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Abstract: Noisy galvanic vestibular stimulation (nGVS) can improve different motor, sensory, and
cognitive behaviors. However, it is unclear how this stimulation affects brain activity to facilitate
these improvements. Functional near-infrared spectroscopy (fNIRS) is inexpensive, portable, and
less prone to motion artifacts than other neuroimaging technology. Thus, fNIRS has the potential to
provide insight into how nGVS affects cortical activity during a variety of natural behaviors. Here we
sought to: (1) determine if fNIRS can detect cortical changes in oxygenated (HbO) and deoxygenated
(HbR) hemoglobin with application of subthreshold nGVS, and (2) determine how subthreshold
nGVS affects this fNIRS-derived hemodynamic response. A total of twelve healthy participants
received nGVS and sham stimulation during a seated, resting-state paradigm. To determine whether
nGVS altered activity in select cortical regions of interest (BA40, BA39), we compared differences
between nGVS and sham HbO and HbR concentrations. We found a greater HbR response during
nGVS compared to sham stimulation in left BA40, a region previously associated with vestibular
processing, and with all left hemisphere channels combined (p < 0.05). We did not detect differences
in HbO responses for any region during nGVS (p > 0.05). Our results suggest that fNIRS may be
suitable for understanding the cortical effects of nGVS.

Keywords: functional near-infrared spectroscopy; noisy galvanic vestibular stimulation; non-invasive
brain stimulation; stochastic stimulation

1. Introduction

Subthreshold noisy galvanic vestibular stimulation (nGVS) is a non-invasive technique
that delivers noisy, alternating electrical current through surface electrodes on the mastoid
bones. This stimulation activates both vestibular hair cells and afferents of the otoliths
and semicircular canals [1,2]. nGVS can improve standing balance [3–5], walking [5–8],
upper-limb function [9,10], vestibular-ocular function [11,12], sensory perception [13,14],
memory [15], and visuospatial navigation [16]. The improvements in motor function are
also evident in clinical populations, such as those with bilateral vestibulopathy [3,17].
The proposed mechanism for the improvements seen in human performance is via the
phenomenon of stochastic resonance [13,14,18]. Stochastic resonance refers to the improved
ability to detect stimuli, or better output signal quality, in a nonlinear system with the addi-
tion of noise [19,20]. The effects of nGVS are likely the result of the fact that the vestibular
afferents terminate in the vestibular nuclei, which can influence motor behavior through
their connections with oculomotor circuitry and via the vestibulospinal tract [21–23]. Since
the vestibular nuclei have dense connections with the thalamus, nGVS has the potential to
affect a variety of brain regions and thus behavior [24]. However, knowledge of how nGVS
affects cortical activity is still limited.
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A few studies have used functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) to show where in the brain non-noisy, suprathreshold direct
current [25,26] or sinusoidal [27–29] galvanic vestibular stimulation influences. This work
reported activations in several brain regions, including the parieto-insular vestibular cortex
(PIVC) and supramarginal gyrus (BA 40). It is unclear whether subthreshold nGVS activates
similar regions.

Functional near-infrared spectroscopy (fNIRS) is a non-invasive technology that uses
near-infrared light to measure relative cortical changes in oxygenated (HbO) and deoxy-
genated (HbR) hemoglobin as a proxy for neural activity [30]. The electrical currents from
nGVS equipment do not interfere with the fNIRS optical readings [31], making this a
particularly well-suited technology to determine how this stimulation might affect cortical
activity. In addition, fNIRS does not suffer from the same limitations as fMRI and other
neuroimaging modalities, such as having to restrict lower- and upper-limb movements,
and it is safe and considerably more portable and affordable [32]. Since many human
behaviors involve movement, it is important to have the ability to monitor how nGVS
affects cortical activity during such tasks and is related to functional improvements. The
advantages of fNIRS—its portability and affordability—make it also suitable to study how
changes in cortical activity induced by nGVS impact different cognitive behaviors as well.

