation to the 

test and could be used to explore other candidate traits in the future. 

 

In Chapter 6, I broadened out to consider how a species’ foraging behaviors can influence 

ecosystem function. By comparing pollination outcomes across sites with and without hihi (as 

in the 'elimination approach': Akçakaya et al. 2020), I found that hihi bring measurable benefits 

to the ecosystem by improving germination of viable seeds. However, other pollination 

outcomes, such as fruit set and seed viability, were surprisingly low at sites with hihi. On the 

one hand, this could indicate that hihi have conflicting effects on different pollination outcomes. 

Many species’ contributions to ecological functions are far from binary; in extreme cases, 

species classified as antagonists have been found to bring positive effects when outcomes are 

examined at different levels or when they promote the behavior of mutualists (Maloof 2001; 
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Richardson 2004; Mayer et al. 2014). On the other hand, these results may reflect contributions 

by other actors, suggesting that my methodology did not isolate the effects of hihi as 

successfully as intended. First, nectar robbers were more abundant at hihi sites than non-hihi 

sites, so they could have canceled out the benefits of hihi by destroying flowers (Traveset et 

al. 1998) or deterring hihi from visiting plants (Varma et al. 2020). Additionally, introduced 

pollinators may have partially repaired the functional deficiency at the non-hihi sites, as non-

native birds and mammals have done in other New Zealand forests (Pattemore and Wilcove 

2011). Lastly, there was some evidence that plants at the non-hihi sites partly compensated 

for the absence of hihi by shifting reproductive investment, such that fruits were produced even 

from low-quality pollination (Winsor et al. 1987; Craig and Stewart 1988; Vaughton and 

Carthew 1993). Thus, a pollinator’s influence may be shaped by many extrinsic factors, 

including the presence of other species and the compensatory abilities of the ecosystem. 

 

Chapters 5 and 6 highlighted the challenges of isolating the effects of one actor (individual or 

species) on ecological function, particularly in complex ecosystems (Strauss 2014). While I 

attempted to minimize external effects by conducting my pollinator exclusion experiments on 

hihi territories, which are highly defended (Ewen et al. 2004; Low 2005), other methods may 

be worth exploring for future studies. Some common approaches, such as measuring 

functional roles in captivity (e.g. Culliney et al. 2012; Feldman et al. 2019), allow for greater 

environmental control but may not be feasible in threatened species like the hihi. Instead, 

proxies such as the volume and diversity of pollen loads carried on bills (S. Anderson 2003) 

could be used to attribute pollination to individuals more precisely in situ; however, this would 

still require individuals to be caught and would require an understanding of the relationship 

between these proxies and pollination outcomes (Mitchell 1997; Niesenbaum 1999; Quesada 

et al. 2001). To quantify the functional role of a species, comparing ecological outcomes 

immediately before versus after a reintroduction may make it easier to attribute changes to the 

reintroduced species, although this may not always allow enough time for large-scale changes 

to become evident (Choi 2004; Hilderbrand et al. 2005; Pullin et al. 2013). Selecting 

Tāwharanui as one of the non-hihi sites for my study was fortuitous, because it has been 

proposed as the next site for a hihi reintroduction; thus, my data could provide a baseline 

measure of pollination function, which can be used for comparison once hihi are reintroduced. 

 

Overall, Chapters 5 and 6 show that species can influence the ecosystem by bringing unique 

benefits to mutualisms such as pollination (Chapter 6; Figure 7.1). There is also some evidence 

that individuals may differ in their contributions to these mutualisms, but more work is needed 

to determine whether these differences are driven by behavioral variation (Chapter 5; Figure 

7.1).  



Chapter 7: General discussion 

 

 
136 

7.3   IMPLICATIONS FOR CONSERVATION 
 

 
While the central questions of my thesis were motivated by behavioral ecology theory, studying 

them in a threatened species allowed me to explore their potential implications for 

conservation. Translocation has become a vital tool for species recovery in hihi (Thorogood et 

al. 2013) and many other taxa (Sarrazin and Barbault 1996; D. Armstrong and Seddon 2008; 

Ewen et al. 2012; IUCN/SSC 2013), but success rates are estimated to be low overall (Griffith 

et al. 1989), particularly for species reintroductions (as low as 23%: Fischer and Lindenmayer 

2000). Many failures have been attributed to individuals being behaviorally unsuited to their 

new habitat (B. Bell 2016; Caro 2016; Berger‐Tal et al. 2020), which can increase their risk of 

predation (Banks et al. 2002), starvation (Dickens et al. 2010), and dispersal (Stamps and 

Swaisgood 2007). Thus, some studies have begun exploring whether behavioral variation can 

be used as a tool to predict which individuals will be most likely to survive and thrive in a novel 

environment. Most focus on personality traits (e.g. Bremner-Harrison et al. 2004; Sinn et al. 

2014; Germano et al. 2017), but diet may be another trait worthy of consideration, because it 

is a critical variable affecting an individual’s ability to adapt to an unfamiliar environment (Kamil 

et al. 1981; Stephens et al. 2007).  

 

The results of my thesis suggest that dietary specialization may be a promising tool for species 

recovery. Hihi with specialist pre-translocation diets survive better than generalists when 

translocated (Chapter 4), but worse when they remain at the source site (Chapter 2). These 

opposing effects are crucial, because maintaining a stable source population is a major 

concern in translocations (D. Armstrong and Seddon 2008). Nevertheless, more work is 

needed to determine whether specialists survive better than generalists at all release sites. 

