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ABSTRACT 

We used an automated radio telemetry system to determine diurnal patterns of activity and 

temporal phenotype (onset and cessation of activity) in female European starlings (Sturnus 

vulgaris) during breeding. Parental care is thought to be the most “costly” part of reproduction 

with high rates of intense activity due to foraging and provisioning for chicks, so we predicted 

that variation in timing of activity should be closely related to breeding success. Diurnal 

variation in activity varied systematically with breeding stage in a way consistent with 

specific demands of each phase of parental care: incubating females were more active late in 

the day (16:00-18:00), while chick-rearing females were more active early in the morning 

(07:00-11:00). There was marked individual variation in timing of onset, and to a lesser extent 

cessation, of activity, e.g. chick-rearing females first became active between 7-127 min after 

morning civil twilight (CT), with low to moderate repeatability within- and among-breeding 

stages (individual explained 2-62% of total variation). On average, females were active later, 

and ceased being active earlier, during chick-rearing compared with incubation. Chick-rearing 

birds had a longer active day, but only by 2.3% (36% of the seasonal increase in total 

available day length). Thus, chick-rearing females were relatively less active (‘lazier’) which 

is consistent with the idea that parents work more efficiently rather than simply working 

harder. We found little evidence that chick-rearing activity was associated with variation in 

measures of current reproduction (provisioning rate, number and quality of chicks), future 

fecundity (initiating 2nd brood, cumulative 2-year productivity) or survival (local return rate). 

Our study demonstrates that timekeeping mechanisms show plasticity in response to 

reproductive state and can be modulated by ‘biotic’ (e.g. prey availability) or ‘social’ time 

(demands of parental care). 
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INTRODUCTION 

Biological rhythms, cyclical patterns of gene expression, physiology, or behaviour, are 

ubiquitous: all living organisms have predictable periodic behaviours that follow a natural 

rhythm such as the regular alternation of day and night, the seasons, the tides, and the waxing 

and waning of the moon (Foster, 2010). Chronobiology, the study of biological rhythms, 

considers sources of variation in, and functional consequences of, biological cycles (Bulla, 

Oudman, Bijleveld, Piersma, & Kyriacou, 2017; E. Gwinner, 1986; Naylor, 2010). The most 

commonly expressed and best-studied biological rhythms are ‘circadian rhythms’ occurring 

on a diel time scale (24 hours cycle), typically associated with the light/dark cycle (Foster, 

2010). The term “chronotype” refers to the behavioural output of underlying mechanisms of 

circadian rhythms (Randler, 2014; Schwartz, Helm, & Gerkema, 2017), e.g. the sleep or wake 

time of an organism relative to sunset or sunrise (Hoffmann, 1965). Under constant light 

conditions (in captivity) animals show ‘free-running’ circadian rhythms with an individually 

variable period length (tau) that can be shorter or longer than 24 hours. Free-living animals 

are exposed to light-dark cycles and entrain to the 24 h day, so that their period length is 24h. 

However, individuals commonly differ in the exact timing of onset of activity with some 

being earlier and some later relative to the 24 light:dark cycle. In the wild ‘chronotype’ can be 

determined based on timing of activity onset relative to a salient environmental cue (e.g. 

sunrise; Dominoni et al. (2013); Graham et al. (2017)). In humans this differential timing can 

define people as “morning larks” with an early chronotype and “night owls” with a late 

chronotypes, and this variation has been correlated with several personality traits in humans 

(Adan et al., 2012; Randler, 2014). 

 More recent papers have started to extend ideas of circadian rhythms and chronotype 

to free-living animals, and the terms “wild clocks” or “ecological clocks” have been used to 

describe the integration of chronobiology and ecology with the goal of understanding how 

https://en.wikipedia.org/wiki/Chronobiology
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behavioural timing might influence individual variation in fitness (Helm et al., 2017). Distinct 

chronotypes have been demonstrated in other animals (Bulla et al., 2017; Hau et al., 2017) 

while other studies have confirmed that there is individual variation in diurnal patterns of 

activity in free-living animals (Aschoff & Wever, 1966; Labyak, Lee, & Goel, 1997; Corinna 

Steinmeyer, Schielzeth, Mueller, & Kempenaers, 2010; Wicht et al., 2014). It is assumed that 

this variation provides differential fitness advantages by enabling organisms to optimise 

physiology and behaviour in anticipation of diel changes in the environment (Cuthill & 

Houston, 1997; Pittendrigh, 1993). For example in birds, Graham et al. (2017) reported a 

relationship between  early chronotype (departing the nest earlier in the morning) and timing 

of egg-laying. Earlier onset of a male’s morning singing activity, relative to dawn, was 

positively correlated with extra-pair mating success in blue tits, Cyanistes caeruleus 

(Kempenaers, Borgström, Loës, Schlicht, & Valcu, 2010; Poesel, Kunc, Foerster, Johnsen, & 

Kempenaers, 2006) and it has long been assumed that males are more active before dawn 

when their mates are fertile in order to protect paternity (Hinde, 1952; Ward, Alessi, Benson, 

& Chiavacci, 2014). Helm and Visser (2010) found that male great tits sired by an extra-pair 

male have a shorter circadian rhythm compared with their siblings sired by the social father. 