Previous studies using fNIRS to monitor cortical activity in response to vestibular
stimulation have only focused on non-noisy stimulation paradigms, such as head/body
movements [33,34], caloric vestibular stimulation [35,36], and suprathreshold direct current
galvanic vestibular stimulation [37]. Consequently, as an initial step towards the wider use
of fNIRS in brain stimulation research, we had two objectives for this study: (1) determine
if fNIRS can detect cortical changes in HbO and HbR with the application of subthreshold
nGVS, and (2) determine how subthreshold nGVS affects this fNIRS-derived hemodynamic
response in a resting-state paradigm.

2. Materials and Methods
2.1. Participants

A total of twelve healthy right-handed adults (6 females and 6 males, age: 29 ± 6
years) participated in this study. Exclusion criteria included: metallic implants in the
head or neck; brain or spinal cord surgery; epilepsy or seizures; allergy to rubbing alcohol
and/or conductive paste/gel; uncorrected visual impairment; severe skin condition at the
electrode site; musculoskeletal injury or a condition affecting standing or walking; syncope
or fainting spells; concussion or head trauma in the last year; electronic implants in the
body; pregnancy or possibility of; consumption of recreational drugs, coffee, or alcohol 8 h
before the study; neurological, auditory, or vestibular condition. The Office of Research
Ethics at Simon Fraser University approved the study and participants gave informed
written consent before participating. Data availability statement is included at the end of
the manuscript.

2.2. Noisy Galvanic Vestibular Stimulation

An isolated current stimulator (A395R, World Precision Instruments, Sarasota, FL,
USA) connected to two round electrodes (2 in., UltraStim X, Axelgaard Manufacturing
Co., Ltd., Fallbrook, CA, USA) placed on the participants’ mastoid processes provided
the stimulation. We cleaned the skin with alcohol before placing the electrodes and used
conductive gel (Spectra 360, Parker Laboratories Inc., Fairfield, NJ, USA) to improve
connectivity. We also secured the electrodes in place with adhesive tape (Nexcare, 3M,
Saint Paul, MN, USA) to prevent peeling and/or displacement.

We used MATLAB (MathWorks, Natick, MA, USA) custom scripts to generate the
noisy signal, which was then sent to the stimulator at a rate of 60 Hz via an acquisition
card (USB-6002, National Instruments Corporation, Austin, TX, USA). The signal had a 1/f
power spectrum with a zero-mean linearly detrended Gaussian distribution in the range of
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0.1–10 Hz. Previously, nGVS studies have used these parameters in individuals with and
without movement disorders [9,10,38].

At the beginning of the testing session, we measured each participant’s cutaneous
threshold by delivering the noisy signal. Current increased in increments of 20 µA from
a baseline value of 10 µA, and participants indicated whether they could feel a tingling
sensation for 10 consecutive seconds. If they could not, we increased the current by another
step. Once participants reported feeling the stimulation, we set the signal to 80% of this
current value [5,8,17]. Subsequently, we confirmed that participants did not feel the current
(average peak current: 183 +/− 95 µA), which we delivered as the stimulation magnitude
for the experimental session.

2.3. Functional Near-Infrared Spectroscopy

We measured relative changes in HbO and HbR using an 8 × 8 NIRSport 2 system
(NIRx, Medical Technologies LLC, Berlin, Germany), operating at 760 and 850 nm wave-
lengths. We used BA40 as the primary region of interest (ROI), as it is involved in vestibular
processing [24,39]. BA39 was chosen as the secondary ROI, as it showed activation with
the application of GVS in previous fMRI studies [24,29]. We placed optodes on locations
with >25% ROI specificity according to the fNIRS Optode’s Location Decider (fOLD) [40].
Figure 1 shows relevant channels and their locations. Aurora 1.3 software (NIRx, Medical
Technologies LLC, Berlin, Germany) captured the data at 8.7 Hz.
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Figure 1. Locations of optodes and channels relative to the 10/10 international system. Detectors and sources are shown in
blue and red, respectively. BA40 (purple) included channels 1, 2, and 5 on the left hemisphere and 7, 8, and 11 on the right
hemisphere. BA39 (yellow) included channels 3, 4, and 6 on the left hemisphere and 9, 10, and 12 on the right hemisphere.
Ch: Channel. Cz: Vertex. Iz: Inion. LPA: Left pre-auricular. Nz: Nasion. RPA: Right pre-auricular.
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2.4. Experimental Procedure

