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Abstract:  

 

The main objectives of the research described in this dissertation are: (1) 

development of a methodology to prepare thin sections of automotive paint samples that 

involve exposing the edge of the sample using a microtome for infrared image analysis, (2) 

implementation of infrared library searching to match attenuated total reflection spectra 

obtained from an IR microscope to a transmission infrared spectral library, and (3) 

development of a reversed phase liquid chromatographic method to simultaneously detect 

renal cell carcinoma cancer biomarkers in urine. In one study, infrared imaging microscopy 

was investigated as a potential method to improve both the speed and accuracy of forensic 

automotive paint analysis.  This is achieved by scanning across the layers of a paint sample 

using an infrared imaging microscope followed by decatenation of the image using 

alternating least squares.  This approach, not only eliminates the need to hand section and 

analyze each paint layer separately, but also ensures that the IR spectrum of each layer is 

“pure” and not a mixture as a result of sampling too to the boundary between two paint 

layers a scalpel is used to hand section a paint chip to separate the individual layers.  In a 

second study, an isocratic reversed phase liquid chromatographic method was developed 

to simultaneously detect and quantify three potential renal cell carcinoma biomarkers in 

urine which are present at relatively high concentrations: quinolinic acid, gentisic acid and 

4-hydroxybenzoic acid.  Using a methanol or butanol in water mobile phase with 0.6% 

acetic acid and a Zorbax C18 column, baseline resolution for creatinine and the three 

biomarkers in synthetic urine was achieved when water rich mobile phases were used.  

Detection of creatinine and the three biomarkers in urine using the proposed method was 

limited by background from the urine matrix for the later eluting compounds and from the 

dead marker for the earlier eluting compounds. 
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CHAPTER I 

 

 

 

 

 

INTRODUCTION 

 

 
 

The research described in this dissertation is directed towards three specific goals: 

(1) development of a methodology to prepare thin sections of an automotive paint sample 

(that involve exposing the edge of the paint sample using a microtome) for IR image 

analysis, (2) application of a prototype pattern recognition assisted infrared library search 

system to match attenuated total reflection spectra from an IR microscope to a 

transmission infrared spectral library, and (3) development of a reversed phase liquid 

chromatographic method to simultaneously detect renal cell carcinoma cancer biomarkers 

in urine. The significance of this research lies in the development of new methods to 

address problems of widespread interest in the areas of forensic science and bio-

analytical chemistry.   

Infrared imaging microscopy was investigated as a potential method to improve 

both the speed and accuracy of forensic automotive paint analysis.  One way to minimize 

the time necessary for data collection is to collect concatenated IR data from all paint 

layers in a single analysis.  This is achieved by scanning across the cross-sectioned layers 

of the paint sample using an FTIR imaging microscope equipped with an imaging 

detector, which can perform a complete scan of all layers in less than one hour.  Once the 
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data has been collected, it can then undergo decatenation using chemometrics to obtain a 

“pure” IR spectrum of each paint layer.  This approach, not only eliminates the need to 

hand section and analyze each paint layer separately, but also ensures that the final 

spectrum for each layer is “pure” and not a mixture as a result of sampling too to the 

boundary between two paints using a scalpel when hand sectioning the paint chip to 

separate the individual layers.  Minimizing the probability of collecting a mixed spectrum 

results in a time savings as well as objectively ensuring that only “pure” spectra from 

each layer have been collected and are used in subsequent searches.  By integrating the 

proposed imaging experiment with a prototype pattern recognition IR library searching 

system previously developed by our research group, the forensic examination of 

automotive paint is facilitated in terms of both speed and accuracy.   

An isocratic reversed phase liquid chromatographic (RPLC) method was 

developed to simultaneously detect and quantify three potential renal cell carcinoma 

(RCC) biomarkers in urine: quinolinic acid, gentisic acid and 4-hydroxybenzoic acid.  

These three compounds are present at relatively high concentrations in urine. Generated 

by the kidney, urine has considerable value as a diagnostic biological fluid because it 

contains large amounts of metabolites and the noninvasive nature which samples can be 

collected makes it a favored bio-sample.  As cancer develops in a patient, there is an 

additional energy demand on the patient’s body, and cancer cells activate specific 

metabolic pathways to compensate for this energy demand.  Therefore the patient’s 

metabolic profile as reflected in his/her urine will often contain reliable biomarkers for 

early cancer detection.  

Using a methanol or butanol in water mobile phase with 0.6% acetic acid and a 
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Zorbax C18 column, baseline resolution for creatinine and the three RCC biomarkers in 

synthetic urine was achieved.  The concentration of creatinine was closely monitored as it 

corresponded to renal dilution so its levels should be monitored in any urinary biomarker 

analysis. Better resolution was achieved for the separation of these four compounds when 

water rich mobile phases were used.  Detection of creatinine and the three biomarkers in 

urine using the proposed RPLC method was limited by background from the urine matrix 

for the later eluting compounds and from the dead marker for the earlier eluting 

compounds.  The results of this study are presented in Chapter 4 of the dissertation. 

This dissertation is divided into five chapters.  The first chapter is the introduction 

which provides an overview of the research problems pursued in this dissertation.  

Chapter 2 provides the necessary theory and background about the multivariate analysis 

methods used to analyze the infrared images of automotive paint chips described in 

Chapter 3 of this dissertation.  Chapter 4 describes the RPLC method developed for the 

detection of potential RCC biomarkers in urine. A summary of the results obtained in this 

dissertation research are outlined in Chapter 5.   
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CHAPTER II 

 

 

 

CHEMOMETRICS 

 

 

 

 
2.1. INTRODUCTION 
 

 

Chemometrics is a branch of analytical chemistry that uses mathematical, 

statistical, and other methods of formal logic to determine by indirect means the 

properties of substances that otherwise would be very difficult to measure [2-1].  The 

actual term, “chemometrics,” was first coined in 1975 by Bruce Kowalski in a letter that 

appeared in the Journal of Chemical Information and Computer Science [2-2]. Motivation 

for the development of this subfield of analytical chemistry at the time was simple 

enough - an increase in the number and sophistication of chemical instruments triggered 

interest in the development of new data analysis techniques that can extract information 

from large arrays of chemical data that are being routinely generated.  Furthermore, the 

placement of chemical instrumentation under computer control paved the way for the 

development of algorithms to resolve overlapping peaks and improve instrument 

calibration.  Much of the growth in the field of chemometrics that has occurred continues 

to be driven by the press of too much data.  Chemometrics continues and will continue to 

play an ever important role in the extraction of information from spectroscopic data. 
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In this chapter, techniques based on principal component analysis are discussed.    

A summary of the techniques used in the studies described in this dissertation are 

presented in the following sections.  Special emphasis is placed on the application of 

these techniques to problems in spectral pattern recognition.   

                                                                                                 

2.2. PRINCIPAL COMPONENT ANALYSIS 

 

Principal component analysis (PCA) is probably the oldest and best known of the 

techniques used in multivariate analysis [2-3]. The overall goal of PCA is to reduce the 

dimensionality of a data set, while simultaneously retaining the information that is 

present in the data. Dimensionality reduction or data compression is possible with PCA 

because chemical data sets are often redundant.  This redundancy is due to correlations 

among the measurement variables, which diminish the information content of the data [2-

4]. Consider a set of samples characterized by two measurements, X1 and X2.  Figure 2.1 

shows a plot of these data in a 2-dimensional measurement space, where the coordinate 

axes (or basis vectors) of this measurement space are the variables X1 and X2.  There 

appears to be a relationship between these two measurement variables, which suggests 

that X1 and X2 are correlated.  Fixing the value of X1 limits the range of values for X2.  If 

X1 and X2 were uncorrelated, the enclosed rectangle in Figure 2.2 would be fully 

populated by the data points. As information can be defined as the scatter of points in a 

measurement space, correlations between measurement variables decrease the 

information content of this space. The data points, which are restricted to a smaller region 

of the space due to correlations among the variables, can even reside in a subspace for 
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highly correlated measurement variables.  This is shown in Figure 2.2.  X3 is perfectly 

correlated with X1 and X2 since X1 plus X2 equals X3.  Hence, the six sample points are 

constrained to a plane even though each point is described by three measurements. 

 
Figure 2.1.  Seventeen hypothetical samples projected onto a 2-dimensional measurement space 

defined by the measurement variables X1 and X2.  The vertices, A, B, C, and D, of the rectangle 

represent the smallest and largest values of X1 and X2.  (Adapted from NBS J. Res., 1985, 190(6), 

465-476)   

 

 
Figure 2.2.  Six hypothetical samples projected onto a 3-dimensional measurement space.  

Because of strong correlations among the 3 measurement variables, the data points reside in a 2-

dimensional subspace of the original measurement space.  (Adapted from Multivariate Pattern 

Recognition in Chemometrics, Elsevier Science Publishers, Amsterdam, 1992)  
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Variables that are highly correlated are said to be collinear.  High collinearity 

between variables is a strong indication that a new set of basis vectors can be found that 

is better at conveying the information present in data than axes defined by the original 

measurement variables. This new basis set is linked to variation in the data. The principal 

components of the data define the variance-based axes of this new coordinate system. 

Each principal component is perpendicular to the other.  A measure of the amount of 

information conveyed by each principal component is the variance of the data explained 

by the principal component.  The variance explained by each principal component is 

expressed in terms of its eigenvalue.  For this reason, principal components are usually 

arranged in order of decreasing eigenvalue. The expectation is that the most informative 

principal component is the first and the least informative is the last.  The maximum 

number of principal components that can be extracted from the data is the smaller of 

either the number of samples or number of measurements in the data set, as this number 

defines the largest number of independent variables in the data.   

The principal components of the data are extracted from the data matrix using the 

singular value decomposition algorithm [2-5].  The decomposition of X (n x p) is shown 

in Equation 2.1, where T (n x f) is the score matrix which has the coordinates of the 

samples in the principal component space, P’ (f x p) is the transpose of the loading matrix 

which defines the relationship between the original measurement variables (e.g., the 

wavenumbers) and each principal component, and E (n x p) is the residual matrix, where 

n is the number of samples or spectra in the data set and p is the number of points in each 

spectrum.  Because of correlations among the measurement variables, f (which is the 
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number of principal components necessary to represent the spectral data) is smaller than 

p and often f is only two or three.     

 

  ETP'1xX mean                                                   (2.1) 

  

The data matrix is usually centered about the mean.  This is accomplished by 

subtracting the mean of the variable from each entry in the corresponding column of the 

data matrix. Mean centering of a data matrix adjusts the means of each column in the 

matrix to zero. To ensure that each variable has equal weight in the analysis, the data are 

usually auto-scaled.  In other words, after mean centering, each entry of a column is 

divided by the standard deviation of the column. Autoscaling adjusts the value of the 

measurements such that each variable has a mean of zero and a standard deviation of one. 

Autoscaling removes inadvertent weighting of the variables that otherwise would occur 

due to differences in magnitude among the measurement variables.  

The distribution of the spectra in the p-dimensional space by plotting the columns 

of the score matrix against each other. Using principal component score plots, 

relationships among samples in the data can be uncovered, e.g., identifying outliers 

present in data and detecting similarities and differences among groups of samples, since 

each principal component captures a different source of information, i.e., variation in the 

data.   

 

2.3. Genetic Algorithms for Pattern Recognition 

 In this section, the methodology used for the classification of infrared spectral 

data from an infrared imaging microscope is discussed.  The premise underlying the 
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methodology used for classification in this dissertation is straight-forward.  All 

classification methods perform well when the problem is simple.  By identifying the 

appropriate features, a “hard” problem is transformed into a “simple” one.   To ensure the 

selection of all relevant features, it is best to use a multivariate approach to feature 

selection.  The approach used in the dissertation research is based on the idea of 

identifying a set of measurement variables that optimize the separation of the classes in a 

plot of the two or three largest principal components of the data.  Because principal 

components maximize variance, the bulk of the information conveyed by these variables 

is about differences between the classes in the data.  Using this approach to variable 

selection, an eigenvector projection of the data is formulated that discriminates the 

sample classes by maximizing the ratio of between- to within-group variance.  This 

approach to feature selection avoids overly complicated solutions, which do not perform 

as well on the prediction set because of over-fitting.  Although a principal component 

plot is not a sharp knife for discrimination, if we have a principal component plot that 

shows clustering, then our experience is that we will be able to predict robustly using this 

set of features. Furthermore, the principal component plot displays the variability 

between large numbers of samples and show the major clustering trends present in the 

data.   

The approach to feature selection described in the previous paragraph is 

implemented using a genetic algorithm [2-6].   The plot of the two or three largest 

principal components of each feature subset, which is used by the fitness function of the 

genetic algorithm acts as an information filter, as sets of spectral features are selected 

based on their principal component plots, with a good principal component plot generated 
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by features whose variance or information is primarily about differences between the 

classes or groups. This restricts the search to sets of features with these attributes, thereby 

reducing the size of the search space.   

To track and score the principal component plots generated by the genetic 

algorithm during each generation, class and sample weights, which are an integral part of 

the fitness function, are computed (see Equations 2.2 and 2.3), where CW(c) is the weight 

of class c (with c varying from 1 to the total number of classes in the data set), and 

SWc(s) is the weight of samples in class c. Class weights sum to 100, and the sample 

weights for samples from a particular class sum to a value equal to its class weight. 

