
An Adaptive Discretization Method for
the Shortest Path Problem with Time

Windows

by

Yu Tang

B.Sc., Simon Fraser University, 2017
B.Sc., Zhejiang University, 2017

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Yu Tang 2020
SIMON FRASER UNIVERSITY

Fall 2020

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Yu Tang

Degree: Master of Science

Thesis title: An Adaptive Discretization Method for the
Shortest Path Problem with Time Windows

Committee: Chair: Thomas Shermer
Professor, Computing Science

Binay Bhattacharya
Supervisor
Professor, Computing Science

Ramesh Krishnamurti
Committee Member
Professor Emeritus, Computing Science

Abraham Punnen
Examiner
Professor, Mathematics

ii

Abstract

The Shortest Path Problem with Time Windows (SPPTW) is an important generalization
of the classical shortest path problem. SPPTW has been extensively studied in practical
problems, such as transportation optimization, scheduling, and routing problems [31, 38, 47].
It also appears as a sub-problem in the column-generation process of the vehicle routing
problem with time windows [6, 11].

In SPPTW, we consider a time-constrained graph, where each node is assigned with a time
window, each edge is assigned with a cost and a travel time. The objective is to find the
shortest path from a source node to a destination node while respecting the time window
constraints. When the graph contains negative cycles, the problem becomes Elementary
Shortest Path Problem with Time Windows (ESPPTW).

In this thesis, we adopt the time-expanded network approach, extend it by incorporating the
adaptive expansion idea and propose a new approach: Adaptive TimeWindow Discretization
(ATWD) method. We demonstrate that the ATWD method can be easily combined with
label setting algorithms and label correcting algorithms for solving SPPTW. We further
extend the ATWD embedded label correcting algorithm by adding k-cycle elimination to
solve ESPPTW on graphs with negative cycles. We also propose an ATWD based integer
programming solution for solving ESPPTW. The objective of our study is to show that
optimal solutions in a time-constrained network can be found without first constructing the
entire time-expanded network.

Keywords: shortest path problem with time windows, time-expanded network, negative
cycles, elementary shortest path problem with time windows, adaptive time window dis-
cretization, label correcting method, integer programming

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Binay Bhattacharya,
who gave me the opportunity to study and do research in Simon Fraser University. He
provided me with guidance and assisted me a lot throughout this research. Also, I would
like to express my deep gratefulness to my parents, who supported my pursuit of graduate
studies. Finally, huge thank you to my wife for providing me with precious advises and
encouragements.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Shortest Path Problem with Time Windows 1
1.1 SPP . 1
1.2 SPPTW . 2

1.2.1 Problem Definition . 3
1.3 ESPPTW . 3

1.3.1 Adding the Elementary Constraint 3
1.3.2 ESPPRC . 4
1.3.3 ESPPTW IP Formulation . 5
1.3.4 Solving SPPTW/ESPPTW Efficiently 6

1.4 Thesis Outline . 6

2 Time-expanded Network 8
2.1 Definition of Time-expanded Network . 8
2.2 Reducing the Graph Complexity . 9
2.3 The Literature . 10
2.4 ATWD . 10

2.4.1 Full Discretization . 11
2.4.2 Adaptive Discretization . 11
2.4.3 ATWD: Algorithm Explanation . 13
2.4.4 Notion of Adaptive . 15
2.4.5 Properties of the Resulting Graph 16

v

3 ATWD on Label Setting Algorithm 20
3.1 Problem Definition . 20
3.2 Label Setting Algorithm with ATWD . 21

3.2.1 Algorithm Description . 22
3.2.2 Proof of Correctness . 23
3.2.3 Running Time Complexity . 23

3.3 An Illustrative Example . 24
3.4 Experiments . 26

3.4.1 Building the Experimental Graphs 26
3.4.2 ATWD-LSA with Different Thresholds 27
3.4.3 ATWD-LSA on Graphs with Different Sizes 28
3.4.4 ATWD-LSA on Graphs with Different Time Window Sizes 29

3.5 Conclusion . 30

4 ATWD on Label Correcting Algorithm 31
4.1 Label Correcting Algorithm with ATWD . 32

4.1.1 Algorithm Description . 32
4.1.2 Correctness Analysis . 33
4.1.3 Running time Complexity . 34

4.2 An Illustrative Example . 35
4.3 Experiments . 35

4.3.1 Building the Experimental Graphs 35
4.3.2 ATWD-LCA with Different Thresholds 38
4.3.3 ATWD-LCA with Bounded Maximum Path Length 38

4.4 Conclusion . 39

5 Label Correcting Algorithm with k-Cycle Elimination 40
5.1 Dominance and Label Pruning . 40

5.1.1 Labels . 40
5.1.2 Dominance Rules . 41
5.1.3 Label Pruning . 43

5.2 ATWD based Label Correcting Algorithm with k-Cycle Elimination 46
5.3 Experiments . 48

5.3.1 Building the Experimental Graphs 49
5.3.2 Tuning the Parameter k . 49

5.4 Conclusion . 50

6 ATWD with Integer Programming 52
6.1 Integer Programming Formulation . 52
6.2 ATWD based IP Approach . 53

vi

6.3 Experiments . 57
6.3.1 ATWD based IP Solution . 57

6.4 Conclusion . 59

7 Conclusions 60
7.1 Applying ATWD on Graphs with Real Times 60
7.2 SPPTW with Soft Time Windows . 61
7.3 Assigning Time Windows to Edges . 62
7.4 Future Work . 62

Bibliography 63

vii

List of Tables

Table 3.1 ATWD based Label Setting Algorithm under different thresholds, on
a graph generated from Solomon 0100_RC201, which has a fixed time
window size TW=120 for all nodes. 28

Table 3.2 ATWD based Label Setting Algorithm under different thresholds, on
graphs with different sizes, fixed time window sizes TW=120 for all
nodes. 29

Table 3.3 ATWD based Label Setting Algorithm under different thresholds, on
100 nodes graphs with variable time window sizes. 30

Table 4.1 ATWD Label Correcting Algorithm under different thresholds, on a
graph generated from Solomon 0100_RC201, which has a fixed time
window size TW=120 for all nodes. 38

Table 4.2 ATWD Label Correcting Algorithm under different lmax, with δ = 1,
on a graph generated from Solomon 0100_RC201, which has a fixed
time window size TW=120 for all nodes. 39

Table 5.1 ATWD Label Correcting Algorithm with k-Cycle Elimination under
different k, on different sized graphs with fixed time window sizes
TW=120 (RC201). 51

Table 6.1 Comparing ATWD based IP solution against solving discrete IP formu-
lation with pre-constructing time-expanded network using breadth-first
search, on graph generated from 0100_RC201, with different δ and dmax. 58

viii

List of Figures

Figure 2.1 Illustration of constructing a time-expanded network 9
Figure 2.2 An example graph, each node’s time window is shown in blue, each

edge is assigned with travel time t 16
Figure 2.3 ATWD algorithm illustration with δ = 2. Nodes in grey means their

neighbor nodes have been discretized. 17

Figure 3.1 An example graph, each node is assigned with a time window, each
edge is assigned with travel time t and cost c. 24

Figure 3.2 ATWD label setting algorithm illustration with δ = 2. 25

Figure 4.1 An example graph, each node is assigned with a time window, each
edge is assigned with travel time t and cost c. 35

Figure 4.2 ATWD based label correcting algorithm illustration with δ = 2, lmax =
5. Nodes in grey means their neighbor nodes have been discretized. 36

Figure 5.1 An example graph, each edge is assigned with cost, label vectors and
its total cost are shown next to the nodes. ATWD label correcting
algorithm will fail to find the elementary shortest path from s to d. 41

Figure 5.2 Edge relaxation steps using old dominance rules based on Figure 5.1.
The labels and their path costs are presented next to the nodes.
Solution path (s, d) is not optimal. 42

Figure 5.3 Edge relaxation steps using new dominance rules based on Figure 5.1.
Solution path (s, b, a, d) is optimal. 44

Figure 6.1 Flow Chart illustrating the ATWD based IP Approach 57

ix

Chapter 1

Shortest Path Problem with Time
Windows

In this chapter, we formally define the Shortest Path Problem with TimeWindows (SPPTW)
and briefly review the literature. This chapter is structured as follows: In Section 1.1, we dis-
cuss the classical Shortest Path Problem (SPP). SPPTW is described in Section 1.2, which
includes problem definition and the Integer Programming (IP) formulation of SPPTW.
In Section 1.3, we introduce the Elementary Shortest Path Problem with Time Windows
(ESPPTW) and discuss the techniques for tackling networks with negative cycles.

1.1 SPP

Given a connected graph G(V,E), where V represents the set of nodes and E represents the
set of edges, SPP aims to find the lowest cost path from a source node s to a destination
node d. SPP is a well-studied problem, and there exist exact solutions to SPP on different
types of graphs: directed or undirected, weighted or unweighted, etc.

For unweighted graphs, the SPP can be solved using Breadth-first Search, which has
an O(|V | + |E|) time complexity. For weighted graphs, Dijkstra [13] proposed a fast algo-
rithm for solving single source SPP in directed graphs with non-negative edge weights. The
algorithm can be implemented in O(|V |2) using arrays. Later, Fredman & Tarjan [26] imple-
mented Dijkstra’s algorithm in O(|E|+|V |log(|V |) time using a Fibonacci heap min-priority
queue. A* algorithm, proposed by Hart et al. [29] is an extension to Dijkstra’s algorithm,
which generally achieves better performance by using heuristics to guide the search. The
Bellman-Ford algorithm, which was first proposed by Shimbel in 1955 [43], but was named
after Bellman [3] and Ford [24], was developed to solve single source SPP on directed graphs

1

with negative edge weights. The graph is assumed to have no negative cycle, and the algo-
rithm will report any negative cycle once detected. The time complexity of Bellman-Ford
algorithm is O(|V ||E|).

The Floyd-Warshall algorithm solves all pairs SPP in weighted graphs. It was published
in its currently recognized form by Floyd in 1962 [23]. The complexity of the algorithm is
O(|V |3). Another famous solution for solving all pairs SPP is Johnson’s algorithm, published
by Johnson in 1977 [34]. The algorithm uses Bellman-Ford to re-weight all edges in the
original graph to make them all positive, then apply Dijkstra on the new graph. By using a
Fibonacci heap in the implementation of Dijkstra’s algorithm, Johnson’s algorithm achieves
O(|V |2log(|V |)+ |V ||E|) time complexity, which outperforms the Floyd-Warshall algorithm
when the graph is sparse.

1.2 SPPTW

The Shortest Path Problem with Time Windows (SPPTW) is a problem that is often solved
in scheduling problems [10, 49]. It is also solved as a sub-problem in the column generation
process when solving Vehicle Routing Problems with Time Windows (VRPTW) [11, 47].
Since graphs representing real-world transportation networks can be huge, it is crucial to
develop an efficient solution for these problems.

SPPTW was first introduced in Desrosiers, Soumis, and Desrochers [11] as a sub-
problem for the multiple traveling salesman problem with time windows. They also proved
that SPPTW is NP-Hard in the ordinary sense, and there exist pseudo-polynomial al-
gorithms for it. SPPTW aims to find the shortest path on a time-constrained network
while ensuring each node is visited during its time window. Existing solutions for solving
SPPTW involve the following strategies: building dynamic programming based labeling al-
gorithms [4, 19, 39, 41, 42], constructing time-expanded networks [21], or solving Integer
Programming (IP) formulations [14, 48]. Desrochers, Martin, and Soumis [9] proposed a
generalized permanent labeling algorithm for solving SPPTW in pseudo-polynomial time.
Desaulniers and Villeneuve [7] presented the IP formulation for SPPTW. Researchers fur-
ther extend SPPTW by adding the elementary constraint [41, 42]. Another line of research
focuses on solving a generalized version of SPPTW: Shortest Path Problems with Resource
Constraints [4, 37]. These problems are briefly introduced in Section 1.3.2.

2

1.2.1 Problem Definition

SPPTW is defined on a connected graph G(V,E) where V = {0, 1, 2...n} represents the set
of nodes and E represents the set of directed edges. Each node i is assigned with a time
window [ei, li], and each edge (i, j) is assigned with a cost cij and a travel time tij . Note
that SPPTW is only defined on graphs without negative cycle. For graphs with negative
cycles, the problem will become ESPPTW which will be discussed in the next section. The
objective of SPPTW is to find the shortest path from the source node s to the destination
node d, while ensuring each node is visited within its time window. Early arrivals are allowed
but need to wait until the time window opens, while late arrivals are prohibited.

We do not consider late arrivals in this thesis. However the proposed approaches can
be easily applied on graphs with late arrivals allowed. We briefly address this in Chapter 7.

1.3 ESPPTW

1.3.1 Adding the Elementary Constraint

When the graph contains negative cycles, a common restriction is added to SPPTW: each
node in the graph can only be visited at most once. This restriction prevents the algorithm
from looping over the negative cycles. As a result, it also adds complexity as SPPTW
is then extended to Elementary Shortest Path Problem with Time Windows (ESPPTW).
SPPTW is NP-Hard in the ordinary sense, ESPPTW is proved to be NP-Hard in the strong
sense and there is no pseudo-polynomial algorithm for it unless P=NP [39]. The elementary
constraint even turns SPP into NP-Hard, as was proved using a simple reduction from
the Hamiltonian path problem [48]. Solutions to elementary shortest path problem include
exact solutions [14] and heuristic-based approximated solutions [27, 48].

There are plenty of studies focusing on finding the exact solutions of ESPPTW with
the presence of negative cycles, and most of them aim to solve a generalized version of
ESPPTW, which is Elementary Shortest Path Problem with Resource Constraints (ESP-
PRC). ESPPTW is a special case of ESPPRC as the time window can be one of the resource
constraints. In the following paragraphs, we briefly introduce ESPPRC. We also review the
literature of ESPPRC as most of the related works are directly applicable to ESPPTW.

3

1.3.2 ESPPRC

The Shortest Path Problem with Resource Constraints (SPPRC) was first introduced by
Desrochers [12]. The objective of SPPRC is to find the shortest path from a source node
to a destination node while satisfying all resource constraints along the path. The resource
constraints are assigned to nodes as resource intervals [32], which bound the resource values
upon arrival at each node after consuming the resources. Time is often used as a resource in
SPPRC. SPPRC contributes to solving a wide variety of vehicle routing and crew scheduling
problems [6, 10], as the column generation approach of these problems formulates SPPRC
or one of its variants as sub-problems. Since SPPRC is proven to be NP-Hard by Handler
et al. [28], variants of SPPRC are all computationally hard to solve.

In most Vehicle Routing Problems (VRP) solved by column generation, the subprob-
lems often correspond to Elementary Shortest Path Problems with Resource Constraints
(ESPPRC). Desrochers et al. proposed a column generation approach for solving Vehicle
Routing Problem with Time Windows (VRPTW) [8], and the resulting subproblem is the
shortest path problem with time window and capacity constraints (ESPPTWCC). ESP-
PRC contributes to the column generation by its three major advantages [32]. Firstly, since
resource constraint defines a variety of rules, it is a flexible model for complex structures
of a route. Secondly, as discussed in Desrochers et al. [11], the column generation gives
tighter bounds than linear relaxation. Thirdly, there exist efficient algorithms for solving
some variants of the ESPPRC, especially for the ESPPTW variant. Hence, efficiently solv-
ing ESPPTW contributes to solving VRPTW, which reflects the importance of our work
since VRPTW is commonly solved in many practical problems.

Righini and Salani [42] presented and compared three different methods for solving
ESPPRC: dynamic programming with bi-directional search with resource-based bound-
ing [41], branch-and-bound where lower bounds are computed by dynamic programming
with state-space relaxation, and decremental state space relaxation. Drexl et al. [15] de-
scribed an exact and two heuristic labeling algorithms for solving the ESPPRC with the
consideration of EU drivers’ rules. Pugliese et al. [40] addressed solutions to elementary
shortest path problem with forbidden paths. Lozano et al. [37] proposed an exact solution
to ESPPRC based on implicit enumeration with a novel bounding scheme.