We block randomized (block size: 2, pseudo-random number generator [41]) partici-
pants to start with either nGVS or sham stimulation (Figure 2, Panel A). The only difference
between nGVS and sham stimulation conditions was that, during sham trials, no electrical
stimulation was delivered via the electrodes. Participants sat on a standard office chair
with locking casters. We instructed them to avoid moving the trunk, head, and jaw as
much as possible to prevent motion artifacts. They were blinded to the order of stimu-
lation (Sham vs. nGVS) and told that nGVS would be applied at random intervals. The
experiment began once participants expressed that they were ready, approximately 13–50
s after commencing the data recording. During both stimulation conditions, participants
focused for thirty seconds on a crosshair displayed on a computer screen in front of them
(Figure 2, Panel B). They then rested quietly for another thirty seconds, in which they were
free to stop focusing on the crosshair. Repeating trials for specific conditions was similar to
experimental designs from previous studies [42,43]. Participants completed five repetitions
of the stimulation and rest combination before taking a 1-min break. During the break,
they remained seated and silent. After the break, they performed five more repetitions of
the remaining stimulation condition and rest combination.
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completing 5 repetitions of Condition A and Rest, participants took a 1-min break before completing 5 repetitions of
Condition B and Rest. Panel B: Experimental setup. Participants wore fNIRS cap and focused on a crosshair while receiving
nGVS or sham stimulation. Dotted circle indicates approximate location of stimulating electrode.

2.5. Data and Statistical Analysis

We analyzed data in a similar manner to other studies [42–44]. In terms of preprocess-
ing steps, The MATLAB-based Homer 2 toolbox [45] first converted raw fNIRS signals into
optical density changes, then into HbO and HbR concentrations. Specifically, we pruned
the channels if the raw data had a signal-to-noise ratio < 3. We also used the hybrid spline
interpolation and Savitzky-Golay method [46] to correct optical density values for motion
and applied a 0.5 Hz low pass filter [47]. We converted optical density signals to HbO
and HbR concentrations using the modified Beer–Lambert law with a partial pathlength
factor of 6.0 [48]. We calculated the hemodynamic response function with ordinary least
squares to solve the general linear model using consecutive Gaussian functions with sep-
arations and standard deviations of 0.5 s, and then applied a 3rd order polynomial drift
correction [42,44,46]. The time course for the function was from 2 s before the onset of the
stimulation to 10 s after the stimulation was turned off.

To investigate whether nGVS elicited cortical effects in the selected ROIs, we compared
the differences between nGVS and sham HbO and HbR group concentrations using one-
sample t-tests in SPSS Statistics (IBM Corp., Armonk, NY, USA). For each participant, we
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calculated the HbO and HbR average channel concentrations between 3 and 30 s after the
onset of nGVS across the five trial repetitions. We chose this time interval to account for
a delay in the hemodynamic response following the onset of the stimulation. Although
the exact delay time for this type of stimulation and paradigm is unknown, starting this
time window at values between 0 to 5 s after the onset of nGVS produces similar results
to those reported below. We then averaged the channels corresponding to each ROI
(Figure 1) to obtain a measure for the specific brain regions. Due to the exploratory nature
of this study, we also compared the per-channel concentrations to examine which channels
the application of nGVS impacted, and we did not correct statistical tests for multiple
comparisons.

3. Results

Figure 3 shows the hemodynamic response functions for HbO and HbR in the nGVS
and sham conditions. From visual inspection, mean values for HbO during the nGVS and
sham conditions tended to remain above zero, with the response slightly higher in the
nGVS condition, particularly in relation to the left hemisphere. For HbR, mean values
were elevated in the nGVS condition compared to those in the sham condition for the
whole duration of the noisy stimulation. This is evident in all channels as well as BA40 and
BA39 analyses.