Studies linking other traits to post-release survival have found that the favorability of these 

behaviors can be highly context specific. For example, while bold individuals often survive 

translocation better than shy ones (e.g. Sinn et al. 2014; May et al. 2016), boldness can be 

harmful in environments where individuals need to be cautious of unfamiliar predators or 

anthropogenic threats (e.g. Bremner-Harrison et al. 2004). Another important consideration is 

the mix of behavioral types in a translocated cohort; translocating individuals of a single type 

may not always be beneficial. If the behavior is genetically based, translocating diverse cohorts 

could help to minimize bottleneck effects that often reduce the viability of translocated 

populations (Letty et al. 2007; Berger‐Tal et al. 2020). Sometimes, individuals also benefit from 

being around conspecifics with different traits. For instance, in translocated sandhill cranes 

(Grus canadensis pulla), hand-reared individuals exhibit higher survival than parent-reared 

individuals, but all individuals fare better when translocated in a mixed cohort (Ellis et al. 2000). 
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These types of patterns can arise out of ‘skill pool’ (Giraldeau 1984) or ‘pool of competence’ 

effects (Morand-Ferron and Quinn 2011), where individuals learn or otherwise benefit from the 

skills and knowledge of individuals with different behavioral tendencies. Thus, if it is compatible 

with conservation priorities, selecting cohorts of varying dietary compositions for future 

translocations would be beneficial to test whether this affects outcomes. 

 

Behavioral variation could also be used to achieve broader-scale ecosystem recovery 

objectives if individuals’ contributions to ecological function depend on their behavioral types 

(Bolnick et al. 2011; Sih et al. 2012; Raffard et al. 2017). Although we were unable to explain 

individual hihi’s effectiveness as pollinators by their behaviors in Chapter 5, the fact that 

pollination outcomes varied across territories warrants further investigation. If a trait can be 

identified that reliably predicts high-quality pollination, individuals with that trait could be 

selectively translocated to promote the ecosystem recovery goals often cited in hihi 

translocations (Smuts-Kennedy 2009; Frost 2012; Collins et al. 2015). However, once again, 

having a diversity of behaviors in a population might be preferred; diversity in pollinator traits 

across species has been found to improve pollination function (Fontaine et al. 2006; Hoehn et 

al. 2008; Martins et al. 2015). It may also be vital to examine whether behaviors that promote 

ecological function are compatible with species recovery objectives, as some behaviors can 

have conflicting effects. For instance, in translocations, dispersal is generally viewed as a 

barrier to population establishment (Letty et al. 2007; Berger‐Tal et al. 2020), but individuals 

with high dispersal tendencies can be beneficial in translocations aimed at promoting 

population connectivity (Le Gouar et al. 2012). Thus, using behaviors as selection criteria for 

translocations may require balancing different, potentially competing, objectives. 

 
Despite the uncertainty surrounding individual differences in pollination efficiency (Chapter 5), 

the results of Chapter 6 confirm that hihi, as a species, bring unique benefits to pollination. This 

validates long-held assumptions about the value of hihi reintroductions for ecosystem recovery 

(Ewen and Armstrong 2007). However, the fact that sites without hihi may be able to achieve 

similar functionality through alternative means highlights the resilience of ecosystems and 

raises important questions about the value we place on historic species assemblages (Choi 

2004; Hilderbrand et al. 2005; Perring et al. 2015; Corlett 2016). Several new approaches to 

conservation largely ignore species identity; for example, rewilding aims to restore lost 

ecological functions using the most effective species, even if they are not native (Seddon et al. 

2014; Pettorelli et al. 2019). Nevertheless, it is important to consider the many known and 

unknown benefits that historic assemblages may offer the ecosystem. For example, if the 

mutualism between hihi and hangehange evolved to promote seed quality over other 

outcomes, then this effect may be important to prioritize even if plant reproduction can be 
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achieved in other ways; native species often fulfill multiple functional roles (Kelly et al. 2010; 

Burns 2013; Fuster and Traveset 2020), so the behaviors that enable hihi to promote seed 

quality may also serve other vital functions that we do not yet understand. Replacing native 

species with functional substitutes, or allowing the ecosystem to compensate for their loss, 

may superficially repair one functional deficiency without capturing the full scope of the original 

role. 

 

Overall, this thesis underscores the benefits that can be gained by uniting the fields of 

behavioral ecology and conservation biology. This collaboration has long been called for by 

both fields (Curio 1996; Caro 2007; B. Smith and Blumstein 2013; Caro 2016) but has struggled 

to gain traction. One reason, as suggested by Caro (2007), may be that behavioral ecologists 

are deterred by the small sample sizes that often come from working with threatened species. 

Yet, these challenges may be offset by the unique opportunities that conservation interventions 

can provide to observe individuals’ responses to dramatic environmental changes not normally 

seen in natural settings (as in Chapter 4).  Meanwhile, conservation biologists might not always 

recognize the benefit of behavioral ecology theory to conservation. However, including 

behavioral ecologists early in the process of conservation planning can ensure that the 

relevance to conservation is clear, theory is used to inform predictions, and monitoring 

programs are designed to maximize learning (Taylor et al. 2017; Durant et al. 2019). This type 

of collaboration can enable behavioral ecologists to explore complex, multi-level questions, 

such as the ecological feedback loop explored in this thesis (Figure 7.1). A better 

understanding of feedback loops like this one can also provide important insight about the risks 

and opportunities that conservation biologists face. When behavior is entwined with ecological 

function and the environment, any threat to one of these stages can have cascading impacts 

on the others. At the same time, this interconnectedness presents opportunities for 

conservation biologists to intervene at one stage to bring far-reaching benefits across multiple 

ecological levels (e.g. Watters et al. 2003). 
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7.4   SUMMARY 
 

 

In summary, my thesis has shown how variation in foraging behavior is nested within an 

ecological feedback loop alongside social factors and the ecosystem. Social factors correlate 

with and directly shape individual dietary variation, and variation in foraging at the species (and 

possibly individual) level can influence the ecosystem through effects on animal-plant 

mutualisms; the ecosystem, in turn, is known to shape social factors. I have also examined 

these questions in a species in which this knowledge could have conservation implications, 

and proposed ways that variation in diet and foraging behaviors can be used to promote 

species and ecosystem recovery. Together, my results suggest that a better understanding of 

the causes and consequences of behavioral variation can be beneficial not only for behavioral 

ecology but for conservation, highlighting the value of merging these two fields. 
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A1.1   CHAPTER 2 SUPPLEMENT 
 

 

Supplementary Table 2.1. Habitat types recorded during foraging observations. 