Finding the elementary solutions for SPPRC adds another level of complexity to the
problem. Numerous researches have been focusing on solving the non-elementary SPPRC,
and the result is still useful in practice (e.g., column generation). Some existing branch-
and-price solutions for VRP on cyclic graphs focused on solving non-elementary SPPRC
sub-problems [2, 16, 28]. Other researchers proposed different strategies to eliminate cycles
in the solution in order to improve the lower bound. For example, SPPRC with k-cycle

4

elimination (SPPRC-k-cycle) is to find SPPRC while ensuring no cycle exists with length
≤ k. Examples from Solomon’s benchmark dataset [45, 46] show that eliminating cycles for
a small value of k improves the master problem lower bounds [32]. The case k = 2 was first
analyzed by Houck et al. [17]. The idea was applied in Vehicle Routing Problem with Time
Windows (VRPTW) by Kolen et al. [36] and Desrochers et al. [8]. Irnich and Villeneuve [33]
also proposed an algorithm which applied a new definition of the dominance rule for the
general case of k ≥ 2.

1.3.3 ESPPTW IP Formulation

In this section we present the integer programming formulation of the ESPPTW. There
are two sets of decision vectors x and y in the model. Consider a time-constrained directed
weighted graph G(V,E), the decision vector x is defined for each edge (i, j) ∈ E:

xij =

1 if edge (i, j) is selected in the resulting path

0 otherwise

The decision vector y is defined for each node, which denotes the departure time. For a
node i with time window [li, ei], the decision variable yi can be defined as:

yi ∈ [li, ei]

The objective is to find a path from a source node s to a destination node d which
minimizes the total cost, while satisfying the following constraints:

• each node is visited exactly once.

• the time window constraints for all nodes along the resulting path are satisfied.

The IP formulation of ESPPTW is given as follows [11].

min
∑

(i,j)∈E

cijxij , s.t. (1.1)

∑
(s,j)∈E

xsj = 1 (1.2)

∑
(i,h)∈E

xih =
∑

(h,j)∈E

xhj ≤ 1 ∀h ∈ V (1.3)

5

∑
(i,d)∈E

xid = 1 (1.4)

xij (yi + tij − yj) ≤ 0 ∀(i, j) ∈ E (1.5)

li ≤ yi ≤ ei ∀i ∈ V (1.6)

xij ∈ {0, 1} ∀(i, j) ∈ E (1.7)

The objective function is defined in equation 1.1. Equation 1.2 ensures that exactly
one edge originated from the source node s is selected. Equation 1.3 represents the edge
connectivity constraint (i.e., the number of in-edge should equal the number of out-edge on
each node). It also restricts that each node can be visited at most once by bounding the
number of incoming edges and outgoing edges to be less than or equal to one. Equation
1.4 ensures exactly one edge connected to the destination node d is selected. Equation 1.5
states that if a particular edge (i, j), is chosen, the departure time at j cannot be earlier
than the arrival time at j. Equation 1.6 restricts that each node’s departure time must be
within its time window. Equation 1.7 is the integrality constraint.

1.3.4 Solving SPPTW/ESPPTW Efficiently

In the column generation approach for VRPTW, the sub-problems aim to find feasible
routes in a graph with reduced costs. This problem can be defined as SPPTW. Hence,
SPPTW is solved repeatedly, and it is crucial to develop an efficient algorithm for it.

The graph with reduced cost may contain negative cycles which makes ESPPTW prob-
lem strongly NP-Hard. In order to solve ESPPTW, besides exact solutions (e.g. integer
programming), a wide variety of approximation algorithms have been proposed for solv-
ing ESPPTW. A well-known approximation strategy is to perform k-cycle elimination [33],
which will remove cycles up to length k. In this thesis, we discuss both k-cycle elimination
and IP based solutions for solving ESPPTW.

1.4 Thesis Outline

The structure of the thesis is as follows.

Chapter 2 introduces the time-expanded network strategy. We briefly review some
related works, and we also introduce the general idea of the Adaptive Time Window Dis-
cretization (ATWD) approach.

6

Chapter 3 illustrates how the ATWD approach can be combined with label setting
algorithms to solve SPPTW on graphs with positive edge weights. We use Dijkstra’s algo-
rithm and extend the algorithm to search a dynamically generated time-expanded network.
We demonstrate that the shortest path can be found without constucting the entire time-
expanded graph. We experimentally evaluate the algorithm performance.

Chapter 4 introduces how the ATWD approach can be combined with label correcting
algorithms. As different from the label setting algorithm, the label correcting algorithm
handles graphs with negative edge weights (but no negative cycles). We describe the ATWD
based label correcting algorithm in detail. The proposed algorithm allows the user to specify
the maximum length of the path that the user is interested in. We show that with a specified
maximum length lmax, the algorithm is able to solve the problem by partially discretizing
the graph.

In Chapter 5, we focus on solving ESPPTW on graphs with negative cycles. We extend
the algorithm proposed in Chapter 4 by adding the k-cycle elimination step. We bound the
number of labels per node by introducing a threshold parameter τ . We demonstrate the
effectiveness of the algorithm by showing experiments on graphs with negative cycles.

Chapter 6 presents an Integer Programming based approach for solving ESPPTW. We
show that IP formulations of ESPPTW can be efficiently solved on partial time-expanded
graphs constructed by the ATWD method. We demonstrate that the designed algorithm is
able to build the time-expanded network on-the-fly while iteratively solving the IP formu-
lations.

In Section 7, we review our work and describe further research directions.

7

Chapter 2

Time-expanded Network

A time-expanded network is a well-known strategy to solve time-constrained problems, and
it has been introduced in many research problems [5, 18, 21, 35, 44]. The idea is to duplicate
the nodes and edges in the graph by adding timed node copies. Since the naive construction
of a time-expanded graph may result in a huge graph, researchers have been focusing on
optimizing the graph by constructing partial time-expanded graphs [5, 21]. In this chapter,
we define the time-expanded network strategy, review the related works, and present a brief
introduction to the Adaptive Time Window Discretization (ATWD) approach for building
a partially time-expanded graph. We explain in Chapters 3-6 on how does the ATWD
method work with various algorithms, and we also demonstrate that SPPTW/ESPPTW
can be efficiently solved using these algorithms under different scenarios.

2.1 Definition of Time-expanded Network

The time-expanded network in the context of routing problems is defined as follows. Con-
sider a time-constrained network G(V,E) where each node i has a time window [ei, li],
each edge (i, j) is assigned with a travel time tij . A time-expanded network GT (VT , ET) is
constructed as follows:

• Replacing each node v in G with a set of node copies v0, v1... by discretizing the
time window [ev, lv] into a list of timestamps t0, t1... and create a node copy for each
timestamp.

• Connecting all pairs of node copies (vi, wj) such that (v, w) ∈ E and tv + tvw ≤ tw.

Figure 2.1 shows an example of constructing time-expanded network with respect to
replicating a single edge (v, w). The time window of node v is discretized into timestamps

8

v

[ev, lv]
w

[ew, lw]

(a) Edge (v, w) in original net-
work G

vm

v2

v1

wn

w4

w3

w2

w1

..
.

..
.

tv1

tv2

tw1

tw2
tvm

tw3

tw4

twn

(b) Replication of edge (v, w) in time-expanded network GT , assuming
tvw is very small

Figure 2.1: Illustration of constructing a time-expanded network

tv1...tvm and are assigned to m node copies v1...vm. Similarly, node w is replicated into
w1...wn where the time window of w is discretized into timestamps tw1...twn. All feasible
edges between copies are connected.

The time-expanded network can be used for solving SPPTW/ESPPTW using algo-
rithms for the static version of the same problem since the time dependency is embedded
in the time-expanded network itself. However, the time dependency may not be captured
in a lossless way unless the discretization is highly refined.

2.2 Reducing the Graph Complexity

As shown in Figure 2.1b, a large number of nodes and edges can be added when building a
time-expanded network. Thus, the price one has to pay for simplifying the problem complex-
ity is the dramatic increase in the graph size. The strategy of setting discrete timestamps
can be optimized to reduce the size of the time-expanded graph. For example, we can set
a larger discrete interval so that fewer node copies will be added. But this will also reduce
the quality of the solution. The trade-off between the roughness of the discretization and
the quality of the achievable solutions was evaluated by Fleischer et al. [22].

9

Another strategy to reduce the size of a time-expanded network is to use partial dis-
cretization. Considered with full discretization whereby setting a fixed discrete time step
interval, a partial discretization can sometimes reduce the number of node copies. For ex-
ample, some nodes in the graph may always be visited at around the same time, hence only
one node copy will be sufficient for representing all these visits. Partial discretization allows
one to add node copies whenever it is necessary. In this thesis, the proposed algorithm for
constructing the time-expanded network exploits this idea. The algorithm adaptively dis-
cretize the nodes on-demand, resulting in a light growth network while still guaranteeing a
high precision of the solution.

2.3 The Literature

The concept of the time-expanded network was first introduced by Ford and Fulkerson in
1962 [25]. They transformed the maximum dynamic network flow problem into a maxi-
mum static network flow problem by building the time-expanded network. Fleischer and
Skutella [22] built a condensed time-expanded network by setting a rougher discretization
of time. Kohler et al. [35] developed a time-expanded network with flow-dependent tran-
sit times such that the algorithms for solving static flows can be directly applied. Several
researchers combined the time-expanded network idea with other modeling: Ferrati and
Pallottino [20] proposed a time-expanded network based algorithm that can be applied on
robotic vehicles for solving collision and energy consumption problems; Ho et al. [30] used
time-expanded network to eliminate the computational load in dynamic space logistics
network optimization for solving a human Mars exploration architecture design problem.
Related works focused on building a partially time-expanded network for reducing the graph
size includes: Boland et al. [5] proposed an approach for building partially time-expanded
networks that can be used to provide upper bound and lower bound of the traveling salesman
problem with time windows; Later Vu et al. [50] further extended this work to accommodate
time-dependent travel times.

2.4 ATWD

In this thesis, we propose time-expanded network-based approaches for efficiently solv-
ing SPPTW/ESPPTW. The approach is named as Adaptive Time Window Discretization
(ATWD). In general, the ATWD approach allows one to generate a partially time-expanded
network, with a partial discretization of time. We also combine the ATWD with various
algorithms to enable discretization on-the-fly. In this section, we introduce the general idea
of adaptive discretization. We present the ATWD approach and illustrate how it is able

10

to reduce the complexity of time-expanded networks using an example. We also define the
property and the optimality of the partially time-expanded graph constructed by the ATWD
method.

2.4.1 Full Discretization

The full discretization algorithm for constructing a time-expanded graph works as follows.
For every node v, a set of copies is created, and each copy represents a timed node:(v, ti). The
first attribute represents the node index, and the second attribute represents the discrete
timestamp assigned to each node copy. For example, if we define the time step parameter
(i.e. threshold parameter δ) to be 1, then a node v with time window [ev, lv] will be replicated
as (v, ev), (v, ev + 1)...(v, lv), assuming ev, lv are integral. After all node copies are created,
arcs are introduced to the time-expanded graph by connecting all reachable node pairs. An
arc ((v, tv), (w, tw)) will be created if tv + tvw ≤ tw, where (v, w) is an edge in the original
graph and tvw represents the travel time on the edge.

The resulting time-expanded graph GT (VT , ET) is constructed from the original graph
G(V,E) by adding the following properties: each node v can only be visited at a set of dis-
crete times ev, (ev + 1), ...lv. This procedure is also called time window discretization. If we
restrict SPPTW with integral values of time (i.e., when the travel times are integral), then
this time-expanded network can be used to find the optimal solution of SPPTW by directly
applying existing algorithms such as Dijkstra’s algorithm or Bellman-Ford algorithm. How-
ever, a major drawback of this approach is that the expanded graph has VT ∈ O(tmax|V |)
nodes, where tmax represents the maximum time window size of all nodes. Even if we run
the most efficient shortest path algorithms, the running time is still going to be huge.

2.4.2 Adaptive Discretization

The full discretization method described above generates lots of redundant nodes and edges
in practice. In many cases, only a subset of nodes and edges in a time-expanded network will
be useful for finding the optimal solution. Thus, in order to generate an effective partially
time-expanded graph, we present the ATWD approach in the following paragraphs.

Definitions

In the ATWD algorithm, we construct a partially time-expanded graph GP (VP , EP) such
that VP ⊆ VT , EP ⊆ ET . The input consists of the original graph G(V,E), the source node

11

s, the destination node d, and the threshold parameter δ. We define each node v in the
partially time-expanded network GP (VP , EP) as having three attributes:

1. node index v.i, which represents the node index in the original graph.

2. copy index v.c, which is used to distinguish between node copies with the same index.

3. departure time v.t, which is the time assigned to the copy

Scope of Our Solution

In this thesis, we focus on solving SPPTW/ESPPTW on graphs with integral time values.
Note that the proposed algorithms still work for graphs with real times, but the solutions
are only guaranteed to be upper bounds to optimal solutions. We introduce a discretization
threshold parameter δ, which is applied to all of the ATWD based algorithms, to control
the discretization granularity. δ specifies the maximum discrete time step between timed
node copies. The experimental results in this thesis show that the value of δ controls both
the quality of the result and the size of the time-expanded graph. More detailed usage of δ
is explained in the next paragraph.

Graph Construction Process

The graph construction always happens simultaneously with edge relaxation. Edge relax-
ation is a repeated step in dynamic programming algorithms for solving shortest path
problems. When edge relaxation happens on edge (v, w), the algorithm will check if labels
on w are needed to be updated by examining the cost of labels on v plus the cost of edge
(v, w). In a time-constrained graph, when relaxing an edge, we will also have the departure
time on node v and the travel time on edge (v, w), which can be used to calculate the arrival
time on node w.

We use threshold parameter δ to determine whether a new timed node copy should be
created when relaxing an edge. Suppose the arrival time on node w is tarrival, then a new
node copy of w will be created if there is no timed copy wa such that wa.t− tarrival < δ. If
node new copies of w is created after the edge relaxation, which means wa exists, then an
extra waiting time of wa.t− tarrival will be added before the next departure from wa.

Suppose the original time-constrained graph is G(V,E), and we want to construct a
partially time-expanded graph GP (VP , EP). When the ATWD process starts, we create
an initial node copy of the starting node, which is often the source node, and assign the
beginning time of its time window to it. We then add the node copy to VP and start

12

constructing the time-expanded graph by relaxing the outgoing edges of the starting node
in E, and new node copies are added to VP whenever needed. The edge relaxation order may
vary in different algorithms. For example, when combining with label setting algorithms,
a Dijkstra-like order can be used, which always relaxes the outgoing edges from the node
with minimum label cost. When combining with label correcting algorithms, a breadth-first-
search order from the source node can be used. Note that the graph construction process
only needs to happen once per node copy: whenever the neighbors of a node copy are checked
and discretized, there is no need to revisit the node copy again. In label setting algorithms,
we examine each node at most once, so we can tightly combine the graph construction
with the edge relaxation. However, in label correcting algorithms, each node is examined
multiple times. Thus, we add another step of checking whether a node copy has already
been examined in order to avoid any repeated checks (Algorithm 1, line 6).

2.4.3 ATWD: Algorithm Explanation

In this section, we present and explain the ATWD algorithm. Note that the algorithm will
always be slightly modified in order to be combined with various algorithms: label setting
algorithms, label correcting algorithms, or integer programming based algorithms. Here we
present a breadth-first-search version of the algorithm, which is suitable for label correcting
algorithms.