Table 1 highlights statistical test results for the different ROIs. We did not detect statis-
tically significant differences between nGVS and sham, in either ROI, or their combination
when comparing HbO average concentration values during the analysis window. For HbR,
values in the nGVS condition for the left BA40 (p = 0.032), and for the left hemisphere
when all channels were combined (p = 0.040), were significantly different from those in the
sham condition. For the left hemisphere, 9/12 and 10/12 participants showed an increase
in HbR when receiving nGVS when all channels were combined, and when focusing on
BA40, respectively. HbR average values on the right hemisphere indicated a trend for BA40
(p = 0.079) and when combining all channels (p = 0.065). For the right hemisphere, 9/12
participants showed an increase in HbR while receiving nGVS when all channels were
combined, and when focusing on BA40.

Table 1. Region of Interest HbO and HbR average concentration differences between nGVS and
sham stimulation.

HbO

ROI t df p-value Conc. Diff. (10−8 mol) 95% CI (10−8 mol)

All Ch. L 0.14 11 0.887 0.75 −10.64, 12.14
All Ch. R −0.23 11 0.822 −1.28 −13.56, 11.00
BA40 L 0.05 11 0.960 0.26 −10.64, 11.16
BA40 R −0.54 11 0.602 −2.72 −13.89, 8.44
BA39 L 0.23 11 0.825 1.24 −10.84, 13.33
BA39 R 0.02 11 0.980 0.16 −13.50, 13.82

HbR

ROI t df p-value Conc. Diff. (10−8 mol) 95% CI (10−8 mol)

All Ch. L 2.33 11 0.040 * 2.16 0.12, 4.20
All Ch. R 2.05 11 0.065 1.70 −0.12, 3.52
BA40 L 2.46 11 0.032 * 2.84 0.30, 5.39
BA40 R 1.94 11 0.079 2.23 −0.30, 4.77
BA39 L 1.69 11 0.118 1.48 −0.44, 3.40
BA39 R 1.12 11 0.285 1.16 −1.12, 3.44

Ch: Channels, CI: Confidence Interval, Conc: Concentration, Diff: Difference, df = degrees of freedom, L: Left, R:
Right, ROI: Region of Interest. Significant results are bolded (* p ≤ 0.05).



Sensors 2021, 21, 1476 6 of 11Sensors 2021, 21, x FOR PEER REVIEW 6 of 12 
 

 

 

Figure 3. Hemodynamic response function for HbO and HbR for all channels combined (top panel), BA40 (middle panel), 

and BA39 (bottom panel) in nGVS and sham conditions. Concentration changes (mean: solid line; standard error: shade) of 

channel combinations vs. time (s) are presented. Columns 1 and 2 correspond to values of the left hemisphere, whereas col-

umns 3 and 4 corresponds to values of the right hemisphere. Vertical dashed lines indicate the onset of nGVS (i.e., time 0). 

Participants received stimulation from 0 to 30 s. Yellow rectangle indicates analysis window (i.e., 3 to 30 s after stimulation 

onset). 

When comparing per-channel concentration mean values (Table 2) for HbO, none of 

the channels were significantly different in the nGVS condition compared to sham. For 

HbR, channels 1 (p = 0.035, left hemisphere) and 7 (p = 0.047, right hemisphere) were sig-

nificantly different when participants received nGVS compared to the sham condition. 

Both channels formed part of BA40 and were on the same location, but opposite hemi-

spheres. Channels 2 (p = 0.071, BA40 left hemisphere) and 3 (p = 0.073, BA39 left hemi-

sphere) displayed only a trend towards significance. 

Figure 3. Hemodynamic response function for HbO and HbR for all channels combined (top panel), BA40 (middle panel),
and BA39 (bottom panel) in nGVS and sham conditions. Concentration changes (mean: solid line; standard error: shade) of
channel combinations vs. time (s) are presented. Columns 1 and 2 correspond to values of the left hemisphere, whereas
columns 3 and 4 corresponds to values of the right hemisphere. Vertical dashed lines indicate the onset of nGVS (i.e.,
time 0). Participants received stimulation from 0 to 30 s. Yellow rectangle indicates analysis window (i.e., 3 to 30 s after
stimulation onset).