 

                                                         CW(c)=100
CW(c)

∑ CW (c)c

                                             (2.2)       

 

 

                                               𝑆W(s) = CW(c)
SW(s)

∑ SW(s)s∈c
                                             (2.3)            

 

Each PC plot generated for each feature subset is scored using the K-nearest 

neighbor classification algorithm [2-7].  For each sample in the training set, Euclidean 

distances are computed between it and the other samples which are represented as points 

in the principal component plot.  These distances are arranged from the smallest to the 

largest, and a poll is taken of the sample’s Kc nearest neighbors. For the most rigorous 

classification of the data, Kc is assigned a value corresponding to the number of samples 

in the class to which the sample is a member. The number of Kc nearest neighbors with 

the same class label as the data point in question, the so-called sample hit count, SHC(s), 

is computed (0 < SHC(s) < Kc) for each sample.  It is then a simple matter to score the 
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principal component plot (see Equation 2.4) representing each feature subset.  First, the 

contribution to the overall fitness score by each sample in class 1 is computed. SHC for 

each sample in the class is divided by Kc, multiplied by SW(s), and this calculation which 

is repeated for the other samples in the class is summed to yield the contribution of this 

class to the overall fitness score. This same calculation is repeated for the samples in the 

other classes with the fitness score of each class summed to yield the overall fitness 

score, F(d). 

 

                                                  F(d) =  ∑ ∑
1

Kc
s∈cc

× SHC(s) × SW(s)                              (2.4) 

 

The fitness function of the pattern recognition GA is able to focus on those 

samples and/or classes that are difficult to classify by boosting their weights over 

successive generations. To boost the sample and class weights, it is necessary to compute 

the sample hit rate (SHR), which is the mean value of SHC/Kc over all the feature 

subsets comprising the population of potential solutions that are generated in a particular 

generation (see Equation 2.5), and the class-hit rate (CHR), which is the mean sample hit 

rate of all samples in a particular class (see Equation 2.6).  in Equation 2.5 is the number 

of chromosomes in the population, and AVG in Equation 2.6 is the average or mean 

value. 

                                                         SHR(s) =  
1

∅
∑

SHCi(s)

Kc

∅

i=1

                                               (2.5) 

 

                                                    CHRg(c) = AVG(SHRg(s): ∀s∈c)                                     (2.6) 
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During each generation, class and sample weights are adjusted using a perceptron 

algorithm [2-8] (see Equations 2.7 and 2.8) with the momentum, P, set by the user and 

with g + 1 being the current generation and g being the previous generation. Classes with 

a lower class hit rate are boosted more heavily than those classes that score well. 

 

                                        CWg+1(s) =  CWg(s) + P(1 − CHRg(s)))                                  (2.7) 

 

                                        SWg+1(s) =  SWg(s) + P(1 − CHRg(s)))                                  (2.8) 

 

Boosting is crucial to the successful operation of the pattern recognition GA as it 

modifies the fitness landscape by adjusting the values of both the class and sample 

weights in each generation. This allows the pattern recognition GA to learn and assists it 

to obviate the problem of premature convergence to a local optimum. Thus, the fitness 

function of the pattern recognition GA is changing as the population evolves towards an 

optimal solution.   Further details about the operation of the pattern recognition GA can 

be found elsewhere [2-9 to 2-13]. 

 

2.4. Multivariate Curve Resolution Using Alternating Least Squares 

The goal of multivariate curve resolution (MCR) is to perform a mathematical 

decomposition of spectral data of a mixture into its contributions by each component of 

the mixture [2-14, 2-15]. Data (obtained from an image) can be arranged in the form of a 

data matrix X (n x p), where the n rows represent each spectrum recorded and the p 

columns represents the absorbance value of each wavelength comprising the spectra. 

MCR decomposition of X is performed using Equation 2-9, where each row of C is the 
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concentration profiles of a constituent, each column of S represents the spectrum of a 

constituent and each row of E (i.e., the residual matrix) is the so-called error associated 

with each spectrum that is not explained by the product of C and ST.  

 

     X = CS + E                                                       (2.9) 

 

 

The matrix, X, can be decomposed using noniterative or iterative MCR methods.  

In the studies discussed in this dissertation, alternating least squares (ALS) [2-16, 2-17], 

an iterative method, was used to decatenate the infrared image data.  ALS solves 

Equation 4.1 iteratively in two constrained least squares steps (see Equations 4.2 and 

4.3). To perform ALS, an initial estimate of C (using the appropriate boundary condition) 

is provided by the user.  Using this estimate of C, an estimate of S is computed.  Using 

the estimate of S, C is computed. From the product of C and S, an estimate of the 

principal component analysis (PCA) reproduced data matrix, XPCA, is calculated.  This 

process is repeated until convergence as defined by a specific threshold value for a user 

specified criterion indicative of improvement in the fit for S and C has been met [2-18]. 

The use of the PCA reconstructed data matrix, instead of the original data matrix, 

stabilizes the calculations and reduces the noise in the concentration and spectral matrices 

computed by ALS. 

 

 

ST = (CTC)-1 (CTXPCA)      (2.10) 

 

 

 

 

    C = (XPCAST) (SST)-1       (2.11) 
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The actual values selected by the user for the initial estimates and the number of 

principal components for the data matrix are crucial to ensure the success of ALS.  As for 

the boundary conditions, these constraints work towards defining the shape of each 

concentration and spectral profile in the bilinear model imposed on the data (see Equation 

2.9). Examples of constraints frequently used in ALS include non-negativity, 

unimodality, and closure.  The use of the PCA reconstructed data matrix, instead of the 

original data matrix, stabilized the calculations and reduced the noise in the concentration 

and spectral matrices. 

 

 

 

  

 

 

 

 

 

 
 



15 

 

REFERENCES 

2-1. B. K. Lavine and J. R. Workman, “Chemometrics: Past, Present, and Future,” in 

B. K. Lavine (Eds.) Chemometrics and Chemoinformatics, ACS Symposium 

Series 894, Oxford University Press, 2005. 

2-2. B. R. Kowalski, “Letter to the Editor,” J. Chem. Inf. Comput., Sci., 1975, 15, 201. 

2-3. I. T. Jolliffee, “Principal Component Analysis”, Springer-Verlag, New York, 

1986. 

2-4. J. Mandel, “The regression analysis of collinear data,” J. Res. NBS, 1985, 90(6), 

465-476. 

2-5. G. Golub, C. Van Loan, “Matrix Computations”, Johns Hopkins University Press, 

Baltimore, 1971. 

2-6. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 

Learning, Addison Wesley Publishing Co., Reading, MA 1989. 

2-7. J. T. Tou and R. C. Gonzalez, “Pattern Recognition Principles”, Addison-Wesley 

Publishing, Reading, MA, 1974. 

2-8. P. D. Wasserman, “Neural Computing”, Van Nostrand Reinhold, New York, 

1989. 

2-9. B.K. Lavine, C.G. White, T. Ding, M.M. Gaye, D.E. Clemmer, Wavelet Based 

Classification of MALDI-IMS-MS Spectra of Serum N-Linked Glycans from 

Normal Controls and Patients Diagnosed with Barrett's Esophagus, High Grade 

Dysplasia, and Esophageal Adenocarcinoma, Chemom. Intel. Lab. Syst., 

2018, 176, 74-81. 

2-10. B. K. Lavine, K. Nuguru, and N. Mirjankar, “One Stop Shopping - Feature 

Selection, Classification, and Prediction in a Single Step,” J. Chemometr., 2011, 

25, 116-129 

2-11. B. K. Lavine and C. E. Davidson, “Multivariate Approaches to Classification 

Using Genetic Algorithms,” in: Brown S, Tauler R, Walczak R (eds.) 

Comprehensive Chemometrics, 2009, 3, pp. 619-646 Oxford: Elsevier. 

2-12. J. Karasinski, S. Andreescu, O. A. Sadik, B. Lavine, and M. N. Vora, “Multiarray 

Sensors with Pattern Recognition for the Detection, Classification, and 

Differentiation of Bacteria at Subspecies and Strain Levels,” Anal. Chem., 2005, 

77(24), 7941-7949. 

2-13. B. K. Lavine and A. J. Moores, “Genetic Algorithms for Pattern Recognition 

Analysis and Fusion of Sensor Data,” in Pattern Recognition, Chemometrics, and 



16 

 

Imaging for Optical Environmental Monitoring, K. Siddiqui and D. Eastwood 

(Eds.), Proceedings of SPIES, 1999, pp. 103-112 

2-14. A. de Juan, and R. Tauler, “Soft Modeling of Analytical Data,” in Encyclopedia 

of Analytical Chemistry: Instrumentation and Applications, Wiley, New York, 

2000. 

2-15. A. Malik, A. de Juan, and R. Tauler, “Multivariate Curve Resolution: A Different 

Way to Examine Chemical Data,” in B. K. Lavine, S. D. Brown and K. Booksh, 

40 Years of Chemometrics – From Bruce Kowalski to the Future,” ACS 

Symposium Series 1199, Oxford University Press, 2015.  

2-16. M. R. Garrido, F. X. Rius, and M. S. Larrechi, “Multivariate Curve Resolution – 

Alternating Least Squares (MCR-ALS) Applied to Spectroscopic Data from 

Monitoring Chemical Reaction Processes, Anal. Bioanal. Chem., 2008, 390, 

2059-2066. 

2-17. R. Tauler, B. Kowalski, and S. Fleming, “Multivariate Curve Resolution Applied 

to Spectral Data from Multiple Runs of an Industrial Process,” Anal. Chem., 

1993, 65(15), 2040-2047. 

2-18. A. de Juan and J. Jaumot, and R. Tauler, “Multivariate Curve Resolution (MCR).  

Solving the Mixture Analysis Problem,” Anal. Methods, 2014, 6(14), 4964-4976.  

 

 

 



17 
 

 

 

 

Chapter III 

 

 

 

ATTENUATED TOTAL REFLECTION INFRARED IMAGING 

MICROSCOPY FOR THE FORENSIC EXAMINATION OF 

AUTOMOTIVE PAINT 

 

 

 

3.1 Introduction  

  An automotive paint chip recovered from a vehicle or the clothing of a pedestrian 

in a hit-and-run accident is often the only form of trace evidence at a crime scene involving 

a vehicle related fatality.  Furthermore, this paint chip cannot be compared to the vehicle 

of a potential suspect as there were no witnesses to the crime.  For this reason, each layer 

of the intact paint chip is examined using both physical and chemical methods.  Based on 

previous studies performed by the Royal Canadian Mounted Police [3-1, 3-2], automotive 

vehicles can be differentiated by make and model on the basis of color, layer sequence and 

the chemical composition of each layer in the manufacturer’s original paint system.   A 

forensic paint data base known as the paint data query (PDQ) database was developed by 

the Royal Canadian Mounted Police (RCMP) to make forensic comparisons of these paint 

layers to vehicles sold in North America [3-3,3-4]. PDQ contains over 21,000 automotive 
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paint sample with 84,000 individual layers, with the information about the chemical 

composition of each layer determined from its IR spectrum collected using a high pressure 

diamond anvil cell [3-5].  

 Automotive paint is a complex multicomponent system applied to the frame of a 

vehicle to protect it from corrosion, photochemical degradation while providing the vehicle 

with the desired color and finish [3-6].  Automotive paint contains binders, pigments and 

additives.  The binder is the polymer matrix that maintains the physical integrity of the 

paint and serves as a medium for the pigments and additives that are suspended in it.  

Acrylic melamine enamel is the most common binder used in the finish coat of North 

American vehicles [3-7].  A pigment, which is a powdered compound that is insoluble in 

the paint solvent, imparts color, luster, and opacity to the paint. Titanium dioxide (in the 

form of rutile) is the most common pigment used in automotive paint coatings.  Other 

compounds such as kaolin, calcite (calcium carbonate), quartz (silicon dioxide) and barites 

(barium sulfate) are known as additives or extender pigments [3-7], have a refractive index 

similar to the binder, do not affect its optical properties but increase the bulk matter in the 

paint. Automotive assembly plants use a unique combination of binders and pigments for 

each layer of paint. It is this unique combination that allows forensic scientists to determine 

the make, line, model, and year of a vehicle from a paint chip recovered at the crime scene. 
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                      Figure 3.1 Modern automotive paint system 

 Modern automotive paint systems consist of four distinct layers: e-coat, primer 

surfacer, color coat and clear coat respectively from the substrate (see Figure 3.1). All four 

layers of paint contain binders and the color coat, surfacer-prime and e-coat contain both 

pigments and fillers [3-8].  The metal substrate to which the paint system is applied is 

pretreated with phosphate to protect it from corrosion and to enhance adhesion of the e-

coat layer which is applied to the substrate by electrodeposition. The e-coat layer enhances 

the corrosion resistance of the substrate and provides elasticity and resistance against stone 

chipping as well as forming a bond with the surfacer primer layer. The function of the 

surfacer-primer layer is to provide support for the color coat layer, which imparts a specific 

color to the vehicle. The attributes of the surfacer-primer layer are defined by the choice of 

binders and resins used.  The top most layer, the clear coat layer, is colorless, glossy and 

protects the color coat layer from UV radiation.  The clear coat layer is the thickest layer 

(approximately 50µm in thickness compared to 25 µm or 20 µm for the other layers.  