 

 

Habitat type Dominant species 
Typical 
canopy 
height (m) 

Description 

     
1 Bracken Phormium tenax, 

Muehlenbeckia australis 
 

0 – 3 Open areas dominated by 
New Zealand flax and 
ground-cover plants 
 

     
2 High Māhoe Melicytus ramiflorus, 

Coprosma robusta, 
Dysoxylum spectabile 

8 – 10 Continuous canopy 
predominantly consisting of 
mature māhoe; variably 
dense understory 

     
3 Immature 

Kohekohe 
Dysoxylum spectabile, 
Melicytus ramiflorus 

8 – 12 Patchy canopy dominated by 
immature kohekohe trees;  
dense mixed understory 

     
4 Kānuka Kunzea ericoides, 

Coprosma robusta, 
Myrsine australis 

10 – 12 Patchy canopy of kānuka; 
open mid- to upper-
understory; dense lower-
understory with dominant 
māpou 

     
5 Low Māhoe Melicytus ramiflorus, 

Phormium tenax, 
Geniostoma 
ligustrifolium 
 

4 – 6 Largely open canopy 
punctuated by immature 
māhoe trees; dense 
understory and ground cover 

     
6 Mature 

Kohekohe 
Dysoxylum spectabile, 
Melicytus ramiflorus, 
Metrosideros excelsa 

10 – 14 Continuous canopy 
dominated by mature 
kohekohe and other large 
species in places; sparse 
understory 

     
7 Nīkau Rhopalostylis sapida 8 – 10 Groves of nīkau trees 
     
8 Pōhutukawa Metrosideros excelsa, 

Melicytus ramiflorus, 
Coprosma robusta 
 

8 – 10 Pōhutukawa dominated 
areas with variably dense 
understory 

 

Note: The eight predefined, visually-distinct habitat types recorded for each foraging event 

and used to assess the relative availability of food plant species through habitat assessment 

plots. 
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Supplementary Table 2.2. Known hihi food species monitored during the study period.  
 

Scientific name Māori name 
Fruit Nectar 

2017 2018 2017 2018 

(a) 

Coprosma rhamnoides karamu ✓ ✓   

Coprosma robusta karamu ✓ ✓   

Cordyline australis tī kōuka ✓ ✓   

Dysoxylum spectabile kohekohe 0 ✓  ✓+ 

Elingamita johnsonii – 0 ✓*   

Geniostoma ligustrifolium hangehange ✓ ✓   

Hebe stricta koromiko   0 ✓ 

Ipomoea cairica pōwhiwhi   0 ✓* 

Kunzea ericoides kānuka 0 ✓ ✓ ✓ 

Macropiper excelsum kawakawa ✓ ✓   

Melicytus ramiflorus māhoe ✓ ✓ ✓ ✓ 

Muehlenbeckia australis pohuehue – ✓ ✓ ✓ 

Myrsine australis māpou ✓ ✓ 0 – 

Parsonsia heterophylla kaihua   0 ✓* 

Pseudopanax arboreus puahou ✓ ✓   

Pseudopanax lessonii houpara   ✓* ✓* 

Rhopalostylis sapida nīkau   ✓ – 

Sophora chathamica kōwhai 0 ✓*   

Vitex lucens pūriri 0 0 ✓ ✓ 

(b) 

Alseuosmia macrophylla toropapa – – – – 

Coprosma propinqua mingimingi 0 0 – – 

Dodonaea viscosa akeake   – – 

Hedycarya arborea porokaiwhiria   – – 

Hoheria populnea houhere   – – 

Myoporum laetum ngaio 0 0 0 – 

Phytolacca octandra – 0 0   

Pittosporum crassifolium karo 0 0   

Pittosporum umbellatum haekaro   0 0 
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Rhabdothamnus solandri taurepo   0 0 

Schefflera digitata patē – – – – 

 

Note: All known hihi food plant species present on Tiritiri Matangi Island and expected to have 

fruits or flowers available during the 2017 and 2018 study periods (determined from Perrott 

and Armstrong 2000 and personal communications with site managers). All species in (a) and 

(b) were monitored, but only species in (a) were observed being consumed by hihi. 

Checkmarks (✓) indicate food types that were observed being eaten; those with pluses (+) 

were consumed despite going undetected in phenology surveys, and those with asterisks (*) 

have not (to our knowledge) previously been reported in the literature as known hihi foods. 

Foods that were expected to be eaten by hihi but were not observed being eaten are indicated 

by zeros (0) if they were detected in phenology surveys and dashes (–) if they were not 

detected. Blank cells indicate food types that were not expected to be eaten by hihi, either 

because they were out of season during the study period or because hihi are not known to eat 

them and would not be expected to based on their morphology.
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Supplementary Table 2.3. PSi model selection with age and sex. 

 

Model AICc AICc AICc Weight Cumulative Weight 

PSi ~ 

          age  sex 1215.58 0.00 0.50 0.50 

          1 1216.98 1.40 0.24 0.74 

          sex 1218.68 3.10 0.11 0.85 

          age 1218.70 3.12 0.10 0.95 

          age + sex 1220.24 4.65 0.05 1.00 

 

Note: Results from a model selection explaining dietary specialization (PSi) by all combinations 

of age and sex.  
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Supplementary Table 2.4. Monthly survival and resighting probability model selections for 

2017. 

 