 Linking individual variation in biological rhythms or chronotype to reproductive 

success and fitness requires detailed behavioural data, and recent technological developments 

in bio-telemetry or wildlife tracking now allow researchers to monitor a large numbers of 

individual free-living animals 24/7 (Wilmers et al., 2015). Here, we used an automated radio 

telemetry system (Serota & Williams, 2019) to determine patterns of diurnal variation in 

activity and temporal phenotype of female European starlings (Sturnus vulgaris) from late 

incubation through the entire chick-rearing period. Parental care is thought to be the most 

“costly” part of reproduction with high rates of intense activity due to central-place foraging 

and provisioning of chicks (Clutton-Brock, 1991; Piersma & van Gils, 2011). We include data 
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from a handicapping experiment which manipulated costs of parental care (see Serota and 

Williams (2019) for details). Our specific objectives in this paper were: a)  to identify patterns 

of diurnal variation in  activity and to test if these varied in relation to the specific ‘demands’ 

of different breeding stages in successful birds; b) to characterise individual variation in, and 

repeatability of, ‘temporal phenotype’ using multiple metrics of daily activity (onset and 

cessation of daily activity, length of the active day), and c) to determine if individual variation 

in temporal phenotype is related to measures of both current breeding productivity (e.g., 

number and size of fledglings), future fecundity (e.g., initiating a second broods, cumulative 

2-year productivity), and survival (local return rate). We predicted that (a) if chronotype in 

free-living European starlings is consistent with the lark-owl concept then an ‘early’ 

individual should start and end it’s activity early, and a ‘late’ individual should start and end 

its activity late, (b) given that handicapped birds decreased overall activity (Serota & 

Williams, 2019) they would adjust onset and cessation of activity to compensate, and (c) 

“early" birds, or birds with a longer active day, would do better in terms of current 

productivity due to earlier onset of activity but that this might come at a cost in terms of 

future fecundity and survival.  

 

METHODS 

We collected breeding data on European starlings from March - June 2015 and 2016, from 

our long-term study population at Davistead Farm, Langley, British Columbia, Canada 

(49°10’N, 122°50’W). The field site contains about 150 nest boxes mounted on posts around 

pastures and on farm buildings. Each year, we followed the same basic field protocol: nest 

boxes were checked daily from late March to determine laying date, egg and clutch size. 

Nests were monitored until either failure or fledging to quantify productivity. Each nest was 

checked on day 17 (prior to fledging ~ day 21) to obtain brood size at fledging and chick 
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fledgling mass and tarsus length. Individual breeding females were captured during mid-

incubation, measured (mass, tarsus, wing chord), and fitted with color bands and individually 

numbered metal bands (Environment Canada permit # 10646). Similar breeding data were 

collected for individuals which double-brooded in the same year, as a measure of future 

fecundity. In the subsequent year we re-located all banded females to obtain data on return 

rate (local survival), and breeding productivity for first and second broods in the second year. 

Female provisioning rate was determined as number of nest visits per 30 min via observations 

conducted between 09.00-14.00 hours on days 6-8 post-hatching (day 0 was defined as the 

day the majority of chicks in the nest hatched; see Fowler & Williams (2015) for more 

details). 

 In this paper we analyse variation in diurnal activity and temporal phenotype measures 

for a sub-set of birds included in a previously-published handicapping study (Serota & 

Williams, 2019). Briefly, adult females were caught during mid-incubation, fitted with a 

radio-transmitter (see below) and alternately assigned to either a wing-clipping or no clipping 

treatment. Wing-clipped birds had every third primary feather (i.e. primaries 2, 5, and 8) from 

each wing removed near the base with scissors. Here we only use data from successful 

females rearing ≥ 1 chick from their 1st brood: n = 17 females with radio transmitters and no 

clipping, and n = 12 females with radios and wing-clipping. For the larger sample of birds, 

Serota and Williams (2019) reported that handicapping decreased current breeding success 

due to higher abandonment and nest failure, but among successful birds (fledging > 1 chick) 

there was no effect of handicapping on brood size at fledging for the current breeding attempt. 