Modern automotive clear coats are either acrylic melamine styrene polyurethane or acrylic 

melamine styrene [3-9].  Clear coats form a glossy and transparent coating which is in 

direct contact with the environment.  For this reason, the clear coat layer must be resistant 

to abrasion, stone chipping, and ultraviolet light.  

     Clear Coat (OT2)   50 µm 

  Base Coat (OT1)   20 µm  

   Surfacer (OU1)    25µm  

      E-coat (OU2)    25µm  

  Substrate (SUB)  
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 For the forensic analysis of automotive paints, many techniques have been 

developed to characterize automotive paint samples. Pyrolysis-gas chromatography-mass 

spectrometry [3-10 to 3-12] is the technique used to characterize the monomers comprising 

the binders in each layer after hand sectioning the paint chip.  The binder decomposes into 

volatile fragments after applying thermal energy, and these fragments are separated by gas 

chromatography (GC) and then characterized by mass spectrometry (MS).  The 

disadvantages of this technique is the lengthy time for analysis and the destruction of the 

sample. Furthermore, the mass of the sample must be at least 10 micrograms. Many paint 

chips recovered from the crime scene are often less than 10 micrograms.  Other techniques 

for automotive paint analysis such as scanning electron microscopy coupled with energy 

dispersive spectrometry (SEM/EDS) [3-10] and micro- x-ray fluorescence (μXRF) [3-11, 

3-12] are limited to elemental analysis. These techniques are complementary.  

 Raman Spectroscopy [3-13, 3-14] is another technique which has been used to 

characterize an automotive paint sample as it provides information about organic binders, 

inorganic pigments, and extenders present in each layer of the paint sample.  However, 

fluorescence is often a problem, and there are no Raman automotive paint libraries for 

vehicle identification.  Infrared (IR) spectroscopy [3-15 to 3-17] is at present the 

established method for the forensic analysis of automotive paint in North America.  IR 

spectroscopy can characterize binders, extenders, organic and inorganic pigments. 

However, sample preparation can be lengthy as each layer must be hand sectioned using a 

sharp scalpel.  Furthermore, sampling each layer with a sharp knife or scalpel too close to 

the boundary between layers can result in an IR spectrum that is a mixture of two paint 

layers. As a result, the accuracy of an infrared library search can be affected.  Not having 
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a “pure” IR spectrum of each layer prevents the forensic paint examiner from developing 

an accurate hit-list of potential vehicles after performing a search of the unknown paint 

sample against IR spectra in the PDQ database.   

The study described in this chapter attempts to address many of the problems 

previously encountered by workers in forensic paint analysis.  It is proposed to decrease 

the time necessary for data collection (compared to the current method of hand sectioning 

and analyzing each layer separately by FTIR or some other method) by collecting IR data 

from all layers of paint in a single analysis.  This is accomplished by scanning across the 

edge of a paint sample (whose layers have been exposed by a microtome) using an FTIR 

microscope equipped with an imaging detector.  A complete scan of a paint sample can be 

performed in one hour.  After the data has been collected, it can undergo decatenation using 

multivariate curve resolution methods to obtain a “pure” IR spectrum of each layer.  This 

approach, not only eliminates the need to analyze each layer separately, but also ensures 

that the final spectrum of each layer is “pure” and not a mixture.  Minimizing the 

probability of collecting a mixed IR spectrum will result in a considerable time savings as 

well as ensuring that only “pure” IR spectra from each layer are collected and used in 

subsequent searches of the PDQ database which will reduce the number of hits and increase 

the accuracy of a library search.  

 

 

3.2. Attenuated Total Reflection (ATR) Infrared Imaging Microscope 

An attenuated total reflection FTIR imaging microscope consists of an FTIR 

spectrometer coupled to an optical microscope (see Figure 3.2).   
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Figure 3.2   Attenuated total reflection infrared microscope 

The microscope utilizes reflecting optics and spherical surfaces adapted to infrared 

radiation in order to minimize optical aberrations [3-18].   The spatial resolution that can 

be achieved by an ATR imaging microscope is given by Equation 3.1 where d is the spatial 

resolution,  is the wavelength, and NA is the numerical aperture of the microscope 

objective, which is defined in Equation 3.2, where  is the half-angle of the inverted cone 

of illumination entering the objective, and n is the refractive index of the imaging medium.  

(The half-angle of the cone is used in this equation since only half of the inverted cone of 

illumination is passed to the sample.)  In a transmission microscope, the numerical aperture 

is equal to 0.6 (as n = 1 and the half-angle of the cone is 36.870) and the spatial resolution 

can be approximated by the wavelength of the radiation.  For an ATR imaging microscope 

using a germanium crystal, (n = 4 and the numerical aperture equals 2.4), the spatial 

resolution is one-fourth of the wavelength of the incident radiation.    

 

FTIR - ATR 

θ 

ATR – Crystal 

Stage 

Sample 
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Due to the magnification provided by the Germanium ATR crystal, the size of the 

sample image interrogated by the IR microscope is only one-fourth the size of the 

corresponding sample image for the transmission microscope.  For example, a 25m x 25 

m map image which is typically used in transmission infrared microscopy as it is the 

minimum size needed to obtain enough infrared energy [3-19] corresponds to 6.25 m x 

6.25 m field of view in ATR infrared microscopy.  This is a significant advantage over 

transmission when analyzing a laminated structure such as an automotive paint chip whose 

layer thicknesses are typically 20 m.  

3.3. Sample Preparation and Infrared Image Analysis 

Thirty-eight automotive paint samples (see Table 3.1) from six manufacturers 

(Chrysler, Ford, General Motors, Honda, Nissan, and Toyota), which represent 80% of the 

vehicles driven in North America, were obtained from the RCMP. The 38 automotive paint 

samples were collected from vehicles spanning a six-year range (2000-2006).  The 

automotive paint samples were cleaned with methanol in order to remove dirt or particulate 

matter. Each paint sample was peeled away from the metal substrate by bending it using 

pliers.  To cross section a paint sample, the chip was placed between two small 

polyethylene slabs (see Figure. 3.3) and is then positioned horizontally in the sample holder 
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of the microtome (Reichert-Jung 2050).  A stainless steel blade at 90 degrees to the exposed 

edge of the paint sample was used to section the sample.  After each paint sample was 

cross-sectioned, the blade is either repositioned or replaced with a new blade to ensure that 

a thin cross section (approximately 5 to 7 µm thick) cut by the microtome contained all 

four layers.  The distance between the sample and blade which is crucial to obtain the 

desired thickness of the cut was determined empirically. 

Table 3.1.  Automotive Paint Samples Analyzed by Infrared Microscopy 

PDQ Number Manufacturer 

Line/Model 

PDQ 

Number 

Manufacturer 

Line/Model 

UAZP00401 Chrysler / Durango UAZP00331 GM / Chevrolet Suburban 

UAZP00412 Chrysler / RAM UAZP00436 GM / Chevrolet Tahoe 

UAZP00421 Chrysler / JBT UAZP00499 GM / Pontiac Bonneville 

UAZP00451 Chrysler /CND UAZP00565 GM / Pontiac Lucerne 

UAZP00569 Chrysler / RAM UAZP00271 GM / Chevrolet Tahoe 

UAZP00600 Chrysler / Neon UAZP00507 GM / GMC Trailblazer 

UAZP00342 Ford / Focus UAZP00336 GM /Chevrolet Suburban 

UAZP00404 Ford / EPR UAZP00337 GM /Chevrolet Tahoe 

UAZP00467 Ford / Escapade UAZP00501 GM / GMC Yucatan 

UAZP00596 Ford / Mustang UAZP00503 GM / GMC Silverado 

UAZP00477 Ford / Mustang UAZP00567 GM / Chevrolet Malibu 

UAZP00729 Honda / CRV UAZP00381 Toyota / Camry 

UAZP00730 Honda / Civic UAZP00313 Toyota / Camry Solara 

UAZP00277 Honda / Odyssey UAZP00733 Toyota / Camry 

CONT00726 Honda / Pilot UAZP00561 Toyota / Tacoma 

CONT00736 Honda / Accord UAZP00484 Toyota / Highlander 

UAZP00385 Nissan /Sentra UAZP00731 Nissan /Murano 

UAZP00440 Nissan / Altima UAZP00527 Nissan / Altima 

UAZP00745 Nissan / Titan UAZP00537 Nissan / Pathfinder 
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             Figure 3.3.  Steps involved in cross-sectioning an automotive paint chip. 

 

The ATR sampling accessory is sensitive to changes that occur on the surface of 

the paint sample and the degree of contact between the sample surface and the ATR 

imaging crystal.  Streak marks on the surface of the sample due to the microtome blade 

would deliver uneven contact between the sample and the ATR imaging crystal.  This 

problem was addressed by adjusting the position of the sample in the microtome to ensure 

that the microtome only moved perpendicular to the laminated paint sample.  In addition, 

low profile microtome blades had been previously used to section the sample with 

homebuilt spacers inserted in the microtome to obtain the optimum exposure of the 

microtome blade.  These spacers caused difficulties in sectioning of the sample due to gaps 

between the blade and blade holder.  This problem was obviated using high profile 

microtome blades which ensured the generation of high quality sections representative of 

the four paint layers and a smooth paint surface crucial for better surface contact with the 

internal reflection element of the ATR.  
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ATR infrared imaging of the cross-sectioned paint chip initially proved to be 

problematic due to difficulties encountered in the alignment of the paint sample on the 

germanium crystal.  Using a curved tweezer to support the sample holder, a small needle 

(with a bent tip) to maneuver the thin paint sample and a video camera to guide its 

placement, alignment of the thin paint sample with the midpoint of the germanium ATR 

crystal was achieved, which ensured complete coverage of the crystal by the sample when 

a pressure of 10-15 psi was applied.   The noise level of IR spectra for thin samples was 

low due to the higher intensity of the IR beam. When the paint samples were properly 

aligned, differences between spectra of the same paint sample in PDQ versus that of the 

infrared imaging microscope did not markedly affect the quality of the spectral library 

match.   

For ATR imaging, the tip accessory and the linear array detector was initially used 

but this approach was discontinued because the size of the aperture could not be adjusted 

to accommodate a thin sample.  Furthermore, the sample was damaged (i.e., cracked) as a 

result of the tip moving in and out of the sample which in turn affected the alignment of 

the sample on the crystal.   By contrast, the aperture and step size of the single MCT 

detector, which were not fixed, could be changed to smaller values.  Because the analysis 

of paint samples whose layer thickness was in the range of 20 to 50 microns (see Figure 

3.1) requires a small step size and small aperture, the single MCT detector which performs 

a point by point mapping was selected for ATR infrared imaging analysis.  The 25 micron 

x 25 micron aperture and 10 micron step size yielded the best results.  To locate the sample 

for imaging, the linear array detector was used to select the region of the sample for point 

by point mapping as it provided a faster analysis of a large area image map.   The amount 
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of time required for an analysis was approximately 1 hour because two line maps must be 

generated: one for the sample and the other is for the background.  A large number of scans 

(approximately 128 per spectrum) is required to generate each line map in order to achieve 

a comparable signal to noise level. 

With a small aperture, the noise in the ATR spectra was high around the carbonyl 

band.  This was attributed to changes that occurred in the amount of atmospheric water and 

carbon dioxide in the environment during collection of the sample and background spectra.  

This occurred because the system is open to the environment.  As it is not possible to purge 

the system with nitrogen, we were able to mitigate the problem by placing a plastic cover 

over the ATR imaging accessory.  Furthermore, the resolution of the imaging microscope 

was set to 8cm-1 to reduce the noise as 4 cm-1 yielded noisier spectra which affected the 

quality of the library matches. 

 

3.4 ATR Correction Algorithm for the PDQ Library 

To perform library searching on the infrared spectra recovered from the ATR 

imaging microscope, it will be necessary to transform the PDQ infrared transmission 

spectral library into an ATR infrared library using a correction algorithm previously 

developed by Lavine and co-workers [3-20, 3-21].  Due to differences in the optical 

configuration and the process used to measure IR absorption, ATR infrared spectra differ 

from transmission spectra in their band shapes, relative intensities and peak frequencies.  

