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CHAPTER I

INTRODUCTION

Nowadays optimization models and techniques play an essential role in power system manage-

ment. From long-term network configuration planning to short-term hourly scheduling and

operation, mathematical models and algorithms provide practical guidance for the decision

maker. One of the primary challenges in most of the power system problems is the ubiqui-

tous presence of the uncertainty. This uncertainty can be arisen from a number of sources,

ranging from high integration of intermittent renewable generations to electric component

failures, which potentially expose the system to safety issues and economic losses. Therefore,

mitigating the uncertainty is an important research topic in order to ensure satisfactory

performance of a power system. This dissertation introduces innovative mathematical models

and enhanced algorithms to support decision making under uncertainty in the power system

management. The rest of this Introduction Chapter will first provide the motivation behind

the problems studied, and then briefly review the traditional and more recent advancements in

the optimization under uncertainty field, and finally outline an overview of this dissertation.

1.1 Motivation of this dissertation

Currently most of the deregulated wholesale electricity markets in the United States employ a

two-settlement mechanism including day-ahead and real-time markets for electricity transac-

tions, plus an auxiliary service market to ensure system reliability. In the day-ahead market,

energy suppliers and consumers submit their generation biddings and consumption offers,

respectively, to the independent system operator (ISO), who is responsible for maintaining
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the balance between the supply and demand at every moment in the time. Day-ahead

market usually includes 24 hourly auctions that take place one day in advance. The market

participants first submit their biddings and offers for the entire 24 hours, and then by using a

market clearing procedure, the ISO clears the day-ahead market for all 24 periods to obtain

the locational marginal prices (LMP) for each specific hour as the trading basis so that the

supplies are compensated and demands are charged by LMPs.

Real-time market is occurred some minutes before the actual power delivery by the

suppliers. This market also comprises 24 hours. However, the ISO clears the real-time market

in a hour-by-hour basis. That means the market participants submit their biddings and offers

for a specific time period, the LMP is settled for this period, then they submit their biddings

and offers for the next period, and this alternative procedure continues for the whole 24

hours. Different markets follow different policies for the settlement of the real-time market.

In general, the energy suppliers will be usually paid at the real-time price for their positive

deviations (power supplies in the real-time are higher than the scheduled ones in day-ahead

market), and they will be usually charged for their negative deviations (power supplies in the

real-time are lower than the scheduled ones in day-ahead market).

Traditional structure of the power system only permits to the large fossil and nuclear

power suppliers to participate in the market. However, the need for sustainable electricity has

led to significant changes to this structures. According to the Global Wind Energy Council

[1], the global cumulative installed wind power capacity has dramatically increased from 24.4

GW in the year 2001 to 539.6 GW in 2017. There is a similar pattern for the solar power,

indicating that the total installations soared to 405.3 GW from 1.6 GW in the same range of

years [2]. As a consequences of these advancements, many ISOs in the U.S. such as CAISO

and MISO allow for renewable energy suppliers to participate in the market. While renewable

resources are an exciting source of energy with many economic and environmental benefits, as

a nascent technology, they also introduce new challenges to the operation of energy systems.
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One of the primary difficulties is the variability of renewable energy generation caused by

fluctuations in day-to-day weather. These variations make it difficult for the ISO to balance

load consumption and power generation in power grids, which in turn, may trigger serious

issues. The shortage of energy, on one hand, may put the security and reliability of the energy

supply into jeopardy, and on the other hand, brings penalty cost to the renewable energy

suppliers, which can increase the cost of the renewable energy as a result. Chapter 2 of this

dissertation aims to find a remedy for a wind energy supplier to secure itself with respect to

the wind power uncertainties in the operating day in order to be reliably integrated into the

system operations.

Furthermore, due to the increasing penetration of Distributed Energy Resources (DERs),

power system operators face significant challenges of ensuring the effective integration of

DERs. Distributed energy resources (DERs) are a precious portion of the resource mix to

establish reliable management of the green electricity grid. DERs can play essential roles in

meeting the nation’s increasing energy demand, backing up the electricity grid in the event

of outages, and peak shaving in the case of high demand charges. Contrary to conventional

generators that lie on the transmission systems and are dispatched by the system operator,

DERs are spreading across the distribution systems and because of their small capacities,

they are invisible to the system. Furthermore, due to their lack of controllability over their

outputs, DERs are either excluded from participation in the wholesale energy market or they

are not able to participate in a cost-effective manner [3]. With the current growing demand

for electrical energy, reliability of supply has emerged as a major concern. To maintain a

reliable grid, it is essential that all of the energy suppliers satisfy their commitment schedules.

However, the outputs of DERs are usually subject to uncertainty, which makes them as

inefficient and unreliable generation resources. Traditionally, the approach of connecting

DERs in most cases is based on a so-called fit and forget regime, meaning that DERs are

designed to fulfill a worst-case situation (like peak load) which may only occur limited times
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during a year [4]. This conservative approach prevents an effective share of electricity supply

from DERs’ side. To address the above issues, the concept of virtual power plant to aggregate

a collection of DREs and describe them as an equivalent of a larger power generator has

been explored in recent years [5]. Basically, the VPP is a representation of a portfolio of

heterogeneous DERs, including flexible loads, distributed generators (DGs) and energy storage

facilities that aggregate their capacities and participate in the wholesale energy market as a

single entity. Both DERs’ owners and distribution system benefit from VPP. On one hand, it

enables DER owners to be visible by the system operator similar to a transmission-connected

generator and optimize their operation in the most cost-effective manner. On the other

hand, VPP enables system operators to efficiently utilize available capacity and fulfill security

standards. However, it is very challenging to evaluate some physical properties such as

ramping rates and capacity limits of the VPP as one generation resource, since different

DERs may have different physical constraints. In addition, submitting inaccurate parameters

in the ISOs’ market clear engine can threaten the grid operation. This challenge calls for

new models for power system operations, which is the topic of Chapter 3 of this dissertation.

Another source of the uncertainty that can highly impact the performance of the power

system is the random failure of the system components. Recently U.S. has witnessed repeated

severe power outages due to natural disasters such as hurricane Sandy [6] and tropical

storm Irene [7]. Only between years of 2003–2012, nearly 679 weather-related power outages

happened in the U.S. and each influenced more than 50,000 customers [8]. Unfortunately,

the severity and frequency of natural disasters have been trending upwards. For example,

in the last ten years, the U.S. has suffered from seven of the ten most costly storms in its

history [9]. The growing threat from natural disasters calls for a better planning of the power

grids to improve system resiliency. According to the report [10] by the President’s Council

of Economic Advisers and the U.S. Department of Energy, nearly 80–90% of outages in the

power system occur along the distribution systems, and often lead to interruptions of power
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supply to end customers. Practically, a distribution system is operated in a radial topology

so as to make the design and protection coordination as simple as possible. Despite its

simplicity, any contingency in the distribution system can interrupt the continuity of power

supply to all customers downstream the on-contingency area. Hence, topology designing of

the distribution system is a critical task for the reliability, economic operation, and resilience

of distribution systems, and this topic will be explored in the Chapter 4.

1.2 Background on optimization under uncertainty methods

Traditional deterministic decision-making models assume a perfect knowledge of the system,

i.e., accurate values for the system parameters. However, such precise information is rarely

available in many real-life applications, including power system problems, for a variety of

reasons ranging from simply measurement errors to uncertain information about the future.

Any incorrect input data can potentially yield to infeasible strategies or reveal undesirable

performance when implemented. Optimization under uncertainty problems are characterized

by the necessity of taking actions without fully understanding what their consequences will

be in the future. However, they may offer multiple openings for taking corrective actions later

to mitigate the unfavorable effects as more and more observations are unfolded. Depending

on the nature of the problem and the uncertainty involved, conventional methods to deal

with uncertainty can be generally classified in two streams: Stochastic programming and

Robust optimization.

According to the Stochastic Programming (SP) approach, the uncertain events in a

problem are captured by random variables that are governed by a “known” probability

distribution. Under the standard two-stage stochastic programming paradigm, the decision

variables are divided in two parts. The first stage decisions are those that are made before

the realizations of the random parameters. In the second stage once the uncertain quantities

are revealed, a set of recourse decisions are made in response to the observed uncertain events.

5



A classical two-stage stochastic model can be written as follows:

min
x∈X

cTx + EP [Q(x, ξ)], (1.1)

where X is the feasible region of the first stage decisions, and Q(x, ξ) is the optimal value of

the second stage problem:

Q(x, ξ) = min
y

qTy (1.2)

s.t. Wy = h−Tx (1.3)

y ≥ 0, (1.4)

where ξ = (q,T,W,h) represents the random information. The objective of a SP model is

to determine the optimal first stage decisions in such a way that the total first stage cost and

the second stage expected cost is minimized.

Having the theory of probability and stochastic processes as its strong pillars, stochastic

programming has solid mathematical foundations, which proves its flexibility and usefulness in

a variety of applications. Despite its widespread applicabilities, there are still major challenges

associated with the SP framework. One essential criticism casting on such programs is the

assumption of perfectly knowing the distribution of random parameters. Although it is

possible to drive a distribution that best fits the historical samples, in order to approximate

the true distribution of data, the solutions can be misleading and away from true optimal

solutions. Even worse, in some circumstances, the historical data are either unavailable

or untrustworthy. Robust optimization (RO) has emerged as an attractive optimization

framework to deal with problems with uncertain parameters. The basic idea behind the RO

is to define a so-called uncertainty region for the uncertain parameters and then solve the

problem in such a way that the optimal solution remains feasible for all possible realizations
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of uncertain parameters vary within the prescribed uncertainty set. A typical two-stage

adaptive robust optimization problem is in the following form:

min
x∈X

max
ξ∈W

cTx +Q(x, ξ) (1.5)

where W is the uncertainty set of ξ. An important feature of the above formulation is that

the second stage decisions can be adjusted depending on the realization of ξ, whereas in

static robust models the decisions are already determined before the realization of ξ.

The main advantages of the RO approach are that it requires only minimal information to

construct the deterministic uncertainty set W , and it guarantees that the obtained first stage

decisions are feasible for most outcomes of the uncertain parameters. However, this approach

faces the challenge of providing over conservative solutions as the objective function is being

minimized respect to the worst-case scenario ξ in the uncertainty set W , which might rarely

happen in practice.

In recent years the field of optimization under uncertainty has undergone major advances

for leveraging observations of random variables as direct inputs to the mathematical pro-

gramming problems. As a newly emerged framework, Distributionally Robust Optimization

(DRO) aims at facilitating this goal. More specifically, in the DRO model, instead of con-

sidering the randomness of uncertain parameters, an unknown probability distribution is

considered and characterized by learning from the available historical data. In other words,

compatible with the decision maker’s prior information, the DRO models consider a set of

probability distributions of the uncertain parameters (termed ambiguity set) using certain

statistical inferences (e.g., moment information). Then, the strategy is to find a solution

that is optimal with respect to the worst-case probability distribution within the ambiguity

set. The mathematical model of the distributionally robust optimization can be described as

7



follows:

min
x∈X

max
P∈P

cTx + EP[Q(x, ξ)] (1.6)

where P is defined as the ambiguity set of the distribution P.

DRO approach has several appealing benefits that make it outstanding in data-driven

applications compared to other methods (like stochastic programming and Robust opti-

mization). For instance, even though we access to a vast amount of data in data-driven

environments, it is possible that we are not able to find any particular distribution to fit in

the data pattern. Even if we can infer the true distribution from data, SP approach usually

reveals poor out-of-sample performance. In particular, if we tailor an SP for a given dataset

(with a known true distribution) and evaluate the optimal solution on a different dataset

(with the same distribution), the result may not be satisfactory. This phenomenon is called

optimizer’s curse in the literature [11]. The main reason of optimizer’s curse in SP is that SP

requires a two-phase decision making process for solving the underlying problem. In the first

phase, the historical data serves as an input to estimate the probability distribution of the

uncertain parameter. The goal of this phase is usually to achieve a minimum prediction error.