At the beginning of the algorithm, we define several variables that are used in the
algorithm: Set NR is for saving remaining nodes to be examined, node copy set C(v) is for
saving node copies of each node index v. Initially, we create a copy for the source node
s : (s, 0, es) and add it to the set VP . We mark its copy index as 0, set its time as the
beginning time of its time window, and add it to NR. Then we repeatedly select nodes
from NR and check if any of its unvisited neighbors can be further discretized. We define
unvisited neighbors as the neighbors in G that is not yet reachable in GP , and line 6 iterates
through all unvisited neighbor indexes. Line 7 calculates the arrival time t′ at the neighbor
index w. Line 8 uses a function GetCopyIndex to determine the index of the new node copy,
which is further explained in Algorithm 2. If the function returns that the neighbor is not
reachable, then we continue to the next node in the set NR, otherwise, we create a node
copy wb in line 10 using the arrival time t′, and assign a copy index. If wb does not exist
in saved node copies of index w (line 11), then we add the newly created copy wb to graph
GP (line 12). We connect it with the current node va (line 14). The algorithm terminates
either when a stopping criterion has been met (line 15), or when the remaining node-set NR
is empty. If NR is empty, then the discretization process terminates. The stopping criteria
is for terminating the algorithm earlier, which may vary for different algorithms. We will
further explain this in later chapters.

13

Algorithm 1: ATWD
Input: Graph G(V,E), source node s, destination node d, threshold δ
Output: Partially time-expended graph GP (VP , EP)

1 initialize update := False, VP := ∅,NR := ∅, ∀v ∈ V : C(v) := ∅
2 s0 = (s, 0, es);
3 VP := VP ∪ {s0}, NR := NR ∪ {s0};
4 foreach va ∈ NR do
5 NR = NR \ va;
6 foreach neighbor index w in G that is not yet connected with va in GP do
7 t′ = va.t+ tvw;
8 b = GetCopyIndex(w, t′, C(w), δ);
9 if b < 0 then continue;

10 wb := (w, b, t′);
11 if wb 6∈ C(w) then
12 VP := VP ∪ {wb},NR := NR ∪ {wb};
13 C(w) := C(w) ∪ {wb};
14 EP := EP ∪ (va, wb);
15 if stopping criteria has been met then break;
16 return GP (VP , EP);

The function GetCopyIndex is presented in Algorithm 2. It first checks if the arrival is
later than the neighbor’s due time. If yes, then it returns a negative integer −1 to indicate
the neighbor is unreachable. If not, we first adjust the arrival time to force all early arrivals
to wait until the node becomes ready (in line 3). We then check which “slot” does t fit in.
The slot is pre-allocated according to threshold parameter δ. For example, consider a node
in G with time window [0, 10], the discrete times allocated under δ = 2 will be 0, 2, 4, 6, 8, 10.
We fit the time t into these discrete timestamps by rounding it up to the closest value (e.g.,
t = 1 will be matched to slot with time=2). Note that we only do round up because we
can adjust an arrival to a later time by forcing it to wait, but it is impossible to adjust it
to an earlier time. If the slot is already occupied, which means there exists another node
copy j with the time of the slot, we return that node copy’s index number and time (line
6), meaning that there is no need to create a new node. Otherwise, we create a new index
number which increments one on top of the current maximum index number (line 7), and
return it together with the time of the slot t′ (line 8).

An Illustrative Example

We now use an example to explain how the ATWD algorithm works. Given the time-
constrained network shown in Figure 2.2, the algorithm proceeds as follows. Initially, a
copy of s, s0 is created and added to NR. Then we pop the node copy s0 and loop over
all its neighbors, which are nodes with index a, b, c. Note that up to this point, no copy

14

Algorithm 2: GetCopyIndex
Input: Node index v, arrival time t, copies set C, threshold δ.
Output: Copy index a of the node copy, assigned time t′

1 if t > lv then a := −1;
2 else
3 if t ≤ ev then t := ev;
4 determine the slot where t fits in;
5 if find a node copy va ∈ C already in the slot then
6 return va.c, va.t
7 a := len(C);
8 t′ := time of the slot;
9 return a, t′;

is saved in the copy dictionary, meaning that C(a) = C(b) = C(c) = ∅, so we will create
a new node copy with index number 0 for each of these indexes. For index a, we create a
new copy a0 with time 10; For index b, we create a new copy b0 with time 8; For index
c, we create a new copy c0 with time 5. We connect between s0 and these copies, which
form Figure 2.3a. Then all newly created nodes a0, b0, c0 are added to the set NR. In the
following iterations, we pop and loop over the neighbors of a0, b0, c0, and create new node
copies a1, d0, d1, d2 accordingly (Figure 2.3b - 2.3d. When we probe the neighbors of node
a0, we create a new copy d0 with time 18, and we connect (a0, d0). When probing neighbors
of b0 we create a new copy a1 because the arrival time is 14, and the slot with time 14 is
not occupied yet. Then we connect (b0, a1). Similarly, we create a new copy d1 and assign
its time as 14, then we connect (b0, d1). When probing the neighbors of node c0, we create a
new copy d2 with time 16, and we connect (c0, d2). Note that we do not create a new copy
under index b since the arrival time t′ is c0.t+ tcb = 7, and b0.t− t′ = 1 < δ, so the out-edge
from c0 points to copy b0, meaning that we are forcing an extra waiting time of 1 for all
traffic from c0 coming into b0. Then all newly created nodes a1, d0, d1, d2 are added to the
set NR. In the following iterations, we check the neighbors of each node a1, d0, d1, d2, and
the graph remains unchanged (Figure 2.3e), then the algorithm terminates as the remaining
node set NR becomes empty. In the algorithm, whenever we create a new copy or connect
two copies, we add a new node or a new edge to graph GP , respectively. Hence, when the
ATWD algorithm terminates, we will have the partially time-expended network GP (VP , EP)
constructed.

2.4.4 Notion of Adaptive

As illustrated by the ATWD algorithm, the term “Adaptive” is two-fold: 1. the node copies
are generated in a partial discretization of time; 2. the node copies and arcs are generated
on demand.

15

s

[0:10]

a

[5:15]

b

[4:10]

c

[5:15]

d

[10:20]
tsa

= 10

tsb = 8

tsc = 5

tba = 6

tcb = 2

tad = 8

tbd = 6

tcd
= 10

Figure 2.2: An example graph, each node’s time window is shown in blue, each edge is
assigned with travel time t

For type 1, the intuition is that we find it is common to have some time-isolated nodes
that can only be reached during a small time period. For example, consider the graph in
Figure 2.2, a will only be reachable from s after time t = 10, b will only be reachable
from s after t = 8, d will only be reachable from s after t = 14. Hence, it is unnecessary
to create copies before the earliest reachable time. With full discretization with δ = 2,
we will be creating six copies for each of nodes s, a, c, d, and four copies for node b, and
we need to connect any pair of copies that are reachable, which will definitely result in a
huge time-expanded graph. But with the adaptive discretization, we will create a partially
time-expanded graph, which is sufficient to find the solution of SPPTW with the same
quality.

For type 2, as we embed the time-expanded network generation into the edge relaxation
process, the algorithm only discretizes a node whenever visiting a new neighbor. Hence, the
time-expanded network will only be constructed on-demand: only a small graph will be
discretized in order to find the shortest path from the source node to the destination node.

2.4.5 Properties of the Resulting Graph

The partially time-expanded network GP (VP , EP) constructed from time-constrained net-
work G(V,E) using Algorithm 1 has the following properties.

Property 1. For any edge (vi, wj) ∈ EP , vi.t+ tvw ≤ wj .t.

16

s0

0

a0

10

b0

8

c0

5

(a) After probing s0’s neigh-
bors. a0, b0, c0 are added.

s0

0

a0

10

b0

8

c0

5

d0

18

(b) After probing a0’s neigh-
bors. d0 is added.

s0

0

a0

10
a1

14

b0

8

c0

5

d0 18

d1 14

(c) After probing b0’s neighbors. a1,d1
are added.

s0

0

a0

10
a1

14

b0

8

c0

5

d0 18

d1 14

d2 16

(d) After probing c0’s neighbors. d2 is added.

s0

0

a0

10
a1

14

b0

8

c0

5

d0 18

d1 14

d2 16

(e) After probing a1,d0,d1,d2’s neighbors. Graph
is unchanged.

Figure 2.3: ATWD algorithm illustration with δ = 2. Nodes in grey means their neighbor
nodes have been discretized.

17

Property 2. Given a node copy vi ∈ VP , for each of its neighbor index w in G, vi is
connected with at most one node copy of w in GP .

Property 3. A node copy vi will only be created if there does not exist any node copy
vj in GP such that vi.i = vj .i and vj .t− vi.t ∈ [0, δ)

We give a brief proof of the above properties. Property 1 is obviously correct according
to Algorithm 2, line 3. For property 2, note that we only build out-edges of a node copy when
it is popped from set NR, and we only add each node copy to NR once. Since in Algorithm 2,
we build at most one edge between vi and any neighbor indexes of v, at most one copy of
any neighbor index of v will be connected. Property 3 can be easily proved according to
Algorithm 2, line 5. Note that this property also implies that any edge (vi, wj) ∈ EP is
causing an extra wait time ∆t such that ∆t ∈ [0, δ).

Corollary 1. If node copy vi is added to the graph GP , then node vi is reachable from
the earliest node copy of the source node s0 in GP , node v is reachable from the source
node s in G.

Suppose node copy wj ∈ VP , then according to Algorithm 1, line 14, there exists another
node copy vi such that (vi, wj) ∈ EP . According to property 1, wj is reachable from vi since
vi.t + tvw ≤ wj .t. By induction, wj is reachable from s0 in GP , and w is reachable from s

in G. Hence, the above corollary is correct.

Corollary 2. When δ = 1, and all times in G are integral, the shortest path in GP is
identical to the shortest path in G.

According to property 3, an extra waiting time of [0, δ) will be added when visiting any
edge in EP . If all times are integral, the waiting time must also be an integer. Since δ = 1,
the extra waiting time can only be 0. Thus, whenever we create a node copy vi, the time
assigned to the copy represents the exact arrival time from the previous node. According to
corollary 1, vi must be reachable from s0. By induction, it is not difficult to prove that any
path from s0 to vi has no accumulated waiting time. Now we prove that the shortest path in
GP is identical to the shortest path in G. Suppose the shortest path in G can be represented
as the following route: s, v1, v2...d. Since v1 is reachable from s, if we leave s at its start time
es, the arrival time at node v1 cannot be greater than the due time lv. Thus, in the first
iteration of the algorithm, a node copy v1i will either be created or found to already exist
for representing this arrival. Since no accumulated waiting time exists in any of the paths
in GP , v1i.t, therefore, represents the exact arrival time, which is also the earliest possible
arrival time at v1 while visiting the sequence of nodes: s, v1. Thus, v1 is reachable from s0 in
GP . By induction, we can prove that all internal node indices in the optimal route v1, v2...

are reachable from s0 in GP since there exist node copies for each index: v1i, v2j ... that are

18

all reachable from s0. Thus, there exists a path in GP , which represents the shortest path
in G. This implies that the shortest path in GP and the shortest path in G are identical.

19

Chapter 3

ATWD on Label Setting Algorithm

In this chapter, we present how to embed the Adaptive Time Window Discretization
(ATWD) in label setting algorithms for solving the Shortest Path Problem with Time
Windows (SPPTW). Due to the limitation of label setting algorithms, we only focus on
solving SPPTW on graphs with positive edge weights in this chapter. We extend Dijkstra’s
algorithm by adding the ATWD process, and we show that the SPPTW can be solved
without discretizing the whole graph. This chapter is organized as follows. In Section 3.1,
we define the SPPTW problem. In Section 3.2, we describe the ATWD based label setting
algorithm using an example. In Section 3.3, we present the complete algorithm, the analysis
of correctness, and time complexity. In Section 3.4, we present our experimental results,
and we briefly conclude this chapter in Section 3.5

3.1 Problem Definition

The SPPTW problem is defined as follows. Given a connected graph G(V,E), where V
represents the set of nodes and E represents the set of arcs. Each node v is assigned with a
time window [ev, lv]. Each arc (v, w) is assigned with a non-negative cost cvw and a travel
time tvw. The objective is to find a minimum cost path that departs from the source node
s, visiting a (possibly) set of internal nodes, and arrives at the destination node d. Each
node on the path (including source and destination nodes) can be visited at must once and
must be visited during its time window.

As already explained in Chapter 2, Section 2.4.2, we focus on solving SPPTW using pos-
itive threshold parameter δ to control the discretization granularity. If the time constrained
graph G contains real times, then the proposed algorithm provides an upper bound of the

20

optimal solution, the bound becomes tighter with a smaller δ. However, if G only contains
integral times, the algorithm is guaranteed to find the optimal solution with δ = 1.

In this thesis, we test the proposed algorithms only on graphs with integral times.
We apply the algorithms on graphs generated from Solomon’s benchmarking data set [45],
which only contains integer times.

3.2 Label Setting Algorithm with ATWD

In this section, we show how the ATWD method can be applied on a label setting algorithm
to solve the SPPTW on graphs with positive edge weights.

Algorithm 3: ATWD based Label Setting Algorithm
Input: Graph G(V,E), source node s, destination node d
Output: Partially time-expended graph GP (VP , EP), result path P

1 initialize Q := ∅, ∀v ∈ V : C(v) := ∅, ∀v ∈ VP : L(v) := ∅.
2 s0 = (s, 0, es);
3 add s0 to Q;
4 cost(s0) := 0, L(s0) :=NULL;
5 while Q is not empty do
6 va := minimum cost node in Q;
7 remove va from Q;
8 if v = d then break;
9 foreach neighbor w of v in G do

10 t′ = va.t+ tvw;
11 b = GetCopyIndex(w, t′, C(w), δ);
12 if b < 0 then continue;
13 wb := (w, b, t′);
14 if wb /∈ C(w) then
15 VP := VP ∪ {wb};C(w) := C(w) ∪ {wb};
16 cost(wb) :=cost(va) + cvw; L(wb) := va;
17 add wb to Q;
18 else
19 if cost(wb) >cost(va) + cvw then
20 cost(wb) :=cost(va) + cvw;
21 L(wb) := va;
22 EP := EP ∪ (va, wb);
23 dm := node copy with minimum cost with destination index d;
24 P := find path from s0 to dm via backtracking from L(dm);
25 return P ;

21

3.2.1 Algorithm Description

The label setting algorithm is presented in Algorithm 3. It is very similar to Djikstra’s
algorithm. We initialize a priority queue Q for saving the node copies, C(v) is for saving the
node copies with index v. We recursively fetch the node va with the minimum cost from Q

(line 5 - 7). If the node copy’s index i is the destination index, then we terminate the loop
(line 8). Otherwise, we will iterate over all neighbor indices j of that node index in G (line
9). Line 10 calculates the arrival time t′, which will be used to determine the node copy
index b using function GetCopyIndex (introduced in Chapter 2) in line 11. If the function
returns w is unreachable, then we skip this neighbor index. Otherwise, if the returned copy
index is already assigned to a node copy (line 18), which means wb already exists in VP ,
then we will relax the edge and update the label (line 19 - 21). Otherwise, b is not yet
assigned to any existing node copy (line 14). Then we have to create a new node copy wb,
assign the cost, and put it into priority queue Q. We connect va with wb and add it to EP

(line 22). After the while loop terminates, we find the minimum cost node copy with index
d (line 23), then the shortest path from s to d will be returned via backtracking L (line 24).

Labels

In shortest path problems, the label is defined as a set of nodes that are visited from source
node to the current node. For a given node v, there may exist different paths from the
source node to v. According to the label definition, v can have multiple labels. Most of the
label setting or label correcting algorithms introduce the idea of pruning labels. Shortest
path algorithms (e.g., Dijkstra’s, Bellman-Ford algorithm) only keep one label per node,
and the label is also reduced to include only one predecessor node.

In the above label setting algorithm, the label L(vi) on node copy vi is defined as the
predecessor node copy of vi. The label definition is the same as in Dijkstra’s algorithm or
Bellman-Ford algorithm. We prove the correctness of such a label definition in the ATWD
based label setting algorithm in Section 3.2.2.

Lemma 1. Consider a time-expanded graph GP with no negative cycle. Suppose there
are two different paths P1, P2 from one node copy va to another node copy wb. If cost(P1) <
cost(P2), then P1 dominates P2.