This hinders library searching as a precise comparison of ATR spectra to transmission 

spectra in the PDQ spectral library is precluded by these differences.   
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The correction algorithm addressed the issues contributing to spectral distortion 

including the lower relative intensities at higher wave-numbers due to the lower depth of 

penetration of the evanescent wave, and the peak broadening and wave-number shifts due 

to anomalous dispersion.  The surface reflection phenomenon of the incident beam at the 

boundary between the sample and the IRE is characterized by Fresnel’s equations.  To 

calculate the reflectance of the p- and s- polarized light, the first step is to compute the 

optical constants of the sample (i.e., the n- and k- indices) at each wavelength from the 

transmission spectrum.  First the k– indices are computed using Equation 3.3, where A(𝑣) 

is the absorbance value of the transmission spectrum as a function of wavenumber (𝑣), 

and d is the sample thickness [3-22]. The complex refractive index, which is a function of 

both the real and imaginary components, are related through the Kramers-Kronig 

relationship [3-23].  Once the imaginary part (k-index) of the refractive index has been 

calculated by Equation 3.3, the n- index is computed by Kramers-Kronig integration of 

the k- index, see Equation 3.4 where P is the principle value of the integral and n(∞) is the 

refractive index at high wavenumber where there is no absorbance, which serves as an 

anchor value.  After the complex refractive index of the sample has been computed, the 

n- and k- indices are provided to Equations 3.5 and 3.6 to calculate Fresnel’s reflection 

coefficients [3-24] for p- and s-polarized light at each wavenumber where 𝑛0 and 𝑛͂1 are 

the refractive indices of the IRE and the sample, and 𝜃0 and 𝜃1are the angles formed 

between the incident beam and the normal in the IRE and in the sample.  The reflectance 

at each wavelength in the ATR spectrum is computed using Equation 3.7. 
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The ATR correction algorithm requires as input the angle of incidence of the 

infrared beam. Due to the large variation in the angle of the incident beam of the Cassegrain 

reflectors used in the IR microscope and the size of the aperture used in the analysis, the 

effective angle of incidence for a single spectral point is not a single value but is a range 

of values. Therefore, this range of values must be determined in order to perform the ATR 

correction for the PDQ library spectra.  To determine this range of incident angles, the mid-

point of the ATR imaging accessory (germanium hemisphere) was used.  The mid-point of 
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the ATR internal reflection element (IRE) was located using the video image and the IR 

energy distribution of the internal reflection element of the ATR.  The clear coat layer from 

a paint chip (SCC118) was transferred to the sample holder in such a manner as to ensure 

that the entire area of the crystal surface was covered by the clear coat paint sample.  A 

single beam IR spectral image was collected in reflection mode.  For the background, a 

single beam IR spectral image was collected without the sample on the ATR crystal and 

the FTIR image was calculated by dividing the single beam spectral image by the 

background spectral image.  The IR spectrum at the mid-point of the ATR crystal was used 

to ascertain the range of the incident angles. The transmission IR spectrum of the 

corresponding clear coat paint sample (SCC118) from the PDQ library served as the IR 

spectrum to be matched by the correction algorithm. Using the ATR simulation algorithm, 

simulated ATR spectra were generated for incident angles from 200 to 500 at 0.10 

increments. This range included the angles for the Cassegrain reflectors.   

To compute the range of IRE angles for the ATR germanium hemisphere, simulated 

spectra for a given range were uploaded into OMNIC. The average spectrum for the range 

of IRE angles was calculated and compared to the experimentally obtained ATR spectrum 

(after spectral reconstruction using multivariate curve resolution) at the mid-point of the 

imaging ATR crystal.  (The mid-point was selected because it was a convenient and well 

defined location on the crystal.) This process was repeated by changing the range of angles 

until the calculated average spectrum was similar to the mid-point spectrum of the imaging 

ATR crystal. The range of incident angles for the simulated spectra most similar to the 

mid-point of the crystal was 21.70-500.   This experiment was repeated for three additional 
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paint samples to validate the result.  For all samples, the range of incident angles was in 

agreement with 21.70-500.   

Studies were also undertaken to better understand the relationship between the 

position of the paint sample on the crystal and the resulting ATR spectra.  Both vertical 

and horizontal line maps were generated for a single layer (clear coat) paint sample 

(UAZP00331).   The clear coat paint layer was positioned on the sample holder to ensure 

the Ge ATR crystal was completely covered with the clear coat.  Two line maps, one 

vertical and one horizontal, were generated to investigate the resulting spectra as a function 

of the position of the paint sample on ATR crystal.  Absorbance changes in the low 

wavenumber region were observed with spectra collected in the middle of the crystal versus 

spectra collected at the edge of the crystal suggesting that the range of the actual incident 

angle is a function of the physical location of the sample on the Ge ATR crystal.  The range 

of the incident angle for different locations on the crystal is summarized in Table 3.2.  

For Table 3.2, simulated spectra with all possible incident angles were generated.  

Spectra for the lower angles (200 - 320) were generated in 0.1 increments whereas spectra 

for the higher angles (320 - 500) were generated in 10 increments.  A 10 increment was used 

to compute spectra for the higher incident angles as there was no significant difference 

between these simulated spectra when a 0.1 increment was used in the simulation. All 

possible incident angle ranges were computed using the ATR simulation program to 

convert transmission IR spectra to ATR spectra, with the average IR spectrum computed 

for each incident angle range.  These average simulated ATR spectra were placed in a 

library. Pure clear coat IR spectra calculated from a spectral line map using ALS were 

searched against this library of average simulated IR spectra using OMNIC to determine 
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the optimum incident angle range, which varied as a function of the specific paint sample 

used.  Absorbance changes in the low wavenumber region that were observed may also be 

attributed to differences in the contact angle between the crystal and the paint sample.  

 

 

Table 3.2.  Range of Incident Angles as a Function of Position on the Ge Crystal 

Direction from the Midpoint Left/Up Right/Down 

Horizontal Distance 1000 µm 24.70-300 24.20-300 

Distance 1500 µm 24.50-300 24.30-300 

Vertical Distance 1000 µm 24.60-300 24.80-300 

Distance 1500 µm 24.80-300 25.90-300 

 
 

The range of incident angles estimated for the paint sample in the mid-point of the 

crystal was 210 - 380.  (Although the ATR simulation algorithm used 21.70-500 as the range 

for the incident angle, changing the range to 210 - 380 did not improve the quality of the 

simulations for library matching.)  When the sample position was changed from the mid-

point of the crystal, the range of the angles narrowed as shown in Table 3.2.  The data, 

which is summarized in Table 3.2, suggests that the range of the incident angles is 

dependent upon the position of the paint sample on the germanium crystal.  The range of 

incident angles for the paint sample is narrower as the paint sample is moved away from 

the mid-point of the Ge.  However, the noise level is also greater as the distance from the 

mid-point of the crystal increases, which can be attributed to lower IR beam intensity.   

 

3.5 Results and Discussion 

3.5.1 Multivariate Curve Resolution 

 To demonstrate the advantages and drawbacks of the proposed method, three 

automotive paint samples (from different “makes”, lines, and models) were selected for an 
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initial sample cohort.   These three samples because of their small size (3 mm in length) 

are angled and are also representative of paint chips recovered from the crime scene of a 

vehicle-vehicle collision or a hit-and-run accident where injury or death to a pedestrian has 

occurred.  Unlike a transmission IR imaging experiment, an angled paint chip will not 

create problems as positioning the sample in the center of the crystal ensures that a 

representative line map capturing all four paint layers is obtained.  The best results are 

always obtained using the longest possible diagonal that fully bisects the automotive paint 

chip.  This type of cut through the line map maximizes the number of spectra collected at 

the boundary between layers, thereby providing sufficient information about changes in 

the IR spectra of automotive paint as a function of its composition and position on the line 

map.   

  Four separate ALS models were computed for each sample to account for the 

ambiguities associated with an underdetermined system: a four-component model, a six- 

component model, a ten-component model, and a fifteen-component model. All thirty-five 

components were used to ascertain the pure IR spectra of each paint layer from the 

reconstructed IR spectra of the cross sectioned paint sample.  Because the IR spectra of the 

clear coat, color coat, surfacer-primer, and e-coat layers are distinctive, the thirty-five IR 

spectra could readily be divided into four groups based on the identity of the layer. The 

separate ALS models used to reconstruct each paint sample improved the quality of the 

library matches obtained for each layer as compared to using a single ALS model to 

reconstruct the IR spectra.  The region used for decatenation of the IR spectra comprising 

each line map by ALS was 4000cm-1 - 680cm-1.    
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 Prior to the application of ALS, atmospheric carbon dioxide and water were 

suppressed in the spectra using air as the background.  The presence of CO2 in the sample 

spectra was also suppressed by directly interpolating between 2280 cm-1 and 2400 cm-1, 

and the presence of water vapor in the spectrum was diminished by collecting the IR spectra 

at 8 cm-1 resolution which had the effect of decreasing the apparent absorption of IR 

radiation by the narrow water absorption lines.   

 Figures 3.4 to 3.6 show the ALS reconstructed IR spectra of the clear coat, surfacer-

primer, and e-coat layers for UAZP00596 (Ford/Mustang), UAZP00600 (Chrysler/Neon), 

and UAZP00484 (Toyota/Highlander).  Although the IR spectrum of the color coat layer 

could also be reconstructed by ALS, the large variation in its IR spectrum due to the 

presence of pigments in this layer, not to mention the relatively poor quality of the spectra 

as the IR signal is obscured by metal and pearlescent effect flakes that are present in this 

layer and preclude its use in a library search.  For the spectral reconstructions by ALS, the 

initial estimates of the score and loading matrices are crucial for rotating these two matrices 

towards a correct solution. In this study, a varimax extended rotation previously developed 

by Lavine and coworkers [3-25 and 3-26] was applied to the IR spectra extracted from the 

line maps to compute the initial estimates of the concentration (score) and spectra (loading) 

matrices.  First, the data were preprocessed (normalized to constant row sum, followed by 

range scaling and normalization to unity length) to identify IR spectra where the proportion 

of a particular layer is maximized relative to the other layers.  Principal component analysis 

was then applied to the preprocessed data followed by a varimax rotation which utilized 

the extremum points to rotate the score and loading matrices towards a meaningful 
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solution. The IR spectrum extracted from a line map for each layer by ALS was a good 

match for the IR spectrum of the same paint sample in the PDQ library.   

 

 

 

 

Figure 3.4. ALS reconstructed IR spectra of the clear coat (OT2), surfacer-primer (OU1), 

and e-coat (OU2) layers for UAZP00596 (Ford/Mustang) 
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Figure 3.5. ALS reconstructed IR spectra of the clear coat (OT2), surfacer-primer (OU1), 

and e-coat (OU2) layers for UAZP00600 (Chrysler/Neon) 
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Figure 3.6. ALS reconstructed IR spectra of the clear coat (OT2), surfacer-primer (OU1), 

and e-coat (OU2) layers for UAZP00484 (Toyota/Highlander) 

  

 The next step was to perform a library search of these reconstructed IR spectra 

against the Ford, Chrysler or Toyota libraries (see Table 3.3) for the three samples 

comprising the cohort.  For each automotive paint sample, the library that was searched 

corresponds to the same manufacturer (e.g., Chrysler) and production year (e.g., 2000-

2006) as the automotive paint sample (e.g., UAZP00600) from which the reconstructed IR 

spectra were obtained.  The Ford, Chrysler, and Toyota libraries were transformed to ATR 

libraries using the correction algorithm discussed in the previous section of this chapter.  

All searches were restricted to the spectral region between 1641 cm-1 and 860 cm-1 which 

in our previous studies [3-5] was shown to contain information about the make, line and 

model of the vehicle.  Outside of this region, the IR spectra only contained C-H stretching 
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bands and the carbonyl band that were found not to be discriminating. The library searches 

were performed against the Ford, Chrysler, and Toyota IR libraries for the clear coat, 

surfacer-primer, and e-coat layers using OMNIC (Themo-Nicolet) configured as 

correlation for search type and Happ-Genzel for apodization.  The correct line and model 

of the vehicle was always in the top five entries of the search hit-list for each layer (see 

Table 3.4).  

Table 3.3.  Ford, Chrysler and Toyota Spectral Libraries 

Manufacturer Clear Coat Surfacer-Primer Layer E-Coat Layer 

Ford 477 474 470 

Chrysler 467 467 448 

Toyota 269 308 298 

 

 

Table 3.4   Search Results for UAZP00596, UAZP00600 and UAZP00484 

PDQ Number             OT2                 OU1            OU2 

 Position 

Hit 

HQI Position 

Hit 

HQI Position 

Hit 

HQI 

UAZP00596 4 95.54 % 1 92.89 % 4 95.78 % 

UAZP00600 2 95.81 % 4 96.92 % 1 97.30 % 

UAZP00484 4 94.21 % 5 91.49 % 4 90.67 % 

 

 For each search, only the top five entries of the hit list were reported as the identity 

of the unknown is expected to be captured in the top five hits for a successful search using 

the hit quality index (HQI) to rank the library spectra.  A library search where either the 

actual paint sample or the correct line and model of the vehicle is not listed in the top five-



39 
 

hits is judged to be an unsuccessful search.  For every spectral match, the HQI value was 

greater than 90%.  HQI values greater than 90% are indicative of high quality spectral 

matches [3-27].  

 ALS reconstructions of each paint layer for a larger sample cohort were also 

undertaken.  The reconstructed IR spectra from thirty-eight automotive paint samples (see 

Table 3.1) were subject to an OMNIC library search performed in a manner similar to the 

search undertaken for the small data cohort to better gauge and understand the quality of 

the MCR spectral reconstructions obtained using ALS.  Table 3.5 summarizes the OMNIC 

library search results.  For the clear coat and surfacer primer layers, 36 of 38 paint samples 

were correctly matched (i.e., the correct line and model were present in the top five entries 

of the hit-list), whereas only 30 of the 38 samples were correctly matched for the e-coat 

layer.  A visual examination of the two clear coat IR spectra that were not correctly matched 

revealed the presence of a peak in the PDQ library spectrum of one paint sample (i.e., 

UAZP00567, see Figure 3.7) that was not present in its reconstructed IR spectrum.  This 

can probably be attributed to variations in the pressure applied by the diamond anvil cell 

to the sample resulting in inconsistent absorption, especially if the sample is thin.  As for 

the other clear coat IR spectrum (i.e., UAZP00507, see Figure 3.8) that was not correctly 

matched, a doublet that was present in the PDQ spectrum (with 4 cm-1 resolution) appears 

as a singlet in the reconstructed ATR spectrum (8 cm-1 resolution) due to the lower 

resolution of the IR microscope.    
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Table 3.5   OMNIC Library Search Results for Thirty-eight Sample Cohort 

1The HQI value for the OT2, OU1 and OU2 layers without a ranking for hit was determined by 

comparing the spectrum of the sample searched against the spectrum of the same sample in PDQ. 