Then in the second phase, the estimated distribution serves as an input to the optimization

problem that aims at finding optimal decisions. Hence, the distribution is not calibrated for

the optimization problem. However, DRO approach does not decompose the decision making

process into two (estimation and optimization) phases. Indeed, DRO models can implicitly

find an estimated distribution that is tailored for the optimization problem. As another

advantage, DRO models are often tractable (depending on the choice of ambiguity set) even

if the corresponding SP is not. For example, assuming that the probability distribution is

continuous, the corresponding SP may not be efficiently solvable since it requires computing

multidimensional integral in the objective function, which is NP-hard in general. However,
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as we show in Chapter 3, the DRO model is tractable in this case for our problem.

In addition, contrary to the classical RO that is basically a distribution-free approach

and minimizes the total cost based on a “worst-case scenario”, DRO models account for

distributional knowledge through the ambiguity set, and minimize the total expected cost

based on a “worst-case distribution” over a set of probability distributions (ambiguity

set). Hence, DRO models are less conservative than RO. In addition, as more information

included in the ambiguity set (e.g., the support set, mean, variance, and temporal correlations

considered in our approach), the DRO models exclude more pathological distributions that

are far away from the true distribution, and thus result in less conservative solutions.

1.3 Overview of this dissertation

In this dissertation, we develop different concepts in the field of optimization under uncertainty

to mitigate the corresponding potential undesirable consequences. In particular, the following

essential research questions are addressed:

• How to recover the energy shortage of a renewable energy supplier when participating

in the electricity market?

• How to facilitate the integration of distributed energy resources into the wholesale

electricity market by transforming all the information into one standard bid?

• How to configure a distribution power system to withstand against the risk of random

contingencies?

The first question is explored in Chapter 2. This Chapter proposes an incentive-based

coordination mechanism between a wind energy supplier (WES) and a conventional energy

supplier (CES) to achieve a Pareto improvement. To comply with its day-ahead schedules

and hedge against the intermittent wind energy generation, the WES is allowed to outsource
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a backup power capacity from the CES via making a bilateral contract. However, unanimous

agreement cannot always be achieved since each party plays on its own interest. We employ

the concept of swing option contracts to further encourage the suppliers to reach an agreement

of the contract. On one hand, the WES can leverage the uncertainty of wind output by

covering possible energy shortage from the CES. On the other hand, the CES can optimally

allocate its energy capacity by participating into the electricity market and offering capacity

to backup the shortage of energy from the WES. The bidding problem for each supplier is

formulated as a multi-stage stochastic programming model, with the objective of maximizing

the expected profit while maintaining a low level of risk. Unlike the traditional two-stage

approach, the proposed multi-stage model can effectively capture the impact of rebidding

process in the real-time market. We incorporate Conditional-Value-at-Risk as a risk measure

to characterize the effect of risk perception of suppliers on their bidding decisions. Meanwhile,

a game theory based approach is developed to obtain the contract items between the suppliers.

Implementation results on real cases are provided to illustrate the effectiveness of our proposed

framework.

The second question is addressed in Chapter 3, where we develop a model to evaluate

the physical characteristics of the VPP, i.e., its maximum capacity and ramping capabilities,

given the uncertainty in wind power output and load consumption. The proposed model is

based on a distributionally robust optimization approach that utilizes moment information

(e.g., mean and covariance) of the unknown parameter. We reformulate the model as a mixed

binary second-order conic program and develop a separation framework to address it. We

first solve a two-stage problem and then benchmark it with a multi-stage case. Case studies

are conducted to show the performance of the proposed approach.

The third question is investigated in Chapter 4, where a distributionally robust opti-

mization (DRO) model is proposed for designing the topology of a new distribution system

facing random contingencies (e.g., imposed by natural disasters). The proposed DRO model
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optimally configures the network topology and integrates distributed generation to effectively

meet the loads. Moreover, we take into account the uncertainty of contingency. Using

the moment information of distribution line failures, we construct an ambiguity set of the

contingency probability distribution, and minimize the expected amount of load shedding with

regard to the worst-case distribution within the ambiguity set. As compared with a classical

robust optimization model, the DRO model explicitly considers the contingency uncertainty

and so provides a less conservative configuration, yielding a better out-of-sample performance.

We recast the proposed model to facilitate the column-and-constraint generation algorithm.

We demonstrate the out-of-sample performance of the proposed approach in numerical case

studies.
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CHAPTER II

INCENTIVE-BASED COORDINATION MECHANISM FOR RENEWABLE

AND CONVENTIONAL ENERGY SUPPLIERS

2.1 Problem description and literature review

Renewable energy, especially wind energy, has been increasing penetration into power systems.

Projections revealed by National Renewable Energy Laboratory reflect that nearly 80% of

the electricity will be served by renewable resources to satisfy hourly-based demands in

every region of U.S. by 2050 [12]. To promote the growth of renewable energy generation,

many European countries and U.S. have established incentive policies like renewable portfolio

standard in their electricity markets. As a consequence of these regulations, several U.S.

Independent System Operators (ISOs), such as MISO and ERCOT, allow for the participation

of renewable power suppliers, particularly Wind Energy Suppliers (WESs), in their electricity

markets [13]. A WES confronts with two kinds of uncertainties when it submits energy bids

to the market: price and wind power output uncertainties. If the WES is not able to deliver

what it commits to the electricity market due to the wind output intermittency, it will face

considerable penalty costs for its energy shortage. There are a few options for the WES to

mitigate the intermittency or to cover the shortage, but they all have their own limitations.

The first option for the WES is to utilize energy storage resources such as pumped-

storage units [14], batteries [15], and air compressed [16] to mitigate its energy shortage

risk. However, the energy storage capacities are usually very expensive, and the high costs

hinder large-volume installations. The second remedy approach is to purchase energy from
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the energy market in the form of ancillary services. The main drawback of this strategy is

that the system operator does not guarantee the provision of enough power to cover the

WES’s shortage, due to uncertainties from both the supply and the demand sides. Moreover,

more deployments of ancillary services will increase the market clearing price of these services

and lead to higher total costs [17]. The hybrid wind-conventional system like wind-thermal

([18, 19]) is examined as another approach. [19] proposes a wind-thermal coordinated trading

mechanism for the day-ahead energy market. The problem is formulated as a two-stage

stochastic optimization model to maximize the total profit when wind plants are included

in the generation portfolio of strategic producers. [20] investigates the expansion planning

strategy of quick start generators, like gas-fired generators with flexible minimum up/down

and large ramping capabilities, to accommodate the fluctuations of wind generation. However,

these generators are often associated with significant operating costs. Another solution for

the WES to mitigate wind power output uncertainty is to outsource a backup capacity from a

Conventional Energy Supplier (CES) ([21, 22]). For instance, Wartsila Corporation delivered

203 MW gas power plant near San Antonio, Texas to South Texas Electric Cooperative to

provide backup power for their customers in 65 counties, where an increasing penetration of

wind power brought challenges to the grid stability [23]. In [22], a trading strategy between

WES and CES based on a two-stage stochastic programming model is introduced. However,

the designed contractual terms are not flexible enough in the sense that the power delivery

from CES to WES is unconditional. More particularly, because of wind uncertainty and

aversion to charging imbalance penalties, WES is willing to arrange flexible orders from CES.

That is, WES would prefer purchasing backup power from the market directly to executing

the contract with CES if the contract price is higher than the market price. But the contract

proposed in [22] obligates WES to trade the capacity level predetermined in the contract.

Existing literatures on optimal bidding strategies for the WES mostly formulate the

problem as a two-stage stochastic programming model (see e.g., [24], [25], [26], [27], among
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others). According to the two-stage stochastic programming model, in the first stage, the

WES submits its bidding in the day-ahead (DA) market before the wind power output and

the prices of DA and real-time (RT) markets become known. While in the second stage, the

WES decides on its transactions in the RT market once the wind output and DA prices are

available and only RT prices are unknown. The RT bidding for all hours of the operating

day are made simultaneously at the beginning of the day. Hence, this two-stage approach

does not allow any flexibility in real-time decisions after revealing the realization of uncertain

parameters during each time period. Moreover, this approach fails to appropriately represent

current practices of dependencies among successive periods of wind power outputs since it

assumes that the wind output scenarios for the entire operating day are available at the

beginning of the day. Recently, a two-step procedure approach is proposed in [28] for bidding

strategy of a WES and the Conditional-Value-at-Risk employed to manage the risk of its

profit. In the first step, the bidding strategy for the DA market is decided. Then in the

second step, once the actual scheduling in the DA market is identified, the WES derives the

bidding strategy in the RT market for each hour of the day separately. Meanwhile, the WES

can update the scenarios as new information is observed. However, this study neglects the

impacts of hourly-based RT decisions on the DA biddings.

As the preliminary study of this research, a coordination mechanism between the CES

and WES is designed in [29], where the optimal bidding strategy problem is modeled using

the traditional two-stage stochastic approach. To the best of our knowledge, this is the first

study that formulates the optimal bidding and contract strategy for a wind energy supplier

as a multi-stage stochastic programming model. In our model, the real-time decisions are

made in each period on a period basis according to the revealed real-time price and available

wind output in that period. In this way, the suppliers have the opportunity to update their

real-time decisions as time progresses and more information about the uncertain parameters

becomes available. Furthermore, the proposed approach uses an incentive-based mechanism
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to compensate the WES’s energy shortage. Particularly, a two-part structured bilateral

contract is developed to allow Pareto improvements to both sides in response to the uncertain

market changes. Our designed bilateral contract between the CES and WES is characterized

by three main parameters: backup capacity level, reservation price, and execution price.

Backup capacity level is the amount of energy that CES committed to deliver to WES upon

its request. Reservation price is an allowance paid by WES to CES for reserving one unit of

capacity. The execution price is paid by WES to CES for actually using a unit of capacity.

This trading mechanism is similar to the swing option contracts ([30, 31, 32, 33]). In order

to obtain the contract parameters between these two suppliers, we employ a game theory

framework, which can guarantee the maximum achievable profits. The main contributions of

this chapter can be listed as follows.

1. We develop a multi-stage stochastic programming to assist both suppliers to optimally

submit their bids in the day-ahead and real-time markets. By capturing dependencies

between electricity prices as well as wind outputs in consecutive time periods and

allowing the suppliers to rebid in the real-time market, our model gives more efficient

solutions than the two-stage model.

2. Using swing option contracts, our proposed framework provides flexible contracts

to motivate the suppliers to reach an agreement. Meanwhile, it achieves maximum

achievable profits for two parties considering operational limitations imposed on the

suppliers.

3. We incorporate Conditional-Value-at-Risk (CVaR) into the proposed multi-stage model

to provide a useful tool for the suppliers with various risk attitudes, from risk-neutral

to risk-averse. In other words, our model generates optimal bidding strategies based on

the suppliers’ conservativeness levels.

The remainder of this chapter is organized as follows. In Section 2.3, we describe the
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market clearing process in the two-settlement electricity market. In Section 2.4, we derive

multi-stage stochastic programming models to describe the optimal bidding strategies for

both CES and WES. Furthermore, we investigate the solution methodology and procedure

for exploring Nash equilibrium in Section 2.5. In Section 2.6, we provide case studies and

conduct computational experiments. Finally, we conclude this study in Section 2.7.

2.2 Nomenclature

A. Sets

G Set of generators.

I Set of day-ahead price realizations.

K Set of whole scenarios including market prices and wind outputs.

N+(n) Set of child nodes of node n.

Nt Set of nodes in the scenario tree at time period t.

T Set of time periods.

B. Parameters

Fc(.) Cost with respect to the generation level.

Lg Minimum power output of generator g.

RDg Ramp-down rate for generator g.

RUg Ramp-up rate for generator g.

SDg Shut-down cost for generator g.

SUg Start-up cost for generator g.

Ug Maximum power output of generator g.

WMax Installed capacity of the wind farm.

α Confidence level.

γ Risk preference parameter.

µk Probability of occurrence of the whole scenario (including market
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prices and wind outputs) k.

πitn Probability of nth realization of real-time parameters (wind output and real-time

market price) in scenario tree at time period t corresponding to the day-ahead

price realization i.

ρi Probability of scenario i occurrence for the day-ahead price.

C. Decision Variables

CtC,DA Cost of CES from DA market.

CtC,RT Cost of CES from RT market.

CtW,DA Cost of WES from DA market.

CtW,RT Cost of WES from RT market.

RvC,DA Revenue of CES from DA market.

RvC,RT Revenue of CES from RT market.