Model QAICc QAICc 
Model 

Likelihood 
Number of 
Parameters 

(a) Original PSis 

ϕ(.)ρ(PSi  time) 109.84 0.00 1.00 5 

ϕ(time)ρ(PSi  time) 112.02 2.18 0.34 7 

ϕ(PSi)ρ(PSi  time) 112.25 2.41 0.30 6 

ϕ(.)ρ(time) 113.23 3.39 0.18 4 

ϕ(time)ρ(time) 113.38 3.54 0.17 5 

ϕ(.)ρ(PSi + time) 114.06 4.22 0.12 5 

ϕ(PSi  time)ρ(time) 114.20 4.36 0.11 7 

ϕ(PSi + time)ρ(PSi  time) 114.63 4.79 0.091 8 

ϕ(PSi)ρ(time) 115.19 5.35 0.069 5 

ϕ(PSi)ρ(PSi + time) 116.43 6.59 0.037 6 

ϕ(time)ρ(PSi + time) 117.02 7.18 0.028 7 

ϕ(PSi + time)ρ(time) 117.89 8.05 0.018 7 

ϕ(PSi + time)ρ(PSi + time) 119.55 9.71 <0.01 8 

ϕ(PSi  time)ρ(PSi) 122.89 13.05 <0.01 4 

ϕ(PSi  time)ρ(PSi + time) 124.03 14.19 <0.01 10 

ϕ(time)ρ(.) 124.60 14.76 <0.01 3 

ϕ(PSi  time)ρ(.) 125.57 15.73 <0.01 5 

ϕ(time)ρ(PSi) 125.78 15.94 <0.01 4 

ϕ(PSi  time)ρ(PSi  time) 126.09 16.25 <0.01 12 

ϕ(PSi + time)ρ(.) 126.54 16.70 <0.01 4 

ϕ(.)ρ(.) 127.67 17.83 <0.01 2 

ϕ(PSi + time)ρ(PSi) 127.99 18.15 <0.01 5 

ϕ(.)ρ(PSi) 128.55 18.71 <0.01 3 

ϕ(PSi)ρ(.) 129.60 19.76 <0.01 3 

ϕ(PSi)ρ(PSi) 130.73 20.89 <0.01 4 

     

(b) Uncertainty-Corrected PSis 

ϕ(time)ρ(PSi  time) 112.31 0.00 1.00 7 

ϕ(.)ρ(time) 113.23 0.92 0.63 4 

ϕ(.)ρ(PSi + time) 113.27 0.95 0.62 5 
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ϕ(PSi)ρ(time) 113.28 0.96 0.62 5 

ϕ(time)ρ(time) 113.38 1.07 0.59 5 

ϕ(PSi)ρ(PSi + time) 114.51 2.20 0.33 6 

ϕ(PSi + time)ρ(time) 116.03 3.72 0.16 7 

ϕ(time)ρ(PSi + time) 116.53 4.21 0.12 7 

ϕ(.)ρ(PSi  time) 116.54 4.23 0.12 7 

ϕ(PSi)ρ(PSi  time) 116.80 4.48 0.11 8 

ϕ(PSi + time)ρ(PSi + time) 117.75 5.43 0.067 8 

ϕ(PSi + time)ρ(PSi  time) 120.03 7.71 0.021 10 

ϕ(PSi  time)ρ(time) 120.80 8.49 0.014 10 

ϕ(PSi  time)ρ(PSi + time) 121.67 9.35 <0.01 10 

ϕ(time)ρ(.) 122.39 10.08 <0.01 2 

ϕ(time)ρ(PSi) 124.48 12.16 <0.01 4 

ϕ(PSi  time)ρ(PSi  time) 124.81 12.49 <0.01 12 

ϕ(PSi + time)ρ(.) 125.29 12.97 <0.01 4 

ϕ(PSi + time)ρ(PSi) 126.02 13.70 <0.01 5 

ϕ(PSi  time)ρ(.) 126.15 13.84 <0.01 5 

ϕ(.)ρ(PSi) 126.35 14.03 <0.01 3 

ϕ(PSi  time)ρ(PSi) 127.63 15.31 <0.01 6 

ϕ(.)ρ(.) 127.67 15.36 <0.01 2 

ϕ(PSi)ρ(PSi) 128.12 15.80 <0.01 4 

ϕ(PSi)ρ(.) 128.16 15.84 <0.01 3 

  

Note: Results from model selections explaining monthly survival probability (ϕ) and resighting 

probability (ρ) in the 2017 survey periods (February 2017–February 2018) by (a) our original 

Bayesian PSis and (b) Bayesian PSis corrected to account for the uncertainty inherent to each 

individual’s sample size of foods eaten. QAICcs values are bolded for the best supported 

models (QAICc < 2). 
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Supplementary Table 2.5. Monthly survival and resighting probability model selections for 

2018. 

 

Model AICc AICc 
Model 

Likelihood 
Number of 
Parameters 

(a) Original PSis 

ϕ(PSi)ρ(time) 390.71 0.00 1.00 6 

ϕ(PSi)ρ(PSi + time) 392.49 1.78 0.41 7 

ϕ(.)ρ(PSi  time) 394.80 4.09 0.13 9 

ϕ(PSi)ρ(PSi  time) 395.19 4.48 0.11 10 

ϕ(.)ρ(PSi + time) 396.00 5.30 0.071 6 

ϕ(.)ρ(time) 396.46 5.75 0.056 5 

ϕ(PSi + time)ρ(PSi  time) 396.83 6.12 0.047 11 

ϕ(PSi + time)ρ(time) 396.93 6.22 0.045 9 

ϕ(time)ρ(PSi + time) 397.85 7.14 0.028 7 

ϕ(PSi + time)ρ(PSi + time) 398.80 8.10 0.018 10 

ϕ(time)ρ(PSi  time) 398.84 8.14 0.017 11 

ϕ(time)ρ(time) 400.42 9.71 <0.01 7 

ϕ(PSi  time)ρ(time) 401.08 10.37 <0.01 11 

ϕ(PSi  time)ρ(PSi + time) 403.15 12.44 <0.01 12 

ϕ(PSi  time)ρ(PSi  time) 403.34 12.63 <0.01 14 

ϕ(PSi)ρ(PSi) 444.47 53.76 <0.01 2 

ϕ(time)ρ(PSi) 447.34 56.63 <0.01 2 

ϕ(.)ρ(PSi) 447.34 56.63 <0.01 2 

ϕ(PSi + time)ρ(PSi) 450.08 59.38 <0.01 4 

ϕ(PSi  time)ρ(PSi) 450.08 59.38 <0.01 4 

ϕ(time)ρ(.) 452.24 61.53 <0.01 2 

ϕ(PSi)ρ(.) 453.74 63.04 <0.01 3 

ϕ(.)ρ(.) 453.88 63.17 <0.01 2 

ϕ(PSi + time)ρ(.) 454.42 63.71 <0.01 5 

ϕ(PSi  time)ρ(.) 458.62 67.91 <0.01 7 

     