Although the HQI value for OT2, OU1, and OU2 layers of these paint samples is greater than 90.00, 

these samples did not appear in the hit list as OMNIC only provides the user with a list of the top 

ten matches.  

 

PDQ Number Manufacture Clear coat Surfacer E-coat 

  Hit1             HQI  Hit1 HQI  Hit1 HQI  

UAZP00401 Chrysler 1 97.42 3 96.19 3 91.22 

UAZP00412 Chrysler 2 96.16 3 96.39 2 94.99 

UAZP00421 Chrysler 1 92.96 1 97.32 1 91.71 

UAZP00451 Chrysler 1 95.44 2 87.86 1 96.26 

UAZP00569 Chrysler 1 97.14 3 95.30 1 90.30 

UAZP00600 Chrysler 2 95.81 4 96.92 1 97.30 

UAZP00342 Ford 1 95.50 5 92.98 1 94.53 

UAZP00404 Ford 4 93.07 5 94.26 3 96.10 

UAZP00467 Ford 1 95.45 1 91.71 3 93.86 

UAZP00596 Ford 4 95.54 1 92.89 4 95.78 

UAZP00477 Ford 4 95.99 1 87.27 1 86.41 

UAZP00331 General Motors 1 97.72 2 94.82 1 91.27 

UAZP00436 General Motors 1 98.66 2 91.77 2 92.66 

UAZP00499 General Motors 5 96.42 1 93.13 - 90.41   

UAZP00565 General Motors 5 97.05 1 95.69  - 91.29 

UAZP00271 General Motors 2 97.46 1 95.71 --- 90.41 

UAZP00507 General Motors - 95.02   - 85.35    1 96.02 

UAZP00336 General Motors 5 98.51 2 95.87 - 92.86 

UAZP00337 General Motors 2 98.36 3 94.38 - 88.21 

UAZP00501 General Motors 4 96.56 4 90.01 - 92.53 

UAZP00503 General Motors 4 97.05 5 93.27 - 94.69 

UAZP00567 General Motors - 95.79 - 91.94 - 92.13 

UAZP00729 Honda 2 95.78 1 92.04 3 91.30 

UAZP00730 Honda 1 96.19 2 90.36 2 94.21 

UAZP00277 Honda 1 91.27 1 92.01 2 93.22 

CONT00726 Honda 1 97.50 1 93.40 1 96.96 

CONT00736 Honda 2 97.20 2 94.79 5 93.81 

UAZP00385 Nissan 1 94.70 1 86.47 1 95.24 

UAZP00440 Nissan 1 97.38 1 95.35 2 93.52 

UAZP00745 Nissan 2 91.11 2 96.91 2 96.61 

UAZP00731 Nissan 2 94.54 1 92.56 1 91.98 

UAZP00527 Nissan 2 91.06 1 91.52 2 95.13 

UAZP00537 Nissan 5 94.24 2 92.28 4 96.16 

UAZP00381 Toyota 1 93.63 2 89.74 1 91.78 

UAZP00313 Toyota 5 95.22 1 94.89 1 91.85 

UAZP00733 Toyota 3 90.95 3 96.20 1 98.04 

UAZP00561 Toyota 4 94.20 2 93.01 1 93.81 

UAZP00484 Toyota 4 94.21 5 91.49 4 90.67 
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Figure 3.7 UAZP00567 OT2 layer: reconstructed versus PDQ IR library spectrum  

 

Figure 3.8 UAZP00507 OT2 layer: reconstructed versus PDQ IR library spectrum 
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 As for the two IR spectra of the surfacer-primer layer that were not correctly 

matched by the General Motors paint library, one paint sample (i.e., UAZP00507, see 

Figure 3.9) was represented by a doublet around 1300 cm-1 in its PDQ library spectrum (4 

cm-1 resolution) which appeared as a singlet in its reconstructed ATR spectrum (8 cm-1 

resolution) presumably due to the lower resolution of the IR microscope.  Furthermore, its 

reconstructed IR spectrum also exhibited a peak shift of approximately 16 cm-1 around 

1200 cm-1 when compared to the corresponding PDQ library spectrum of the same paint 

sample in the General Motors Library.  The other paint sample (i.e., UAZP00567, see 

Figure 3.10) exhibited an extra peak in its PDQ library spectrum that probably can be 

attributed to variations in the pressure applied by the diamond anvil cell to the sample.  

Furthermore, a singlet in the reconstructed IR spectra of the OU1 layer as opposed to a 

doublet in the corresponding PDQ library spectrum is probably due to the lower resolution 

of the iN10 microscope (8 cm-1 versus 4 cm-1). 

 

Figure 3.9 UAZP00507 OU1 layer: reconstructed versus PDQ IR library spectrum 
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Figure 3.10 UAZP00567 OU1 layer: reconstructed versus PDQ IR library spectrum 

For the OU2 layer, the 8 General Motors reconstructed IR spectra that were not 

correctly matched by OMNIC exhibited a peak shift at around 1100 cm-1 when compared 

to the corresponding IR spectra of the same paint samples in the PDQ library (see Figure 

3.11).   This can be attributed to the interaction of the OU2 layer of each of the 8 General 

Motors paint samples with the germanium crystal.  Evidence in support of this assertion is 

shown in Figure 3.12.  The ATR spectrum of UAZP00499 from the iN10 microscope for 

the pure OU2 layer is compared to the PDQ library spectrum of the OU2 layer of the same 

paint sample. The peak shift (germanium hemisphere versus diamond transmission cell) is 

approximately 7 cm-1.  To ensure that only the OU2 layer of UAZP00499 contributed to 

the ATR spectrum, the OU2 layer from a paint chip (that was not cross sectioned) was 

placed in direct contact with the germanium crystal.  The thickness of the OU2 layer 

relative to the penetration depth of the evanescent wave ensured that only the OU2 layer 

was interrogated by the IR beam.  Evidently, the large number of mismatched General 
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Motors paint samples is attributable to the unique interaction of the OU2 layer of the 

General Motors paint samples with the germanium hemisphere crystal of the ATR 

sampling accessory. 

 

 

 

 

Figure 3.11 UAZP00499 OU2 layer: reconstructed versus the PDQ library spectrum. 
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Figure 3.12 UAZP00499 OU2 layer: pure OU2 versus the PDQ library spectrum 
 

 The ALS reconstructions indicate that IR spectra of the clear coat, surfacer-primer, 

and e-coat layers can be collected in a single analysis from a multi-layered automotive 

paint chips using ATR infrared imaging microscopy.  Decatenation of the IR spectral 

images as represented by line maps can be achieved using VER/ALS to obtain a pure IR 

spectrum of each layer.  Nevertheless, the results of the library search for the e-coat layer 

raises questions as to the discrimination power of these ALS reconstructions for vehicle 

identification.  In the next section, the evidentiary information content of these spectral 

reconstructions is assessed using a pattern recognition assisted infrared library search 

system.   

 

 

  



46 
 

.  

3.5.2 Search Prefilters for Pattern Recognition Assisted Infrared Library Searching  

 

 

The information content of the ALS reconstructed clear coat, surfacer-primer, and 

e-coat IR spectra of each of the 38 paint samples was assessed using a prototype pattern 

recognition library search engine previously developed for multiple automotive paint layers 

consisting of prefilters developed from the clear coat, surfacer-primer and e-coat layers [3-

28 to 3-30].  The search prefilters (i.e., discriminants) developed from 1652 OEM paint 

systems spanned six manufacturers (19 assembly plants for General Motors, 25 assembly 

plants for Ford, 15 assembly plants for Chrysler, 6 assembly plants for Honda, 6 assembly 

plants for Nissan, and 5 assembly plants for Toyota) within a limited production year range 

(2000-2006).  The six manufacturers selected for this study account for 80% of the vehicles 

purchased in North America. 

The transmission spectra used to develop the search prefilters were first transformed 

into ATR spectra using the correction algorithm prior to search prefilter development.  For 

search prefilter development, each corrected PDQ infrared library spectrum was 

normalized to unit length. The discrete wavelet transform [3-31] using the 8sym6 mother 

wavelet (Symlet wavelet family, sixth smallest filter size, eighth level of decomposition) 

was applied to the fingerprint region (1641 cm–1 to 680 cm–1) of each layer. The Symlet 6 

mother wavelet was selected because the shape of its scaling function closely matched the 

shape of the bands comprising the IR spectra of each automotive paint layer. Three sets of 

wavelet coefficients, one for each layer, were concatenated to form the data vectors used 

in search prefilter development. Wavelet coefficients from the lower levels of the 
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decomposition were retained, resulting in 3426 wavelet coefficients per paint sample (i.e., 

1142 coefficients for each layer: clear coat, surfacer–primer, and e-coat). 

A hierarchical classification scheme was used to identify the “make” and model of 

the vehicle from the reconstructed IR spectra of the paint samples comprising the larger 

data cohort.  A search prefilter was developed to differentiate automotive paint samples by 

“make’ using the transformed PDQ library spectra.  For each “make”, search prefilters 

were developed to identify the assembly plant (and hence the line and model of the vehicle) 

from FTIR spectra of the OEM paint systems.   

The approach taken for developing a search prefilter system for automotive 

manufacturer is depicted in Figure 3.7.  A hierarchical classification scheme was 

implemented by exploiting the linear separability of the classes (i.e., assembly plants or 

specific automotive manufacturers) comprising the training set, which consisted of the 

concatenated wavelet transformed IR spectra of 1652 OEM paint systems.  A principal 

component plot of the 3426 wavelet coefficients of the entire spectral cohort was examined 

for sample clustering.  Concatenated IR spectra from six Chrysler assembly plants was 

observed to form a tight sample cluster that appeared to be linearly separable from the other 

spectra in the principal component plot.  The first prefilter separated these six Chrysler 

assembly plants from the other assembly plants of the six automotive manufacturers 

including the nine Chrysler assembly plants that remained with the data cohort.  A genetic 

algorithm for pattern recognition analysis was used to identify wavelet coefficients 

characteristic of the six Chrysler assembly plants.  To develop the first prefilter, the 

mutation rate of the GA was set at 0.4 and the number of chromosomes at 10,000.  After 

200 generations, the pattern recognition GA identified 19 wavelet coefficients for this two-
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way classification problem. These 19 coefficients were identified by sampling key feature 

subsets, scoring their PC plots, and tracking those classes and/or spectra that were difficult 

to classify. The boosting routine of the pattern recognition GA used this information to 

steer the population to an optimal solution.   

A principal component plot of the sample cohort (without the concatenated IR 

spectra of the six Chrysler assembly) revealed additional sample clustering.  Prefilter 2 was 

developed using the pattern recognition GA to separate the two Chrysler assembly plants 

and four General Motors assembly plants from the cohort of IR spectra of the remaining 

General Motors, Chryslers, Honda, Nissan, Ford and Toyota paint samples.  This process 

of discrimination followed by sample removal from the data cohort was repeated for the 

remaining IR paint samples.  Prefilter 3 isolated two Chrysler assembly plants from 4 

General Motors assembly plants in the six assembly plants identified by Prefilter 2.   

Prefilter 4 was developed to separate 3 Chrysler assembly plants from the remaining 

General Motors, Ford, Nissan, Toyota, Honda and Chrysler samples. All of the remaining 

paint samples for General Motors were separated from the other vehicle manufacturers 

using Prefilter 5. Prefilter 6 separated Toyota from Honda, Nissan, Ford and the remaining 

three Chrysler assembly plants in the cohort. Prefilter 7 separated these three Chrysler 

assembly plants and Ford from Honda and Nissan. Subsequently, Prefilters 8 and 9 were 

developed to effectively discriminate Honda from Nissan and Ford from the 3 remaining 

Chrysler assembly plants respectively. Further details about the manufacturer search 

prefilter system used in this study can be found elsewhere [3-32, 3-33]. 
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Figure 3.13. An overview of the manufacturer search prefilter system. 

 

To demonstrate the operation of the manufacturer search prefilter system, infrared 

spectra of the clear coat, surfacer primer, and e-coat layers of a General Motors paint 

sample (UAZP00436 - Chevrolet Tahoe) were passed through the manufacturer search 

prefilter system.  Prefilter 1 (see Figure 3.14) assigned UAZP00436 to the six automotive 

manufacturers including the nine Chrysler assembly plants that remained in the sample 

cohort.  UAZP00436 was then passed to Prefilter 2 (see Figure 3.15) which assigned the 

sample to the data cohort that spanned all six manufacturers.  Prefilter 4 (see Figure 3.16) 

again assigned UAZP00436 to the sample cohort that spanned all six manufacturers.  

Finally, UAZP00436 was passed to Prefilter 5 (see Figure 3.17) which assigned 
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UAZP00436 to the General Motors sample cluster.  Thus, the “make” of the vehicle was 

General Motors.  