RvW,DA Revenue of WES from DA market.

RvW,RT Revenue of WES from RT market.

otg Binary variable to indicate if generator g is on at time period t.

St Backup capacity level at time period t.

stg Backup capacity provided by the generator g at time period t.

utg Binary variable to indicate if generator g is started up at time period t.

vtg Binary variable to indicate if generator g is shut down at time period t.

wt Unit execution price at time period t.

xitgn Real-time generation amount at time period t by generator g in node n of the

scenario tree corresponding to the day-ahead price realization i.

yDAtg Power offered by the conventional generator g in day-ahead market at time

period t.

yRT,itgn Power offered by the conventional generator g in real-time market at time period
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t in node n of the scenario tree corresponding to the day-ahead price realization i.

zC,itn Wind power output curtailed by the wind supplier in real-time market at time

period t in node n of the scenario tree corresponding to the day-ahead price

realization i.

zDAit Power offered by the wind supplier in day-ahead market for time period t

and scenario i.

zRT,itn Power offered by the wind supplier in real-time market at time period t in

node n of scenario tree corresponding to the day-ahead price realization i.

zS,itn Power purchased by the wind supplier from real-time market at time period t in

node n of the scenario tree corresponding to the day-ahead price realization i.

zU,itn Power utilized by the wind supplier from bilateral contract at time period t in

node n of scenario tree corresponding to the day-ahead price realization i.

δk Auxiliary variable in scenario k for linearizing of conditional-value-at-risk.

θt Unit reservation price at time period t.

ξ Auxiliary variable for calculating conditional-value-at-risk.

D. Random Parameters

W i
tn Wind power production at time period t in node n of the scenario tree

corresponding to the day-ahead price realization i.

βit Proportion of backup capacity that is actually utilized by wind supplier at time

period t corresponding to the day-ahead price realization i.

κitn Real-time market price at time period t in node n of the scenario tree

corresponding to the day-ahead price realization i.

λti Day-ahead market price at time period t and scenario i.
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2.3 Market framework

In U.S. electricity markets such as MISO and CAISO, market participants can submit energy

bids in both day-ahead and real-time markets [13]. The day-ahead market is a one-time

bidding process, while the real-time market consists of sequentially bidding processes for each

hour. Hence, knowing the price of previous hours, market participants have the opportunity

to update the bid prior to the deadline of each operating hour. Market participants can

submit their bids to the ISO in different modes. We investigate a paradigm in which the

suppliers submit offers in the form of self-scheduling. In the self-scheduling mode [34], the

supplier is responsible for its commitment and generation level for each time period and

it only submits energy quantities to the ISO, instead of quantity-price bid pairs. In this

study, we assume that CES and WES can establish a bilateral contract. This agreement can

provide a hedging mechanism for both suppliers. That is, the CES is allowed to allocate

its energy capacity by submitting bids to the day-ahead market and real-time market, and

backing up the WES’s energy shortage, based on the market price and the contract price.

Similarly, the WES can also participate in the markets by buying or selling its energy and

covering its energy shortage with the backup capacity provided by the CES. On one hand,

this mechanism creates an incentive for the WES to accommodate wind output uncertainty

and to avoid energy shortage penalties. On the other hand, pre-committing capacity to WES

via a bilateral contract yields to a wise utilization of capacity and a recovery of underlying

costs for the CES in the presence of unknown market price.

2.3.1 Uncertainty characterization

We consider three uncertainty parameters in our model: day-ahead (DA) market price,

real-time (RT) market price, and wind energy production. A multi-stage scenario tree is

developed to describe the possible realizations of uncertain parameters. The multi-stage
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Figure 2.1: Multi-stage scenario tree for a realized day-ahead market

scenario tree can effectively capture the correlation of wind outputs as well as RT market

prices among different time periods. For example, Fig. 2.1 illustrates a scenario tree for the

WES. Each node, except the root node, corresponds to a real-time decision and each branch

corresponds to a realization of random parameters. The root node can be interpreted as a

realized DA price. For the ith observation of the DA price, the wind energy for the first hour

with its corresponding probability is realized at branches (W i
11, π

i
11) and (W i

12, π
i
12). Then, the

WES decides on the amount of energy transactions with CES or market operator at nodes

Ai
11 and Ai

12 to offset its possible energy deficit. Branches (W i
21, κ

i
11, π

i
21), (W i

22, κ
i
12, π

i
22),

(W i
23, κ

i
13, π

i
23), (W i

24, κ
i
14, π

i
24) represent four samples (W i

21,W
i
22,W

i
23,W

i
24) of the wind outputs

in the second hour and four samples (κi11, κ
i
12, κ

i
13, κ

i
14) of the RT prices in the first hour with

their associated probabilities (πi21, π
i
22, π

i
23, π

i
24). Correspondingly, decisions for the second

hour are made at nodes Ai
21, Ai

22, Ai
23, Ai

24. This procedure will continue until the last

operating hour. Note here that the RT decisions corresponding to each node n are made

after observing the realizations of wind outputs and RT prices along the path from the root

node to the node n. Thus, the uncertainties at each period in node n are wind outputs for
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the next periods as well as RT prices for the current and oncoming periods.

2.3.2 Assumptions

We make the following assumptions about the model:

• Both suppliers’ strategies and payoff functions are public information. In other words,

each supplier has complete knowledge about the strategies and payoffs of the other

supplier, but not the decisions.

• The operation cost for the WES is negligible.

• Both WES and CES are considered to be price-takers in the day-ahead and real-time

markets. This means both suppliers have no market-power in the energy markets and

therefore, their offers have no impact on the market clearing price. This is a reasonable

assumption since we assume both WES and CES hold small shares of generation

compared to the total generation in the market.

• All bids will be accepted in the market. In other words, the suppliers can bid a low

price along with their generation quantities to ensure that their bids will be accepted.

2.3.3 Decision sequence

The market timeline and decision making process in our framework can be summarized as

follows:

• The WES and CES sign a bilateral contract.

• One day prior to the operating day, the WES and CES submit their bids into the DA

market for all hours simultaneously.

• The ISO clears the DA market and releases the DA price to the suppliers.
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• Closing to its actual energy delivery for time period t in the operating day, the WES

identifies its wind output for period t.

• The suppliers submit their biddings and offerings in the RT market for period t.

Additionally, the WES determines how much energy to be utilized from its reserved

capacity in the contract for period t.

• The ISO clears the RT market for period t and announces the price for this hour.

Steps 2.3.3-2.3.3 are repeated until the last time period in the operating day. Fig. 2.2

illustrates the above decision sequence.

Figure 2.2: The market timeline and decision making process

2.4 Mathematical formulation

In this section, we formulate the optimal bidding problems for both conventional and wind

energy suppliers, which can participate in the wholesale electricity markets and make a

bilateral contract with each other. We adopt a multi-stage stochastic programming approach

to model the self-scheduling process for both CES and WES in the day-ahead and real-time

markets. Since stochastic programming is inherently a risk-neutral approach, we incorporate

Conditional-Value-at-Risk (CVaR) as a risk measure in our model to manage the financial
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risk of the suppliers. By definition, with respect to a specified confidence level α, CVaRα is

the conditional expectation of profits below the (1− α)-percentile of the profit distribution.

The (1−α)-percentile of the profit distribution is known as Value-at-Risk (VaR), which is the

largest value that guarantees the profit falls below that value only with a small probability

(1− α). Mathematically speaking, CVaR is evaluated by the following equation:

CVaRα = E
[
profit

∣∣∣profit ≤ VaRα

]
(2.1)

For a scenario-based stochastic optimization model, CVaR can be calculated by the

following linear optimization problem [35]:

CVaRα = max
δ≥0,ξ

{
ξ − 1

1− α
∑
i∈I

τiδi

}
(2.2)

s.t. δi ≥ ξ −X(i), ∀i,

where optimal ξ represents VaR, X(i) is the ith scenario of profit with its associated probability

τi, and δi is an auxiliary variable indicating the difference between VaR and the scenario

profit, which is positive if the scenario profit is less than VaR, and is zero otherwise. Then,

we formulate the problem for both CES and WES as follows.

2.4.1 Conventional energy supplier

The CES is considered to operate and schedule a number of thermal units. For CES, DA

decisions are unit reservation price, unit execution price, online or offline status of generators,

start up and shut down decisions, and energy offered to the DA market. The RT decisions at

different time periods corresponding to each node in the scenario tree are energy offered to

the RT market and energy outputs. Given backup capacity level S provided by WES, the

problem of identifying the best bidding and contract strategy for the conventional supplier
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can be formulated as follows:

ΠC(S) = max E[RvC,DA] + E[RvC,RT ]−

CtC,DA − E[CtC,RT ] + γC CVaRα (2.3)

s.t. E[RvC,DA] =
∑
t∈T

Stθt +
∑
t∈T

∑
g∈G

∑
i∈I

ρiλtiy
DA
tg , (2.4)

E[RvC,RT ] =
∑
t∈T

∑
g∈G

∑
i∈I

ρi

[ ∑
n∈Nt

∑
j∈N+(n)

πitjκ
i
tjy

RT,i
tgn

]
+

∑
t∈T

∑
i∈I

ρiβ
i
tStwt, (2.5)

CtC,DA =
∑
t∈T

∑
g∈G

(SUgutg + SDgvtg), (2.6)

E[CtC,RT ] =
∑
t∈T

∑
g∈G

∑
i∈I

ρi

[ ∑
n∈Nt

Fc(x
i
tgn)
]
, (2.7)

CVaRα = ξ − 1

1− α
∑
k∈K

µkδk, (2.8)

Lgotg ≤ yDAtg + stg ≤ Ugotg, ∀t, g (2.9)

−o(t−1)g + otg − utg ≤ 0, ∀t, g (2.10)

o(t−1)g − otg − vtg ≤ 0, ∀t, g (2.11)∑
g∈G

stg = St, ∀t (2.12)∑
g∈G

xitgn =
∑
g∈G

yDAtg +
∑
g∈G

yRT,itgn + βitSt, ∀t, i, n (2.13)

Lgotg ≤ yDAtg + yRT,itgn + stg ≤ Ugotg, ∀t, g, n (2.14)

Lgotg ≤ xitgn ≤ Ugotg, ∀t, g, i, n (2.15)

xitgn − xi(t−1)gn ≤ RUgo(t−1)g +

Ug(1− o(t−1)g), ∀t, g, n (2.16)

xi(t−1)gn − xitgn ≤ RDgotg + Ug(1− otg), ∀t, g, n (2.17)

ξ −
[
RvC,DAk + RvC,RTk − CtC,DAk − CtC,RTk

]
≤ δk, ∀k (2.18)

utg, vtg, otg ∈ {0, 1},
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θt, wt, y
DA
tg , yRT,itgn , x

i
tgn, δk ≥ 0, ∀t, g, n, i, k. (2.19)

The objective for CES is to maximize the expected profit while maintaining a reasonable

level of risk. The risk preference parameter γC allows us to make a balance between the

expected profit and CVaR, and as a result, to generate different bidding strategies. When the

value of γC is equal to zero, the CES is totally risk-neutral. That means, the CES maximizes

its expected profit while it ignores the risk of profit. As the value of γC increases, the CES

becomes more risk-averse, in the sense that it maximizes both the expected profit and CVaR.

Maximizing CVaR is intended to increase the average profit of worst scenarios that encounter

with very low probabilities. If the value of γC is large enough, the CES only maximizes CVaR

to ensure that a minimum level of profit is obtained with a high probability α. The first two

terms in the objective function (2.3) express the revenues of CES and the following two terms

indicate the costs of CES from DA and RT markets, respectively. The expected DA revenue

is calculated in (2.4), which includes DA incomes from reserving capacity for WES in the

bilateral contract and DA bidding. The expected RT profit in (2.5) results from RT bidding

and providing capacity to WES. We assume that from the historical data, the RT utilized

capacity by WES can be estimated as a fraction (i.e., β) of the backup capacity. The DA

cost in (2.6) is associated with the generators start-up/shut-down costs. The RT cost in (2.7)

pertains to the generation cost, which is approximated by a m-piece piecewise linear function.

Constraints (2.9), (2.14), and (2.15) enforce the generation capacity on each thermal unit.