Furthermore, comparing among birds with radios, handicapping had no effect on provisioning 

rate, probability of initiating a second brood, return rate, or cumulative 2-year breeding 

productivity (though overall, return rate and cumulative productivity were lower in all birds 

with radio-transmitters compared with non-manipulated controls; see Discussion). 
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Activity Data and Automated Radio Telemetry 

In 2015 and 2016 females were fitted with a digitally-coded Nanotag radio transmitter 

(NTQB-4-2, Lotek Wireless Inc., Newmarket, Ontario, Canada) by means of a leg loop 

harness (Rappole & Tipton, 1991). Total weight of transmitter and harness was ≤ 2.2g or 

2.4% of body mass for an 85g female European starling. For the duration of the breeding 

season, five (2015) or four (2016) Automated Receiving Units (ARUs; Lotek Wireless Inc.) 

with two to four 5- element Yagi antennae were positioned around the field site. Every 8 s, 

each antenna at each tower alternately scanned for deployed radio-transmitters (beep rate 2.5 

s), allowing continuous monitoring of all tagged females' activity. Preliminary validation 

confirmed that tags were detected up to distances of approximately 1 km. We calculated 

“activity” of females following methods described in Steiger et al. (2013), Ward et al. (2014), 

and Zúñiga et al. (2016) using data for a single ARU and the antenna closest to the focal nest 

box, i.e. with the strongest average signal for a given individual (preliminary analysis showed 

that using data from an adjacent antenna, or data from all antenna for the ARU nearest the 

nest box gave quantitatively similar results for activity estimates: r2 = 0.92, and 0.73 

respectively). Lotek receivers use Power as a received signal strength indicator (RSSI) where 

1 RSSI value, or Power, is approximately 2.2 dBm (Lotek Wireless Inc. pers. comm.). We 

applied a minimum  power threshold = 50 to control for background noise, which when 

converted to signal strength is consistent with previous studies that calculate activity (Steiger 

et al., 2013; Ward et al., 2014; Zúñiga et al., 2016). We used the change in power (∆) from 

one detection to the next to determine if a bird was active or inactive. We determined 

threshold values for ∆ power by observing the change in power of inactive birds during 

incubation, and a ∆ power value <10 indicates an inactive bird. This value is equal to the 

upper end of the 99% confidence interval of the mean for observed incubating birds. A ∆ 
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power threshold = 10 when converted to signal strength (4.5 dBm) is similar to values used in 

previous studies as thresholds for ‘activity’ (Adelman, Córdoba-Córdoba, Spoelstra, Wikelski, 

& Hau, 2010; Steiger et al., 2013; Ward et al., 2014). We restricted analysis of activity to the 

time between morning and evening civil twilight (CT; National Research Council Canada, 

http://www.nrc-cnrc.gc.ca/eng/services/sunrise/). To do this one of us (CM) wrote a script in 

R (version 3.4.1) which calculated the change in power (∆) between successive pairs of 

detections for each individual each day, then scanned these data to identify the first instance 

after morning CT where this difference was >10, i.e. the individual bird was “active”. 

Similarly, R identified the last “activity” (∆ power value >10) before evening CT. We 

analysed activity and temporal phenotype for four breeding stages: incubation (from 

transmitter deployment to hatch or day 0), brooding (from 1-5 days post-hatching), chick-

rearing (6-21 days post-hatching) and post-fledging (> 21 days). 

 

Statistical Analysis  

Statistical analyses were completed in R Studio (R Studio, Boston, MA, U.S.A.) or SAS v.9.4 

(SAS Institute, Cary, NC, U.S.A.). For analysis of diurnal variation in activity patterns we 

first calculated each individual’s overall mean activity as ((active detections where ∆ power 

>10/total detections-1)*100) for each breeding stage. We then calculated the same value for 

each hour of activity and then used the difference between hourly and overall mean % 

activity, i.e. residual or relative activity, to account for differences among individuals (and 

treatments). We then used linear mixed-effects models (proc MIXED) with residual hourly 

activity as the dependent variable, hour, breeding stage, and hour*stage as main effects, and 

individual (band number), year and treatment as a random factors. We restricted analysis of 

diurnal variation to 05.00-18.00 to exclude periods with less than 1 full hour between activity 

http://www.nrc-cnrc.gc.ca/eng/services/sunrise/
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and CT, and also excluded hours with < total 10 detections. We also tested models with 

treatment as a main effect (see Results). 