 

 

 

 

Figure 3.14.  Projection of UAZP00436 onto the PC plot of Prefilter 1 defined by the 19 

wavelet coefficients identified by the pattern recognition GA.   Training set: 1 = General 

Motors, Chrysler, Honda, Nissan, and Toyota; 2 = Chrysler (6 assembly plants). Validation 

Set: G = UAZP00436 (Chevrolet Tahoe) 
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Figure 3.15.  Projection of UAZP00436 onto the PC plot of Prefilter 2 defined by the 45 

wavelet coefficients identified by the pattern recognition GA.   Training set: 1 = General 

Motors, Chrysler, Honda, Nissan, and Toyota; 2 = Chrysler (2 assembly plants) and 

General Motors (4 assembly plants). Validation Set: G = UAZP00436 (Chevrolet Tahoe) 
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Figure 3.16.  Projection of UAZP00436 onto the PC plot of Prefilter 4 defined by the 44 

wavelet coefficients identified by the pattern recognition GA.   Training set: 1 = General 

Motors, Chrysler, Honda, Nissan, and Toyota; 2 = Chrysler (3 assembly plants).  Validation 

Set: G = UAZP00436 (Chevrolet Tahoe) 
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Figure 3.17.  Projection of UAZP00436 onto the PC plot of Prefilter 5 defined by the 22 

wavelet coefficients identified by the pattern recognition GA.   Training set: 1 = Chrysler, 

Ford, Honda, Nissan, and Toyota; 2 = General Motors (all assembly plants).  Validation 

Set: G = UAZP00436 (Chevrolet Tahoe) 

 

 Table 3.6 summarize the results obtained from the manufacturer search prefilter 

system for identifying the “make” of the vehicle from the wavelet transformed IR spectra 

of the clear coat, surfacer-primer and e-coat layers of the automotive paint samples.  

Twenty-six of the thirty-eight paint samples were correctly classified as to the “make” of 

the vehicle.  The samples that were misclassified by the manufacturer search prefilter 

system spanned all six manufacturers.     
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                     Table 3.6.  Manufacturer Search Prefilter System Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

PDQ Number Manufacturer Search Prefilter Output 

UAZP00412 Chrysler Chrysler 

UAZP00421 Chrysler Chrysler 

UAZP00401 Chrysler Chrysler 

UAZP00600 Chrysler Chrysler 

UAZP00342 Ford Ford 

UAZP00404 Ford Ford 

UAZP00596 Ford Ford 

UAZP00477 Ford Indeterminate 

UAZP00436 General Motors General Motors 

UAZP00507 General Motors General Motors 

UAZP00331 General Motors General Motors 

UAZP00729 Honda Honda 

UAZP00277 Honda Honda 

CONT00726 Honda Chrysler/Ford 

CONT00736 Honda General Motors 

UAZP00730 Honda Indeterminate 

UAZP00440 Nissan Nissan 

UAZP00731 Nissan Nissan 

UAZP00527 Nissan Nissan 

UAZP00537 Nissan Nissan 

UAZP00733 Toyota Toyota 

UAZP00561 Toyota Toyota 

UAZP00484 Toyota Toyota 

UAZP00336 General Motors General Motors 

UAZP00501 General Motors General Motors 

UAZP00337 General Motors General Motors 

UAZP00499 General Motors General Motors 

UAZP00271 General Motors General Motors 

UAZP00503 General Motors General Motors 

UAZP00565 General Motors Indeterminate 

UAZP00567 General Motors General Motors 

UAZP00569 Chrysler Indeterminate 

UAZP00451 Chrysler General Motors 

UAZP00467 Ford Indeterminate 

UAZP00385 Nissan General Motors 

UAZP00745 Nissan General Motors 

UAZP00381 Toyota General Motors 

UAZP00313 Toyota General Motors 
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 The twelve automotive paint samples misclassified as to “make” by the 

manufacturer search prefilter system shared a common set of attributes.  First, peak shifting 

was observed in the OU1 layer throughout the entire IR spectrum for 11 of the 12 cross 

sectioned paint samples: CONT00726, UAZP00730, UAZP00385, UAZP00745, 

UAZP00337 UAZP00451, UAZP00569, EAZP00467, UAZP00477, CONT00736, and 

UAZP00313.  In 3 of the 12 paint samples, UAZP00467, CONT726 and UAZP00385, 

there is an extra peak in the reconstructed IR spectrum of the OU1 layer that is not present 

in the corresponding library spectrum. Two paint samples, UAZP00467 and UAZP00385, 

show a singlet instead of a doublet for the reconstructed IR spectrum of the OU1 layer due 

to 8cm-1 resolution in the reconstructed IR spectrum versus 4 cm-1 resolution in the PDQ 

spectrum.  As for the OU2 layer, each of the 12 paint samples exhibited peak shifting 

throughout the entire IR spectrum  

 After the “make” of the vehicle was identified by the manufacturer search 

prefilter system, the line and model of each vehicle were identified from the wavelet 

transformed IR spectra using a two-step process. First, the assembly plants of each 

manufacturer were divided into “plant” groups by applying cluster analysis to the 

fingerprint region of the average IR spectrum of the clear coat layer which served as a 

prototypical data vector to represent the formulation used by each assembly plant.  Second, 

each plant group was separated into its constituent assembly plants using the wavelet 

transformed IR spectra of the clear coat, surfacer-primer and e-coat layers to develop a 

discriminant.  Further details on the application of these search prefilters to OEM paint 

systems can be found elsewhere [3-28 to 3-30].   
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 To demonstrate the operation of the assembly plant search prefilters, two Chrysler 

paint samples (UAZP00600 and UAZP00412) correctly identified as to “make” by the 

manufacturer search prefilter system were analyzed using the Chrysler search prefilter.  

First, the two paint samples were correctly assigned to their respective plant group, which 

is Plant Group 11 as these two paint samples originated from the Belvidere and Saltillo 

assembly plants (see Figure 3.12).   For Plant Group 11, the associated search prefilter 

correctly assigned the paint samples to their respective assembly plants (see Figure 3.13).  

Because the assembly plant is indicative of the line and model of the vehicle, it is clear 

from this example that ALS reconstructed IR spectra of the layers can provide information 

about the “make”, line, and model of the vehicle from which the paint sample originated.    

 Table 3.7 summarize the results obtained from the assembly plant search prefilters 

for identifying the assembly plant of the vehicle from the wavelet transformed spectra of 

the clear coat, surfacer-primer and e-coat layers of the automotive paint samples.  Of the 

twenty-six paint samples that were correctly classified as to the “make of the vehicle, 

nineteen of the twenty-six paint samples were correctly assigned to their respective 

assembly plant.   
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Figure 3.18.  Projection of UAZP00600 (Neon) and UAZP00412 (RAM) onto the PC plot 

of the Chrysler search prefilter for Plant Group.  UAZP00600 and UAZP00412 were 

obtained from vehicles that were manufactured at the Belvidere and Saltillo assembly 

plants, which comprise Plant Group 11.  11 = Plant Group 11, 12 = Plant Group 12, C1 = 

UAZP00600, and C2 = UAZP00412. 
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Figure 3.19.  Projection of UAZP00600 (Neon) and UAZP00412 (RAM) onto the PC plot 

of the Chrysler search prefilter for assembly plant.  UAZP00600 and UAZP00412 were 

obtained from vehicles manufactured at the Belvidere and Saltillo assembly plants. C1 = 

UAZP00600, C2 = UAZP00412, 1000 = Belvidere, 1002 = Bramalea/Brampton, 1010 = 

Toledo, 1017 = Saltillo, 1103 = Dodge Main, 1109 = St. Louis 
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Table 3.7.  Assembly Plant Search Prefilter Results 

                 1Plant Group 1 of General Motors contains assembly plants Arlington, Oklahoma City, Lansing,  

            Doraville, Fort Wayne, Moraine, Oshawa, and Pontiac 

           2 Plant Group 2 of General Motors contains assembly plants Orion, Bowling Green, Hamtramck, and  

             Wilmington. 

           3Plant Group 5 of General Motors contains assembly plants Silao, Ramos Arizpe, Spring Hill, and   

            St. Therese  

           4Plant Group 4 of General Motors consists only of the Janesville assembly plant. 

           5Plant Group 11 of Chrysler contains assembly plants Belvidere, Saltillo, Bramalea/Brampton,  

            Toledo (subplant), and Toluca 

           6Plant Group 12 of Chrysler contains assembly plants Toledo (subplant), Bloomington, Dodge Main,  

            Sterling Heights, St. Louis, and Windsor 

           7Plant group 23 of Ford contains assembly plants Hermosillo, Kansas City, Saint Thomas  

            Talbotsville and Louisville. 

           8Plant Group 31 of Honda contains assembly plants Alliston, East Liberty, Lincoln, Marysville,  

            Suzuka and Sayama. 

           9Plant Group 41 of Nissan contains assembly plants Oppma, Smyrna, Kyushu Hiratsuka, and  

            Canton. 

            10Plant Group 51 of Toyota contains assembly plants Cambridge, Georgetown, Japan, Princeton and  

               Fremont 
                  11Plant Group 13 of Chrysler contains assembly plant Jefferson North and Newark 

 

PDQ Number Manufacturer Assembly Plant Search Prefilter 
Output 

UAZP00436 General Motors (GM) 1Arlington (ARL) GM / ARL  

UAZP00499 General Motors (GM) 2Orion (ORI) GM / ORI 

UAZP00331 General Motors (GM) 3Silao (SIL) GM / SIL 

UAZP00507 General Motors (GM) 1 Oklahoma City (OKL)  GM / OKL 

UAZP00567 General Motors (GM) 1 Lansing (LAN) GM / LAN 

UAZP00600 Chrysler (CHR) 5Belvidere (BEL) CHR / BEL 

UAZP00412 Chrysler (CHR) 5Saltillo (SAL) CHR / SAL 

UAZP00421 Chrysler (CHR) 6 Toledo (TOL) CHR / TOL 

UAZO00342 Ford (FOR) 7Hermosillo (HER) FOR / HER 

UAZP00596 Ford (FOR) 7Hermosillo (HER) FOR / HER 

UAZP00277 Honda (HON) 8Alliston, Canada HON / Alliston 

UAZP00729 Honda (HON) 8Sayama, Japan HON / Sayama 

UAZP00440 Nissan (NIS) 9Smyrna NIS / Smyrna 

UAZP00731 Nissan (NIS) 9Kyushu, Japan NIS / Kyushu 

UAZP00527 Nissan (NIS) 9Smyrna NIS / Smyrna 

UAZP00537 Nissan (NIS 9Canton NIS / Canton 

UAZP00733 Toyota (TOY) 10Georgetown TOY / Georgetown 

UAZP00484 Toyota (TOY) 10Japan TOY / Japan 

UAZP00561 Toyota (TOY) 10Fremont TOY / Fremont 

UAZP00336 General Motors (GM) 4 Janesville (JAN) GM/ARL 

UAZP00501 General Motors (GM) 4 Janesville (JAN) GM/Freemont 

UAZP00337 General Motors (GM) 4 Janesville (JAN) GM/Indeterminate 

UAZP00271 General Motors (GM) 4 Janesville (JAN) GM/Indeterminate 

UAZP00401 Chrysler (CHR) 11Newark (NEW) CHR/Indeterminate 

UAZP00404 FORD 7Louisville (LOU)  Ford/Dearborn 
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The failure to correctly predict the “make’ and model of all thirty-eight automotive 

paint samples using the proposed ATR infrared imaging method can probably be attributed 

to the alignment of the cross sectioned paint samples on the germanium (hemisphere) 

crystal in the ATR sampling accessory.   Peak shifts throughout the entire IR spectrum of 

both the OU1 and OU2 layers (compared to the ATR corrected spectra from the PDQ 

library) were observed for those paint samples that were not correctly classified by OMNIC 

or the pattern recognition assisted infrared library search system.   The range of incident 

angles used by the simulation algorithm to transform the PDQ transmission library spectra 

into an ATR spectral library is based on the cross sectioned paint sample being positioned 

at the mid-point of the germanium crystal.   If the position of the sample is changed from 

the mid-point, the range of incident angles used by the simulation algorithm becomes 

narrower. As the simulation algorithm is using a larger range for cross sectioned paint 

samples that are misaligned from the mid-point of the crystal, the net effect is comparable 

to a change in the angle of incidence for the IR spectra of the OU1 and OU2 layers obtained 

by a single bounce ATR sampling accessory.   
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Chapter IV 

 

 

ANALYSIS OF GENTISIC ACID AND RENAL CELL CARCINOMA BIOMARKERS 

USING REVERSED-PHASE LIQUID CHROMATOGRAPHY WITH WATER RICH 

MOBILE PHASES 

 

 

4.1 Introduction 

Renal cell carcinoma (RCC) is the third most reported form of genitourinary cancer.  