(2.10) and (2.11) represent unit start-up and shut down constraints, respectively. Constraints

(2.12) ensure that the CES provides the required backup capacity to WES. Power balance

constraints are expressed in (2.13). Constraints (2.16) and (2.17) impose ramping rate limits

for each unit. Finally, constraints (2.18) calculate CVaR.
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2.4.2 Wind energy supplier

Regarding WES, the DA decisions are backup capacity level and energy offered to the DA

market, while the RT decisions associated with each node in the scenario tree are energy

offered to the RT market, energy purchased from real-time market, energy utilized from the

bilateral contract, and wind outputs that are curtailed. Given unit reservation price θ and

execution price w provided by CES, the problem of finding the optimal bidding and contract

strategy for the wind supplier can be defined as follows:

ΠW (θ, w) = max E[RvW,DA] + E[RvW,RT ]−

CtW,DA − E[CtW,RT ] + γW CVaRα (2.20)

s.t. E[RvW,DA] =
∑
t∈T

∑
i∈I

ρiλtiz
DA
t , (2.21)

E[RvW,RT ] =
∑
t∈T

∑
i∈I

ρi

[ ∑
n∈Nt

∑
j∈N+(n)

πitjκ
i
tjz

RT,i
tn

]
, (2.22)

CtW,DA =
∑
t∈T

θtSt, (2.23)

E[CtW,RT ] =
∑
t∈T

∑
i∈I

ρi

[ ∑
n∈Nt

∑
j∈N+(n)

πitjκ
i
tjz

S,i
tn

]
+

∑
t∈T

∑
i∈I

ρi

[ ∑
n∈Nt

wtz
U,i
tn

]
, (2.24)

CVaRα = ξ − 1

1− α
∑
k∈K

µkδk, (2.25)

0 ≤ zDAt ≤ WMax, ∀t (2.26)

W i
tn = zDAt + zRT,itn + zC,itn − zS,itn − zU,itn , ∀t, n, i (2.27)

0 ≤ zU,itn ≤ St, ∀t, n, i (2.28)

ξ −
[
RvW,DA

k +RvW,RT
k − CtW,DA

k − CtW,RT
k

]
≤ δk, ∀k (2.29)

St, z
DA
t , zRT,itn , zC,itn , z

U,i
tn , z

S,i
tn , δk ≥ 0, ∀t, n, i, k. (2.30)
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Similar to CES, the objective for WES is to maximize the expected profit and CVaR.

The first two components in (2.20) represent revenues of WES from DA and RT markets,

respectively, and the following two components represent costs of WES from both markets.

The DA and RT revenues in (2.21) and (2.22) come from selling energy to the corresponding

markets. The DA cost (2.23) is caused by the reserved capacity from CES and the RT cost

(2.24) stems from actually utilizing the reserved capacity from CES and purchasing energy

from the RT market. Constraints (2.26) limit the power that WES can trade in the DA

market. Constraints (2.27) indicate power balance. That is, the total realized wind output

should be equal to the amount of energy offered in the DA as well as RT markets, and wind

curtailment minus the amount of energy purchased from CES and RT market. Constraints

(2.28) bound the amount of power transaction in the contract with CES. Finally, constraints

(2.29) evaluate CVaR.

2.5 Solution methodology

Game theory is a powerful framework for analyzing strategic decision situations where the

payoff of each individual decision maker relies on the decision of other decision makers.

Recent publications in power market area pay more attention to game theory as it conceivably

supports competition in the market ([36, 37, 38]). Market participants are always seeking

to know whether they are better off by cooperation or by non-cooperation in competitive

markets. A necessary condition for the non-cooperative game is that a binding commitment

about price fixing and quantity fixing has to be made in such a way that all participants can

benefit from it. The suppliers can play either a pure or mixed strategy game [39]. In the

pure game, each supplier can choose only a particular strategy from its strategy set. Unlike

the pure games, the mixed strategy games allow for choosing multiple strategies based on an

assigned probability distribution. One concern associated with the mixed strategy is that it

is not clear how an energy supplier would actually implement a mixed strategy. Accordingly,
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this is not a good fit for our problem setting, since in this study, the suppliers should come

up with one certain single contract and one plan to optimize their market participation based

upon this certain contract. Considering multiple contracts each associated with a probability

distribution can cause implementation issues. Therefore, we will focus on the pure strategy

game in this study. Notice that the considered game is a nonzero-sum game since the sum

of the suppliers objective functions is not zero (even after scaling and translation). Nash

equilibrium is a concept solution used in game theory to describe an equilibrium where no

participants has any incentive to unilaterally change its own strategy. To demonstrate the

mathematical procedure of finding Nash equilibrium, let us assume S1
t , S

2
t , ..., S

M
t be finite

discretization of the set S of capacity strategies and (θ1
t , w

1
t ), (θ

2
t , w

2
t ), ..., (θ

J
t , w

J
t ) be finite

discretization of the set P of price contract terms (θ, w). Let us also assume that φC(θ, w | S)

indicates the total profit of CES corresponding to its price contract decisions (θ, w), given

backup capacity S, and φW (S | θ, w) represents the total profit of WES corresponding to

its backup capacity decision S, given price contract strategy (θ, w). If (S∗, θ∗, w∗) is a Nash

equilibrium, then none of the suppliers can profitably stray from the strategy (S∗, θ∗, w∗).

The algorithm for finding Nash equilibrium is depicted in a flow chart in Fig. 2.3. Since both

sets S and P include finite discrete elements and we delete dominated points, the algorithm

will terminate in finite number of iterations. Meanwhile, if no Nash equilibrium does exist,

then the suppliers do not adopt a contract.

2.6 Case study

In this section, we consider one wind plant and one thermal plant including two units.

The installed capacity of the wind plant and thermal plant are 100 MW and 130 MW,

respectively. We use the historical market price data during January 1-November 1, 2014

from the MISO-Michigan hub. We exclude weekend data to preclude any weekly seasonality.

DA and RT price samples are generated using the procedure proposed in [40], and the wind
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Initiate a contract
price strategy (θ′, w′)

Solve the WES prob-
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Figure 2.3: Flow chart of solution methodology

output samples are simulated using the method applied in [41]. Moreover, for multi-stage

scenario tree construction and real-time scenario reduction, we employ the method proposed

in [42]. We conduct several experiments with different scenario sizes. Unless state otherwise,

the day-ahead and real-time sample sizes are 50, and the corresponding multi-stage real-time

scenario tree includes 932 nodes. The confidence level is set at α = 0.9 to calculate CVaR.

All of the experiments are implemented in C++ and solved with CPLEX 12.6 on a computer

with Intel Xeon 3.2 GHz and 8 GB memory. We concentrate more on the behavior of WES

in the case studies. In the following part, we first verify the effectiveness of the proposed

trading mechanism by giving several numerical examples. Second, we compare our multi-stage

stochastic programming model with the two-stage stochastic model.
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2.6.1 Effects of signing contract

To assess the proposed method, out-of-sample simulations are carried out in daily time steps

over a 13-week horizon. The expected weekly profits of the suppliers are compared in two

different scenarios as shown in Fig. 2.4. The first scenario (no contract) is that the suppliers

participate in the energy market only. The second (potential contract) is that the suppliers

have the option to transact with each other in addition to participating in the market. From

Fig. 2.4, we can see that the expected weekly profits obtained in the second scenario are

always superior to those obtained in the first scenario. This means both CES and WES

benefit from conducting the contract. Yet the differences in some weeks (e.g., weeks 3 and 12)

are smaller since the contract is not exercised for some days during the corresponding weeks.

To better understand the details of transaction mechanism, in the following we concentrate

on a specific day of the planning horizon, in which the contract is signed.
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Figure 2.4: Expected weekly profits for WES (above) and CES (below)

The expected hourly profits of the WES are illustrated in Fig. 2.5. It can be observed

that having transaction with the CES brings more benefits to the WES as its total increased

profit is $3085, with increment rate of 3.1%. We notice that the CES also finds the bilateral

contract viable with totally 2.5% increment rate. Fig. 2.5 also shows that the WES mostly

gets advantage from the contract at time period 4. The reason is that the volatile RT market

price becomes pretty high at this period and thus the WES inclines to utilize its backup
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capacity from the CES instead of buying energy from the RT market with higher price. On
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Figure 2.5: Expected hourly profits (above) and increased hourly profits (below) from
participating in both energy market and bilateral contract for WES
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Figure 2.6: Expected hourly power traded with RT market for WES

the other hand, we observe that the profit of the first scenario (not engaging in the contract)

is slightly greater than the second one (Nash game case) during some periods. For instance

in time period 23, the execution price w23 is greater than the RT market price. Thus, the

WES has no tendency to exercise the contract. However, since it has already paid θ23S23

for reserving the backup capacity, adopting the contract yields to less profit for the WES

at this period. It is worthy to mention that for some periods that the WES has no wish to

use the backup, like time period 23. Therefore, our two-part price bilateral contract (swing

option contract) provides a more cost-effective solution compared to the traditional one-part
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price contract (forward contract). The reason is that our contract represents the right, but

not the obligation, to purchase power at the prearranged execution price. Hence, when the

market price is less than the execution price, the WES does not exercise the contract, but

purchase the energy from the market with the market price to recover the shortage, plus a

reservation price (reservation price usually contains a small portion of the execution price)

paid to CES for reserving the capacity. However, the forward contract obligates the WES to

purchase from the CES, though the contract price is higher than the market price. Therefore,

the forward contract might be more costly to the WES. In other words, by considering the

reservation price in the contract, the risk is more diversified between the suppliers and the

WES is further motivated to sign the contract.

Fig. 2.6 indicates the expected energy traded in the RT market for each time periods.

For periods that the expected DA price is higher than the RT price, the WES decides to bid

into the DA market as much as possible and then recover its energy shortage by trading with

CES and RT market. In this case, the bilateral contract provides a precious opportunity for

WES to purchase less expensive power from the RT market. Moreover, for the periods that

the RT price is higher than the DA price, the WES prefers to assign all of its capacity into

the RT market. In this case, the contract allows the WES to utilize the backup capacity with

low price and sell it to the RT market with higher price. For other periods like time periods

23 and 24, we can readily identify that the power traded in the RT market for Nash game

and no contract cases are the same. The reason is that it is not economically justifiable for

the WES to use its backup capacity. Considering above discussion, it can be clearly observed

that our devised bilateral contract provides a flexible tool for the WES to secure itself with

respect to the uncertainties in the operating day.
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Figure 2.7: Expected profit versus CVaR for WES considering different risk perceptions

2.6.2 Effects of risk perception

Fig. 2.7 shows the efficient frontier for the WES. Efficient frontier plays a crucial role for

the WES to resolve the tradeoff between the expected profit and risk. For a low risk-averse

behavior of WES (γW = 0.1), the value of expected profit is $102716 with CVaR of $61663.

By moving to a high risk-averse case (γW = 1), the value of CVaR grows by 13.5% at the

cost of just 2.4% reduction in the expected profit. This is a compelling result since by a small

decline in expected profit, the risk of profit volatility is significantly reduced.
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Figure 2.8: Expected power traded by WES in DA and RT markets for time period 12 (above)
and time period 20 (below)

Fig. 2.8 illustrates the impact of various risk attitudes on the amount of power that WES

trades with the DA and RT markets for time periods 12 and 20. We choose these periods
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as they reveal two distinct properties. The wind output is highly volatile in time period 12

and the expected RT price is greater than the DA price. However, the wind output has less

fluctuations in time period 20 and the DA price is greater than the RT price. Considering

time period 12, as the WES becomes more risk-averse (the value of γW increases), it offers

more power in the DA market and less in the RT market to hedge against the rise in RT

price. In contrast, the WES has tendency to trade less power in the DA and more in the RT

markets for time period 20. By this strategy, the WES lowers its profit volatility in the hope

that it can sell its generation in the RT market at a reasonable high price.

2.6.3 Effects of multi-stage programming

In order for evaluate the performance of our multi-stage stochastic programming model,

we compare the results with the two-stage stochastic case. We carry out case studies for 4

different days, with DA price samples of two sizes (50, 100), and RT price as well as wind

output samples of two sizes (50, 100). According to the Table 2.2, the expected profits

attained by the multi-stage model are always superior respect to those attained by the

two-stage model. This is because the multi-stage solution comes up with more flexibility

in RT decisions with respect to the uncertain parameter realizations. However, there is a

tradeoff between flexibility and computational efficiency, when using the multi-stage model.