 As a measure of ‘chronotype’ we calculated onset of activity as time in minutes 

between the start of CT and the first activity in the morning for each day (see above: 

following Dominoni et al. (2013) and Graham et al. (2017)). Initially we also calculated the 

‘midpoint of activity’ as a measure of chronotype (following Daan and Aschoff (1975)) but 

this was highly correlated (r = 0.82) with our measure of timing of morning activity so we 

didn’t consider this further. In addition we calculated, b) cessation of activity as time in 

minutes between the last activity and evening CT for each day, and c) the length of each 

bird’s active day as the difference between time of onset and cessation of activity, as 

additional metrics of temporal phenotype. In terms of the ‘lark-owl’ concept, an ‘early’ 

chronotype individual would have a shorter interval between morning CT and first activity 

and a longer interval between last activity and evening CT. We analysed variation in these 

three measures of activity among breeding stages using mixed effects models (proc MIXED) 

with activity as the dependent variable, breeding stage as the main effect and individual (band 

number), year and experimental treatment as random effects. Europeans starlings are highly 

synchronous in terms of laying date (Williams et al., 2015): laying date varied by ± 2 days in 

2015 and ± 4 days in 2016; therefore we did not include date in our models. If we included 

treatment and the treatment*stage interaction as main effects these terms were not significant 

in any models (P > 0.16 in all cases), so we report results with treatment as a random factor. 

We estimated repeatability of timing of onset and cessation of activity within- and between 

breeding stages, for incubation and chick-rearing only, in R (package ICC) as the intra-class 

correlation coefficient using repeated measurements on different days). 

 For timing metrics and life-history traits, we calculated mean values for timing of 

onset of activity relative to CT (i.e. ‘chronotype’) and length of the active day (timing of 
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cessation of activity was less variable, and redundant given the other two measures), for each 

female and for incubation and chick-rearing separately. We then analysed variation in these 

metrics in relation to variation in: a) current reproduction: provisioning rate, controlling for 

brood size, brood size at fledging, and 17-day chick mass controlling for tarsus; b) two 

measures of future fecundity: probability of initiating a second brood, and cumulative number 

of chicks fledged over 2 years, and c) and survival (local return rate), using mixed effects 

models (proc MIXED). For categorical variables we used onset of activity or active day as the 

dependent variable, initiating 2nd brood (Y/N) or return rate (Y/N) as main effects along with 

treatment, and the interaction, and year as a random factor. For continuous variable, we used 

the trait (provisioning rate, chick mass, etc) as the dependent variable, onset of activity or 

active day, treatment and the interaction as main effects, relevant covariates (e.g. brood size, 

tarsus length), and year as a random factor. 

 

Ethical Note 

The Canadian Committee on Animal Care (CCAC) approved the research methods described 

in this paper under Simon Fraser University's Animal Care Committee permit number 1018 

B-96. The banding permit to capture and band birds was granted by Environment Canada 

under permit number 10646 (T.D.W., master permittee) and 10646 N (sub-permit to M.W.S.). 

To reduce the overall stress on the experimental birds, we attempted to reduce the handling 

time of both radioed and wing clipped birds. Average handling time for both treatment groups 

was 6.5 min, and there was no statistical difference in the handling time between treatment 

groups (P = 0.53). The weights of the transmitters were between 1.9 - 2.1 g or about 2.5% of 

mean body mass of females at incubation (82.9 g). This is well below the recommended 

weight of radio-transmitters considering the individual's mass (Barron, Brawn, & 

Weatherhead, 2010). Most recaptured females did not have their radio-transmitters from the 
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previous year confirming that transmitters fell off following the breeding period. A few 

females (n = 5) still had their radios from the previous year but these birds showed no sign of 

feather wear or skin damage and radios were removed at mid-incubation, so no birds retained 

a radio-transmitter through their second chick-rearing period. 

 

RESULTS 

Effect of Breeding Stage on Diurnal Variation in Activity  

The pattern of diurnal variation in activity varied among breeding stages (time*breeding stage 

interaction, F39,8053 = 5.04, P < 0.001; Fig. 1). Including treatment as a main effect did not 

change the model output (treatment, F1,8053 = 0.01, P > 0.90). There was significant variation 

in relative activity with time of day for each breeding stage analysed separately: incubation 

(F13,1332 = 14.7, P < 0.001), brooding (F13,1324 = 19.1, P < 0.001), chick-rearing (F13,4179 = 

30.4, P < 0.001) and post-fledging (F13,1138 = 2.10, P < 0.05). During incubation females were 

significantly more active later in the day, from 16:00-18:00 (P < 0.01 in all cases; Fig. 1a). In 

contrast, chick-rearing females were significantly more active during the morning from 07:00 

- 11:00 (P < 0.01 in all cases, Fig. 1c)). During brooding the pattern of diurnal activity was 

intermediate between that of incubating and chick-rearing birds, with relatively more activity 

between 09:00-10:00 and 15:00-18:00 (Fig. 1b). Finally, during the post-fledging period 

diurnal activity was generally less marked than during all other breeding stages (Fig. 1d). 