RCC is caused by the malignancy of the renal tubules of the kidney [4-1]. According to published 

reports, RCC occurs in patients of all ages and has the highest mortality rate among patients with 

urological tumors [4-2]. The low survival rate of RCC patients is due the asymptomatic nature of 

this disease in its initial stages.  Symptoms characteristic of RCC (e.g., blood in the urine, weight 

loss, fever, lethargy, and abdominal pain, low back pain, lump on the belly or back and night 

sweat )  occur  only during the terminal or metastatic stage [4-3], which limits the time frame for 

treatment. Clearly, both early detection and treatment are crucial to improve survivor rates.  For 

this reason, advanced medical imaging techniques such magnetic resonance imaging [4-4], 

contrast-enhanced ultrasonography [4-5], and positron emission tomography-computed 

tomography [4-6] are used for the diagnosis of RCC.  These imaging techniques are accurate and 

effective.  However, patients with RCC require continued surveillance of small indolent renal 

masses, which is costly, and patients may suffer from side effects due to radiation exposure. 

Gonzalez and coworkers [4-7] have reported that approximately 29,000 cases of cancer occur 

each year in the United States due to radiation exposure from radiologic imaging.  For all of these 
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reasons, routine screening of the general population using imaging techniques is not practical.    

Urine, which is generated by the kidneys, is considered a valuable diagnostic biological 

fluid as it contains large amount of metabolites. As a cancer develops, the cancer cells activate 

specific metabolic pathways to supply the additional energy demand to the patient’s body. During 

this process, the change in the metabolites profile may present potential biomarkers that are 

reliable for the early detection of RCC in the patient’s urine. Furthermore, the noninvasive nature 

in which urine is collected and its availability makes it an ideal biological fluid for cancer 

prescreening in its early stages. 

For RCC patients, Kim and coworkers [4-8] have reported that quinolinic acid, 4-

hydroxybenzoic acid, and gentisic acid levels in urine are elevated compared to urine from 

controls.  In Kim’s study, urine samples were obtained from 29 RCC patients and from 33 

patients with other urological conditions.  Ultrahigh-performance liquid chromatography/tandem 

mass spectrometry and gas chromatography/mass spectrometry were used in Kim’s study to 

perform the analysis.  Ma and coworkers [4-9] developed an analytical procedure for the 

simultaneous determination of quinolinic acid, gentisic acid and 4-hydroxybenzoic acid in urine 

using liquid chromatography/tandem mass spectrometry. Both studies utilized expensive 

instrumentation that is generally not available in most clinical laboratories due to the high cost of 

instrument maintenance and per sample analysis.   

In this study, a mobile phase of 5% methanol in water and 0.1% butanol in water 

acidified with 0.6% acetic acid percolating through a Zorbax C18 column were evaluated as a 

potential method to separate and detect RCC biomarkers in urine.  In two previous studies, 

Lavine and coworkers [4-10, 4-11] investigated both short chain and medium chain-length 

alcohols as organic modifiers for enhancing selectivity in RPLC using a set of six vanillin 

compounds as retention probes.  Greater selectivity in the separation of the vanillin compounds 

was obtained when hydrophobic alcohols such as butanol or pentanol were used as mobile phase 

modifiers.  In another study, Lavine and co-workers [4-12] demonstrated that water-rich mobile 
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phases have advantages over methanol/water or acetonitrile/water mixtures for the separation of 

water-soluble and weakly retained compounds including improved separation of congeners and 

better tuning of HPLC separations.  Using a water-rich mobile phase, an isocratic method to 

detect and quantify creatinine, quinolinic acid, gentisic acid and 4-hydroxybenzoic in synthetic 

urine has been developed and is reported in this chapter.  Although creatinine is not an RCC 

biomarker, it is included in the study to account for the renal dilution of the urine. Since the 

concentration of creatinine corresponds to urine dilution, its levels must be closely monitored in 

any urinary biomarker analysis study. The biomarker-to-creatinine concentration ratio will always 

give more meaningful results than the concentration of a biomarker alone [4-13, 4-14]. 

 

 

 

Figure 4.1 Structures of RCC biomarkers 
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4.2 Experimental 

Creatinine, quinolinic acid, gentisic acid, and 4-hydroxybenzoic acid were obtained from 

Sigma Aldrich and used as received. Glacial acetic acid from Pharmaco (Auckland, New 

Zealand), methanol and butanol from Fisher Scientific were obtained and used as received. 

Doubly distilled water was prepared using a Barnstead Nano-Pure II System (Barnstead 

International, Dubuque, IA). Submicron filtered HPLC grade water obtained from Thermo-

Fischer, USA. 

Stock solution (2000 ppm) of creatinine, quinolinic acid, gentisic acid and 4-

hydroxybenzoic acid were prepared by weighing and dissolving the required amount of 

compounds in doubly distilled water. These compounds are the probes for the separation and the 

structures are given in Figure 4.1. Standard solution (200 ppm) of each compounds were prepared 

by the dilution of stock solution using 0.6% acetic acid. These solutions were used to determine 

the retention time of each compound.  A standard solution of the mixture of these four 

compounds (200 ppm each) was prepared and used throughout to study the solvent strength of the 

mobile phases investigated. For the calibration curves, standards of this four component mixtures 

of 5 ppm, 10 ppm, 25 ppm, 50 ppm, 70 ppm, 100 ppm 250 ppm, 500 ppm, 700 ppm, and 1000 

ppm were prepared by diluting the 2000 ppm stock solution using 0.6% acetic acid in water.  

Water-rich mobile phases used in these experiments were prepared by using methanol 

and butanol as organic modifiers. To prepare each mobile phase, transfer pipette were often 

employed because of the small volume of organic modifiers used. Each mobile phase was filtered 

under vacuum using 0.45 µm pore size filters (Varian, Walnut Creek, CA, USA).  Varian Nylon 

66 membrane filters were used to remove particulate matter from the mobile phase. All mobile 

phases were vacuum degassed prior to use.   

For preparation of the urine samples, synthetic urine (Flinn Scientific) was diluted five-

fold with HPLC grade water containing 0.6% acetic acid and then spiked with the appropriate 
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amounts of creatinine, quinolinic acid, gentisic acid, and 4-hydroxybenzoic acid to yield the 

corresponding 20 ppm (low concentration), 100 ppm (mid-level concentration) and 700 ppm 

(high level concentration) test mixtures of the RCC biomarkers. 

The RPLC studies were performed using a Varian High-Performance Liquid 

Chromatograph equipped with a Shimadzu column oven, ProStar reciprocating pump, photodiode 

array detector and Galaxie Chromatography Workstation Software (Version 1.8.504.1).  All 

RPLC separations were performed on a Zorbax 5μm Eclipsed-XBD C18 80Å column (150 × 4.6 

mm) at ambient temperature.  Each mobile phase was equilibrated with the stationary phase by 

percolating the mobile phase for approximately 12 hours through the column at a flow rate of 1.0 

mL/min prior to sample injection to ensure reproducible column wetting.  In some instances, runs 

were continued from the previous day using the same mobile phase as the solvent mixture stored 

in the column.  In these instances, only one hour was necessary for equilibration.  A flow rate of 

1.0 mL/min was used throughout the study because of the desire to develop an inexpensive 

isocratic RPLC method to detect RCC biomarkers in urine.   

The sample injection volume used was 5 µL.  The dead time, as determined by injecting 

0.1M KNO3 solution onto the Zorbax column with the flow rate of the mobile phase fixed at 1.0 

mL/min, was 1.41 minutes for all methanol in water and 1.51 minutes for all butanol in water 

mobile phases investigated.  These values were used in all k’ calculations.  All k’ values reported 

in this study were averages of triplicate determinations.  Deviations for individual k’ values were 

always less than 1%.   

Liquid chromatography/mass spectrometry (LC-MS) analysis of the urine sample and 4-

hydroxybenzoic acid were also performed in this study using a Shimadzu 2010EV LC-MS 

equipped with electrospray ionization operated in the negative mode.  All LC-MS separations 

were performed at 0.3 mL/min using a Shimadzu Premier C18 3µm column (100 x 4.6 mm) 

operated at ambient temperature with 5% methanol water (0.6% acetic acid) and 0.1% butanol 

water (0.6% acetic acid) mobile phases. 
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4.3 Results and Discussions 

A series of chromatograms were run to demonstrate the advantages of using methanol 

and butanol as the organic mobile phase modifier to separate a test mixture of creatinine, 

quinolinic acid, gentisic acid, and 4-hydroxybenzoic acid on a Zorbax Eclipsed-XBD C18 column.  

Figure 4.2a and 4.2b show the chromatograms of the test mixture obtained from the best 

separation with methanol in water (5% methanol in water mobile phase with 0.6% acetic acid) 

and butanol in water (0.1% butanol in water with 0.6% acetic acid) as the mobile phase. The 

concentration of the test mixture was 200 ppm and the separation of the mixture by both mobile 

phases was performed at the ambient temperature. The elution order of the four compounds 

comprising the test mixture can be correlated to their solubility in water and to the log of the 

Octanol-Water Partition coefficient (Log P) value (see Table 4.1).  

 

 Table 4.1.  Log P and Water Solubility Values of the Test Mixture Compounds 

Compounds Water Solubility 

      (mg/ml) 

Log P 

Creatinine 12.9 -1.76 

Quinolinic Acid 11 0.15 

   

Gentisic Acid 5 1.42 

4-hydroxybenzoic acid 5 1.67 
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Figure 4.2a. Chromatogram of the RCC test mixture using 5% methanol in 0.6% 

acetic acid as the mobile phase 

 

 

  

Figure 4.2b. Chromatogram of the RCC test mixture using 0.1% butanol with 

0.6% acetic acid as the mobile phase. 
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Tables 4.2 and 4.3 list the number of plates generated by the Zorbax C18 column for each 

compound in these two chromatograms calculated using the Foley-Dorsey method [4-15].  The 

number of theoretical plates obtained for gentisic acid and 4-hydroxybenzoic acid is consistent 

with the number of plates that one would expect to obtain for a C18 column 15 cm in length and 

packed with 5 μm particles.  Although the extra column volume of this system was not measured, 

the low number of plates obtained for creatinine and quinolinic acid, which elutes with or near the 

dead marker, can probably be attributed to extra column band broadening.  The excessive tailing 

of the creatinine and quinolinic acid peaks is suggestive of interactions with silanol groups.   

 

 

 

Table 4.2 Number of Platesa,b Generated by 5% Methanol Water Mobile Phase. 

 a Plate calculation performed using the Foley-Dorsey method [15 ] 
b Each plate calculation is an average of triplicate determinations. 

 

 

 

 

 

 

 

 

Compounds Retention 

time 

Number of 

theoretical plates 

Asymmetry values 

Creatinine 1.61 minutes 1242 2.48 

Quinolinic acid 2.15 minutes 1627 2.93 

Gentisic acid 17.64 minutes 10,092 1.20 

4-Hydroxybenzoic acid 20.86 minutes 10,634 1.20 
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Table 4.3 Number of Platesa,b Generated by 0.1% Butanol Water Mobile Phase 

a Plate calculation performed using the Foley-Dorsey method [4-15 ] 
b Each plate calculation is an average of triplicate determinations. 

 

 

Synder solvent strength plots [4-16] were constructed and analyzed using the four RCC 

compounds to obtain insight into the factors that may influence retention using Equation 1, where 

 is the volume percentage of organic modifier in the mobile phase, B is a measure of the 

interaction of the solute with the mobile phase and ln kw is the logarithm of the retention factor of 

the compound in a purely aqueous media.  Both B and ln kw are constants characteristic of the 

solute.   

    Bkk w  ln'ln      (4.1) 

Figure 4.3 a), b) and c) show the plots of ln k’ versus  for quinolinic acid, gentisic acid 

and 4-hydroxybenzoic acid for the methanol in water mobile phases. Eight methanol-water 

mobile phases with 0.6% acetic acid were used to generate the plots: 30%, 25%, 20%, 15%, 10%, 

5%, 2.5%, and 1% methanol in water. For all three compounds, the 1% run was excluded from 

the regression analysis and the 1% and 2.5% runs were excluded from the regression analysis for 

4-hydroxybenzoic acid and gentisic acid as these points did not follow the trend expected for 

organic compounds from classical RPLC retention behavior.  Exclusion of only the 1% run for 

quinolinic acid can probably be attributed to this compound being less hydrophobic than 4-

Compounds   Retention time Number  of 

 theoretical plates 

Asymmetry values 

Creatinine 1.6 minutes 518 3.98 

Quinolinic acid 2.2 minutes 938 2.77 

Gentisic acid 19.7 9820 1.52 

4-Hydroxybenzoic acid 22.7 10950 1.42 
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hydroxybenzoic acid and gentisic acid, which in turn would make it more accessible to the pore 

volume of the stationary phase when using very small amounts of methanol as the mobile phase 

modifier.  Both B and ln kw in Equation 1 for these three compounds can be correlated to their 

water solubility and log P values (see Table 4.1).  
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Figure 4.3. Plot of ln k’ versus percent methanol for a) quinolinic acid b) gentisic acid c) 4-

hydroxybenzoic acid 

 

Figure 4.4 shows a plot of ln k’ versus  for quinolinic acid, gentisic acid, and 4- 

hydroxybenzoic acid. Creatinine was excluded from this analysis because it co-eluted with the 

dead marker.  Nine butanol-water mobile phases were used to generate these plots: 0.1%, 0.2%, 

0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, and 0.9% butanol in water with 0.6% acetic acid.  All three 

ln k’ plots did not follow the linear trend expected for classical RPLC behavior.  Therefore, each 

plot was fitted using Schoenmaker’s solubility parameter model, which has been used by other 

workers to describe nonlinear behavior in Snyder solvent strength plots [4-17, 4-18].  An E0.5 

term, where E is the regression coefficient, is added to Snyder’s solvation model (see Equation 1) 

to describe the curvature at organic modifier concentrations less than 5%.  