Proof of Lemma 1. P1 dominates P2 if any path extension of P2 can be applied to P1 with
a smaller accumulated cost. The ATWD algorithm constructs a time-expanded network by
adding timed nodes to the graph, and for any two paths arriving at the same node va, they
can be considered as arriving at the same time va.t. Hence, any path extension of P1 is also

22

a valid extension for P2. The reason is that, firstly, since the path extensions for P1 and P2

both start at the same time, any neighbor that is reachable from P1 is also reachable from P2.
Secondly, since there is no negative cycle, the shortest path extension of P1 or P2 must not
include visited nodes because if there is a cycle in the path, we can always eliminate the cycle
from the path and get a new path with a smaller cost. The dominance rule indicates that
the time dependencies have been embedded in the graph itself. Hence algorithms for solving
the traditional shortest path problems, including label setting algorithms (e.g., Dijkstra’s
algorithm) and label correcting algorithms (e.g., Bellman-Ford), can be directly applied to
solve SPPTW on the time-expanded graph.

3.2.2 Proof of Correctness

Now we prove the correctness of the ATWD based label setting algorithm. According to the
dominance rule in Lemma 1, in the label setting algorithm, whenever we examine an edge
(v, w), we only need to update and save the shortest path from the source node to node w.
Since other sub-optimal paths that have higher costs will be dominated, it is safe to prune
them. Furthermore, as we only save one path per node, we do not need to save the entire
path. Instead, we just need to save the predecessor node of w in the path from the source
node to w. The whole path can be derived via backtracking the predecessor links. Thus, the
label definition can be used to find the optimal solution in a time-expanded graph GP .

3.2.3 Running Time Complexity

In this section, we analyze the time complexity of the ATWD based label setting algorithm.
Like Dijkstra’s algorithm, line 5 will loop over all the node copies, which takes O(|VP |),
line 9 will check all edges in EP , which takes O(|EP |). By implementing Q as a priority
queue, line 6−7 takes O(log(|VP |)). Line 11 takes constant time if we design C(n) as a hash
table. The rest of the operations takes constant times. Hence, the running time complexity
is O((|EP |+ |VP |)log(|VP |)). According to Algorithm 2, the number of node copies for each
node i in V is bounded by O((li − ei)/δ), and the number of nodes in VP is O(|V |tmax/δ),
where tmax represents the maximum time window size of the nodes in V . Since Algorithm 2
restricts that each node copy is connected to at most one node copy from each of its neighbor
index, the total number of edges in EP will be O(|E|tmax/δ).

Thus, the overall worst-case time complexity of ATWD based label setting algorithm
is O((|E|tmax/δ+ |V |tmax/δ)log(|V |tmax/δ)). The experimental results will indicate that in
practice, the size of the partial graph is much smaller than the size of the fully time-expanded
network.

23

s

[0:10]

a

[5:15]

b

[4:10]

c

[5:15]

d

[10:20]tsa
= 10, csa

= 10

tsb = 8, csb = 4

tsc = 5, csc = 10

tba = 6, cba = 3

tcb = 2, ccb = 2

tad = 8, cad = 8

tbd = 6, cbd = 2

tcd
= 10, ccd

= 6

Figure 3.1: An example graph, each node is assigned with a time window, each edge is
assigned with travel time t and cost c.

3.3 An Illustrative Example

Consider a time-constrained G presented in Figure 3.1. Note that this graph has the same
structure as the one presented in 2.4.3. Initially, a node copy s0(s, 0, 0) is created, we assign
cost(s0)=0, L(s0)=NULL, and add it to priority queue Q. In the first iteration, we pop
s0 from Q and iterate through all its neighbors in G : a, b, c. We create new node copies
a0, b0, c0, assign cost and connect s0 to each of them, then add these nodes to Q (Fig. 3.2a).
In the second iteration, we pop the node b0 from Q since it has the minimum cost, then we
iterate through its neighbors in G : a, d, create node copies a1, d0, assign cost, and connect
b0 to each of them, then add these nodes to Q (Fig. 3.2b). In the third iteration, we pop
d0 from Q, and since d0 has the same index as d, we terminate the algorithm. The shortest
path s, b, d can be derived via backtracking from d0.

Note that although the original graph G in Figure 3.1 has the same structure as Fig-
ure 2.2, the constructed time-expanded graph GP in Fig 3.2c using ATWD based label
setting algorithm is even smaller than the time-expanded graph in Fig 2.3e. Since Dijkstra’s
algorithm always relaxes neighbors of the current smallest cost node in queue, if a node is
never popped from the queue, then any path extension from the node will not be in the
optimal shortest path solution (as all edge weights are positive). Hence we do not even
need to construct the neighbors of that node in GP . In general, ATWD based label setting
algorithm guides the direction of graph construction, which efficiently solves SPPTW on
time-constrained graph with positive edge weights by discretizing only a subgraph contain-
ing the optimal shortest path.

24

s0

t=0,c=0

a0

t=10,c=10

b0

t=8,c=4

c0

t=5,c=10

(a) Pop s0 from Q. a0, b0, c0 are added to Q, b0 has the current minimum cost.

s0

t=0,c=0

a0

t=10,c=10

b0

t=8,c=4

c0

t=5,c=10

d0

t=14,c=6

a1 t=14,c=7

(b) Pop b0 from Q, a1, d0 are created and added to Q, d0 has the current minimum cost.

s0

t=0,c=0

a0

t=10,c=10

b0

t=8,c=4

c0

t=5,c=10

d0

t=14,c=6

a1 t=14,c=7

(c) Pop d0 from Q, now we reach the destination, the algorithm terminates and shortest path s, b, d
can be retrieved via backtracking the labels

Figure 3.2: ATWD label setting algorithm illustration with δ = 2.

25

3.4 Experiments

We evaluate the performance of the ATWD based Label Setting Algorithm (ATWD-LSA)
in this section by measuring the precision and efficiency. We define precision as follows.
Denote the cost of the optimal path as coptimal and the cost of our solution as c, then the
precision of our solution is:

precision = 1− (c− coptimal)
coptimal

The efficiency is evaluated using the size of GP and the algorithm solving time. Note that
these criteria apply to the experiment sections of the succeeding chapters as well.

3.4.1 Building the Experimental Graphs

We build the experimental graphs using Solomon’s Benchmark data set [45]. The data set
was originally designed for Vehicle routing Problems with Time Windows (VRPTW). Since
each node in the data set represents a time-constrained customer with a time window and
a service time, it is also a good resource for SPPTW. The data sets contain six sets of
problems:

• R1: randomly generated geographical data with a short time window size.

• R2: randomly generated geographical data with a long time window size.

• C1: clustered geographical data with short time window size.

• C2: clustered geographical data with long time window size.

• RC1: a mix of random and clustered geographical data with a short time window size.

• RC2: a mix of random and clustered geographical data with a long time window size.

In Solomon’s benchmarking problems, the cost and travel time between two nodes are
defined as the Euclidean distance, and every pair of nodes is adjacent. However, if we
directly map this setting to SPPTW, then the problem will be simple and easy to solve.
Thus, in order to fully explore the power of the designed algorithm, we build the test
graphs by setting the following guidelines. Assuming the mean and the standard deviation
of euclidean distances between all pair of nodes is dmean and dstd:

• For each edge (i, j) we assign the euclidean distance as its cost:

cij =
√

(i.x− j.x)2 + (i.y − j.y)2

26

• Break any “long” edge (i, j) if its euclidean distance is longer than dmean − dstd.

• For each edge (i, j), initially assign euclidean distance of (i, j) as the travel time, then
normalize all travel times to [0, 10] and shift the travel time up by service time.

The intuition of breaking “long” edges is to allow more intermediate nodes to be in-
cluded in the optimal shortest path solution. Otherwise, in the complete graph, the length
of the shortest path will be small for any source-destination pair, and such a graph will not
be a good fit for testing the algorithms. We mark an edge as a “long” edge if the euclidean
distance between two endpoints is longer than dmean − dstd.

Note that Solomon’s data have a universal fixed service time tservice = 10, and in
the problem setting proposed in this thesis, we incorporate this service time into the edge
travel time. We normalize travel times for all edges into [10, 20] with a euclidean distance
distribution. This is because we want to solve SPPTW on VRPTW data, so we keep the
travel times to be relatively small in order to allow a “vehicle” to visit more “customers”.
On the other hand, since we are breaking a portion of edges in the graph, it becomes more
likely that randomly selected pairs are either not reachable, or reachable via only a few
different paths. Hence by reducing the travel time of each edge, there will be more relevant
paths between any pair of nodes in the graph, which makes the SPPTW harder to solve.

In all the experiments in this thesis, we focus only on RC2 data sets due to the following
reasons:

• we ignore the clustered data set because according to our strategy of breaking long
edges, the clustered data set may end up having isolated clusters, which will not be
suitable for solving SPPTW.

• we ignore data set with tight time windows because we want the graphs to have greater
connectivity (i.e., multiple unique paths exist between a selected pair of source and
destination nodes).

• the geographical distribution in RC data set is closer to real-world maps.

3.4.2 ATWD-LSA with Different Thresholds

Since the discretization threshold δ controls the granularity of the constructed time-expanded
graph GP , with a smaller δ, the size of GP is going to increase. We test the ATWD-LSA al-
gorithm using different threshold values and report the statistics in Table 3.1. We generate a
time-constrained directed graphG with positive edge weights using Solomon’s 0100_RC201,

27

which has 100 nodes, and each node has a fixed time window (TW) size 120. We randomly
choose 10 pairs of source and destination nodes. For each pair, we run the ATWD-LSA
algorithm under different thresholds (δ = 1, 2, 4, 10, 20, 30) and collect the results. We then
average the results and present them in Table 3.1.

Threshold(δ) Precision VP EP Running Time(s)
1 1 1130 8043 0.153
2 1 1105 7527 0.065
4 1 739 5120 0.040
10 1 433 2850 0.022
20 1 275 1706 0.013
30 0.98 217 1345 0.01

Table 3.1: ATWD based Label Setting Algorithm under different thresholds, on a graph
generated from Solomon 0100_RC201, which has a fixed time window size TW=120 for all
nodes.

In the original graph G generated from 0100_RC201, there are 100 nodes and 1072
edges. If we use the full discretization approach, each node will be replicated into TW/δ
copies. Then there will be over 130000 nodes in the graph when δ = 1. As shown in
Table 3.1, we are able to significantly reduce the complexity of the time-expanded graph by
constructing a GP . Each node is copied on an average of 11 times when δ is small. We also
notice that as δ increases, the average precision does not decrease until δ = 30, which means
most of the optimal solutions can be found by doing only a small number of discretization
work. Moreover, the number of edges in GP also does not increase significantly comparing
to the number of edges in G. Hence, the ATWD-LSA algorithm is able to efficiently solve
SPPTW with high precision on positive edge weight graphs.

3.4.3 ATWD-LSA on Graphs with Different Sizes

In this section, we evaluate the performance of ATWD-LSA on different sized graphs. We
selected Solomon’s RC201 type with 100, 200, 400, 800 nodes, and for each data set, we
generate a time constrained directed graph G with no negative edge cost. For each graph G,
we evaluate the algorithm under threshold δ = (1, 4, 20) and present the averaged statistics
in Table 3.2

Note that in all cases, the ATWD-LSA can find the optimal solution. The original
graph G with 100, 200, 400, 800 nodes have 1072, 2284, 4840, 5369 edges, respectively. When
we increase the size of G from 100 nodes to 400 nodes, the size of GP does not change much
on average. And it is interesting that when G has 800 nodes, the average size of graph GP

on solving 10 random SPPTW problems even decreases. We think this is because on large
graphs, our strategy of breaking “long” edges will cause too many edges to be removed (e.g.,

28

V Threshold(δ) Precision VP EP Running Time(s)
1 1 1130 8043 0.153

100 4 1 739 5120 0.040
20 1 275 1706 0.013
1 1 1243 13655 0.122

200 4 1 832 9254 0.078
20 1 272 2638 0.0216
1 1 1546 18719 0.152

400 4 1 791 8753 0.074
20 1 270 2435 0.019
1 1 1067 10637 0.059

800 4 1 655 7334 0.071
20 1 183 1853 0.020

Table 3.2: ATWD based Label Setting Algorithm under different thresholds, on graphs with
different sizes, fixed time window sizes TW=120 for all nodes.

400 nodes G has 4840 edges while 800 nodes G has 5369 edges). Hence it is hard to find
a path that crosses a wide area of graph G, which will result in a smaller GP . However,
this actually demonstrates that the algorithm matches our goal of enabling “on-demand”
discretization since the algorithm will construct a partially time-expanded network around
the optimal path area without touching the rest of the graph G.

3.4.4 ATWD-LSA on Graphs with Different Time Window Sizes

In this section, we evaluate the performance of ATWD-LSA on graphs with variable time
window sizes. We selected Solomon’s 5 different types of data (RC201, RC202, RC204,
RC205, RC208) with 100 nodes, and for each data set, we generate a time-constrained
directed graphG with no negative edge weights. For each graphG, we evaluate the algorithm
under threshold δ = (1, 4, 20) and present the averaged stats in Table 3.3

As shown in Table 3.3, when the average time window size increases, the size of the
graph GP , as well as the solving time increases dramatically. This is because when the time
window increases, setting the same value of δ will result in more node copies. Even when
the average time window size increases from 120 (RC201) to 717.1 (RC204), the ATWD-
LSA algorithm is still able to find the optimal solution efficiently with a larger threshold
δ. However, one observation is that the time window size on graph G has a higher impact
on the complexity of our solution than the graph size, which is noticeable by comparing
Table 3.3 with Table 3.2.

29

Data set Type Threshold(δ) Precision VP EP Running Time(s) TW(mean) TW(std)
1 1 1130 8043 0.153

RC201 4 1 739 5120 0.040 120 0
20 1 275 1706 0.013
1 1 7700 56605 0.718

RC202 4 1 3333 25899 0.248 318.96 344.67
20 1 863 6725 0.057
1 1 16456 177615 3.073

RC204 4 1 8681 92231 1.085 717.1 344.93
20 1 2181 23868 0.266
1 1 3852 33460 0.37117

RC205 4 1 1983 17856 0.152 223.06 161.84
20 1 573 4464 0.034
1 1 18326 206609 0.686

RC208 4 1 6864 78166 0.787 471.93 71.31
20 1 1527 16634 0.135

Table 3.3: ATWD based Label Setting Algorithm under different thresholds, on 100 nodes
graphs with variable time window sizes.

3.5 Conclusion

In this chapter, we present an ATWD based label setting algorithm, which can be used
for solving SPPTW on graphs with positive edge weights. We define the label and the
dominance rule, which are also applicable to the label correcting algorithm in the next
chapter. We demonstrate that the algorithm is able to generate a small partially time-
expanded network, which still can be used for finding the optimal results. We conduct our
experiments on graphs with different number of nodes, different time window sizes. The
results show that the algorithm is efficient in all types of graphs.

30

Chapter 4

ATWD on Label Correcting
Algorithm

In this chapter, we present how one can embed the ATWD approach into a label correcting
algorithm. With a label correcting algorithm, we can enlarge the SPPTW problem scope
to handle graphs with negative edge weights. Unfortunately, a traditional label correcting
algorithm cannot be directly applied for solving shortest path problems on graphs with
negative cycles. We discuss the proposed solutions for handling the negative cycles in the
next two chapters.

When the graph has negative edge weights, label setting algorithms may be incorrect
even if there is no negative cycle. The reason is with the presence of negative edge weights,
the current shortest path from source to a node may need to be corrected as we evaluate
different paths arriving at the same node. For example, in Dijkstra’s algorithm, the greedy
approach of selecting the minimum cost label is proved to be correct only when all edge
weights are positive. With negative edge weights, label correcting algorithms should be used
for solving the shortest path problems.