   

Individual Variation and Repeatability of Temporal Phenotype  

Mean onset of civil twilight (CT) in the morning varied from 04:39 ± 16 min (SD) during 

incubation to 03:52 ± 9 min during the post-fledging period. Mean end of CT in the evening 

varied from 19:44 ± 15 min during incubation to 20:25 ± 9 min during the post-fledging 
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period. The total duration of daylight, including CT, was therefore 15 hr 5 min during 

incubation and 15 hr 58 min during chick-rearing, an increase of 53 min. 

 There was no difference in timing of onset of activity (i.e. ‘chronotype’), timing of 

cessation of activity, or length of the active day, during chick-rearing comparing females with 

radios only and wing-clipped females (P > 0.35 in all cases; Table 1).  

 Time to onset of activity relative to morning CT varied among breeding stages (F3,724 

= 31.3, P < 0.001), being earliest during incubation and latest during the post-fledging period 

(Fig. 2a). Time to onset of activity was not different for incubating and brooding birds 

(Bonferroni corrected P = 0.60) but chick-rearing birds (P < 0.001) and post-fledging birds (P 

< 0.001) were both active later compared with incubating birds (Fig. 2a).  

 Within each breeding stage, time between morning CT and onset of activity was 

greater than time between cessation of activity and evening CT (paired t-test, P < 0.001 in all 

cases), i.e. females remained active for longer into the evening (Fig. 2a). Nevertheless, time 

between cessation of activity and evening CT also varied among breeding stages (F3,736 = 

16.4, P < 0.001). Time from cessation of activity was not different for incubating and 

brooding birds (Bonferroni corrected P = 1.00) but chick-rearing birds (P < 0.05) and post-

fledging birds (P < 0.001) ceased activity earlier compared with incubating birds (Fig. 2a). As 

a consequence, the length of the active day (from first to last activity) varied among breeding 

stages (F3,655 = 7.11, P < 0.001; Fig. 2b). However, the increase in the length of the active day 

between incubation and chick-rearing (19 ± 5 min; P < 0.01) represented only 36% of the 

increase in total available day length (53 min, see above): chick-rearing birds only increased 

the length of their active day by 2.3%. 

 Overall, chronotype measured as time to onset of activity was highly variable among 

individuals: females first became active between 7–122 min (incubation) and 7-127 min 

(chick-rearing) after morning CT. Time to onset of activity was repeatable within-breeding 
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stages both during incubation (ICC = 0.22, F = 2.21, df=24, P < 0.01; Fig. 3a) and chick-

rearing (ICC = 0.36, F = 8.11, df = 26, P < 0.001, Fig. 3b). Individual variation in the 

cessation of activity was less than in the onset: 1-62 min (incubation) and 4-71 min (chick-

rearing), and individual explained less of the total variation: cessation of activity was only 

repeatable during chick-rearing (ICC = 0.18, F = 3.72, df = 26, P < 0.001) and not during 

incubation (ICC = 0.11, F = 1.52, df = 24, P = 0.08). Repeatability of morning onset of 

activity was marginally significant between incubation and chick rearing (ICC = 0.30, F = 

1.83, df = 26, P = 0.065) and cessation of activity was repeatable between incubation and 

chick-rearing (ICC = 0.45, F = 2.60, df = 26, P < 0.01).  

 Among individual females, mean timing of onset and cessation of activity were 

positively correlated during both incubation (r28 = 0.64, P < 0.001; Fig. 4a) and chick-rearing 

(r29 = 0.57, P = 0.001; Fig. 4b), i.e. females that were active later in the morning ceased 

activity earlier in the evening, resulting in a shorter active day. 

 

Temporal Phenotype and Life-history Traits  

 Egg-laying date (1st egg) and clutch size were independent of any measure of female 

activity during incubation (P > 0.07 in all cases). Female provisioning rate (controlling for 

brood size; Fig. 5a), brood size at fledging, 17 day chick mass (controlling for tarsus length), 

and cumulative number of chicks fledged over 2 years (Fig. 5b) were all independent of 

timing of onset of morning activity relative to CT and to the length of the female’s active day 

(Table 2; treatment and the timing*treatment interaction was not significant in any models, P 

> 0.15 in all cases). Similarly, females that returned in year 2 had similar time of onset of 

activity (73.4 ± 16.0 min) compared with females that did not return (70.0 ± 15.2 min) and 

similar lengths of the active day (Y, 14.4 ± 0.21 hrs; N, 14.3 ± 0.17 hrs; Table 2). Females 

that initiated a 2nd brood in year 1 were active earlier in the morning (58.5 ± 14.1 min after 
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CT) during chick-rearing compared to females that did not initiate a 2nd brood (82.3 ± 14.1 

min), however, there was no difference in length of the active day (14.5 ± 0.17 hrs vs. 14.2 ± 

0.17 hrs, respectively; Table 2). 