(b) Uncertainty-Corrected PSis 

ϕ(PSi)ρ(time) 390.76 0.00 1.00 6 

ϕ(PSi)ρ(PSi + time) 391.86 1.10 0.58 7 

ϕ(.)ρ(PSi  time) 393.17 2.40 0.30 9 
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ϕ(PSi)ρ(PSi  time) 393.94 3.18 0.20 10 

ϕ(.)ρ(PSi + time) 394.69 3.93 0.14 6 

ϕ(time)ρ(PSi  time) 394.91 4.15 0.13 10 

ϕ(PSi + time)ρ(PSi  time) 395.61 4.85 0.089 11 

ϕ(.)ρ(time) 396.46 5.70 0.058 5 

ϕ(time)ρ(PSi + time) 396.46 5.70 0.058 7 

ϕ(PSi + time)ρ(time) 397.02 6.26 0.044 9 

ϕ(PSi  time)ρ(PSi  time) 397.74 6.97 0.031 12 

ϕ(PSi + time)ρ(PSi + time) 398.33 7.57 0.023 10 

ϕ(time)ρ(time) 400.42 9.65 <0.01 7 

ϕ(PSi  time)ρ(time) 400.81 10.05 <0.01 11 

ϕ(PSi  time)ρ(PSi + time) 402.55 11.79 <0.01 12 

ϕ(PSi)ρ(PSi) 446.05 55.29 <0.01 2 

ϕ(.)ρ(PSi) 446.05 55.29 <0.01 2 

ϕ(time)ρ(PSi) 446.05 55.29 <0.01 2 

ϕ(PSi + time)ρ(PSi) 449.17 58.41 <0.01 4 

ϕ(PSi  time)ρ(PSi) 451.29 60.52 <0.01 5 

ϕ(time)ρ(.) 452.24 61.47 <0.01 2 

ϕ(PSi + time)ρ(.) 452.47 61.70 <0.01 4 

ϕ(PSi  time)ρ(.) 453.28 62.51 <0.01 5 

ϕ(PSi)ρ(.) 453.77 63.00 <0.01 3 

ϕ(.)ρ(.) 453.88 63.11 <0.01 2 

 

Note: Results from model selections explaining monthly survival probability (ϕ) and resighting 

probability (ρ) in the 2018 survey periods (February 2018–February 2019) by (a) our original 

Bayesian PSis and (b) Bayesian PSis corrected to account for the uncertainty inherent to each 

individual’s sample size of foods eaten. AICc values are bolded for the best supported models 

(AICc < 2). 

  



Appendix 1: Supplementary materials 

 
168 

A1.2   CHAPTER 3 SUPPLEMENT 
 

 

Supplementary Table 3.1. Results of an AICc model selection explaining dietary specialization 

(PSi) by intrinsic factors expected to influence dominance. All models included year as a 

covariate. 

 

Model AICc AICc AICc Weight 

~ 1 −196.98 0.00 0.28 

~ age −196.07 0.91 0.18 

~ tarsus −195.20 1.78 0.11 

~ sex −194.95 2.03 0.10 

~ age + sex −194.82 2.16 0.10 

~ age + tarsus −194.21 2.77 0.07 

~ sex + tarsus −193.15 3.83 0.04 

~ age + sex + tarsus −192.93 4.05 0.04 

~ age  tarsus −192.64 4.34 0.03 

~ age  tarsus + sex  −191.34 5.64 0.02 

~ sex  tarsus  −191.20 5.78 0.02 

~ sex  tarsus + age −191.01 5.97 0.01 

~ age  tarsus + sex  tarsus −189.08 7.90 0.01 
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Supplementary Table 3.2. Results of an AICc model selection explaining the number of feeder 

watch sessions an individual was observed entering the feeder. All models included year as a 

covariate. 

 

Model AICc AICc AICc Weight 

~ PSi + sex + age 609.08 0.00 0.23 

~ PSi + sex 609.83 0.74 0.16 

~ PSi + sex + tarsus 610.40 1.32 0.12 

~ PSi  sex + age 610.87 1.79 0.09 

~ PSi  sex 611.31 2.23 0.08 

~ PSi  age + sex 611.61 2.52 0.07 

~ sex  tarsus + PSi 612.14 3.05 0.05 

~ PSi  sex + tarsus 612.26 3.18 0.05 

~ PSi  tarsus + sex 612.46 3.38 0.04 

~ PSi  sex + PSi  age 612.87 3.78 0.03 

~ PSi  sex + sex  tarsus 613.99 4.91 0.02 

~ PSi  tarsus + sex  tarsus 614.34 5.26 0.02 

~ PSi  sex + PSi  tarsus 614.41 5.33 0.02 

~ PSi  sex + PSi  tarsus + sex  tarsus 616.27 7.19 0.01 

~ PSi + age 616.70 7.62 0.01 

~ PSi + age + tarsus 617.54 8.46 <0.01 

~ PSi  sex  tarsus 618.26 9.18 <0.01 

~ age  tarsus + PSi 618.73 9.64 <0.01 

~ PSi  age 618.93 9.85 <0.01 

~ PSi  tarsus + age 619.63 10.55 <0.01 

~ PSi  age + tarsus 619.79 10.71 <0.01 

~ PSi  tarsus + age  tarsus 620.80 11.71 <0.01 

~ PSi  age + age  tarsus 621.03 11.95 <0.01 

~ PSi  age + PSi  tarsus 621.92 12.84 <0.01 

~ 1 622.37 13.29 <0.01 

~ PSi  age + PSi  tarsus + age  tarsus 623.14 14.06 <0.01 

~ PSi 624.00 14.91 <0.01 

~ PSi + tarsus 624.67 15.59 <0.01 

~ PSi  age  tarsus 625.42 16.34 <0.01 

~ PSi  tarsus 626.52 17.43 <0.01 
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Supplementary Table 3.3. Results of an AICc model selection explaining the number of times 

an individual was observed entering the feeder across all sessions (including individuals 

observed entering the feeder at least once). All models included year as a covariate. 
 