In Section 4.1, we describe the ATWD based label correcting algorithm. The algorithm
uses a breadth-first-search strategy for discretizing “unvisited” neighbors, which has already
been introduced in Chapter 2 Algorithm 1. However, instead of exhaustively discretizing
the whole graph, we add another input variable lmax to control the maximum length of the
path that the current solution is allowed to find. With this variable, the algorithm is able
to compute a solution for SPPTW up to path length lmax. In Section 4.2, we again use an
illustrative example to explain the proposed algorithm. We present our experimental results
and some analysis in Section 4.3, and we briefly conclude this chapter in Section 4.4.

31

4.1 Label Correcting Algorithm with ATWD

In this section, we show how the ATWD method can be applied on a label correcting
algorithm to solve SPPTW.

Algorithm 4: ATWD based Label Correcting Algorithm
Input: Graph G(V,E), source node s, destination node d, maximum length lmax

Output: Partially time-expended graph GP (VP , EP), result path P
1 initialize l := 0, VP := ∅,Ncurr := ∅,Nnext := ∅, ∀v ∈ V : C(v) := ∅,
∀v ∈ VP : L(v) := ∅.

2 s0 = (s, 0, es);
3 VP := VP ∪ {s0}, Nnext := Nnext ∪ {s0};
4 cost(s0) := 0,L(s0) := L(s0) :=NULL;
5 while Nnext 6= ∅ and l < lmax do
6 Ncurr := Nnext; Nnext := ∅;
7 foreach va ∈ Ncurr do
8 foreach neighbor index w in G that is not yet connected with va in GP do
9 t′ = va.t+ tvw;

10 b = GetCopyIndex(w, t′, C(w), δ);
11 if b < 0 then continue;
12 wb := (w, b, t′);
13 if wb /∈ C(w) then
14 VP := VP ∪ {wb},Nnext := Nnext ∪ {wb};
15 C(w) := C(w) ∪ {wb}; L(wb) := va;
16 EP := EP ∪ (va, wb); cost(wb) :=cost(va) + cvw;
17 update = True;
18 l := l + 1;
19 do
20 update = False;
21 foreach edge (va, wb) ∈ EP do
22 if cost(wb) >cost(va) + cvw then
23 cost(wb) :=cost(va) + cvw; L(wb) := va;
24 update = True;
25 while update;
26 dm := node copy with minimum cost under destination index d;
27 P := find path from s0 to dm by backtracking P;
28 return P ;

4.1.1 Algorithm Description

The label correcting algorithm is presented in Algorithm 4. Line 5 to line 18 probes the graph
and construct the partially time-expanded graph GP using Breadth-first Search (BFS). It
terminates when the graph does not change within an iteration or the path has reached the

32

maximum specified length. This process is almost identical to Algorithm 1 except that we
bound the maximum depth in BFS. We add two sets: Ncurr for saving the nodes for current
depth and Nnext for the next depth (current depth + 1). Line 19 to line 25 is the edge
relaxation process. The logic is similar to the Bellman-Ford algorithm: we keep relaxing
all edges in EP for at most |V | − 1 times (|V | is the number of nodes in time-constrained
graph). Here we incorporate the idea of early termination [1] by checking the update
value to speed up the algorithm. The variable update will be set to True if any new node
copy is created or any cost is updated, and if update is False, then early termination criteria
have been met. Line 6 specifies we only probe and discretize the graph when current depth
is less than lmax. When the algorithm terminates, the solution path is the best SPPTW
solution up to visiting lmax nodes with respect to threshold δ. The label contains only the
predecessor node of the best path found so far and will be used when retrieving the optimal
path via backtracking.

Labels

The definition of a label in ATWD based label correcting algorithm is the same as in the label
setting algorithm (in Chapter 3, Section 3.2.1). Saving only one label with the minimum
label cost is sufficient for computing the shortest path on graphs without negative cycles.
The proof follows in a similar way, as presented in Chapter 3, Section 3.2.2.

4.1.2 Correctness Analysis

ATWD based label correcting algorithm is guaranteed to find the optimal shortest path in
time-constrained graph G if and only if:

• the optimal shortest path in G can be represented using a path in GT , where GT is a
time-expanded representation of G under threshold δ.

• the optimal shortest path has length ≤ lmax.

If the optimal shortest path in G can be represented using a path in GT , then the time
of visit at each node along the shortest path can be represented as an integral multiple of
δ. If δ is an integer, according to Corollary 2 in Section 2.4.5, we can always find a path in
the partially time-expanded graph GP , which is identical to the path in GT .

If the lmax value has been reached, it implies that we have constructed GP up to lmax

depth using breadth-first-search probing. Thus, any shortest path that has length ≤ lmax

will be contained in GP .

33

If the input graph has only integral times, then setting δ = 1, lmax = |V | − 1, the
algorithm is guaranteed to find the optimal solution. Otherwise, the solution will always be
an upper bound.

4.1.3 Running time Complexity

In this section, we analyze the time complexity of the ATWD based label correcting algo-
rithm. In the worst case, the outer loop (line 5 - 24) will iterate over min(lmax, |V | − 1)
times. This is because the edge relaxation will be performed at most |V |−1 times according
to Bellman-Ford, where |V | represents the number of vertices in the time-constrained graph
G. In the time-expanded graph, since edge costs between any copy of one index to any copy
of another index are the same, the edge relaxation only needs to be performed at most
|V | − 1 times. Line 7 - 17 loops for at most |EP | times and each loop’s time complexity is
constant. Line 18 - 21 iterates over all edges in EP . Note that for any edge (v, w) in graph
G, the ATWD algorithm only connects each node copy with index i with at most one copy
with index w. In other words, each node copy in graph GP will only have at most one con-
nection to all node copies with the same index. Therefore, line 18 will loop for O(|E|tmax/δ)
times (tmax is the maximum time window size in G). The worst time complexity for doing
backtracking is O(|V |).

Thus, the overall time complexity of ATWD based label correcting algorithm is

O(|V ||E|(tmax/δ))

Although the time complexity is pseudo-polynomial, in practice, the actual time complexity
is much lower due to the benefit of early termination and the maximum path length lmax.

Further Improvements

Based on Algorithm 4, we further improve the efficiency of the algorithm by performing
some of the edge relaxation tasks while doing the discretization. Specifically, we update the
cost of node wb in lines 14 - 16. And in line 18, we skip wb if wb is already visited in line 8.
By adding these changes, the algorithm will have improved performance in practice as the
edge relaxation can be done on-the-fly while discretizing the nodes.

34

s

[0:10]

a

[5:15]

b

[4:10]

c

[5:15]

d

[10:20]tsa
= 10, csa

= 10

tsb = 8, csb = 4

tsc = 5, csc = 5

tba = 6, cba = −3

tcb = 2, ccb = −2

tad = 8, cad = 3

tbd = 6, cbd = 4

tcd
= 10, ccd

= −
1

Figure 4.1: An example graph, each node is assigned with a time window, each edge is
assigned with travel time t and cost c.

4.2 An Illustrative Example

Consider the time-constrained graph G in Figure 4.1. G has the same structure as graphs
in Figures 2.2 and 3.1, but now it contains negative edge weights. The graph construction
process from Figure 4.2a to Figure 4.2e is identical to the process illustrated in Chapter 2,
Section 2.4.3. Note that in Figure 4.2d, after we probe the neighbors of c0, the labels on
node b0, a1, d1 are updated because of their already established connections c0 and b0. The
algorithm terminates with l = 3. However, the optimal solution is already found in the
iteration of l = 2, which means setting lmax = 2 is good enough for finding the optimal
result in this case. In our experiments, we test the algorithm using different values of lmax

and evaluate the results.

4.3 Experiments

We evaluate the performance of the ATWD based Label Correcting Algorithm (ATWD-
LCA) in this section.

4.3.1 Building the Experimental Graphs

Based on the strategy introduced in Chapter 3, Section 3.4.1, we slightly modify the guide-
lines to generate graphs which are more suitable for testing the label correcting algorithm.

35

s0

t=0,c=0

a0

t=10,c=10

b0

t=8,c=4

c0

t=5,c=5

(a) After probing s0’s neighbors. a0, b0, c0 are
added. l = 1.

s0

t=0,c=0

a0

t=10,c=10

b0

t=8,c=4

c0

t=5,c=10

d0 t=18,c=13

(b) After probing a0’s neighbors. d0 is added.

s0

t=0,c=0

a0

t=10,c=10

a1 t=14,c=1

b0

t=8,c=4

c0

t=5,c=5

d0 t=18,c=13

d1 t=14,c=8

(c) After probing b0’s neighbors. a1,d1 are added.

s0

t=0,c=0

a0

t=10,c=10

a1 t=14,c=0

b0

t=8,c=3

c0

t=5,c=5

d0 t=18,c=13

d1 t=14,c=7

d2 t=16,c=4

(d) After probing c0’s neighbors. d2 is added. l =
2.

s0

t=0,c=0

a0

t=10,c=10

a1 t=14,c=0

b0

t=8,c=3

c0

t=5,c=5

d0 t=18,c=13

d1 t=14,c=7

d2 t=16,c=4

(e) After probing a1,d0,d1,d2’s neighbors. l = 3. Graph is unchanged, algorithm terminates

Figure 4.2: ATWD based label correcting algorithm illustration with δ = 2, lmax = 5. Nodes
in grey means their neighbor nodes have been discretized.

36

Assuming the mean and the standard deviation of euclidean distances between all pair of
nodes is dmean and dstd:

• Break any “long” edge (i, j) if its euclidean distance
√

(i.x− j.x)2 + (i.y − j.y)2 is
longer than dmean − dstd.

• Define two parameters p, r. p denotes the percentage of edges whose costs are set to
negative, and r denotes the distance reduction factor. We randomly choose p percent-
age of all edges, and for each chosen edge (i, j), we set the cost to be

cij = −
√

(i.x− j.x)2 + (i.y − j.y)2/r

For all other edges, we use euclidean distance as the cost. In this chapter, we set
p = 8%.

• For each edge (i, j), we initially assign euclidean distance of (i, j) as the travel time,
and then normalize all travel times to [0, 10] (tnorm = 10 · t−tmin

tmax−tmin
), and shift the

travel time up by service time.

The intuition of introducing distance reduction factor r is that we do not want too many
negative cycles being created. As in this chapter, we focus only on solving SPPTW (not
ESPPTW). If too many negative cycles are created, it will be harder to remove them and
construct a negative-cycle-free test graph.

Removing Negative Cycles

We use Algorithm 5 to remove negative cycles based on the graph generated using the
strategies introduced in the above section. The algorithm works as repeatedly checking the
existence of negative cycles using the Bellman-Ford algorithm. If we find a negative cycle,
we trace it and find the edge (i, j) with minimum cost on the cycle. It is obvious that cij < 0.
We then set the cost of (i, j) to positive by “reverting” it back to the euclidean distance
between to endpoints. We repeat the process until no negative cycle is detected.

Algorithm 5: Negative cycle elimination
Input: Graph G
Output: Negative-cycle-free graph G

1 while G has negative cycle do
2 Find the minimum cost edge (i, j) on the cycle;
3 set cij =

√
(i.x− j.x)2 + (i.y − j.y)2;

4 return G;

37

4.3.2 ATWD-LCA with Different Thresholds

We generate a time-constrained directed graph G with no negative cycles using Solomon’s
0100_RC201, which has 100 nodes, and each node has a fixed time window (TW) size 120.
We randomly choose 10 pairs of source and destination nodes, and for each pair, we run the
ATWD-LCA algorithm with lmax = 99 under different thresholds (δ = 1, 2, 4, 10, 20, 30) and
collect the results. We then take the average of the results and present them in Table 4.1.

lmax := 99
Threshold(δ) Precision VP EP Running Time(s)

1 1 5720 49487 0.806
2 1 3472 33506 0.643
4 1 1817 17886 0.333
10 1 797 7968 0.124
20 1 436 4292 0.063
30 0.94 315 3134 0.0502

Table 4.1: ATWD Label Correcting Algorithm under different thresholds, on a graph gen-
erated from Solomon 0100_RC201, which has a fixed time window size TW=120 for all
nodes.

As shown in Table 4.1, the ATWD approach still helps to significantly reduce the
complexity of the time-expanded graph. However, the graph GP is not as small as the
graph constructed by the label setting algorithm, which can be observed by comparing
Table 4.1 with Table 3.1. The reason is in the label setting algorithm, we can terminate
whenever we “reach” the destination node, but in the label correcting algorithm, due to the
presence of negative edge weights, we have to keep relaxing all the edges until no change
takes place. This will result in an exhaustive discretization. But the good news is that the
ATWD-LCA algorithm is still able to precisely solve SPPTW with some larger thresholds.
Similar to the results in Table 3.1, ATWD-LCA is able to find an optimal solution in all
cases when δ ≤ 20.

4.3.3 ATWD-LCA with Bounded Maximum Path Length

When we set the value of lmax, the algorithm will only construct the partially time-expanded
GP with a maximum of lmax depth using breadth-first-search. As shown in Table 4.2, if we
set lmax to be small, we are able to make the algorithm run much faster, and the resulting
graphGP is also less complex. We experiment by setting the value of lmax from 3 to 10. When
lmax increases, the precision of the solution increases, along with a penalty of an increased
solving time due to the expansion of graph GP . However, we find that setting lmax = 8 is
already good enough for solving all 10 different SPPTW problems optimally. Comparing

38

lmax Precision VP EP Running Time(s)
3 0.53 277 964 0.012
4 0.63 631 3361 0.051
5 0.74 1086 7724 0.111
6 0.82 1572 13074 0.217
7 0.96 2039 18536 0.297
8 1 2461 23574 0.484
9 1 2821 28042 0.469
10 1 3129 31714 0.631

Table 4.2: ATWD Label Correcting Algorithm under different lmax, with δ = 1, on a graph
generated from Solomon 0100_RC201, which has a fixed time window size TW=120 for all
nodes.

the graph size with respect to the number of node copies in VP and the number of edges
in EP , we observe that with the help of lmax, we are able to further reduce the complexity
of the ATWD-LCA algorithm by solving SPPTW on an even smaller time-expanded graph
that is about half the size of the graph constructed without setting lmax.

4.4 Conclusion

In this chapter, we introduce the ATWD based label correcting algorithm. The algorithm
differs from the label setting algorithm introduced in the previous chapter as it can be
used on graphs with negative edge weights, as long as no negative cycle is present. With
negative edge weights being introduced into the graph, the algorithm becomes more complex
as we need to relax all edges, which means the entire time-expanded network needs to be
created. Hence as shown in experiments, the constructed partially time-expanded graph
is larger than that of Chapter 3. In order to further optimize the running time, we use
another parameter lmax to restrict the maximum shortest path length we aim to find.
The experiments demonstrate that it reduces the graph size by half without harming the
precision in most of the cases during the experiment.

39

Chapter 5

Label Correcting Algorithm with
k-Cycle Elimination

The label correcting algorithm introduced in the previous chapter can be used to solve
SPPTW. When the graph contains negative cycles, solving Elementary Shortest Path with
Time Windows (ESPPTW) is proved to be strongly NP-Hard, and, therefore, no pseudo-
polynomial time algorithm can be found [39]. In this chapter, we explored the k-cycle
elimination technique and extended the label correcting algorithm for solving ESPPTW
approximately.

k-cycle elimination has been used in the label correcting algorithm to ensure no cycle
with length ≤ k exists in the resulting shortest path. In the following sections, we define
the dominance rule, which is used for pruning labels. We show that the k-cycle elimina-
tion strategy can be easily applied to ATWD label correcting algorithm to eliminate small
cycles in the resulting path. Lastly, we generate test graphs based on Solomon’s data and
demonstrate that the ATWD label correcting algorithm with k-cycle elimination is able to
efficiently solve the ESPPTW in most cases.

5.1 Dominance and Label Pruning

5.1.1 Labels

The concept of labels is used to store different paths represented in node sets, which
has been explained in Chapter 3, Section 3.2.1. In this chapter, we apply a very similar
definition, which is explained as follows. Given a path P originated from source node s,
P = (s, v1...vi−1, vi), the label L(vi) associated to the path P on node vi can be defined as
a set L(vi) = {s, v1...vi−1}.