 

DISCUSSION 

Diurnal variation in patterns of activity of female European starlings were not fixed during the 

breeding season but varied systematically with breeding stage: incubating females were more 

active late in the day, while chick-rearing females were more active early in the morning. In 

each breeding stage, there was marked individual variation in temporal phenotype, based on 

first and last activity relative to civil twilight (CT), with low to moderate repeatability within- 

and among-breeding stages. Some females were active within minutes of morning civil 

twilight whereas others were first active up to two hours after onset of CT. On average, 

females were active relatively later, and ceased being active earlier, during chick-rearing 

compared with incubation. Females that were active earlier in the morning were also active 

later in the evening (cf. the prediction based on the concept of lark-owl chronotype). 

However, we found relatively little evidence that variation in temporal phenotype was 

associated with a range of metrics of individual quality, breeding productivity and fitness. 

 In our analysis, we included data from handicapped (wing clipped) birds from a study 

reported by Serota and Williams (2019). Although Serota and Williams (2019) showed that 

wing-clipped females had 22% lower overall activity compared to females with radios only 

during chick-rearing we found no evidence that handicapping affected temporal phenotype. 

There was no difference in timing of onset of activity or cessation of activity, or length of the 

active day, during chick-rearing comparing females with radios only and wing-clipped 

females. Furthermore, ‘treatment’ was not significant in any models and including treatment 

as a random factor did not affect model output. This suggests that circadian patterns of 
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activity and chronotype are more robust to handicapping than overall level of activity and this 

is consistent with the moderate repeatability we report.  

 In female starlings, the pattern of diurnal variation in activity varied among breeding 

stages in a way that is consistent with specific demands of the different phases of parental 

care. Incubating females were more active later in the day suggesting that females benefit by 

self-feeding more, and being more active, just prior to fasting associated with night-time 

incubation which can involve increased energy demand (de Heij, van der Graaf, Hafner, & 

Tinbergen, 2007). An alternative explanation is that lower overall levels of early morning 

activity are associated with constraints of incubation with females delaying leaving the nest 

until ambient temperature has increased so that eggs cool less, decreasing subsequent 

rewarming effort (H. Gwinner, Capilla-Lasheras, Cooper, & Helm, 2018). However, this is 

not consistent with our finding that incubating females first left their nests earlier in the 

morning than chick-rearing females (see below). During chick-rearing the demand of rapidly-

growing chicks for food, especially after the female and chicks have fasted overnight, would 

explain why females are relatively more active earlier in the morning. The intermediate 

pattern of diurnal activity of females at the brooding stage reflects lower food requirements of 

younger chicks before 5-days of age, and the fact that females still need to brood chicks, 

especially in cold weather, prior to chicks becoming thermally independent around day 5-6. 

Finally, during the post fledging period, diurnal activity of female parents was generally less 

marked than during all other breeding stages. This is likely associated with the fact that a) 

chicks are close to somatic maturity at this stage (Cornell & Williams, 2017), b) chicks are 

mobile and can follow parents for feeding, reducing foraging distances and overall activity 

(Williams, 2018).  

 Although European starlings are highly synchronous in terms of seasonal timing of 

breeding and onset of egg-laying, with 80% of nests initiated in 4-5 days (see Methods and 
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Williams et al. (2015)), there was marked individual variation in timing of onset, and to a 

lesser extent cessation, of diurnal activity. In general, all females had relatively low activity 

very early in the morning for up to 1-3 hours after onset of morning CT (05:00-07:00). 

Numerous previous studies had reported earlier onset of morning activity in birds but for 

earlier breeding stages; associated with birds seeking extra-pair copulation with partners 

outside of the social pair bond (Hau et al., 2017). For females, extra-territorial forays are most 

frequent prior to or during egg-laying when females are fertile (Chiver, Stutchbury, & 

Morton, 2008; Double & Cockburn, 2000; Ward et al., 2014). During incubation and chick-

rearing female European starlings are not fertile so early morning activity associated with 

extra-pair copulations would not be expected. In fact, females became active later in the day 

as breeding progressed over the season. Although chick-rearing birds had a longer active day 

compared to incubating birds this only represented a 2.3% increase, and chick-rearing females 

only used 36% of the seasonal increase in available day light. Thus, chick-rearing females 

were effectively relatively less active or more ‘lazy. Dominoni et al. (2014) reported a similar 

seasonal pattern of activity in male European blackbirds (Turdus merula) with birds tending 

to be active earlier in the morning and later in the evening at the incubation stage compared 

with later breeding stages. This finding, and the only very short increase in the length of the 

active day, are counter-intuitive results given the widely-held assumption that parental care is 

the most demanding stage of an animal’s life cycle requiring high-intensity activity at a 