Model AICc AICc AICc Weight 

~ 1 598.07 0.00 0.27 

~ PSi + sex + age 599.95 1.88 0.10 

~ PSi 600.24 2.17 0.09 

~ PSi + sex 600.47 2.40 0.08 

~ PSi  sex + age 601.10 3.03 0.06 

~ PSi + age 601.39 3.32 0.05 

~ PSi  sex 601.64 3.57 0.04 

~ PSi + tarsus 601.72 3.65 0.04 

~ PSi + sex + tarsus 602.14 4.07 0.03 

~ PSi  age + sex 602.19 4.12 0.03 

~ PSi  sex + PSi  age 602.71 4.64 0.03 

~ PSi + age + tarsus  602.74 4.66 0.03 

~ PSi  sex + tarsus  603.28 5.21 0.02 

~ sex  tarsus + PSi 603.47 5.39 0.02 

~ PSi  age 603.60 5.53 0.02 

~ PSi  tarsus 604.01 5.93 0.01 

~ PSi  tarsus + sex 604.51 6.44 0.01 

~ PSi  sex + sex  tarsus 604.68 6.61 0.01 

~ PSi  tarsus + age 605.03 6.96 0.01 

~ PSi  age + tarsus 605.06 6.99 0.01 

~ age  tarsus + PSi 605.11 7.04 0.01 

~ PSi  sex + PSi  tarsus 605.72 7.65 0.01 

~ PSi  tarsus + sex  tarsus 605.85 7.77 0.01 

~ PSi  sex + PSi  tarsus + sex  tarsus 607.16 9.09 <0.01 

~ PSi  age + PSi  tarsus 607.43 9.36 <0.01 

~ PSi  tarsus + age  tarsus 607.45 9.38 <0.01 

~ PSi  age + age  tarsus 607.51 9.43 <0.01 

~ PSi  sex  tarsus 609.15 11.08 <0.01 

~ PSi  age + PSi  tarsus + age  tarsus 609.93 11.86 <0.01 

~ PSi  age  tarsus 611.83 13.76 <0.01 
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Supplementary Table 3.4. Results of an AICc model selection explaining the number of 

korimako entrances to the feeder observed per hour in a given feeder watch session. All 

models included year as a covariate. 

 

Model AICc AICc 
AICc 

Weight 

~ korimako to korimako aggression 1266.54 0.00 1 

~ 1 1280.95 14.40 <0.01 

~ hihi to hihi aggression 1281.71 15.16 <0.01 

~ hihi to korimako aggression 1283.09 16.55 <0.01 

~ korimako to hihi aggression 1283.11 16.57 <0.01 
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Supplementary Table 3.5. Results of an AICc model selection explaining an individual’s 

grouping tendency (proportion of focal follows observed with at least one conspecific) while 

foraging on natural food sources. All models included year as a covariate. 
 

Model AICc AICc AICc Weight 

~ PSi  tarsus + age 397.09 0.00 0.42 

~ PSi  tarsus + age  tarsus 398.77 1.68 0.18 

~ PSi  age + PSi  tarsus 399.21 2.11 0.14 

~ PSi + age + tarsus 400.25 3.16 0.09 

~ PSi  age + PSi  tarsus + age  tarsus 400.99 3.89 0.06 

~ PSi  age + tarsus 402.26 5.17 0.03 

~ age  tarsus + PSi 402.33 5.23 0.03 

~ PSi  age  tarsus 402.49 5.40 0.03 

~ PSi  age + age  tarsus 404.40 7.31 0.01 

~ PSi + age 405.35 8.26 0.01 

~ PSi + sex + age 406.77 9.67 <0.01 

~ PSi  age  407.46 10.37 <0.01 

~ PSi  sex + age 408.69 11.60 <0.01 

~ PSi  age + sex 408.93 11.83 <0.01 

~ PSi  sex + PSi  age 410.56 13.46 <0.01 

~ PSi  tarsus 418.21 21.12 <0.01 

~ PSi  tarsus + sex 418.53 21.43 <0.01 

~ PSi  sex + PSi  tarsus 420.03 22.94 <0.01 

~ PSi  tarsus + sex  tarsus 420.32 23.22 <0.01 

~ PSi  sex + PSi  tarsus + sex  tarsus 421.68 24.59 <0.01 

~ PSi + tarsus 422.34 25.25 <0.01 

~ PSi + sex + tarsus 422.69 25.60 <0.01 

~ PSi  sex  tarsus 423.52 26.43 <0.01 

~ sex  tarsus + PSi 423.83 26.74 <0.01 

~ PSi  sex + tarsus 424.24 27.14 <0.01 

~ 1 425.21 28.12 <0.01 

~ PSi  sex + sex  tarsus 425.23 28.14 <0.01 

~ PSi 427.31 30.22 <0.01 

~ PSi + sex 427.54 30.45 <0.01 

~ PSi  sex 429.08 31.98 <0.01 
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Supplementary Table 3.6. Results of an AICc model selection explaining whether an 

individual entered the feeder with at least one conspecific already inside the feeder. All 

models included year as a covariate. 

Model AICc AICc AICc Weight 

~ PSi + age + tarsus 1298.46 0.00 0.12 

~ PSi + tarsus 1299.05 0.59 0.09 

~ PSi  tarsus + age 1299.94 1.47 0.06 

~ PSi  age + tarsus 1299.96 1.50 0.06 

~ PSi 1299.98 1.51 0.06 

~ PSi + age 1300.24 1.77 0.05 

~ 1  1300.27 1.80 0.05 

~ PSi  tarsus  1300.30 1.84 0.05 

~ PSi  sex + tarsus  1300.38 1.91 0.05 

~ age  tarsus + PSi  1300.44 1.97 0.04 

~ PSi + sex + tarsus  1300.46 2.00 0.04 

~ PSi  sex  1301.05 2.59 0.03 

~ PSi  age + PSi  tarsus 1301.42 2.95 0.03 

~ PSi + sex  1301.43 2.96 0.03 

~ PSi  age  1301.55 3.09 0.03 

~ PSi  tarsus + sex  1301.78 3.32 0.02 

~ PSi  tarsus + age  tarsus  1301.84 3.37 0.02 

~ PSi  sex + age  1301.86 3.40 0.02 

~ PSi  age + age  tarsus  1301.90 3.43 0.02 

~ PSi  sex + PSi  tarsus  1301.91 3.45 0.02 

~ PSi + sex + age  1302.17 3.71 0.02 

~ PSi  sex + sex  tarsus  1302.24 3.78 0.02 

~ sex  tarsus + PSi  1302.25 3.79 0.02 

~ PSi  age + PSi  tarsus + age  tarsus  1303.27 4.80 0.01 

~ PSi  tarsus + sex  tarsus  1303.46 4.99 0.01 

~ PSi  age + sex  1303.51 5.05 0.01 

~ PSi  sex + PSi  tarsus + sex  tarsus 1303.69 5.23 0.01 

~ PSi  sex + PSi  age 1303.84 5.37 0.01 

~ PSi  age  tarsus 1305.17 6.70 <0.01 

~ PSi  sex  tarsus 1305.47 7.00 <0.01 
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Supplementary Table 3.7. Results of an AICc model selection explaining whether an individual 