40

s

d

a

b

csd
= 3

csb = 6

cad
= −

2

c
ba = −2

cdb = 2

Figure 5.1: An example graph, each edge is assigned with cost, label vectors and its total
cost are shown next to the nodes. ATWD label correcting algorithm will fail to find the
elementary shortest path from s to d.

The above label definition is applied in ATWD based label correcting algorithm with
k-cycle eliminations, which is used for solving ESPPTW. If the graph contains negative
cycles, the dominance rule presented as Lemma 1 in Chapter 3, Section 3.2.1 is no longer
valid. The reason is that, given two different paths P1, P2 from a same node a to a same node
b, we cannot guarantee that the path with smaller cost can always dominate the other. Since
in the presence of negative cycles, extending the longer path may result in a shorter total
cost as some nodes in its extension may have been visited by the other path. This can be
further explained using an example in Figure 5.1. The graph contains a negative cycle b, a, d.
If we apply the dominance rule as described in Chapter 3 (assuming the node discretization
steps are ignored since we are only interested in edge relaxations), the resulting shortest
path from the ATWD label correcting algorithm presented in Chapter 4 is (s, d), which is
incorrect as the optimal shortest path is (s, b, a, d). Details of the relaxation steps is shown
in Figure 5.2.

5.1.2 Dominance Rules

Lemma 2. Consider a time-expanded graphGP with negative cycles, given two different
labels L(vi),L(vi)′ at a same node representing the set of nodes visited on different paths
P, P ′, if L(vi) ⊆ L(vi)′ and cost(P) < cost(P ′), then P dominates P ′.

Proof of Lemma 2. If L(vi) ⊆ L(vi)′, then the set of visited nodes on path P is a subset of
the set of visited nodes on path P ′. Since both paths arrive at a same node copy, we can
assume that they arrive at the same time. Hence, any path extension of P2 must also be
a valid path extension of P . Combining with the fact that cost(P) < cost(P ′), it is clear

41

s

{s}:0

d

{s,d}:3

a

b

{s,b}:6

3

6

−2

−2

2

(a) After probing s’s neighbors.

s

{s}:0

d

{s,d}:3

a

b

{s,d,b}:5

3

6

−2

−2

2

(b) After probing d’s neighbors. Label on b is
updated since {s, b} is dominated by {s, d, b}.

s

{s}:0

d

{s,d}:3

a {s,d,b,a}:3

b

{s,d,b}:5

3

6

−2

−2

2

(c) After probing b’s neighbors.

s

{s}:0

d

{s,d}:3

a {s,d,b,a}:3

b

{s,d,b}:5

3

6

−2

−2

2

(d) After probing a’s neighbors. Label on d
is not updated because label {s, d, b, a, d} is
dropped due to duplicates.

Figure 5.2: Edge relaxation steps using old dominance rules based on Figure 5.1. The labels
and their path costs are presented next to the nodes. Solution path (s, d) is not optimal.

42

that P dominates P ′ because any path from source to destination extended from P ′ can be
further optimized by replacing P ′ with P .

Figure 5.3 shows how the new dominance rule can be applied to compute the correct
elementary shortest path using the same example graph in Figure 5.1. Since we can only
discard a label if it is dominated by at least one existing label on the same node, we need to
carry all labels that are not dominated. In this case, we need to keep track of the connections
between labels on adjacent nodes for backtracking purposes, and a backward link pointer
pointing to the corresponding predecessor label is added for each label. When the algorithm
terminates, we have two labels attached to the destination node: {s, d}, {s, b, a, d}, and the
one with the minimum path cost is selected as the result.

5.1.3 Label Pruning

In the label correcting algorithm introduced in Section 4.1, a label L(vi) representing path
P can be pruned when there exists at least another label L(vi)′ representing path P ′ such
that P ′ dominates P . According to the dominance rule introduced in Lemma 2 of this
chapter, for each node copy vi, we need to carry several paths from the source node to vi.
As a result, the number of labels grows very fast.

Unfortunately, even if we apply the k-cycle elimination, which will be explained in
the next section, the number of labels per node still grows dramatically as k increases.
Irnich and Villeneuve stated that the worst-case complexity of k-cycle elimination using
different values of k grows by a factor that depends on k [33]. Moreover, on graphs with
densely connected nodes, the number of labels per node can be significantly large, even
with a smaller k. Initially, we designed the k-cycle elimination algorithm by keeping all
non-dominated labels. In experiments, we found that with k = 2, there will be a maximum
of hundreds of labels per node, but with k = 3, the number of labels grows up to thousands.
The running time increases from minutes (k = 2) to hours (k = 3). Thus, based on the
information collected, we introduce a strategy for bounding the number of labels for each
node.

Bounding the Number of Labels

The number of labels saved per node grows exponentially with respect to k. Since we only
need to keep the unique set of previous k visited nodes unordered, the exponential growth
in number of labels still makes the algorithm impractical with larger k.

43

s

{s}:0

d

{s,d}:3

a

b

{s,b}:6

3

6

−2

−2

2

(a) After probing s’s neighbors.

s

{s}:0

d

{s,d}:3

a

b

{s,b}:6
{s,d,b}:5

3

6

−2

−2

2

(b) After probing d’s neighbors. A new label
{s, d, b} is added to b since it is not dominated
by any existing labels.

s

{s}:0

d

{s,d}:3

a
{s,b,a}:4
{s,d,b,a}:3

b

{s,b}:6
{s,d,b}:5

3

6

−2

−2

2

(c) After probing b’s neighbors. Node labels
{s, b, a}, {s, d, b, a} are added to a.

s

{s}:0

d

{s,d}:3
{s,b,a,d}:2

a
{s,b,a}:4
{s,d,b,a}:3

b

{s,b}:6
{s,d,b}:5

3

6

−2

−2

2

(d) After probing A’s neighbors. Label
{s, b, a, d} is added to d and {s, d, b, a, d} is
dropped.

Figure 5.3: Edge relaxation steps using new dominance rules based on Figure 5.1. Solution
path (s, b, a, d) is optimal.

44

The intuition of bounding the number of labels is developed from empirical evidence:
each node often keeps lots of high-cost labels. Although a label should not be pruned if it
is not dominated, we compromise the quality by eliminating labels with relatively higher
costs.

We introduce a parameter τ , which denotes the maximum cost threshold. If a label has
a cost greater than the threshold, then even if it is not dominated, we will still prune it.
For each node copy, its maximum cost threshold is a function of the current minimum cost
of all labels, standard deviation among all edge costs, and the parameter τ .

In order to present the k-cycle elimination algorithm, we define the following enhanced
dominance rules:

Enhanced Dominance Rules

Consider a time-expanded graph GP :

• A label L(vi) representing path P is strongly dominated if there exists another la-
bel L(vi)′ representing path P ′ on the same node vi such that L(vi)′ ⊆ L(vi) and
cost(P ′) < cost(P).

• A label L(vi) representing path P is weakly dominated if there exists another label
L(vi)′ representing path P ′ on the same node such that cost(P) > cost(P ′) + τ · std
where std is the standard deviation of cost for all edges in GP .

The strong dominance rule is derived directly from Lemma 2 in this chapter, and the
weak dominance rule is designed using the strategy for bounding the number of labels. If
the gap between the cost of path P and the minimum cost of all paths currently saved is
larger than a threshold, then we consider that any path extension of P is unlikely to become
the optimal solution. The threshold value is defined as τ · std. We include std because the
gap should be relevant to the dispersion of the cost for all edges. In other words, if the
standard deviation is low, which means edge costs are close, then we should set a smaller
threshold since the cost of different labels on the same node will also be close. Similarly, if
the standard deviation is high, then the cost of different labels can be spread out. Hence
we need a higher threshold. We add τ so that the threshold can be tuned. In experiments,
we notice that the result generated from τ = 0.2 is the best with respect to precision and
efficiency, so we fix τ = 0.2 in the experiments.

45

5.2 ATWD based Label Correcting Algorithm with k-Cycle
Elimination

The algorithm in this section mainly differs from Algorithm 4 (Chapter 4, Section 4.1)
in edge relaxation. In Algorithm 4, we apply the same label update procedure as in the
Bellman-Ford algorithm, which is simply updating the label whenever the new label has a
lower cost. However, in the k-cycle elimination algorithm, we need to apply a more compli-
cated label update procedure, which is presented as Algorithm 6.

Algorithm 6 is called whenever we want to relax an edge (va, wb). It takes the sets
of labels at va, wb as input, which are denoted as L(va),L(wb) respectively. It returns an
updated set of labels of wb, and a Boolean variable update for indicating whether any change
has been made. Line 3 checks if any cycle is going to be introduced by extending the path
from va to wb, and skip the current label if the checking returns true. In lines 4,6 and
10, the algorithm applies the enhanced dominance rule introduced in Section 5.1.3 to check
whether the path P represented by each label Lva on node va is dominated. If P is dominated
(either strongly or weakly), then we skip Lva (line 5). If P strongly dominates another path
P ′ represented by label Lwb

, then we replace Lwb
with the new label generated by adding

wb to Lva , and we point Lwb
to Lva using a backward pointer for backtracking purposes

(line 7 - 9). If P is neither dominated nor strongly dominates some existing paths, then we
create a new entry for that label and add to L(wb) (line 11 - 15). Note that we restrict the
length of any label to be ≤ k. In line 16 - 20, we check if the cost of the newly introduced
label is the minimum in the set. If yes, then we need to perform weakly dominance scan for
all existing labels in the set and remove any label that is weakly dominated.

Whenever we remove a label, all pointers pointing to that label become invalid and
must be removed. Thus, in lines 21 - 24, we iterate through all backward pointers and
remove any label that has its pointer pointing to a non-existent label.

We present the complete ATWD label correcting algorithm with k-cycle elimination in
Algorithm 7. The overall structure is very similar to that of Algorithm 4. Note that in the
algorithm we use Lva to denote both the label of va and the path represented by the label.
Major differences are as follows:

• each label is more complicated, which contains the last k nodes of the path instead of
just keeping one predecessor.

• we keep a set of labels instead of just one label for each node.

• we use enhanced dominance rules for updating labels, and the label update procedure
is more complicated (as described in the above paragraph).

46

Algorithm 6: UpdateLabels
Input: L(va),L(wb)
Output: update, L(wb)

1 initialize update := False
2 foreach Lva ∈ L(va) do
3 if extending Lva to node wb will introduce a cycle then continue;
4 if Lva is strongly or weakly dominated by Lwb

∈ L(wb) then
5 continue;
6 else if Lva strongly dominates Lwb

∈ L(wb) then
7 Lwb

:= last k elements in Lva ∪ {wb}; Lwb
.prev := Lva ;

8 cost(Lwb
):=cost(Lva)+cvw;

9 update := True
10 else
11 Lnew := last k elements in Lva ∪ {wb};
12 Lnew.prev := Lva ;
13 cost(Lnew):=cost(Lva)+cvw;
14 L(va) := L(wb) ∪ Lnew;
15 update := True
16 if cost(Lva)+cvw is the minimum in L(wb) then
17 foreach Lwb

∈ L(wb) do
18 if Lwb

is weakly dominated then
19 remove Lwb

from L(wb);
20 update := True
21 foreach Lwb

∈ L(wb) do
22 if Lwb

.prev cannot be found in Lva then
23 remove Lwb

from L(wb);
24 update := True;
25 return update, L(wb);

47

In lines 16 and 23, whenever we relax an edge, we call Algorithm 6 for updating labels. In
line 26, we need to scan all labels from all node copies with destination index, find the label
with minimum cost, then do the backtracking to print the path P .

Algorithm 7: ATWD Label Correcting Algorithm with k-Cycle Elimination
Input: Graph G(V,E), source node s, destination node d, maximum length lmax

Output: Partially time-expended graph GP (VP , EP), result path P
1 initialize update := False, VP := ∅, Nnext := Nnext ∪ {s0}, ∀v ∈ V : C(v) := ∅,
∀v ∈ VP : L(v) := ∅

2 s0 = (s, 0, es);
3 VP := VP ∪ {s0}, Nnext := Nnext ∪ {s0};
4 Ls0 :=NULL,Ls0 .prev :=NULL,cost(Ls0) := 0,L(s0) := L(s0) ∪ Ls0 ;
5 while Nnext 6= ∅ and l < lmax do
6 Ncurr := Nnext; Nnext := ∅;
7 foreach va ∈ Ncurr do
8 foreach neighbor index w in G that is not yet connected with va in GP do
9 t′ = va.t+ tvw;

10 b = GetCopyIndex(w, t′, C(w), δ);
11 if b < 0 then continue;
12 wb := (w, b, t′);
13 if wb /∈ C(w) then
14 VP := VP ∪ {wb},Nnext := Nnext ∪ {wb};
15 C(w) := C(w) ∪ {wb};
16 res, L(Lwb

) := UpdateLabels(L(Lva),L(Lwb
))

17 EP := EP ∪ (va, wb);
18 update := True;
19 l := l + 1;
20 do
21 update = False;
22 foreach edge (va, wb) ∈ EP do
23 res, L(Lwb

) := UpdateLabels(L(Lva),L(Lwb
));

24 if res then update := True;
25 while update;
26 find the minimum cost node copy dmin which has the minimum cost label Lmin

from all node copies with index d;
27 P := find path from s0 to dm by backtracking L(Lmin);
28 return P ;

5.3 Experiments

We evaluate the performance of ATWD based Label Correcting Algorithm with k-cycle
Elimination (ATWD-LCA-k-cycle). Since we have already compared different values of lmax

in Chapter 4, in this experiment, we will fix lmax = |V | − 1, which means we always let the

48

algorithm do the exhaustive discretization. Our main focus is to evaluate the precision of
ATWD-LCA-k-cycle and how does the algorithm perform under different values of k.

ATWD-LCA-k-cycle algorithm only eliminates cycles up to length k, and the solution
path Pr we find may have a smaller cost than the optimal path (if any negative cycle is
included in Pr). In other words, the solution is no longer guaranteed to be an upper bound
for the optimal solution unless it is confirmed that no cycle is introduced in Pr. Hence, the
precision score in experimental results of ATWD-LCA-k-cycle calculated using the definition
in Chapter 3, Section 3.4 can be greater than 1. We add a notation (N) after the precision
score if the solution contains negative cycles.

5.3.1 Building the Experimental Graphs

We modify the algorithm explained in Section 4.3.1 by removing the reduction factors r1, r2.
We also remove the negative cycle elimination process so that the test graph will (possibly)
have negative cycles. We select several of Solomon’s data sets 0100_RC201, 0200_RC201
with 100 and 200 nodes, and we generate a time-constrained graph G for each of the data
sets. We apply the ATWD-LCA-k-cycle algorithm on these graphs, and we compared the
performance under different values of k. We also compared the running time of ATWD-LCA-
k-cycle against the time for solving the exact ESPPTW integer programming formulation.
Note that we report the statistics related to each source and destination pair instead of
reporting averaged results of 10 pairs (as in earlier chapters). This is because, with the
possible existence of negative cycles, the precision may be either a lower bound or an upper
bound, and aggregating the precision does not make sense.

5.3.2 Tuning the Parameter k

In this section, we evaluate the performance of ATWD-LCA-k-cycle under different values
of k. We fix the value of τ, δ to be τ = 0.2, δ = 1. We randomly selected three source and
destination pairs and perform three sets of tests (Test # 1,2,3). We report the maximum
and average number labels saved for each node copy, and we compare the running time
of ATWD-LCA-k-cycle against the IP solving time (using the formulation presented in
Chapter 1, Section 1.3.3. Results are presented in Table 5.1.

When solving ESPPTW on a graph with 100 nodes, the proposed algorithm beats the
IP solution in one test case out of three. In test # 1, we find the optimal solution when
k ≤ 6, and the running time is faster than IP solving time. In test #2, the algorithm gives
the solution faster than IP, but the precision is 0.96, which is sub-optimal. Since increasing k
to 10 does not change the precision, we think the reason we cannot get the optimal solution

49

is because τ = 0.2 is too small, and the optimal path is pruned during the execution of the
algorithm. In test #3, the algorithm gets a better precision comparing to test #2, but the
running time is slower, and in this test, the algorithm does not perform as well as the IP.