‘maximal sustained working level’ ((Drent & Daan, 1980; Piersma & van Gils, 2011; Riechert 

& Becker, 2017); but see Williams (2018)). However, our results would be consistent with the 

idea that parents might work more efficiently rather than simply working harder (Daunt, 

Afanasayev, Silk, & Wanless, 2006; Lescroel et al., 2010). For example, female European 

starlings (and many other species, Swanson (Swanson, 2010)) routinely lose mass between 

incubation and chick-rearing. While this might decrease costs of flight through decreased 



15 
 

wing-loading (Norberg, 1981) it could also allow for a reduction in overall demands for 

activity of the female parent. In all breeding stages, time to cessation of activity in the evening 

was much less than time to onset of activity in the morning. Helm et al. (2017) suggested this 

pattern would emerge if differences in inter-individual variation and in associated pay-offs 

meant that timing of the onset of an activity (e.g. wake-up time) were more relevant for 

fitness than the timing of its offset (e.g. return to roost). However, this argument has largely 

been based on costs and benefits of early season events before laying, e.g. extra-pair 

copulations (Hau et al., 2017) or male singing and display during the dawn chorus (Kacelnik 

& Krebs, 1982). This highlights the need to identify the benefits of a ‘slow start’ for chick-

rearing females. 

 The ‘lark-owl’ concept predicts that individuals with an ‘early’ chronotype should be 

active earlier in the morning but also that they should stop being activity earlier in the 

evening, with the reverse being true for late, ‘owl’ chronotype (e.g. see Fig. 3 in  Helm et al. 

(2017)). In free-living European starlings we found the opposite pattern, i.e. females that were 

active earlier in the morning remained active later the evening, Thus, our study suggests that 

rather than lark-owl chronotype we have ‘more-active’ and ‘less-active’ phenotypes. We 

found low to moderate repeatability of onset and cessation of activity within-breeding stages, 

with individual explaining 2-62% of total variation, but lower repeatability among breeding 

stages. Previous studies have reported similar, relatively low to moderate repeatability for 

various activity or sleep-wake metrics especially within breeding stages, but low to no 

repeatability among breeding stages (Graham et al., 2017; Schlicht, Valcu, Loës, Girg, & 

Kempenaers, 2014; Stuber, Dingemanse, Kempenaers, & Mueller, 2015). This suggests 

plasticity in activity traits in response to different selection pressures at different life-history 

stages (Rattenborg et al., 2004; Corinna Steinmeyer et al., 2010). 



16 
 

 Despite flexibility in diurnal patterns of activity, marked individual variation in 

activity, and some level of repeatability, we found little evidence that chick-rearing activity 

was associated with variation in measures of current reproduction (provisioning rate, number 

and quality of chicks), future fecundity (initiating 2nd brood, cumulative 2-year productivity) 

or survival (local return rate). Similarly, variation in activity during incubation was not related 

to variation in clutch size or laying date (cf. Graham et al. (2017)). Females that initiated a 

second brood were active sooner in the morning, by about 20 minutes, than females that did 

not initiate a second brood. However, in our study system double-brooding is not associated 

with clear costs: females that double brood have higher return rates. Furthermore, propensity 

to double brood is independent of other putative measures of individual quality (clutch size, 

egg mass, relative female age, and nestling provisioning rate; (Cornell & Williams, 2016)). 

It’s possible that less active female starlings are investing more in self-maintenance and less 

in reproduction, adopting a "slow" lifestyle, though it is hard to conceive of 20 minutes less 

activity per day being biologically significant. Most previous studies have focused on activity 

(or sleep-wake cycles) during the pre-breeding period or incubation, not chick-rearing, and 

provide little unequivocal evidence for a relationship between chronotype, fitness and 

individual quality (Steinmeyer et al. (2013); Graham et al. (2017); Hau et al. (2017)). Based 

on nest temperature data, Graham et al. (2017) found that during incubation female great tits 

and dark-eyed juncos who first departed from their nest earlier in the morning also initiated 

nests earlier in the year, but we did not confirm this result. In contrast, Steinmeyer et al. 

(2013) reported that lay date, clutch size and local survival were independent of any measure 

of sleep activity in female blue tits, although male blue tits with earlier sleep onset and longer 

sleep durations were more likely to gain extra-pair paternity of offspring.  