entered the feeder with at least one conspecific already inside the feeder, also accounting for 

the number of heterospecifics inside the feeder. All models included year as a covariate. 

Model AICc AICc 
AICc 

Weight 

~ PSi + age + tarsus + heterospecifics 1299.25 0.00 0.11 

~ PSi + tarsus + heterospecifics 1299.56 0.31 0.09 

~ PSi + heterospecifics  1300.37 1.12 0.06 

~ 1 + heterospecifics 1300.54 1.29 0.06 

~ PSi  sex + tarsus + heterospecifics  1300.60 1.35 0.05 

~ PSi  age + tarsus + heterospecifics  1300.70 1.44 0.05 

~ PSi  tarsus + age + heterospecifics  1300.77 1.52 0.05 

~ PSi + age + heterospecifics 1300.85 1.59 0.05 

~ PSi + sex + tarsus + heterospecifics  1300.89 1.64 0.05 

~ PSi  tarsus + heterospecifics  1300.89 1.64 0.05 

~ PSi  sex + heterospecifics 1301.15 1.90 0.04 

~ age  tarsus + PSi + heterospecifics 1301.23 1.98 0.04 

~ PSi + sex + heterospecifics 1301.74 2.48 0.03 

~ PSi  age + heterospecifics  1302.11 2.85 0.03 

~ PSi  age + PSi  tarsus + heterospecifics  1302.21 2.95 0.02 

~ PSi  sex + age + heterospecifics  1302.22 2.96 0.02 

~ PSi  sex + PSi  tarsus + heterospecifics  1302.23 2.98 0.02 

~ PSi  tarsus + sex + heterospecifics  1302.30 3.04 0.02 

~ PSi  sex + sex  tarsus + heterospecifics  1302.43 3.18 0.02 

~ sex  tarsus + PSi + heterospecifics  1302.64 3.38 0.02 

~ PSi  age + age  tarsus + heterospecifics  1302.64 3.39 0.02 

~ PSi  tarsus + age  tarsus + heterospecifics  1302.69 3.43 0.02 

~ PSi + sex + age + heterospecifics 1302.73 3.48 0.02 

~ PSi  tarsus + sex  tarsus + heterospecifics 1303.93 4.67 0.01 

~ PSi  sex + PSi  tarsus + sex  tarsus + heterospecifics 1303.97 4.72 0.01 

~ PSi  age + sex + heterospecifics  1304.02 4.76 0.01 

~ PSi  age + PSi  tarsus + age  tarsus + heterospecifics  1304.07 4.81 0.01 

~ PSi  sex + PSi  age + heterospecifics 1304.19 4.94 0.01 

~ PSi  sex  tarsus + heterospecifics 1305.86 6.60 <0.01 

~ PSi  age  tarsus + heterospecifics 1306.01 6.75 <0.01 
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Supplementary Table 3.8. Results of an AICc model selection explaining the number of 

heterospecifics present inside the feeder at the time an individual entered. All models included 

year as a covariate. 

Model AICc AICc AICc Weight 

~ PSi + age + sex 4113.98 0.00 0.17 

~ PSi + sex 4114.45 0.47 0.14 

~ 1 4114.59 0.62 0.13 

~ PSi  sex + age 4115.39 1.41 0.09 

~ PSi  age + sex 4115.88 1.91 0.07 

~ PSi  sex 4115.99 2.01 0.06 

~ PSi + sex + tarsus 4116.42 2.44 0.05 

~ PSi 4116.59 2.62 0.05 

~ PSi  tarsus + sex  4117.41 3.44 0.03 

~ PSi  sex + PSi  age  4117.42 3.45 0.03 

~ PSi  sex + tarsus 4117.98 4.01 0.02 

~ PSi  sex  tarsus 4118.08 4.11 0.02 

~ PSi + age 4118.15 4.17 0.02 

~ sex  tarsus + PSi 4118.44 4.47 0.02 

~ PSi + tarsus 4118.59 4.62 0.02 

~ PSi  sex + PSi  tarsus 4118.79 4.81 0.02 

~ PSi  tarsus + sex  tarsus  4119.45 5.47 0.01 

~ PSi  tarsus  4119.98 6.00 0.01 

~ PSi  age 4120.01 6.03 0.01 

~ PSi  sex + sex  tarsus  4120.01 6.04 0.01 

~ PSi + age + tarsus 4120.17 6.20 0.01 

~ PSi  sex + PSi  tarsus + sex  tarsus 4120.82 6.84 0.01 

~ PSi  tarsus + age 4121.68 7.70 <0.01 

~ PSi  age + tarsus 4122.04 8.07 <0.01 

~ age  tarsus + PSi 4122.15 8.17 <0.01 

~ PSi  age + PSi  tarsus  4123.58 9.60 <0.01 

~ PSi  tarsus + age  tarsus  4123.58 9.61 <0.01 

~ PSi  age + age  tarsus 4124.04 10.07 <0.01 

~ PSi  age + PSi  tarsus + age  tarsus 4125.52 11.54 <0.01 

~ PSi  age  tarsus 4126.02 12.04 <0.01 
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Supplementary Table 3.9. Results of an AICc model selection explaining an individual’s 

network degree, which reflects both the number and strength of its associations with 

conspecifics in a social network derived from feeder entrance data. All models included year 

as a covariate. 