When solving ESPPTW on graph with 200 nodes, our solution beats the IP solution in
all three tests. Since we notice that the IP solver takes a huge amount of time to solve the
optimal solution, so we manually terminate the IP solver at 1000 seconds and consider the
best objective as the “optimal” solution. In this case, the precision score no longer measures
the gap between our solution and the optimal solution.

In test #1, the proposed algorithm finds a better solution (with no negative cycle) with
k ≥ 8 in less than a minute, which is a valid solution with a lower cost. In test #2, the
algorithm finds a solution that is very close to the solution of IP solver in less time. In test
#3, it is interesting that the algorithm finds the same solution as the IP solver’s almost
immediately, and the number of labels generated is much smaller than that of test #1 and
#2. This is because the source node we use in this test has a relatively late beginning time,
so it is only reachable to a few other nodes, and hence the algorithm is able to create a very
small time-expanded graph and quickly find the solution.

5.4 Conclusion

In this chapter, we illustrate that the k-cycle elimination strategy can be applied to the
ATWD based label correcting algorithm. We present a new label definition and an en-
hanced dominance rule. The proposed algorithm takes the following two parameters: k,
which specifies the maximum length of a cycle we aim to eliminate; τ , which specifies how
many labels we keep per node. The intuition of adding k, τ comes from empirical findings:
most of the paths only contain small cycles [33], and most of the high-cost labels do not
contribute to finding the shortest path (an experimental observation). By setting a proper
k and τ , the proposed algorithm is able to quickly find the optimal or near-optimal solu-
tions. We also show that the designed algorithm can be used in larger graphs where optimal
solutions are extremely expensive to find.

50

ATWD-LCA-k-cycle with δ = 1, τ = 0.2
V Test(#) k Precision Labels(max) Labels(mean) Running Time(s) IP Time(s)

2 1.11 (N) 8 1.60 6.216
4 0.98 11 1.72 6.547

100 1 6 1 15 1.82 11.82 18.29
8 1 11 1.9 16.39
10 1 15 2.1 17.04
2 1.21 (N) 8 1.70 9.591
4 1.04(N) 10 1.74 11.435

100 2 6 1.04(N) 10 1.87 22.13 42.83
8 0.96 12 1.9 19.88
10 0.96 12 1.9 20.37
2 1.15 (N) 12 1.74 13.277
4 1.03 (N) 10 1.70 17.989

100 3 6 1.02 (N) 11 1.80 27.523 27.449
8 0.97 15 1.9 35.94
10 0.97 17 2.01 57.96
2 1.13 (N) 16 1.98 14.45
4 1.13 (N) 21 2.21 22.84

200 1 6 1.13 (N) 23 2.18 28.83 N/A
8 1.11 17 2.17 40.433
10 1.11 20 2.29 56.71
2 1.10 (N) 14 2.04 122.80
4 1.04(N) 32 2.32 232.22

200 2 6 1.02(N) 22 2.52 377.248 N/A
8 0.99 (N) 23 2.63 442.92
10 0.98 20 2.29 791.29
2 1 4 1.24 0.029
4 1 6 1.25 0.032

200 3 6 1 6 1.25 0.033 N/A
8 1 5 1.19 0.031
10 1 4 1.14 0.031

Table 5.1: ATWD Label Correcting Algorithm with k-Cycle Elimination under different k,
on different sized graphs with fixed time window sizes TW=120 (RC201).

51

Chapter 6

ATWD with Integer Programming

In this chapter, we present the Integer Programming (IP) based solution, which incorporates
the Adaptive Time Window Discretization (ATWD) idea to efficiently solve ESPPTW. We
first present the IP formulation of the problem within a time-expanded network context.
Then we present our approach for solving the ESPPTW. ATWD based IP solution is an
iterative refinement of the graph where the discretization happens on-the-fly while the
problem is being solved. We evaluate the approach and find that it is able to find an
optimal solution without time expanding the whole graph.

6.1 Integer Programming Formulation

The ESPPTW is defined in Chapter 1, Section 1.3. Since we use IP to solve the ESPPTW
on the partially time-expanded network derived by our ATWD algorithm, we need to add
additional constraints to the IP formulation. Suppose partial time-expanded network is
GP (VP , EP), where VP specifies the set of node copies and EP specifies the edges. For each
node copy v, we use v.i to denote its index and C(v.i) to denote the set of node copies with
the same index v.i. We also use V to denote the set of node indices in G. s, d represent the
source index and destination index respectively. The IP formulation of the ESPPTW on GP

has one decision vector x. xij , which is defined on ∀(i, j) ∈ EP , is a binary variable which
represents whether it is selected in the optimal solution path. Note that compared with the
IP formulation for ESPPTW introduced in Section 1.3.3, we do not have the decision vector
y because the time dependency is already incorporated in GP .

min
∑

(i,j)∈EP

cijxij , s.t. (6.1)

52

∑
i∈C(s)

∑
(i,j)∈EP

xij = 1 (6.2)

∑
j∈C(s)

∑
(i,j)∈EP

xij = 0 (6.3)

∑
j∈C(d)

∑
(i,j)∈EP

xij = 1 (6.4)

∑
i∈C(d)

∑
(i,j)∈EP

xij = 0 (6.5)

∑
(i,v)∈EP

xiv =
∑

(v,i)∈EP

xvi ≤ 1 ∀v ∈ VP , s.t. v.i /∈ {s, d} (6.6)

∑
(v,w)∈EP

xvw ≤ 1 ∀i ∈ V (6.7)

xij ∈ {0, 1} ∀(i, j) ∈ EP (6.8)

In the above formulation, the objective is defined in equation 6.1, which is to minimize
the total cost of the selected path. We impose the constraints in equations 6.2 - 6.8. Equa-
tion 6.2 restricts that there must have exactly one selected outgoing edge from one of the
node copies with the source index. Equation 6.3 restricts that no incoming edge should be
selected that points to any node copy with the source index. Similarly, we add the incoming
edge and outgoing edge restrictions to node copies with destination index in equations 6.4
- 6.5. Equation 6.6 ensures the edge connectivity: for all internal nodes, if there is one in-
coming edge, then there must be an outgoing edge. By combining this with equation 6.7,
we add another constraint which specifies that for each index, at most one incoming edge
and one outgoing edge can be selected for all node copies of that index. This ensures the
elementary property of the solution, meaning that the path is not allowed to visit an index
more than once. Equation 6.8 is the integrality constraint.

We denote the above IP formulation as a “discrete” version, while the ESPPTW IP
formulation presented in Section 1.3.3 is considered as a “continuous” version. Solving the
discrete version of IP formulation on partially time-expanded graphGP is empirically proved
to be much faster than solving the “continuous” IP formulation of ESPPTW on the original
graph G, during the experiments.

6.2 ATWD based IP Approach

In this section, we present the ATWD based IP approach. We denote the IP formulation
on the time-expanded network GP as ESPPTW(GP). Our approach works as follows:

53

1. create an initial time-expanded graph GP (Algorithm 8).

2. solve ESPPTW(GP), get the solution path p and the total cost c.

3. check if the solution implies that the graph GP needs refinement (Algorithm 9).

4. if the answer is no, then the algorithm terminates, and the path p is returned as the
optimal elementary shortest path.

5. If the answer is yes, we modify the graph by adding more node copies and edges (Al-
gorithm 9), and refine constraints in the IP formulation to accommodate the changes
to GP .

6. We do 2 - 5 repeatedly until no need for refinement is found while inspecting the
solution path. In each round a “warm start” is applied to speed up the solving.

A flowchart which illustrates this procedure is presented in Figure 6.1. Note that the solution
in the previous round will be a valid solution in the next round after the graph update.
Hence, we can apply warm start (i.e. IP solving starts from current solution) to significantly
improve the performance.

Algorithm 8 shows how we generate an initial time-expanded graph GP . For each node
index v with time window [ev, lv] in the original graph G, we create two node copies v0, v1

and assign ev, lv to them, respectively. For each node copy, we iterate through its neighbors
and connect it with the earliest reachable node copy.

Algorithm 8: Graph Initialization
Input: Original graph G(V,E).
Output: Time-expended graph GP (VP , EP).

1 foreach v ∈ V do
2 add nodes v0(v, 0, ev), v1(v, 1, lv) to VP ;
3 add edge (v0, v1) to EP ;
4 foreach vi ∈ VP do
5 for neighbor index m of v in G do
6 connect vi with the earliest reachable node copy wj with index w;
7 add edge (vi, wj) to EP ;
8 return GP (VP , EP);

Algorithm 9 updates the graph GP via probing the “neighborhood” of the current
optimal solution. In the graph initialization, each node is discretized into only two copies.
Due to the sparse discretization, any pair of nodes that are reachable in G may become
unreachable in GP since the intermediate node copies are missing. In other words, the sparse
discretization (with fewer copies per node) may add more waiting times when traversing

54

edges in GP . Thus, the intuition of Algorithm 9 is to check for edges in GP with high waiting
times, then improve it by adding a new node copy to the graph. We present the definition
of the waiting time as follows.

Definition 1. Consider a time-expanded graph G(VP , EP), the waiting time twait on
edge (va, wb) ∈ EP is defined as follows.

twait =

0 if va.t+ tvw ≤ ew

wb.t− (va.t+ tvw) otherwise

Note that we only count the waiting time when the arrival time va.t+ tvw is after the
beginning time of w: ew. This is because if the arrival is before the beginning time, then
there is no need to create a new node copy on index w since the waiting time is unavoidable.

Algorithm 9 proceeds as follows. In the loop from line 2 - 26, we loop over all nodes along
with the current solution path P , and for each node xa ∈ P , we probe its “neighborhood”
area by performing Breath-First Search (line 4, 6, 7). We use node set Ncurr to save the
nodes to examine in current layer, and Nnext to save the nodes of the next layer for the
next iteration. dmax is used to restrict the maximum layers that the algorithm probes. In
each loop of line 6, we pop a node yb from Ncurr and iterate through each of its neighbor z
in G. We check if there exists a node copy zc in GP such that the time on zc matches the
threshold δ. If we do not find the copy and index z is not reachable, then we move on to the
next neighbor index. If we do not find the copy and z is reachable, we create a new copy
zc of index z and connect it to the network GP (line 12 - 20). If we find the copy zc, then
we calculate the waiting time twait using Definition 1. If twait ≥ δ, we will repeat lines 12 -
20 to create a new copy and connect it to the network GP . Otherwise, no new copy will be
created. We add the neighbor node copies probed in the current layer to Nnext (line 20, 25).
The graph update algorithm recursively probes a “deeper” neighborhood on one additional
layer (line 4, 5, 26) until the maximum depth dmax is reached.

Note that when connecting the new copy zc to the graph, we first loop over all the
incoming edges of index z in G, and for each neighbor v such that there is an edge from v

to z, we only connect the latest copy vl of index v with zc (line 15 - 16). We then loop over
all the outgoing edges of index w in G, and for each neighbor w such that there is an edge
from z to w, we only connect zc with the earliest copy we of that index (line 18 - 19). By
doing this, the number of edges between node copies is minimized.

The solution check step in Figure 6.1 is performed as follows. We traverse the solution
path P . For each edge (xa, yb) on P , we calculate the waiting time twait on edge (xa, yb)
using Definition 1. If twait ≥ δ, the solution check will return “yes”, meaning the graph

55

Algorithm 9: Graph Update
Input: GP (VP , EP), current solution path P , maximum depth dmax

Output: Updated graph GP (VP , EP)
1 initialize depth:= 0, Ncurr := ∅,Nnext := ∅
2 foreach node xa ∈ P do
3 Nnext := {xa};
4 while depth < dmax do
5 Ncurr := Nnext;
6 foreach node yb ∈ Ncurr do
7 foreach neighbor index z of node y in G do
8 find the neighbor of zc with index z;
9 if not found then

10 if z is not reachable from yb then continue;
11 else
12 create a new copy zc;
13 VP := VP ∪ zc; EP := EP ∪ (yb, zc);
14 foreach node index v ∈ V such that (v, z) ∈ E do
15 vl := latest copy that is reachable to zc in GP ;
16 EP := EP ∪ (vl, zc);
17 foreach node index w ∈ V such that (z, w) ∈ E do
18 we := earliest copy that is reachable from zc in GP ;
19 EP := EP ∪ (zc, we);
20 Nnext := Nnext ∪ we;
21 else
22 calculate wait time twait on edge (yb, zc);
23 if twait ≥ δ then
24 do line 12 - line 20;
25 else add neighbors of yb in GP to Nnext;
26 depth:=depth+1;
27 return GP (VP , EP);

56

Start

Create initial graph GP

Solve ESPPTW(GP), get solution path P and cost c

Solution check
Needs refinement?

Modify GP by adding nodes and edges,
nodes are created whenever we find
an edge with “long” waiting time

Refine constraints in ESPPTW(GP)

Stop

yes

no

Figure 6.1: Flow Chart illustrating the ATWD based IP Approach

needs further refinement. When the algorithm terminates, the extra waiting time on each
edge along the solution path will be smaller than δ.

Note that the solution will not be optimal even with respect to the threshold parameter
δ unless we set dmax ≥ |V |. Setting dmax ≥ |V | will let the graph update procedure exhaus-
tively discretize the whole graph. We compare the performance of two different algorithms
in the experiment section.

6.3 Experiments

6.3.1 ATWD based IP Solution

We generate a time-constrained graph G with negative cycles using Solomon’s 0100_RC201.
We use the same test graph generation approach as introduced in Chapter 5. We randomly
selected 10 pairs of source and destinations, and test the ATWD based IP approach on each
of the pairs, using three different dmax values: dmax = 1, 2, 3 and six different thresholds:
δ = 1, 2, 4, 10, 20, 30. We also experiment with solving the discrete IP formulation on a
fully time-expanded graph GT (VT , ET). The comparison is to demonstrate that the ATWD
method is able to compute a good quality result in a more efficient way, without constructing
the entire time-expanded network. We present the aggregated results in Table 6.1.

57

IP with ATWD IP with BFS Discretization
δ dmax Precision VP EP Time(s) Precision VT ET Time(s)

1 0.92 505 9149 1.589
1 2 0.99 766 16545 6.186 1 6820 89263 24.835

3 1 861 18824 6.951
1 0.89 480 8642 1.532

2 2 0.99 733 15615 5.831 1 5101 68037 13.141
3 1 846 18149 6.814
1 0.87 477 8585 1.476

4 2 0.98 694 14362 5.294 0.99 3347 43648 9.112
3 0.99 800 16832 5.444
1 0.76 445 8405 1.431

10 2 0.95 650 13301 3.712 0.97 1551 22779 5.924
3 0.96 732 14177 4.891
1 0.74 431 7201 1.224

20 2 0.87 508 9499 2.043 0.91 910 14335 3.423
3 0.91 579 11281 2.878
1 0.68 343 5186 0.713

30 2 0.73 412 7069 1.196 0.79 690 9365 2.632
3 0.79 480 8681 2.218

Table 6.1: Comparing ATWD based IP solution against solving discrete IP formulation with
pre-constructing time-expanded network using breadth-first search, on graph generated from
0100_RC201, with different δ and dmax.

As shown in Table 6.1, ATWD based IP solution solves the ESPPTW faster than
ATWD-LCA-k-cycle algorithm. This can be observed by cross comparing this table with
Table 5.1. The main reason is that the partially time-expanded graph GP constructed using
ATWD based IP approach is much smaller than the graph constructed by ATWD-LCA-k-
cycle, since label correcting algorithm exhaustively discretizes the whole graph if lmax is not
specified. Comparing the ATWD IP solution with solving the discrete IP formulation on
fully time-expanded graph GT (VT , ET), ATWD based IP solution is able to find the optimal
solution by constructing a partial of the entire time-expanded network. The difference is
more noticeable when δ becomes smaller.