Extrusion of the mobile phase and the biomarkers from the particle pores [4-19, 4-20], 

where most of the C18 alkyl bonded phase is located, may occur when using a mobile phase such 

as a methanol/water or acetonitrile /water mixture with a low percentage of the organic modifier.  

However, dewetting of the column did not occur with water-rich mobile phases that used butanol 
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as the organic modifier.  The small amount of butanol in the mobile phase solutions investigated 

is also responsible for the curvature in the Snyder solvent strength plots. 
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Figure 4.4.  Plot of ln k’ versus percent butanol for a) quinolinic acid, b) gentisic acid, 

and c) 4-hydroxybenzoic acid. 

 

The calibration curve for creatinine, quinolinic acid, gentisic acid and 4-hydroxybenzoic 

acid were developed from standards prepared using doubly distilled water with 0.6% acetic acid.  

For creatinine, quinolinic acid, and gentisic acid, 232 nm was selected for the development of the 

calibration plots as this wavelength corresponded to an absorbance maximum, whereas 252 nm 

was selected for 4-hydroxybenzoic acid due to its high b value. The calibration curve for each 

compound was prepared by ploting the average peak area of each standard against its 

concentration.   

 Figure 4.5 a), b), c) and d) are the calibration curves for creatinine, quinolinic acid, 

gentisic acid and 4-hydroxybenzoic acid using a 5% methanol water-rich mobile phase in 0.6% 

acetic acid.  Calibration curves for both creatinine and quinolinic acid did not pass through the 

origin which can be attributed to the uncompensated background from the dead marker as these 

compounds eluted with the dead marker or near the dead marker, whereas the calibration curves 
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for both gentisic acid and 4-hydroxybenzoic acid, which are quite distant from the dead marker 

pass through the origin.  
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Figure 4.5 Calibration curve for a) creatinine b) quinolinic acid c) gentisic acid and d) 4-

hydroxidebenzoic acid using 5% methanol in water with 0.6% acetic acid as the mobile phase. 
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Figure 4.6 a), b), and c) are the calibration curves for quinolinic acid, gentisic acid and 4-

hydroxybenzoic acid obtained using 0.1% butanol in water with 0.6% acetic acid as the mobile 

phase. The calibration curve for creatinine was not plotted as it co-eluted with the dead marker. 

The linearity of these three calibration curves over the concentration range investigated (5 ppm to 

1000 ppm) is excellent.  Furthermore, the calibration curves for all three RCC biomarkers pass 

through the origin, which was not the case with methanol in water mobile phase. 

 

 

 

Figure 4.6. a) Calibration curve of quinolinic acid using 0.1% butanol with 0.6% acetic 

acid as the mobile phase.   
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Figure 4.6 b)  Calibration curve of gentisic acid using 0.1% butanol with 0.6% acetic acid 

as the mobile phase 
 

 

Figure 4.6 c) Calibraition curve of 4-hydroxybenzoic acid using 0.1% butanol with 0.6% 

acetic acid as the mobile phase 
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Three urine samples containing 20 ppm, 100 ppm, and 700 ppm of each test mixture 

component were prepared using synthetic urine to mimic the detection of the four RCC 

biomarkers by RPLC. Recovery test of these biomarkers as performed by using both 5% 

methanol in water with 0.6% acetic acid and 0.1% butanol in water with 0.6% acetic acid as the 

mobile phase. Each urine sample was run in triplicate, and the calibration curves (see Figure 4.5 

a, b, c, d for methanol and Figure 4.6 a, b, and c for butanol) prepared from standards using 

doubly distilled water with 0.6% acetic acid, were used to quantify the amount of each biomarker 

in the three urine samples. 

Table 4.4 lists the recovery and relative standard deviation obtained for each urine sample 

using 5% methanol. The relative standard deviations for these analyses generally decreased with 

increasing biomarker concentration.  For all four biomarkers, the recovery was near 100% for the 

most concentrated urine sample.  Both creatinine and 4-hydroxybenzoic acid were plagued by 

interference from the dead marker or the urine matrix, which would explain their higher reported 

recovery rates for the 20ppm urine sample.  Quinolinic acid and gentisic acid, by comparison, 

showed the opposite trend – an increase in recovery rate with increasing concentration – this is a 

result of the dead marker or the urine matrix not interfering with the detection of these two 

compounds.  The high relative standard deviation of quinolinic acid at 20 ppm indicates that the 

detection limit of this compound is being approached using the proposed RPLC method. For 

creatinine, quinolinic acid, and 4-hydroxybenzoic acid, it is evident that the background from the 

urine matrix or the dead marker will limit the detection of these compounds in urine. 
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Table 4.4.   Relative Standard Deviation (RSD) and Recovery at Low, Medium and High 

Concentration of Spiked Urine for 5% Methanol. 

1LC-MS analysis of the synthetic urine indicated that 4-hydroxybenzoic acid was a constituent.  To correct 

for the background from the synthetic urine, we diluted the urine five-fold as was done for each sample in 

Table 4.4.  Using the same isocratic HPLC method developed for the samples in Table 4.4, the peak area 

for 4-hydroxybenzoic acid in the synthetic urine was measured and then subtracted from the peak area for 

4-hydroxybenzoic acid in the three urine samples. 

 

 

Table 4.5 lists the recovery and relative standard deviation obtained for quinolinic acid, 

gentisic acid, and 4-hydroxybenzoic acid in each urine sample using  0.1% butanol water (0.6% 

acetic acid) mobile phase.  Recovery tests using synthetic urine containing 20 ppm, 100 ppm, and 

700 pm of each of these three RCC biomarkers were successful. Creatinine was not included for 

the recovery test as it is eluted with the dead marker.  For 4-hydroxybenzoic acid, there was a 

contribution to its peak area from the synthetic urine matrix (see Figure 4.7).  Based on the 

recovery tests, accurate detection of 4-hydroxybenzoic acid, gentisic and quinolinic acid was 

successful at medium and high biomarker concentrations for both 5% methanol and 0.1% butanol 

in water mobile phases with 0.6% acetic acid. Clearly, water-rich mobile phases (e.g., 0.1% 

butanol or 5% methanol) have advantages over more traditional hydro-organic solvent mixtures 

(e.g., 20% methanol in water with 0.6% acetic acid) for the analysis of water soluble and weakly 

retained compounds by liquid chromatography operated in the reversed phase mode.  

 

Low concentration       

(20 ppm) 

Middle  concentration                

(100 ppm) 

High concentration 

(700 ppm) 

 Compounds  RSD   Recovery    RSD  Recovery   RSD  Recovery 

Creatinine    7.93 %    410 %     2.35 %  163 %  0.37 % 108 % 

Quinolinic Acid    15.57 %    82.5 %     3.76 %  89 %  0.3 % 97 % 

Gentisic Acid    4.37 %    90.7 %     4.27 %  92 %  8.08 % 97 % 

14-Hydroxybenzoic 

Acid 

   21 % 

 

   127 % 

 

    2.86 % 

 

 101 % 

 

1.43% 

 

105 % 
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Figure 4.7 Chromatogram of synthetic urine (five-fold diluted with 0.6% acetic acid) and 

4-hydroxybenzoic acid (0.6% acetic acid). 

 

 

 

 

 

Table 4.5.  Relative Standard Deviation (RSD) and Recovery at Low, Medium and High 

Concentration of Spiked Urine Using 0.1% Butanol 

 Low Concentration 

    (20 ppm)  

Medium Concentration 

    (100 ppm ) 

High Concentration 

(700 ppm) 

Compounds RSD Recovery   RSD Recovery  RSD Recovery 

Quinolinic acid 4.6 % 102 % 10.6 % 105% 4.8 

% 

109 % 

Gentisic acid 16.4 % 88 % 10.3 % 105% 9.3 

% 

103 % 

14-Hydroxybenzoic 

acid 

20.4 % 160 % 17 % 91 % 4.5 

% 

106% 

1LC-MS analysis of the synthetic urine indicated that 4-hydroxybenzoic acid was a constituent.  

To correct for the background from the synthetic urine, we diluted the urine five-fold as was done 

for each sample in Table 4.5.  Using the same isocratic HPLC method developed for the samples 

in Table 4.5, the peak area for 4-hydroxybenzoic acid in the synthetic urine was measured and 

then subtracted from the peak area for 4-hydroxybenzoic acid in the three samples listed in this 

table.       
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Chapter V 

 

 

Conclusion 

 

Thirty-eight automotive paint samples from six manufacturers (General Motors, Chrysler, 

Ford, Toyota, Nissan, and Honda) in a limited production year range (2000 to 2006) were obtained 

from the Royal Canadian Mounted Police.   Each paint chip was placed between two small 

polyethylene plastic slabs, positioned horizontally in the sample holder of a microtome and cross 

sectioned using high profile microtome blades which ensured the generation of high quality thin 

sections representative of the four paint layers and a smooth paint surface crucial for effective 

surface contact with the internal reflection element of the ATR.  Infrared imaging of the cross-

sectioned paint chip was challenging due to difficulties encountered in the alignment of the chip 

on the germanium crystal.  However, this problem was addressed by aligning the thin paint sample 

with the midpoint of the germanium ATR crystal using a curved tweezer to support the sample 

holder, a small needle (with a bent tip) to maneuver the thin paint sample and a video camera to 

guide the placement of the chip.  This ensured complete coverage of the crystal by the sample 

when a pressure of 10-15 psi was applied.   The noise level of IR spectra for thin samples positioned 

at the midpoint of the crystal was low due to the higher intensity of the IR beam.  

For ATR infrared imaging, the single MCT detector, which performs a point by point 

mapping, was selected for ATR analysis.  The 25 micron x 25 micron aperture and 10 micron step 
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size yielded the best results.  The amount of time required for an analysis is approximately 1 hour 

because two line maps must be generated: one for the sample and the other for the background.  

After the line map for a sample has been collected, it is subject to decatenation using alternating 

least squares to obtain a “pure” IR spectrum of each layer.  This approach to automotive paint 

analysis, not only eliminates the need to analyze each layer separately, but also ensures that the 

final spectrum of each layer is “pure” and not a mixture of adjacent layers.   

The reconstructed IR spectra of the clear coat, color coat, surfacer-primer, and e-coat layers 

in each paint chip were searched against a forensic automotive paint library to identify the “make” 

and model of the vehicle from which the paint chip originated using OMNIC or a pattern 

recognition assisted infrared library search system.  Twenty-three (clear coat layer) and twenty-

four (surfacer-primer layer) of the thirty-eight paint samples were correctly identified by OMNIC 

as to the “make” and model of the vehicle.  For the pattern recognition assisted infrared library 

search system, twenty-six of the thirty-eight paint samples were correctly identified as to 

manufacturer and nineteen of the thirty-eight were correctly identified as to the model of the 

vehicle.   Paint samples that were not correctly matched by OMNIC or the pattern recognition 

assisted infrared library search system exhibited peak shifting in all regions of the IR spectra of 

the surfacer primer and e-coat layers compared to the ATR corrected spectra of the same paint 

samples and layers that were obtained using a high pressure diamond cell.   This peak shifting can 

be attributed to the positioning of the cross sectioned paint sample on the germanium crystal.   If 

all layers of the cross sectioned paint sample do not lie in the mid-point region of the germanium 

crystal, the effective angle of incidence will differ for those layers that are distant from the mid-

point compared to those layers that lie directly on the mid-point.  Due to the greater thickness of 

the clear coat layer (approximately 50 m) compared to the surfacer-primer (25 m) and e-coat 
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(25 m) layers, it is not surprising that differences in the internal reflection angle of the IR beam 

for the surfacer-primer and e-coat layers can occur for misaligned cross sectioned paint samples.  

The misalignment probably occurred as a result of the displacement of the sample from the mid-

point region of the crystal after the sample is raised to make contact with the crystal. 

Quinolinic acid, 4-hydroxybenzoic acid, and gentisic acid in urine have been implicated as 

potential markers to detect renal cell carcinoma, which is the third most reported form of 

genitourinary cancer.   Ultrahigh-performance liquid chromatography/tandem mass spectrometric 

and gas chromatography/mass spectrometric methods have been developed by previous workers 

to detect and quantity these three compounds, which are believed to exist in urine at elevated levels 

for patients in the early stages of renal cell carcinoma.   The use of water rich mobile phases in 

RPLC, e.g., 0.1% butanol in water with 0.6% acetic acid, and a Zorbax C18 column has been 

investigated as a potential method to detect and quantify these three biomarkers in urine.  Baseline 

resolution is achieved in the separation of these three compounds and creatinine when hydrophobic 

alcohols such as butanol are used as organic modifiers.  This can be attributed to butanol 

partitioning into the bonded phase and providing a more extended surface with the net result of 

increasing the contact surface area of the stationary phase and the selectivity of the separation.  

Recovery tests for quinolinic acid, gentisic acid, and 4-hydroxybenzoic acid using synthetic urine 

at low, medium, and high concentrations were successful except for 4-hydroxybenzoic acid at low 

concentration due to the presence of 4-hydroxybenzoic acid in the synthetic urine matrix. 
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