 

Model AICc AICc AICc Weight 

~ 1 76.88 0.00 0.52 

~ PSi 79.07 2.19 0.17 

~ PSi + sex 80.85 3.97 0.07 

~ PSi + tarsus 81.01 4.14 0.07 

~ PSi + age 81.51 4.63 0.05 

~ PSi + sex + tarsus  82.92 6.04 0.03 

~ PSi  sex 83.10 6.22 0.02 

~ PSi + sex + age 83.13 6.25 0.02 

~ PSi  tarsus 83.43 6.55 0.02 

~ PSi + age + tarsus 83.60 6.72 0.02 

~ PSi  age 83.86 6.98 0.02 
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A1.3   CHAPTER 4 SUPPLEMENT 
 

 

Supplementary Materials 4.1: Supplemental Methods 

 

To evaluate the ecological similarity of the three study sites, we conducted habitat 

assessments. Each site was divided into four equal quadrants, with four points randomly 

selected in each to designate 16 habitat plots. On each plot, we created five 20 m transects 

radiating from a central point, with one sampling point located every 4 m along the transect. At 

each sampling point, we conducted the following assessments. First, the canopy height was 

estimated, which we averaged across all points in the plot to assign an average canopy height. 

Next, we counted and identified (to species level) every mature plant intersecting an imaginary 

cylinder of 1 m radius and 2 m height. We summed these counts across all 25 sampling points 

and divided by the total sampling area (25π m2) to estimate the understory density of the plot. 

We also calculated a Shannon diversity index (Shannon 1948) as: 

− ∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑅
𝑖=1 , 

where R is the total number of unique species present and pi is the proportion of plants 

belonging to species i. This provided a measure of species abundance and evenness. Lastly, 

we completed a vertical habitat assessment (adapted from Scott 1965; Makan et al. 2014) by 

extending an imaginary cylinder of 10 cm radius to the canopy. In each height bracket 

beginning from the ground to 30 cm, 30 cm to 2 m, and continuing in 2 m increments thereafter, 

we counted the number of unique species with intersecting foliage. Summing these counts 

across all height brackets and all points on the plot provided a proxy of canopy density. 

Combined with the understory assessments, these vertical assessments were also used to 

produce a count of the total number of unique species on the plot. 

 

We then conducted a Principal Component Analysis (PCA) to quantify the ecological similarity 

of the three study sites. Data from each habitat plot were pooled across sites and standardized 

prior to analysis to account for the variables’ different scales. The minimum number of 

components needed to explain at least 70% of the variance (Supplementary Table 4.1.1) were 

visually examined using biplots (Figure 4.3d), with convex hulls drawn around all datapoints 

(habitat plots) belonging to each site. Using the vegan package (Oksanen et al. 2019), site 

differences were then tested quantitatively with a permutational multivariate analysis of 

variance using Euclidean distance matrices (M. Anderson 2001). As this indicated significant 

differences among sites (R2 = 0.22, P = 0.001), post-hoc pairwise comparisons between sites 

were performed using a pairwise permutation MANOVA (PERMANOVA) with 1,000 

permutations (RVAideMemoire package: Hervé 2020). Because we predicted that the Source 
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Site would differ significantly from the two Release Sites, we applied a Bonferroni correction to 

the resulting P-values to avoid increasing the likelihood of Type I errors. 

 

 

 

Supplementary Table 4.1.1. Results of the Principal Component Analysis (PCA) of variables 

measured on each habitat plot. The first two components explained a cumulative 75% of 

variance among plots, while the three remaining components (PC4 and PC5 not presented) 

explained only 25% of variance. Variables with the strongest loadings on each component are 

indicated in bold. 

 

  PC1 PC2 PC3 

Total species −0.47 0.44 −0.13 

Understory density −0.10 0.65 0.49 

Shannon diversity −0.51 0.08 −0.69 

Canopy density −0.60 −0.14 0.44 

Canopy height −0.39 −0.60 0.25 

     

Eigenvalue 2.15 1.60 0.69 

Proportion of variance explained 0.43 0.32 0.14 
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A1.4   CHAPTER 6 SUPPLEMENT 
 

 

 

 

Supplementary Figure 6.1. Germination and seed viability tests were performed on seeds 

collected from a subset of plants in the pollinator exclusion experiment. (a) Seeds plated on an 

agar petri dish for the germination test, close to the date that germination was assessed (at 

least four weeks after plating). (b) Undissected viable seed (left) and unviable seed (right). (c) 

Cross-section of a dissected viable seed (left) and unviable seed (right). Photo credit: Karin 

van der Walt. 



Appendix 1: Supplementary materials 

 
180 

Supplementary Table 6.1. Number of replicates tested by site and pollination condition for (a) 

the seed viability and germination probability of all seeds tests and (b) the germination of viable 

seeds test. Values in parentheses indicate the number of unique plants from which the 

replicates were derived. In some cases, values are lower for (b) than (a) because germination 

of viable seeds could not be assessed for replicates containing no viable seeds. 

 

    Auckland Wellington 
    Hihi+ Hihi− Hihi+ Hihi− 

(a)  
Insect 53 (8) 49 (7) 78 (10) 41 (6) 

Insect+Bird 58 (9) 80 (11) 68 (11) 60 (8) 

      

(b) 
Insect 49 (7) 49 (7) 75 (10) 41 (6) 

Insect+Bird 58 (9) 80 (11) 68 (9) 60 (8) 
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A1.5   PERMITS 
 

 

All observational work on Tiritiri Matangi Island was carried out under: 

▪ Wildlife Act Authority Authorization Number 44300-FAU issued by the Department of 

Conservation (New Zealand) 

 

All pollination studies were carried out under: 

▪ Tiritiri Matangi: Plants, Soil, Rocks, Historic Material Authorization Number 61071-RES 

issued by the Department of Conservation (New Zealand) 

▪ Tāwharanui Regional Park: Auckland Council Permit to Undertake Research NS384 

▪ Zealandia Ecosanctuary: Admission to the Valley to Undertake Research 

▪ Belmont Regional Park: Greater Wellington Regional Council Low Impact Collecting 

Permit 

 

 

 

 
 

 