When comparing per-channel concentration mean values (Table 2) for HbO, none of
the channels were significantly different in the nGVS condition compared to sham. For HbR,
channels 1 (p = 0.035, left hemisphere) and 7 (p = 0.047, right hemisphere) were significantly
different when participants received nGVS compared to the sham condition. Both channels
formed part of BA40 and were on the same location, but opposite hemispheres. Channels 2
(p = 0.071, BA40 left hemisphere) and 3 (p = 0.073, BA39 left hemisphere) displayed only a
trend towards significance.
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Table 2. Per-channel HbR average concentration differences between nGVS and sham stimulation.
Channels are ordered according to their p values.

Channel Hemisphere t df p-Value Conc. Diff. (10−8 mol) 95% CI (10−8 mol)

1 L 2.41 11 0.035 * 2.08 0.18, 3.99
7 R 2.24 11 0.047 * 2.31 0.04, 4.59
2 L 2.00 11 0.071 4.35 −0.45, 9.14
3 L 1.99 11 0.073 2.21 −0.24, 4.66

10 R 1.76 11 0.106 1.43 −0.35, 3.22
5 L 1.76 11 0.107 2.09 −0.53, 4.71
9 R 1.73 11 0.111 1.96 −0.53, 4.44
8 R 1.35 11 0.204 3.18 −2.00, 8.36
6 L 1.02 11 0.332 1.46 −1.71, 4.63
4 L 0.90 11 0.386 0.76 −1.09, 2.60

11 R 0.81 11 0.436 1.21 −2.08, 4.49
12 R 0.05 11 0.965 0.10 −4.96, 5.16

CI: Confidence Interval, Conc: Concentration, Diff: Difference, df = degrees of freedom, L: Left, R: Right.
Significant results are bolded (* p ≤ 0.05).

Only a small sample of participants reported experiencing minor adverse effects
related to the vestibular stimulation. This is shown in Table 3.

Table 3. Adverse effects post-test questionnaire results.

Scale: 1 (None)–5 (Very Strong)

1 2 3 4 5

Pain 92% 8% 0% 0% 0%
Tingling 75% 25% 0% 0% 0%
Itching 92% 8% 0% 0% 0%

Burning 75% 25% 0% 0% 0%
Dizziness 100% 0% 0% 0% 0%
Fatigue 83% 17% 0% 0% 0%

Nervousness 92% 8% 0% 0% 0%
Difficulty in concentration 67% 33% 0% 0% 0%

Headache 100% 0% 0% 0% 0%
Unpleasantness 100% 0% 0% 0% 0%
Metallic Taste 100% 0% 0% 0% 0%

Visual Sensation 100% 0% 0% 0% 0%

4. Discussion

In this work, we explored whether it is possible to monitor the effects of subthreshold
nGVS on cortical brain activity with fNIRS and how HbO and HbR concentrations are
affected by this form of vestibular stimulation. The majority of participants in this study
showed different cortical responses when they received nGVS versus sham stimulation.
In particular, the results showed higher HbR concentration during nGVS stimulation in a
region previously associated with vestibular processing.

The increase in HbR with nGVS differs from the typical hemodynamic pattern of
increased HbO and decreased HbR responses—thought to reflect increased neural activity—
observed in most fNIRS studies [30,32]. However, past fNIRS studies have occasionally
reported increased HbR responses, often referred to as an inverse (or negative) oxygenation
response, during a variety of tasks, including motor imagery and visual stimulation [49–51].
This inverse response relates to the negative blood-oxygenation-level-dependent signals
seen with fMRI [50]. What might cause the increased HbR response? Although we cannot
definitively address this question within the context of our study, there are several possible
explanations that relate to the complex interaction between neuronal activity, cerebral blood
flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2). For instance,
increased HbR responses may reflect increased neural activity with an increase in CMRO2
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and either no change or a decrease in CBF; decreased CBF alone; or reduced neuronal
activity leading to a greater decrease in CBF than a decrease in CMRO2 [30,49,50,52,53].
Recent work would suggest that the increased HbR response we observed is due to a
decrease in neuronal activity [53–55], which in turn may relate to inhibitory circuits with,
or reduced activity from, the vestibular nuclei and their widespread projections.