2.7 Conclusion

We develop a multi-stage stochastic programming model for the wind and conventional energy

suppliers to optimize their bidding strategies in the both day-ahead and real-time markets.

Our proposed model provides an opportunity to the wind supplier to update its real-time

decisions as time progresses when more information about wind outputs and real-time market

prices become available. In addition, using option contract with Nash equilibrium framework,

an incentive-based trading mechanism is investigated to help the wind energy supplier recover
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Table 2.2: Comparing objective values for multi-stage and two-stage stochastic programming

DA 50 100

RT 50 100 50 100

Instance Two Multi Two Multi Two Multi Two Multi

Day 1 profit($) 147587 148018 144620 144694 138872 139283 139429 139450

time(s) 10.29 84.73 10.05 129.11 9.6 211.38 11.94 333.16

Day 2 profit($) 140049 140348 137870 138105 113004 113263 112537 112720

time(s) 12.21 87.55 11.17 108.72 10.59 195.71 11.16 255.91

Day 3 profit($) 129962 143016 130792 144321 136225 149022 134446 147613

time(s) 23.04 92.18 19.48 110.39 20.19 205.14 23.11 342.1

Day 4 profit($) 130506 131204 128988 129767 117397 118312 116864 117710

time(s) 11.62 81.27 13.77 162.13 19.45 198.21 20.1 232.93

its energy deficit and at the same time bring the conventional energy supplier to obtain

more profits. The computational results verify that our proposed approach is effective in

accommodating wind and price uncertainties. Finally, as the future work of this chapter, our

framework can be extended to the case with one conventional supplier and several renewable

suppliers, and the case with several conventional suppliers and one renewable supplier.
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CHAPTER III

A DATA-DRIVEN MODEL OF VIRTUAL POWER PLANTS IN

DAY-AHEAD UNIT COMMITMENT

3.1 Problem description and literature review

With the influx of distributed energy resources (DERs), passive power networks are going

through a transformation, from a centralized to a decentralized scheme, to enhance the

flexibility and reliability of the system by offering more resources to the grid operator [43, 44].

However, since each individual distributed energy resource has small capacities and is lack

of controllability over its outputs, small distributed energy resource is either excluded from

participating in the wholesale energy market or it is not able to participate in a cost-effective

manner. Currently, Independent System Operators (ISOs) have limited control over the

DERs connected to the grid, because most of these DERs are invisible to ISOs. Moreover, due

to the computational limitation, ISOs are not able to simultaneously co-optimize schedules

of conventional generators and a huge number of DERs across the grid. Accordingly, the

development of an entity in the wholesale market as a market participant to represent and

operate these DERs, becomes an important approach to facilitate the utilization of renewable

energy resources and modernization of electricity grid. As an aggregator, the virtual power

plant (VPP) [5] acts as an intermediary between the DERs and ISO, and allows small DERs

to be pooled and actively participate in the wholesale energy markets. Such a bundled entity

alleviates the ISO from having to obtain additional reserves or other ancillary service products

for mitigating renewables intermittency. The concept of VPP is successfully implemented in
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Belgium and Netherlands [45], and is exploited in Germany and United Kingdom [46]. In

July 2018, the first trial of VPP initiated by Tesla, has been successfully set up in South

Australia, which is expected to generate 250 MW of solar power and 650 MWh of battery

storage capacity [47]. Moreover, [48] investigates the method to estimate the operation and

cost of VPP and report the study of a VPP project on an 11 KV system in Brixton by using

the data from UK Power Network, and [49] reports the studies of VPPs across cities in the

iURBAN project. However, although via aggregation, the VPP enlarges the visibility of DER

units to ISOs in consideration of market participation and operation, it is still challenging

to transform all the information of aggregated DERs into one bid with standard attributes

such as maximum capacity, ramping restrictions, so that it can fit ISOs’ bidding offer schema

and the wholesale market’s mechanism. In addition, submitting inaccurate parameters in

the ISOs’ market clear engine can jeopardize the grid operation. In this study, we provide a

framework to characterize and evaluate the standard attributes/parameters in the VPP’s bid

submitted to the ISO that can optimize its entire portfolio as an aggregation of distributed

energy resources.

Existing literature on the operation and scheduling of the VPP mostly seeks to optimize

the dispatching of resources within the VPP so as to maximize its profitability. References

[50, 51] consider the self-scheduling operation of the VPP, which means that the VPP only

submits energy quantities to ISO, instead of quantity-price bid pairs. Price-based unit

commitment models are proposed in [52, 53] to develop the bidding strategy for a VPP

that behaves as a price-taker in the market, since the VPP is assumed to be a relatively

small entity that has less impact on the market clearing price compared to the other market

participants. In [54], a large scale of wind farm-energy storage system is studied as a price

maker. The behavior of rival participants is taken into account using the residual demand

curve. In [55] and [56], a bilevel problem for the optimal bidding strategy of VPP is addressed,

in which the upper level aims to maximize the profit of VPP, and the lower level calculates
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the ISO day-ahead market clearing price. In [50], VPPs are allowed to establish bilateral

contracts to hedge against the volatility of the electricity market. The idea of introducing

VPPs as ancillary service providers is investigated in [57, 58]. A detailed literature review

about the scheduling problem of VPP is presented in [59].

Another key direction of studying VPP focuses on managing the uncertain parameters like

renewable generation output and load consumption. Stochastic programming (SP) has been

extensively utilized for this purpose [60, 61]. Using this approach, the uncertain parameters

are characterized by a set of scenarios based on the estimated probability distribution. For

example, [62] studies a two-stage stochastic programming model for the optimal offering

strategy of a VPP in the day-ahead and balancing markets. The uncertain wind power and

market price are represented by a set of equi-probable scenarios. A major obstacle of SP is

that fixing a particular probability distribution of the uncertain parameter may yield to biased

solutions with unreliable out-of-sample performance. Moreover, SP usually suffers from the

curse of dimensionality, which means that the computational difficulty surges exponentially

in the number of scenarios, and makes it impractical to solve large scale problems. As an

alternative approach, robust optimization (RO) aims at constructing an uncertainty set to

characterize the uncertain parameter, and allows the uncertain parameter to run adversely

within the constructed uncertainty set to guarantee the feasibility of the optimal solution.

For instance, in [63, 64], confidence bounds are constructed for the uncertain wind and

market price, and robust bidding strategy models are proposed for a VPP consisting of

price-responsive demands, wind power plants, and storage units. However, the RO approach

is criticized as its over-conservativeness since it ignores the probabilistic nature of unknown

parameters and the solution is solely based on the worst-case scenario.

To cope with the limitations of stochastic and robust optimization approaches, distribu-

tionally robust (DR) optimization models have been developed (see e.g., [65], [66]). According

to this approach, the probability distribution of the uncertain parameters is itself subject to
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uncertainty. In fact, the probability distribution is merely known to be within an ambiguity

set, which can be characterized using certain statistical properties (e.g., estimation of mean

and covariance). To guarantee the robustness of the approach, DR approach finds a solution

that minimizes the worst-case expected cost over the ambiguity set. Unlike the traditional

SP that exploits a collection of representative scenarios based on an estimated probability

distribution to characterize the uncertain parameters, and thereby has no robustness to the

error of distribution estimation, DR models release the assumption on any particular distribu-

tion. Therefore, this approach can accommodate the estimation error on the distribution due

to the noisiness and incompleteness of the data, and also avoid the computational prohibition

of scenario enumerations. Furthermore, contrary to the classical RO that is basically a

distribution-free approach and minimize the total cost based on a worst-case scenario, DR

models account for distributional knowledge through the ambiguity set, and minimizes the

total expected cost based on a worst-case distribution over a set of probability distributions

(ambiguity set). Hence, DR models trigger to less conservative solutions.

Because of these advantages, DR models have been successfully applied in power system

problems under uncertainties, including contingency-constrained unit commitment [67], unit

commitment with wind power integration [68], reserve scheduling [69], and optimal power

flow [70]. However, most of the works fail to consider the physical limits (i.e., the support

space) for the uncertain parameters, which is essentially critical in many applications. For

example, renewable generators (e.g., wind turbines) have a limited capacity that cannot be

exceeded from. The resulted solutions in these works, though restricted by the set of the

distributions, are more conservative since the uncertain parameter itself can take very large

positive or negative value even with its distribution still being within the range. Modeling of

dependencies among the uncertain parameters (e.g., renewable energy outputs) is another

crucial feature that is usually captured by including covariance matrix in the ambiguity

set. Despite importance, there are limited studies in this regard. [69] stipulates that the
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covariance of uncertain renewable outputs exactly matches the empirical covariance obtained

from data and formulates a semi-definite program, and [71] bounds the correlation between

pairs of wind farms generations and proposes a second-order conic program.

This study presents a two-stage DR model for the VPPs participation in the wholesale

market. The VPP is a profit-driven entity that participates in the day-ahead wholesale

market by submitting the cost curve and other related parameters like its maximum capacity

and ramping limits to ISO. The goal is to find these standard attributes in the VPP’s bid

submitted to the ISO that can optimize its entire portfolio. The ISO collects such bidding

information from all participants and run the reliability unit commitment to decide about

the generation amount of each participant. Thus, the optimal solutions, i.e., the bidding

parameter information of VPP will be served as an input for the ISO’s unit commitment run.

Furthermore, we consider two uncertainties in the model, i.e., the uncertain renewable energy

output, and the unknown energy cleared by the ISO. We represent these two uncertainties

with one parameter: the virtual net load, which is defined as the MW cleared by the ISO

minus the renewable generation. It is assumed that in the first stage (day-ahead market), the

VPP determines its total capacity and ramping limits to be reported to ISO that can optimize

its entire portfolio by considering the physical constraints and the uncertain virtual net load.

The second stage will give the first-stage a recourse, so that in the real-time operating day,

after knowing the virtual net load, the VPP is able to supply enough power as it reported, by

controlling its generation level of its conventional generators and power storage level. Using

available moment information such as the empirical mean and covariance matrix of VPP’s

virtual net load that are learned from the data, we construct a second-order conic (SOC)

representable ambiguity set for the unknown probability distribution, and reformulate the

DR problem as a second-order conic programming (SOCP), which is efficiently solvable by

off-the-shelf solvers like CPLEX. The objective of the model is to minimize the worst-case

expected total cost over all probability distributions of the virtual net load in the ambiguity
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set. The conservativeness of the model can be adjusted based on the preference of the

VPP operator. That is, if the VPP operator utilizes more information about the virtual

net load data, the ambiguity set becomes smaller and the model becomes less conservative

accordingly. On the contrary, if the VPP operator ignores the moment information on

probability distribution and just utilizes the boundary information of the virtual net load (i.e.,

upper and lower bound), the proposed model is reduced to a traditional robust optimization

model. Moreover, the proposed ambiguity set is able to capture the temporal dependencies

among different time periods in the virtual net load profile by considering the covariance

matrix.

A more realistic approach to model the VPP’s problem is to allow the sequential revelation

of the uncertain virtual net load and restrict the dispatch decisions to only hinge on the

virtual net load observed up to the current time period. This restriction is called the non-

anticipativity of dispatch decisions and the resulting formulation describes a multi-stage

model. The main advantage of the multi-stage model over the two-stage approach is that the

former framework caters for a dynamic decision making, where the VPP operator has the

opportunity to update its knowledge about uncertain outcomes as they unfold in periods.

Using linear decision rules, we extend the two-stage model to the multi-stage case, where

recourse decisions take the form of a linear function of uncertain virtual net loads and a set

of auxiliary variables.

The contributions of this study are summarized as follows:

• We propose an innovative distributionally robust optimization model to help VPPs to

optimally characterize the parameters in their bidding offers to ISO for the reliability

unit commitment run.

• The DR model can effectively manage the intrinsic uncertainty arising from virtual net

load consumption. An tractable reformulation of the proposed DR model is derived,
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which can be implemented effectively by off-the-shelf solvers.

• To better capture the nonanticipativity of the uncertainty, we extend the two-stage

case to a multi-stage DR problem by using linear decision rules, and benchmark it with

the two-stage DR model.