When dmax = 1, the algorithm cannot find the optimal solution. The best precision
comes when δ = 1 at 0.92. When dmax = 2, δ = 1, the algorithm finds 9 optimal solutions
out of 10, and the averaged precision is 0.99. When dmax = 3, the algorithm always finds
the optimal solutions in 10 different tests, even when we set δ = 2.

When dmax = 1, the algorithm will only probe the neighborhood of current solution
1 hop away. As we increase the value of dmax, the algorithm starts to probe further away
from the current solution path. If the nodes on optimal solution are all probed, then the

58

resulting path found when algorithm terminates will be optimal. Hence as we increase dmax,
the solution will likely to get better.

6.4 Conclusion

In this chapter, we present an ATWD based IP solution. Our solution is an iterative pro-
cedure, which refines the graph according to the current IP solution. Since the discrete
version of the ESPPTW IP formulation is much easier to solve compared to the continuous
version, the iterative approach runs faster than the continuous IP solution. Additionally,
we apply the strategy of discretizing the “neighborhoods” of the current solution, which
allows the optimal solution to be found while only the partial graph is discretized. We
demonstrate that ATWD based IP solution constructs a much smaller graph than the label
correcting algorithms, thereby it outperforms the ATWD-LCA-k-cycle algorithm (presented
in Chapter 5) in our experiments. We believe that the iterative refinement approach can be
combined with other IP formulations to solve similar time-constrained problems, such as
dynamic network flow problems, vehicle routing problems.

59

Chapter 7

Conclusions

In this thesis, we present the Adaptive Time Window Discretization (ATWD) approach,
which adopts the time-expanded network idea to construct a partially time-expanded net-
work. ATWD method can be easily combined with existing label setting algorithms, label
correcting algorithms to solve Shortest Path Problems with Time Windows (SPPTW). We
demonstrate that existing solutions for handling negative cycles in the graph, including
k-cycle elimination, IP formulation can also be combined with ATWD to solve Elementary
Shortest Path Problem with Time Windows (ESPPTW). We experiment with different
ATWD based algorithms and show that ATWD method is able to efficiently solve SPPTW
with an acceptable precision. Proposed algorithms for solving ESPPTW on graphs with
negative cycles, including ATWD based label correcting algorithm with k-cycle elimination,
and ATWD based IP solution, have high scalability and can be applied on graphs with large
sizes.

7.1 Applying ATWD on Graphs with Real Times

ATWD takes a threshold parameter δ which controls the granularity of the time-expanded
network, and setting δ closer to 0 will generally gives a more optimized result. We prove
that when the graph contains integral times, the ATWD based algorithms are able to find
the optimal solution with δ = 1. If the graph contains real times, however, the algorithms
can still be used for generating good quality solutions with a minor change.

The discretization strategy that is used in this thesis is a “uniform discretization”: the
discrete time step remains the same between any adjacent node copies. While this strategy
performs well on graphs with integral times, it is not very effective for graphs with real
times. We present an “adaptive discretization” strategy in algorithm 10. Compared with

60

algorithm 2 introduced in Chapter 2, Section 2.4.3, the adaptive discretization strategy
creates a new node copy if there does not exist any node copy within δ time later (line 4).
If no such node copy is found, then we use the exact arrival time to create a new node
copy. This strategy tries to assign exact arrival times as much as possible. It eliminates the
overhead of time rounding up, which introduces extra waiting. Note that if the adaptive
discretization strategy is used, the maximum number of node copies may exceed d(ev−lv)/δe.

Algorithm 10: GetCopyIndex(Adaptive)
Input: Node index v, arrival time t, copies set C, threshold δ.
Output: Copy index a of the node copy

1 if t > lv then a := −1;
2 else
3 if t ≤ ev then t := ev;
4 if find a node copy va ∈ C such that va.t− t ∈ [0, δ) then
5 return va.c
6 a := len(C);
7 return a;

7.2 SPPTW with Soft Time Windows

In this thesis, we focus on SPPTW/ESPPTW with hard time windows: late arrivals are not
permitted on any node. Another problem definition is to allow late arrivals, with penalties.
Time windows specified at each vertex of the time-constrained graph can referred to as
soft time windows. The proposed ATWD based algorithms can be easily modified to solve
SPPTW/ESPPTW on graphs with soft time windows. Specifically, two modifications need
to be done when constructing the time-expanded graph. Firstly, whenever we add a node
copy that is outside of the time window, we add the penalty to each edge connecting to
that node; Secondly, with hard time windows, the algorithm only need to connect a node
copy with at most one node copy for each neighbor index. With soft time windows, this
strategy remains the same when we connect a node copy with another node copy that is
within its time window. However, for node copies that are outside of its time window, we
need to keep every incoming and outgoing edge if it is connecting to another “late” node
copy. The reason is that different node copies that are outside of the time window represent
different penalties, hence, we cannot do any optimization in this case.

61

7.3 Assigning Time Windows to Edges

In this thesis, we do not consider time windows on edges: each edge can be visited at any
time. If the edge is assigned with a time window, then it is also needed to be considered as
one of the time window constraints while solving the problem.

The ATWD based algorithms can be easily modified to solve SPPTW/ESPPTW on
graphs with time windows on edges. Whenever the algorithm explores an edge (v, w) in the
time-constrained graph G, we verify if the time window on edge allows one to reach to the
neighbor node. If the travel time exceeds the boundary of the time window, then the node
w will not be discretized.

7.4 Future Work

For SPPTW, ATWD provides the benefit of a fully time-expanded network without con-
structing the entire graph. We believe the ATWD method can also be embedded in existing
algorithms for solving other problems, such as dynamic network flow problems, vehicle rout-
ing problems with time windows (VRPTW). A future research direction of this thesis is to
investigate an ATWD based IP solution for VRPTW, where a similar refine-and-solve pro-
cess can be applied. Another research direction is to embed the ATWDmethod into dynamic
programming algorithms or IP formulations for the dynamic network flow problems.

62

Bibliography

[1] Michael J Bannister and David Eppstein. Randomized speedup of the bellman–ford
algorithm. In 2012 Proceedings of the Ninth Workshop on Analytic Algorithmics and
Combinatorics (ANALCO), pages 41–47. SIAM, 2012.

[2] John E Beasley and Nicos Christofides. An algorithm for the resource constrained
shortest path problem. Networks, 19(4):379–394, 1989.

[3] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–
90, 1958.

[4] Natashia Boland, John Dethridge, and Irina Dumitrescu. Accelerated label setting
algorithms for the elementary resource constrained shortest path problem. Operations
Research Letters, 34(1):58–68, 2006.

[5] Natashia Boland, Mike Hewitt, Duc Minh Vu, and Martin Savelsbergh. Solving
the traveling salesman problem with time windows through dynamically generated
time-expanded networks. In International Conference on AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pages 254–262.
Springer, 2017.

[6] Guy Desaulniers, Jacques Desrosiers, Marius M Solomon, François Soumis, and Daniel
Villeneuve. A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. In Fleet management and logistics, pages 57–93. Springer,
1998.

[7] Guy Desaulniers and Daniel Villeneuve. The shortest path problem with time windows
and linear waiting costs. Transportation Science, 34(3):312–319, 2000.

[8] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization
algorithm for the vehicle routing problem with time windows. Operations Research,
40(2):342–354, 1992.

[9] Martin Desrochers and François Soumis. A generalized permanent labelling algorithm
for the shortest path problem with time windows. INFOR: Information Systems and
Operational Research, 26(3):191–212, 1988.

[10] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time
constrained routing and scheduling. Handbooks in operations research and management
science, 8:35–139, 1995.

63

[11] Jacques Desrosiers, François Soumis, and Martin Desrochers. Routing with time win-
dows by column generation. Networks, 14(4):545–565, 1984.

[12] Jacques Desrosiers, Francois Soumis, Martin Desrochers, and Michel SauveGerad.
Methods for routing with time windows. European Journal of Operational Research,
23(2):236–245, 1986.

[13] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[14] Michael Drexl and Stefan Irnich. Solving elementary shortest-path problems as mixed-
integer programs. OR spectrum, 36(2):281–296, 2014.

[15] Michael Drexl and Eric Prescott-Gagnon. Labelling algorithms for the elementary
shortest path problem with resource constraints considering eu drivers’ rules. Logistics
Research, 2(2):79–96, 2010.

[16] Irina Dumitrescu and Natashia Boland. Improved preprocessing, labeling and scaling
algorithms for the weight-constrained shortest path problem. Networks: An Interna-
tional Journal, 42(3):135–153, 2003.

[17] Québec). Département de génie industriel École polytechnique (Montréal and
DJ Houck. Traveling Salesman Problem as a Constrained Shortest Path Problem:
Theory and Computational Experience. Ecole polytechnique de Montréal, 1978.

[18] Faramroze G Engineer, George L Nemhauser, and Martin WP Savelsbergh. Dynamic
programming-based column generation on time-expanded networks: Application to the
dial-a-flight problem. INFORMS Journal on Computing, 23(1):105–119, 2011.

[19] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algo-
rithm for the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks: An International Journal, 44(3):216–229,
2004.

[20] Mirko Ferrati and Lucia Pallottino. A time expanded network based algorithm for
safe and efficient distributed multi-agent coordination. In 52nd IEEE Conference on
Decision and Control, pages 2805–2810. IEEE, 2013.

[21] Frank Fischer and Christoph Helmberg. Dynamic graph generation for the shortest
path problem in time expanded networks. Mathematical Programming, 143(1-2):257–
297, 2014.

[22] Lisa Fleischer and Martin Skutella. The quickest multicommodity flow problem. In
International Conference on Integer Programming and Combinatorial Optimization,
pages 36–53. Springer, 2002.

[23] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

[24] Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica
Ca, 1956.

64

[25] Lester R Ford Jr and Delbert R Fulkerson. Flows in networks. Princeton university
press, 2015.

[26] Michael L Fredman and Robert E Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[27] William J Guerrero, Nubia Velasco, Caroline Prodhon, and Ciro-Alberto Amaya. On
the generalized elementary shortest path problem: A heuristic approach. Electronic
Notes in Discrete Mathematics, 41:503–510, 2013.

[28] Gabriel Y Handler and Israel Zang. A dual algorithm for the constrained shortest path
problem. Networks, 10(4):293–309, 1980.

[29] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[30] Koki Ho, Olivier L De Weck, Jeffrey A Hoffman, and Robert Shishko. Dynamic mod-
eling and optimization for space logistics using time-expanded networks. Acta Astro-
nautica, 105(2):428–443, 2014.

[31] Toshihide Ibaraki, Shinji Imahori, Mikio Kubo, Tomoyasu Masuda, Takeaki Uno, and
Mutsunori Yagiura. Effective local search algorithms for routing and scheduling prob-
lems with general time-window constraints. Transportation science, 39(2):206–232,
2005.

[32] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints.
In Column generation, pages 33–65. Springer, 2005.

[33] Stefan Irnich and Daniel Villeneuve. The shortest-path problem with resource con-
straints and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing,
18(3):391–406, 2006.

[34] Donald B Johnson. Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM (JACM), 24(1):1–13, 1977.

[35] Ekkehard Köhler, Katharina Langkau, and Martin Skutella. Time-expanded graphs for
flow-dependent transit times. In European Symposium on Algorithms, pages 599–611.
Springer, 2002.

[36] Antoon WJ Kolen, AHG Rinnooy Kan, and Harry WJM Trienekens. Vehicle routing
with time windows. Operations Research, 35(2):266–273, 1987.

[37] Leonardo Lozano, Daniel Duque, and Andrés L Medaglia. An exact algorithm for the
elementary shortest path problem with resource constraints. Transportation Science,
50(1):348–357, 2016.

[38] Stefano Pallottino and Maria Grazia Scutella. Shortest path algorithms in transporta-
tion models: classical and innovative aspects. In Equilibrium and advanced transporta-
tion modelling, pages 245–281. Springer, 1998.

65

[39] Warren B Powell and Zhi-Long Chen. A generalized threshold algorithm for the shortest
path problem with time windows. In Network Design: Connectivity and Facilities
Location, pages 303–318, 1997.

[40] Luigi Di Puglia Pugliese and Francesca Guerriero. Shortest path problem with for-
bidden paths: The elementary version. European Journal of Operational Research,
227(2):254–267, 2013.

[41] Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints. Dis-
crete Optimization, 3(3):255–273, 2006.

[42] Giovanni Righini and Matteo Salani. New dynamic programming algorithms for the
resource constrained elementary shortest path problem. Networks: An International
Journal, 51(3):155–170, 2008.

[43] Alfonso Shimbel. Structure in communication nets. In Proceedings of the symposium
on information networks, pages 119–203. Polytechnic Institute of Brooklyn, 1954.

[44] Matthew R Silver and Olivier L De Weck. Time-expanded decision networks: A frame-
work for designing evolvable complex systems. Systems Engineering, 10(2):167–188,
2007.

[45] Solomon et al. Solomon benchmarking problems. http://w.cba.neu.edu/~msolomon/
problems.htm. Accessed: 2020-11-27.

[46] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research, 35(2):254–265, 1987.

[47] Marius M Solomon and Jacques Desrosiers. Survey paper—time window constrained
routing and scheduling problems. Transportation science, 22(1):1–13, 1988.

[48] Leonardo Taccari. Integer programming formulations for the elementary shortest path
problem. European Journal of Operational Research, 252(1):122–130, 2016.

[49] Ignacio Vitale and Rodolfo Dondo. On alternative formulations to the shortest path
problem with time windows and capacity constraints. In I Simposio Argentino de
Informática Industrial e Investigación Operativa (SIIIO 2019)-JAIIO 48 (Salta), 2019.

[50] Duc Minh Vu, Mike Hewitt, Natashia Boland, and Martin Savelsbergh. Dynamic
discretization discovery for solving the time-dependent traveling salesman problem with
time windows. Transportation Science, 54(3):703–720, 2020.

66

http://w.cba.neu.edu/~msolomon/problems.htm
http://w.cba.neu.edu/~msolomon/problems.htm

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Shortest Path Problem with Time Windows
	SPP
	SPPTW
	Problem Definition

	ESPPTW
	Adding the Elementary Constraint
	ESPPRC
	ESPPTW IP Formulation
	Solving SPPTW/ESPPTW Efficiently

	Thesis Outline

	Time-expanded Network
	Definition of Time-expanded Network
	Reducing the Graph Complexity
	The Literature
	ATWD
	Full Discretization
	Adaptive Discretization
	ATWD: Algorithm Explanation
	Notion of Adaptive
	Properties of the Resulting Graph

	ATWD on Label Setting Algorithm
	Problem Definition
	Label Setting Algorithm with ATWD
	Algorithm Description
	Proof of Correctness
	Running Time Complexity

	An Illustrative Example
	Experiments
	Building the Experimental Graphs
	ATWD-LSA with Different Thresholds
	ATWD-LSA on Graphs with Different Sizes
	ATWD-LSA on Graphs with Different Time Window Sizes

	Conclusion

	ATWD on Label Correcting Algorithm
	Label Correcting Algorithm with ATWD
	Algorithm Description
	Correctness Analysis
	Running time Complexity

	An Illustrative Example
	Experiments
	Building the Experimental Graphs
	ATWD-LCA with Different Thresholds
	ATWD-LCA with Bounded Maximum Path Length

	Conclusion

	Label Correcting Algorithm with k-Cycle Elimination
	Dominance and Label Pruning
	Labels
	Dominance Rules
	Label Pruning

	ATWD based Label Correcting Algorithm with k-Cycle Elimination
	Experiments
	Building the Experimental Graphs
	Tuning the Parameter k

	Conclusion

	ATWD with Integer Programming
	Integer Programming Formulation
	ATWD based IP Approach
	Experiments
	ATWD based IP Solution

	Conclusion

	Conclusions
	Applying ATWD on Graphs with Real Times
	SPPTW with Soft Time Windows
	Assigning Time Windows to Edges
	Future Work

	Bibliography