We found that nGVS led to a significant increase in HbR concentration in channels
likely corresponding to BA40 of the left hemisphere compared to sham stimulation, with
no change in HbO concentration. A similar pattern occurred in the right hemisphere,
though the HbR concentration did not quite reach statistical significance. Owing to rich
vestibulo-thalamo-cortical connections, not surprisingly, fMRI, PET, and MEG studies
have shown that caloric and galvanic vestibular stimulation leads to neuronal activation
in numerous cortical regions [24]. In fact, these stimulation paradigms have repeatedly
shown activation in supramarginal gyrus (BA40) as well as adjacent regions, including
angular gyrus (BA39), superior temporal gyrus (BA22), and BA7 [24,25,28,29,35,56,57].
However, our findings are suggestive of deactivation in BA40. Stephan et al. [29] did show
blood-oxygen-level-dependent signal decreases (i.e., deactivations) following sinusoidal
galvanic vestibular stimulation in and around right BA39 using fMRI. More recently, Becker-
Bense et al. [27] reported bilateral deactivations in similar areas, among others, using PET
and fMRI. Other studies have also shown deactivations following direct current galvanic
vestibular stimulation in a range of brain areas [25]. Although we refer to BA40 in our
work, it is not possible to define the precise location of where our signals originate given
that fNIRS has less spatial precision than PET and fMRI. Thus, it is highly possible that
we are also recording from these adjacent areas [58]. Despite a broad range of cortical
areas responding to vestibular stimulation, the nearby parietal insular vestibular cortex
(PIVC) is thought to represent the main vestibular processing center [59,60]. Recent work
suggests the central human vestibular cortex consists of PIVC and an adjacent area called
the posterior insular cortex, together referred to as the PIVC+ complex [59]. These regions
are densely connected to the more superficial supramarginal gyrus (BA40) and superior
temporal gyrus in humans [61]. Taken together, our results demonstrate the ability to use
fNIRS in nGVS studies. Given that cortical activation is also evident with caloric vestibular
stimulation and fNIRS [35], fNIRS technology may be useful to better understand cortical
vestibular processing, particularly when paired with other neuroimaging modalities.

There are several limitations of our study. First, fNIRS technology is limited in that it
measures from more superficial cortical layers. Second, we recorded from a relatively small
area of the brain. Although we selected BA40 and BA39 based on past research, it is unclear
whether changes in HbO and HbR concentrations with nGVS are present in other cortical
areas when using fNIRS. Third, we did not use MRI of each participant to determine
optode positioning, though we did use a recognized fNIRS toolbox [40]. Fourth, a variety
of physiological signals can affect cerebral hemodynamics and, thus, the attribution of
the observed effects to functional brain activity [62]. Although we used signal processing
techniques—similar to others—to prepare the data for analyses and to minimize these
artefacts from contaminating our data, there remains the possibility that we observed false
positives. We did not have the capability to use short-separation channels with our fNIRS
system, which could help mitigate these effects [62]. However, future work should include
them when possible. Fifth, we used a simple resting-state paradigm. However, we believe
this provided necessary control to determine the effects of nGVS with fNIRS before using
more complex cognitive or movement-related tasks. This is an important first step toward
more widespread use of this technology when applying nGVS. Sixth, our noisy stimulation
parameters matched several studies [9,10,38] but differed from many others [4,5,7,8,17].
How different noisy stimulation parameters influence HbO and HbR concentrations is
unclear at this time.

Overall, our results support the use of fNIRS to understand the cortical effects of
nGVS. Since it is relatively inexpensive, portable, and less prone to motion artifacts than
other neuroimaging technology, fNIRS may provide insight into how nGVS affects cortical
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activity during a variety of natural motor and cognitive behaviors. For instance, it may
be possible to determine changes in cortical HbO/HbR concentrations from nGVS in
relation to performance changes during standing, walking, or spatial navigational tasks.
Additional research focusing on other brain regions, different nGVS parameters, and
test-retest reliability is recommended.
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