The rest of the chapter is organized as follows. In Section 3.3, we formulate the two-stage

and multi-stage DR models, and describe the ambiguity set of virtual net load probability

distributions. In Section 3.4, we derive a separation framework to address the DR models.

Finally, in Section 3.5, we demonstrate the effectiveness of two-stage and multi-stage models

through several case studies.

3.2 Nomenclature

A. Sets

N g Set of generators.

T Set of time periods.

B. Parameters

SUi Start-up cost for generator i.

SDi shut-down cost for generator i.

NLi No load cost for generator i.

CUg
i Maximal generation capacity for generator i.

CDg
i Minimal generation capacity for generator i.

UTi Minimum up-time for generator i.

DTi Minimum down-time for generator i.

RUi Ramp-up limit for generator i.

RUi Start-up ramp-up limit for generator i.

RDi Ramp-down limit for generator i.
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RDi Shut-down ramp-down limit for generator i.

Lint Load level inside the VPP in time period t.

Cg
i (.) Fuel cost function of generator i.

xs0 Initial storage level.

ηs+ Discharging efficiency of storage unit.

ηs− Charging efficiency of storage unit.

CUs+
t Maximum discharging level of storage unit in time period t.

CUs−
t Maximum charging level of storage unit in time period t.

CUs Capacity of storage unit.

λCt Capacity price in time period t.

C. First Stage Decision Variables

y+
it Binary variable to indicate if generator i is started up in time period t.

y−it Binary variable to indicate if generator i is shut down in time period t.

yoit Binary variable to indicate if generator i is on in time period t.

yCt Capacity offering by a VPP to the ISO for time period t.

yRUt Ramp-Up limit offering by a VPP to the ISO for time period t.

yRDt Ramp-Down limit offering by a VPP to the ISO for time period t.

D. Second Stage Decision Variables

xgit Power produced by generator i in time period t.

xs+t Amount of power discharged by storage unit in time period t.

xs−t Amount of power absorbed by storage unit in time period t.

xvpp
t Total power generation of a VPP in time period t.

E. Random parameter

ξt Virtual net load consumption in time period t.
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3.3 Mathematical formulation

We consider a VPP consisting of conventional generators, a wind farm, an energy storage

unit, and non-flexible customers. Before submitting its bids to the day-ahead market, the

VPP utilizes the moment information of virtual net load to construct an ambiguity set of

virtual net load probability distribution. Using the ambiguity set and the physical characters

of each conventional generators, the VPP determines the offering information needed to be

submitted to the ISO, i.e., capacity, ramping limits, and cost curve in such a way that it

minimizes the worst-case expected cost. We present the DR model as follows:

min
y

∑
t∈T

∑
i∈N g

(SUiy
+
it + SDiy

−
it + NLiy

o
it)

−
∑
t∈T

λCt y
C
t + max

P∈D
EP[Q(y, ξ)], (3.1a)

s.t. yoit − yoi,t−1 = y+
it − y−it , ∀i ∈ N g, t ∈ T , (3.1b)

−yoi,t−1 + yoit − yoik ≤ 0,

∀i ∈ N g, t ∈ T , 1 ≤ k − (t− 1) ≤ UTi, (3.1c)

yoi,t−1 − yoit + yoik ≤ 1,

∀i ∈ N g, t ∈ T , 1 ≤ k − (t− 1) ≤ DTi, (3.1d)

yCt ≤
∑
i∈N g

CUg
i y
o
it − Lint , ∀t ∈ T , (3.1e)

yRUt ≤
∑
i∈N g

(RUiy
o
i,t−1 + RUiy

+
it ), ∀t ∈ T , (3.1f)

yRDt ≤
∑
i∈N g

(RDiy
o
it + RDiy

−
it ), ∀t ∈ T , (3.1g)

yoit, y
+
it , y

−
it ∈ {0, 1}, ∀i ∈ N g, t ∈ T , (3.1h)

where y := (yo,y+,y−,yC ,yRU ,yRD) denotes first-stage decisions, D indicates the ambiguity

set of virtual net load probability distribution, and Q(y, ξ) represents the operating cost

for a given first-stage decision y and realized virtual net load ξ, and it can be calculated as
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follows:

Q(y, ξ) = min
x

∑
t∈T

∑
i∈N g

Cg
i (xgit), (3.2a)

s.t. xvpp
t =

∑
i∈N g

xgit + xs+t − xs−t , ∀t ∈ T , (3.2b)

ξt ≤ xvpp
t ≤ yCt , ∀t ∈ T , (3.2c)

xvpp
t − xvpp

t−1 ≤ yRUt , ∀t ∈ T , (3.2d)

xvpp
t−1 − xvpp

t ≤ yRDt , ∀t ∈ T , (3.2e)

CDg
i y
o
it ≤ xgit ≤ CUg

i y
o
it, ∀i ∈ N g, t ∈ T , (3.2f)

xgit − xgi,t−1 ≤ RUiy
o
i,t−1 + RUiy

+
it , ∀i ∈ N g, t ∈ T , (3.2g)

xgi,t−1 − xgit ≤ RDiy
o
t + RDiy

−
it , ∀i ∈ N g, t ∈ T , (3.2h)

0 ≤ ηs+xs+t ≤ CUs+
t , ∀t ∈ T , (3.2i)

0 ≤ ηs−xs−t ≤ CUs−
t , ∀t ∈ T , (3.2j)

0 ≤ xs0 +
∑
j∈[1:t]

(ηs−xs−j −
1

ηs+
xs+j ) ≤ CUs,∀t ∈ T , (3.2k)

where x := (xg,xs+,xs−,xvpp) denotes the second-stage decisions, including the conventional

generation amount, storage charging/discharging amount and total generation level. In the

above formulation (3.1)–(3.2), the objective function (3.1a) is to minimize the worst-case

expected total net cost, i.e., total cost minus the potential revenue by selling the capacity to

the grid. The total cost includes start-up, shut-down, no load, and fuel costs. The potential

revenue is assumed to be linearly depending on the value of offered capacity to ISO. Note

that we do not put the potential revenue from selling power to the customers in the objective

since it is a constant value in our model. Constraints (3.1b) indicate the commitment

relationship among y+
it , y

−
it , and yoit. Constraints (3.1c) and (3.1d) represent minimum up-time

and minimum down-time limits, respectively. Constraints (3.1e) define an upper bound for
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the total capacity offered by VPP to ISO, which is the total available capacity, minus the

load inside the VPP. Constraints (3.1f) and (3.1g) characterize the ramp-up and ramp-down

limits offered by VPP to ISO. The objective of formulation (3.2) is to minimize the total

operating cost, while respecting dispatch and storage related constraints. More precisely,

Cg
i (xgit) represents the quadratic fuel cost function corresponding to the generation level xgit,

and it can be estimated by a N-piece-wise linear function as follows:

xcit ≥ δni y
o
it + %ni x

g
it, ∀n = 1, ..., N, i ∈ N g, t ∈ T . (3.3)

Constraints (3.2b) calculate the total power generation by the VPP. Constraints (3.2c)

describe that the total generation amount of VPP should satisfy the virtual net load, and

also should not exceed the capacity level. Constraints (3.2d) and (3.2e) describe ramp-up

and ramp-down limits for the VPP. Constraints (3.2f)-(3.2h) describe generation as well

as ramping limits for the conventional generators inside the VPP. Constraints (3.2i)-(3.2j)

describe upper bounds for the amount of discharge and charge levels. Finally, constraints

(3.2k) enforce energy storage limits for the storage unit. After solving the above models
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Figure 3.1: An example of cost curve

(3.1)–(3.2), the first-stage decisions including the capacity yCt and ramping limits yRUt and

yRDt of the VPP can be found. As for the cost curve, since the storage unit is only responsible

for smoothing out the scheduled generation levels by absorbing power when the demand
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is low and generating power in peak demand hours, it does not impact on the cost curve.

Therefore, the cost curve submitted to the ISO will have the similar shape as the cost curve

of conventional generators, except a shift because of the wind power output, as illustrated in

Fig. 3.1. The reason for shifting the curve is that the conventional generators will be started

up only when the wind power output is not enough to met the demand.

3.3.1 Abstract formulation

For notation brevity, we recast the problem into the following compact matrix formulation:

min
y∈Y

cTy + max
P∈D

EP[Q(y, ξ)], (3.4a)

with

Q(y, ξ) = min
x
{dTx : Ay + Bx ≥ h−Mξ}, (3.4b)

where cTy indicates commitment costs minus capacity value, Y represents the first-stage

constraints (3.1b)–(3.1h), dTx indicates the operating cost, and Ay+Bx ≥ h−Mξ represents

the second-stage constraints (3.2a)–(3.2k) for a fixed commitment and offering decision y

and virtual net load realization ξ.

3.3.2 Ambiguity set construction

We construct an ambiguity set D of the virtual net load probability distribution by using

its moment information. This ambiguity set can capture the dynamics of virtual net load

evolution over time periods. Another main feature of this ambiguity set is that since it is

a second-order conic representable set [72], it can be reformulated as a second-order conic

program, which can be solved by many commercial solvers. More precisely, the ambiguity set
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is constructed as:

D =


P ∈ P0(RT)

∣∣∣∣∣∣∣∣∣∣∣∣∣

P(ξ ∈ Ω) = 1,

EP[ξ] = µ,

EP[(ξ − µ)2] ≤ γ,

EP

[(∑t
i=k(ξi − µi)

)2
]
≤ γ̄kt,∀k ≤ t,


(3.5)

where P0(.) is the set of all probability distributions, T = |T | is the number of time periods,

Ω is the support space of ξ and defined by Ω = [ξ, ξ], µ is the estimation of the mean value of

uncertain virtual net load ξ, and parameters γ and γ̄ are used to adjust the conservativeness

of the optimal solution, which can capture the VPP operator’s risk attitude. A risk-averse

VPP operator may select larger values for these parameters to enrich the ambiguity set

with more distributions, and thus arrive at a more robust solution. On the other hand, a

risk-prone VPP operator may tend to choose smaller values of γ and γ̄ to exclude pathological

distributions with the moment information far away from the sample ones, and thus obtain

less conservative solutions. In the above set (3.5), the first constraint incorporates a range for

the virtual net load. The second constraint ensures that ξ, given by any distribution in D,

has the same mean as the empirical mean, while the third constraint bound the variance of

ξ. Finally, the last constraint captures the virtual net load correlations across time periods.

Indeed, this constraint ensures that the variance of sum of the virtual net loads during the

time window [k, t] is bounded by γ̄kt. In practice, the ambiguity set (3.5) is characterized

by parameters ξ, ξ,µ,γ, and γ̄, which can be learned from historical data. Consider N

data samples {ξ`}N`=1 of ξ such that ξ` = [ξ1, ξ2, ..., ξT], ξ and ξ can be set to be .05- and

.95-quantiles of random virtual net load, respectively, µ and γ can be chosen as the sample

mean µ = N−1
∑N

`=1 ξ
` and sample variance γ = N−1

∑N
`=1(ξ` −µ)2. γ̄kt can be determined

by summing up specific elements in the covariance matrix of ξ, i.e., γ̄kt = fTktΣfkt, where

fkt is a vector with ith element equals to one if i is within the time window [k, t], and zero
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otherwise, and Σ denotes sample covariance matrix Σ = N−1
∑N

`=1(ξ` − µ)(ξ` − µ)T .

As explained in [73], in order to derive a tractable reformulation for the DR problems

with the ambiguity set (3.5), it is equivalent to work with the following lifted ambiguity set:

D =


P ∈ P0(RT×T× T(T+1)

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣

P(ξ ∈ Ω) = 1,

EP[ξ] = µ,

EP[u] ≤ γ

EP[vkt] ≤ γ̄kt, ∀k ≤ t,


(3.6)

where Ω is the lifted support set and defined as follows:

Ω =

(ξ,u,v)

∣∣∣∣∣∣∣∣∣∣
ξ ≤ ξ ≤ ξ,

(ξ − µ)2 ≤ u,(∑t
i=k(ξi − µi)

)2 ≤ vkt, ∀k ≤ t,

 (3.7)

That is, D includes set of marginal distributions of ξ, where the joint distribution of (ξ,u,v)

is in D.