 Internally generated, free running, circadian period lengths (tau) are repeatable and 

have been demonstrated in a wide range of organisms. Furthermore, some studies have 
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demonstrated fitness consequences of behavioural outputs of circadian rhythms in free-living 

animals (e.g. Kempanears et al. (2010); Lesku et al. (2012); Graham et al. (2017)), but 

generally for earlier stages of reproduction. Although, we did find evidence for repeatability 

of measures of activity onset and cessation, activity appeared to be more related to demands 

of specific stages of parental care, though this was largely independent of a range of 

reproductive fitness measures. In particular, in our study the lark-owl concept of chronotype 

developed largely from human studies did not apply to free-living European starlings. Thus, 

our study confirms that reproductive behaviour is not constrained by ‘fixed’ internal 

timekeeping mechanisms (Helm et al., 2017) or abiotic cycles (day length, temperature). 

Rather activity is plastic and can be modulated by ‘biotic’ (e.g. prey availability) or ‘social’ 

time (demands of parental care itself; van der Veen (2017)) masking or modulating any true 

rhythm set by the internal clock. Bulla et al. (2017) found that free-living shorebirds show 

strong individual differences in tidal and circadian foraging rhythms over the 8–10 months 

spent as non-breeders in their tidal environments but rarely maintained such tidal or circadian 

rhythms during breeding (incubation). Finally, despite the expected increased demands of 

central-place foraging and chick provisioning females only increased their active day by 2.3% 

from incubation to chick-rearing, were active later in the morning, and ceased being active 

earlier in the evening. This challenges the conventional view of parents having to work as 

hard as they can to rear chicks during parental care. 
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Legends for Figure 

 

Figure 1: Diurnal variation in activity among successful female European starlings at each 

breeding stage: (a) incubation (b) brooding (c) chick-rearing and (d) post-fledging. 

Data are mean ± S.E. residual activity for each hour (P values above bars indicate 

relative activity significantly different from zero; * P < 0.05, ** P < 0.01). 

Figure 2: Variation in a) timing of onset of activity in the morning (closed circles, minutes 

after morning CT), and timing of cessation of activity in the evening (open triangles, 

minutes before evening CT), and b) length of the active day from onset to cessation of 

activity. Values are lsmeans ± S.E. 

Figure 3: Repeatability of individual variation in female chronotype (onset of activity relative 

to morning CT) for (a) incubation and (b) chick-rearing. Values for different days are 

plotted as black dots and open squares show mean values for each individual female. 

Females are ranked from earliest to latest based on mean values. 

Figure 4: Relationship between onset of morning activity and cessation of morning activity in 

individual females during a) incubation, and b) chick-rearing. 

Figure 5. Relationship between timing of onset of morning activity and a) female provisioning 

rate per chick per 30 min, and b) cumulative 2-year breeding productivity. 
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Table 1.  Timing of onset and cessation of activity (minutes relative to CT), and length of 

active day, for handicapped (wing clipped) females and radio-only females during chick 

rearing. Values are lsmeans ± SE, controlling for brood size. 

 

Activity measure Wing-clipped 
 (n = 12) 

Radio-only 
(n = 17) 

F df P 

Onset of activity (mins) 73.1 ± 8.7 
(14.6 - 123.4) 

72.9 ± 7.3 
(7.9 – 102.3) 

0.00 1,28 0.98 

Cessation of activity (mins) 27.3 ± 4.7                
(9.4 – 56.1) 

22.5 ± 4.0 
(3.5 – 66.3) 

0.60 1,28 0.44 

Length of active day (hrs) 14.3 ± 0.2       
(13.0 - 15.6) 

14.4 ± 0.2 
(13.6 – 15.6) 

0.20 1,28 0.66 
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Table 2. Model output for relationships between two measures of temporal phenotype (time of 

onset of activity and length of active day) during chick-rearing and various LH traits 1. 

 

LH trait Mean ± SD 
(range) 

Timing metric F df P 

Provisioning rate/chick 1.05 ± 0.63               
(0 – 2.4) 

Onset of activity 0.01 1,21 0.94 

  Active day 0.01 1,21 0.93 

1st brood size, fledging 3.7 ± 1.6               
(0 – 6) 

Onset of activity 0.43 5,16 0.82 

  Active day 1.92 5,16 0.15 

17d chick mass 2 74.3 ± 6.5      
(61.8 - 85.8) 

Onset of activity 1.70 1,22 0.21 

  Active day 3.00 1,22 0.10 

Initiating 2nd brood NA Onset of activity 6.63 1,24 0.017 

  Active day 1.66 1,24 0.21 

Cumulative 2 yr productivity 5.9 ± 2.9      
(2 – 14) 

Onset of activity 0.01 1,24 0.94 

  Active day 0.01 1,23 0.93 

Return rate NA Onset of activity 0.10 1,24 0.76 

  Active day 0.04 1,24 0.84 

 

1 F statistic, df and P values refer to main effect of timing metric; treatment and the 

treatment*timing interaction were not significant in any models (P > 0.15 in all cases) 

2 Controlling for chick tarsus length 
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