3.3.3 Multi-stage formulation

The main assumption of the two-stage model is that all of the real-time dispatch decisions are

made simultaneously at the beginning of the operating day. However, the unit commitment

problem is inherently sequential. That means the uncertain virtual net load is revealed as the

time progresses, and dispatch decisions at each period are made after knowing the realization

of uncertain parameters up to that period (non-anticipativity enforcement). In other words,

the VPP operator first observes the uncertain virtual net load of the first period ξ1, and

then takes real-time decisions x1(ξ1) of the first period. Subsequently, the virtual net load of

second period ξ2 is realized, and then the VPP operator takes real-time decisions x2(ξ1, ξ2)
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of the second period accordingly. This alternating process continues over the entire T periods.

We present the multi-stage DR model as follows:

min
y∈Y,x(.)

(
cTy + max

P∈D
EP

[
dTx(ξ[t],u[t])

])
(3.8a)

s.t. Ay + Bx(ξ[t],u[t]) ≥ h−Mξ[t], ∀(ξ,u) ∈ Ω, (3.8b)

where x(ξ[t],u[t]) denotes that the dispatch decision at time period t is a function of the

uncertain virtual net load as well as the auxiliary random variable associated with the lifted

ambiguity set realized up to time period t, and minx(.) can be interpreted as optimizing over

the policies, i.e., functions of random variables. Solving problem (3.8) is challenging since

dispatch decisions are general functions of all past uncertain parameter realizations, instead

of a finite vector of decision variables [74]. An effective approach on addressing this fully

adaptive problem is to apply the linear decision rule technique, which restricts the dispatch

decisions to be linear functions of the uncertain parameters ([68, 75, 76]). More precisely, we

define the following policies for decision variables xgit, x
s+
it , x

s−
it , x

vpp
it :

xit(ξ[t],u[t]) = x0
it + x1

itξt + x2
itut. (3.9)

Notice that linear coefficients (x0,x1,x2) are considered as decision variables in the problem

and they are defined separately for decision variable xgit, x
s+
it , x

s−
it , x

vpp
it . Furthermore, in these

policies it is assumed that the second-stage decision variables are affine functions of both

primary and auxiliary random parameters. [73] has shown that this enhanced linear decision

rule can significantly improve the computational results compared with the one restricting to

the primary random parameters only. In addition, with the decision rule defined in (3.9), the

nonanticipativity requirement can be met automatically.
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3.4 Solution methodology

In this section, we develop solution methods for the two-stage DR problem (3.4) and multi-

stage DR problem (3.8), respectively.

3.4.1 Solution method for two-stage DR

First, we dualize the second-stage worst-case expectation problem maxP∈D EP[Q(y, ξ)] and

obtain the following dual problem:

min
η,λ,β,α

η + µTλ+ γTβ + γ̄Tα (3.10a)

s.t. η ≥ F (y,λ,β,α), (3.10b)

with

F (y,λ,β,α) = max
(ξ,u,v)∈Ω

Q(y, ξ)− λTξ −βTu−αTv, (3.10c)

where η,λ,β,α are dual variables associated with the constraints in the ambiguity set

(3.6). Note that we can add a slack variable in constraint (3.2c) to ensure the feasibility

of the second-stage problem and in return consider a penalty cost for under-generation

in the objective function. Since the second-stage linear problem Q(y, ξ) is feasible and

bounded, strong duality holds and Q(y, ξ) can be replaced by its dual formulation. Hence,

the subproblem (3.10c) can be equivalently formulated as follows:

F (y,λ,β,α) =

max
(ξ,u,v)∈Ω

max
π∈Π

πT (h−Mξ −By)− λTξ −βTu−αTv, (3.11)

where Π = {π ≥ 0 : πTB = d} is the set of dual variables of Q(y, ξ). Since the feasible

regions Π and Ω are separable, the optimal solution of problem (3.11) occurs at extreme points

of these regions. Therefore, if we denote all the extreme points of Π as {π∗i }Ii=1 and exchange
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the order of two maximization operations, i.e., max(ξ,u,v)∈Ω and maxπ∈Π, F (y,λ,β,α) can

be further reformulated as follows:

F (y,λ,β,α) =

max
πi,∀i

max
(ξ,u,v)∈Ω

π∗i
T (h−Mξ −By)− λTξ −βTu−αTv. (3.12)

Since the inner maximization problem in (3.12) is bounded with non-empty interior, conic

duality can be applied. Taking dual of inner maximization problem in (3.12) leads to (details

are provided in the Appendix A):

F (y,λ,β,α) = max
πi,∀i

π∗i
T (h−By)

+ min
ψ

ξ
T
τ̄ − ξT τ̃ − µT θ̄ +

1

2
1T (θ̂ − θ̃)

−
∑
t∈T

∑
k∈[1:t]

∑
i∈[k:t]

µiφ̄kt +
1

2
1T (φ̂− φ̃), (3.13a)

s.t. τ̃t − τ̄t + θ̄t + φ̄ = et
T (MTπ∗i + λ), ∀t ∈ T , (3.13b)

1

2
(θ̃t + θ̂t) = βt, ∀t ∈ T , (3.13c)

1

2
(φ̃kt + φ̂kt) = αkt, ∀t ∈ T , k ≤ t, (3.13d)√
θ̄2
t + θ̃2

t ≤ θ̂t, ∀t ∈ T , (3.13e)√
φ̄2
kt + φ̃2

kt ≤ φ̂kt, ∀t ∈ T , k ≤ t, (3.13f)

where 1 is a vector whose elements are all one, et is an unit vector whose tth component is

one and zero otherwise, and ψ := {τ̄ , τ̃ , θ̄, θ̃, θ̂, φ̄, φ̃, φ̂} are dual variables associated with

the constraints in the inner maximization, i.e., constraints in Ω (3.7). We rewrite the inner

minimization problem in (3.13) in a compact form: min{bTψ : Eψ �κ fα+ gβ+ pλ+ qπ∗},

where �κ denotes the generalized inequality respect to some cone κ. Now, by considering the

second-stage dual formulation (3.10) and replacing F (y,λ,β,α) in (3.10c) with formulation
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(3.13), the original DR optimization problem (3.4) is equivalent to:

min
y,η,λ,β,α,ψi

cTy + η + µTλ+ γTβ + γ̄Tα (3.14a)

s.t. η ≥ π∗i T (h−By) + bTψi, ∀i = 1, . . . , I, (3.14b)

Eψi �κ fα+ gβ + pλ+ qπ∗i , ∀i = 1, . . . , I, (3.14c)

y ∈ Y , (3.14d)

where ψi is a vector of decisions corresponding to the extreme point π∗i . Notice here that

in (3.14b), we release the maximization operation in (3.13a) since it is equivalent to restrict

the constraint (3.14b) holds for every extreme point π∗i , and we release the minimization

operation in (3.13a) since it is equivalent to the existence of a feasible solution of constraint

(3.14b) with constraint (3.14c). The above problem (3.14) has an appropriate structure to

apply a two-level decomposition algorithm. More precisely, in the kth iteration, we solve the

following master problem:

min
y,η,λ,β,α,ψi

cTy + η + µTλ+ γTβ + γ̄Tα (3.15a)

s.t. η ≥ π∗i T (h−By) + bTψi, ∀i ≤ k, (3.15b)

Eψi �κ fα+ gβ + pλ+ qπ∗i , ∀i ≤ k, (3.15c)

y ∈ Y , (3.15d)

to obtain the first-stage decisions. Then, the master problem (3.15) can be augmented

iteratively (i.e., adding new variables ψi and the corresponding cuts) using the information

provided by the subproblem (3.11). The more detailed procedure for solving the problem

(3.14) is summarized in Algorithm 1. Observe that since the feasible region Π includes finite

number of extreme points, the Algorithm 1 converges in finite number of steps. This is shown

in the proposition 1.
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Algorithm 1: Solution procedure for problem (3.14)

Initialize iteration index i = 0, and set I = ∅.
repeat

Solve the master problem (3.15). Let (y, η,λ,β,α) be the optimal solution.
Solve the subproblem problem F (y,λ,β,α) in (3.11) using the Algorithm 2.
Let π∗i+1 be the optimal solution.
I = I ∪ {π∗i+1}.
Define the new variable ψi+1 and the corresponding constraints (3.15b)–(3.15c).
i = i+ 1.

until η ≥ F (y,λ,β,α).
Output: (y, η,λ,β,α) is the optimal solution.

Proposition 1. Algorithm 1 converges to the optimal solution of problem (3.14) in a finite

number of iterations.

Proof. We rewrite the inner minimization problem in (3.13) as: min{bTψ : ψ ∈ Ψ}, where

Ψ = {ψ : Eψ �κ fα+ gβ + pλ+ qπ∗}. Accordingly, F can be written as:

F (y,λ,β,α) = max
πi,∀i

min
ψ∈Ψ

π∗i
T (h−By) + bTψ, (3.16)

where {π∗i }Ii=1 represents the set of extreme points of Π. Since Π is a polyhedron, {π∗i }Ii=1 is

a finite set, i.e., its cardinality is equal to I. In the kth iteration of Algorithm 1, we have that:

η = max
πi,i≤k

min
ψ∈Ψ

π∗i
T (h−By) + bTψ. (3.17)

Comparing (3.16) and (3.17), it is obvious that F (y,λ,β,α) ≥ η. Therefore, the stopping

criterion for the algorithm is F (y,λ,β,α) ≤ η. We will report (y,λ,β,α) as the optimal

first-stage decisions when this criterion is achieved. In the worst-case condition, the Algorithm

explores all the extreme points of Π, i.e. it reaches at iteration I. Therefore, the stopping

criterion will be achieved for at most I iterations, which means that Algorithm 1 converges

to the optimal solution in a finite number of iterations.
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Moreover, notice that the Algorithm 1 is a natural extension of the column-and-constraint

generation algorithm proposed in [77], where the polyhedron uncertainty set is extended to a

SOC set. A similar extension is proposed in [78] to solve the robust AC optimal power flow

problem.

To solve the subproblem, we need to evaluate F (y,λ,β,α) at each iteration of Algorithm

1, which is a second-order conic problem with a quadratic objective function. We employ the

Alternative Separation Heuristic (ASH) to solve this problem. The basic idea behind this

framework is to obtain the optimal (ξ,u,v) of F (y,λ,β,α) with a fixed π, and then fixed

the obtained (ξ,u,v) to find the optimal π of F (y,λ,β,α). This back and forth procedure

continues until the optimality gap is no more than a predefined level. Since the feasible

region Π is a polyhedron, the ASH converges to a KKT point of (3.11) in a finite number of

iterations [79, 78]. The ASH framework is summarized in Algorithm 2.

Algorithm 2: Alternative Separation Heuristic for solving subproblem (3.11)

Pick a π̂ ∈ Π, and optimality gap ε̂
repeat

Fix π = π̂ and solve (3.11). Let (ξ̂, û, v̂) be the optimal solution with objective
value Υ1.
Fix (ξ,u,v) = (ξ̂, û, v̂) and solve (3.11). Let π̂ be the optimal solution with
objective value Υ2.

until |Υ1 −Υ2| ≤ ε̂.
Output: Υ1 is the estimation of F (y,λ,β,α) with solution π̂.

3.4.2 Solution method for multi-stage DR

In order to solve the multi-stage DR model (3.8) using linear decision rules (3.9), we can apply

a duality-based approach to reformulate the problem. More specifically, similar to the previous

approach we start from dualizing the worst-case expectation problem maxP∈D EP[Q(y, ξ)].
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Thus, (3.8) is equivalent to:

min
y∈Y,x0,x1,x2

cTy + min
η,λ,β,α

η + µTλ+ γTβ + γ̄Tα (3.18a)

s.t. η ≥ max
(ξ,u,v)∈Ω

dTx(ξ[t],u[t])

−λTξ −βTu−αTv, (3.18b)

Ay − h ≥ max
(ξ,u,v)∈Ω

−Bx(ξ[t],u[t])−Mξ. (3.18c)

By substituting (3.9) into the above formulation, constraints (3.18b) and (3.18c) become:

η ≥ max
(ξ,u,v)∈Ω

dT (x0 + ξTx1 + uTx2)

−λTξ −βTu−αTv, (3.19a)

Ay − h ≥ max
(ξ,u,v)∈Ω

−B(x0 + ξTx1 + uTx2)−Mξ. (3.19b)

Note that constraints (3.19a) and (3.19b) have the same structure. In the following, we

derive a reformulation for the constraint (3.19a). Similar approach can be done for constraint

(3.19b). Applying strong duality, (3.19a) can be written as:

η − dTx0 ≥ min
χ∈Ξ(d,x1,x2)

gTχ, (3.20)

where χ and Ξ(d,x1,x2) are the corresponding dual variables and dual feasible region of

the constraints in Ω with respect to (ξ,u,v), and g is also derived from the definition of Ω.

Note that since the second-order cone is self-dual, feasible region Ξ has a similar structure

to Ω. Relation (3.20) is further equivalent to the existence of χ ∈ Ξ(d,x1,x2) such that

η − dTx0 ≥ gTχ. Thus, using duality-based approach, constraints (3.19a)–(3.19b) can be

reformulated as a finite number of linear and second-order conic constraints. As a result, the

original problem (3.18) can be reformulated as a single minimization problem involving new
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added variables and constraints.

3.5 Case study

In this section, we first apply the two-stage DR model based on a real data set to provide

the operation of the VPP. Second, we test the performance of two-stage and multi-stage DR

models for various simulated data sets. All the experiments are implemented in the C++

language with CPLEX 12.6 on a computer with Intel Xeon 3.2 GHz and 8 GB memory.

3.5.1 Data preparation

We consider a VPP including three conventional generators, a wind farm, a storage unit, and

a set of loads that all are located in a single bus in the system. The characteristics of the

generators are shown in Tables 3.2–3.3. The load and wind power outputs are collected from

PJM market website [80] and scaled down to fit the test system. The mean value together,

upper and lower limits of the virtual net load profile are depicted in Fig. 3.2. We assume that

the capacity and efficiency of the storage unit on both absorbing and generating electricity

are 100MW and 0.9, respectively. The load consumption inside the VPP and the capacity

price are randomly simulated from intervals [4, 20]MWs and $[5, 30]/MW, respectively. The

penalty cost for load shedding is set to be $6000/MWh. In addition, for the comparative

studies in subsections 3.5.4 and 3.5.3, we consider various numerical settings to evaluate

the performance of DR models. More precisely, we randomly generate 5,000 samples of

virtual net load consumption ξ such that each ξt follows a normal distribution with mean

µt ∈ [50, 80], standard deviation σt = µtε with ε ∈ {0.1, 0.2}, and correlation coefficient

ζ ∈ {0, 0.25, 0.5, 0.75, 1}. These 5,000 samples comprise the support set Ω, which will be used

later to build the ambiguity set.
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Table 3.2: Generator data

Gen Lower Upper Min. down Min. up Ramp
(MW) (MW) (h) (h) (MW/h)

G1 5 20 1 1 10
G2 5 50 2 2 25
G3 50 100 2 3 50

Table 3.3: Fuel data

Gen a b (MBtu/ c (MBtu/ Start Up Fuel Fuel Price
(MBtu) MWh) MW2h) (MBtu) ($/MBtu)

G1 31.67 29.24 0.0697 40 1
G2 58.81 22.94 0.0098 60 1
G3 50 6 0.0004 100 1
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Figure 3.2: Virtual net load profile

3.5.2 VPP offering parameters

We solve the two-stage DR model to determine the VPP offering parameters. The offering

capacity at each time period is reported in Fig. 3.3. The optimal ramp-up and ramp-down

parameters are obtained 75MW/h for periods 19, 20, and 21, and 85MW/h for other periods.

As it can be seen in Fig. 3.3, there is a significant reduction in offering capacity at time

periods 18 and 20. The reason is that the capacity price at these periods suddenly drops to

its minimum level. To recover this unexpectedly low capacity price, the generator G1, which

is more expensive than G2 and G3, is turned off at these periods. On the other hand, the
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VPP offers higher level of capacity at time periods like 1,2, and 22 since the inside load is

low at these periods. In order to investigate the performance of the DR model in the real

time operations, we fixed the optimal unit commitment and offering decisions and solve the

dispatch problem for a realized virtual net load. The total power generation by conventional

generators, storage operation, and the realized virtual net load are shown in Fig. 3.4. We can

observe that the storage unit absorbs the power during the periods that the virtual net load is

low (e.g., periods 5–6), and generates the power during the periods that the virtual net load is

high (e.g., 8–10). More specifically, the storage unit absorbs 70MW power at period 5 (valley

demand hour) when the wind power output is higher than the grid demand, and generates

43MW at period 17 to preclude from load shedding when the expensive generator G1 is offline

at this period. Thus, we can conclude that the storage unit significantly contributes to the

VPP flexibility.
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Figure 3.3: Capacity offered to ISO

3.5.3 Comparing with robust optimization

In this subsection, we compare the two-stage DR (TDR) model with the RO approach. For

this purpose, since the VPP operator has limited information of Ω, we build the ambiguity

set of virtual net load probability distribution by choosing 50 samples from Ω, and calculating
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Figure 3.4: Optimal dispatch decisions

the parameters ξ, ξ,µ,γ, γ̄, as explained in subsection 3.3.2. After solving the corresponding

TDR and RO models, we fix the optimal first-stage decision y, and run the second-stage

problem Q(y, ξ) for all 5,000 samples in Ω. We report the average operating cost in Table

3.4. The results verify that TDR model provides less conservative solutions compared to the

RO approach. In particular, TDR model can save up to $532. Moreover, as the value of

ε increases, i.e., the size of support set is expanded, the difference between TDR and RO

models reduces, since the TDR model becomes more conservative.

Table 3.4: Two-stage DR vs. two-stage RO

ζ

ε = 0.1 ε = 0.2

TDR RO TDR RO

ζ = 0 19169 19701 24114 24461
ζ = 0.25 19367 19715 24949 24956
ζ = 0.5 19215 19730 24701 25041
ζ = 0.75 19290 19801 24168 24512
ζ = 1 19378 19887 23876 24378

3.5.4 Comparing with multi-stage model

In this subsection, we benchmark the multi-stage DR model (MDR) with the two-stage DR

model (TDR), and report the profit values (i.e., the opposite value of the objective) and CPU
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time in Table 3.5. We can observe that the MDR model provides a lower profit, which is

because that the MDR model enforces nonanticipativity constraints. That is, as compared

with MDR model, the TDR model assumes the virtual net load consumption information

throughout the entire time periods is known at the beginning of the operating day, which

offers more flexibility in the dispatch decisions.

Table 3.5: Multi-stage DR vs. two-stage DR

ζ

ε = 0.1 ε = 0.2

TDR MDR TDR MDR

ζ = 0 profit($) 34370 28421 27470 25200
time(s) 71 39 82 44

ζ = 0.25 profit($) 34364 28485 16583 14625
time(s) 92 35 101 59

ζ = 0.5 profit($) 31189 25435 18550 17431
time(s) 165 66 144 72

ζ = 0.75 profit($) 34548 28382 28688 23723
time(s) 89 56 80 59

ζ = 1 profit($) 32090 26952 19795 11006
time(s) 109 79 111 85

Table 3.6: Two-stage DR vs. two-stage RO for a 6-conventional-generator case

Time series model TDR RO

ARIMA(1, 1, 1)(1, 0, 0)24 30492 32152

ARIMA(2, 1, 2)(0, 1, 1)24 30844 32297

ARIMA(2, 1, 2)(1, 1, 1)24 30579 32348

3.5.5 Computational results for a complicated system

In this subsection, we evaluate the performance of our framework for the case that the

random samples do not necessarily follow a standard distribution such as the multivariate

normal distribution. For this purpose, the stochastic process describing the virtual net load

behavior is captured through parsimonious time series models. Following the Box-Jenkins’
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procedure of the model identification [81] and using Bayesian information criterion, we choose

three competing seasonal ARIMA models and simulate samples accordingly. In the case

studies, we also assume that the VPP includes six conventional generators to represent a more

complicated system. We follow the procedure in the subsection 3.5.3 to compare the TDR

with RO using samples generated from time series models. As shown in Table 3.6, TDR model

leads to less conservative results than those of RO in the out-of-sample simulation. This

demonstrates efficiency of our approach even when the underlying uncertainty distribution

is not normal. Furthermore, Table 3.7 compares profit values obtained in TDR and MDR

approaches for the complicated system. We can also see that TDR model yields to more

profits at the expense of having a full knowledge of realized virtual net load throughout the

entire scheduling horizon. This confirms our observation from the previous subsection 3.5.4.

Table 3.7: Multi-stage DR vs. two-stage DR for a 6-conventional-generator case

Time series model TDR MDR

ARIMA(1, 1, 1)(1, 0, 0)24 profit($) 49708 42890
time(s) 265 104

ARIMA(2, 1, 2)(0, 1, 1)24 profit($) 47993 41344
time(s) 201 110

ARIMA(2, 1, 2)(1, 1, 1)24 profit($) 48770 42351
time(s) 234 131
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CHAPTER IV

DISTRIBUTIONALLY ROBUST DISTRIBUTION NETWORK

CONFIGURATION UNDER RANDOM CONTINGENCY

4.1 Problem description and literature review

The distribution network planning is widely investigated in existing literature and broadly

categorized in three parts: distribution configuration planning ([82, 83]), distribution recon-

figuration and self-healing planning ([84, 85]), and distribution reinforcement and expansion

planning ([86, 87]). The main objective of distribution configuration planning is to design a

new system to meet the demand in the most cost-effective and reliable way. Distribution

reconfiguration and self-healing planning aim at improving or recovering of network function-

ality by altering the topological structure of the network. In particular, a self-healing process

is brought up when a contingency occurs in the system. Distribution reinforcement and

expansion planning involve enhancing the resilience of the network to protect against possible

damages or expanding current facilities to increase reliability. This chapter focuses on the

distribution network configuration part. As we borrow some ideas from the self-healing and

reinforcement planning literature, we also briefly review the relevant works in these domains.

Existing mathematical models of distribution network configuration involve various design

variables that usually include the location [88] and size [89] of equipments like substations

and feeders. As the penetration of distributed generation (DG) resources grows, the location

and sizing of the DG units has also received increasing attention in the literature (see,

e.g., [90], [91], [92, 93]). The network topology is another important design variable (see,
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e.g., [94, 95, 96], [97]). [94] proposes an optimal network topology design that minimizes

investment and variable costs associated with power losses and reliability. [95] considers

network reconfiguration and maintains a radial network topology by ensuring that the

node-incidence matrix has non-zero determinant. [96] explicitly incorporates the radiality

constraints in the distribution system configuration model and considers the integration of

DG units. None of the above works incorporate the possibility of contingency occurrences in

the planning stage.

Most of existing planning models in the literature incorporate contingencies in a post-

outage recovery formulation that identifies an optimal network reconfiguration and promptly

restores the system. [84] studies a comprehensive framework for the distribution system in

both normal operation and self-healing modes. In the normal operation mode, the objective

is to minimize the operation costs. When a contingency happens, the system enters the

self-healing mode by sectionalizing the on–outage zone into a set of self-supplied microgrids

(MGs) to pick up the maximum amount of loads. [85] develops a systematic framework

including planning and operating stages for a smart distribution system. In the planning

stage, the goal is to construct self-sufficient MGs using various DGs and storage units. In

the operating stage, a new formulation that incorporates both emergency reactions and

system restoration is addressed for carrying out optimal self-healing control actions. [98]

proposes a graph-theoretic distribution system restoration algorithm to find an optimal

network reconfiguration after multiple contingencies arise in the system, where the MGs are

modeled as virtual feeders and the distribution system is modeled as a spanning tree. All

of the above works are under the premise that the contingencies have already been located

and then we perform system reconfiguration to enhance its reliability. In contrast, this study

considers the stochasticity of the contingency (e.g., caused by natural disasters).

Existing distribution reinforcement planning models consider stochastic contingencies and

carry out pre-event enhancement activities including vegetation management, pole refurbish-

64



ments, and undergrounding of power lines [6]. [86] presents a two-stage robust optimization

model for optimally allocating DG resources and hardening lines before the upcoming natural

disasters. A new uncertainty set for contingency occurrences is developed to capture the

spatial and temporal dynamic of hurricanes. [87] proposes a new tri-level optimization

approach to mitigate the impacts of extreme weather events on the distribution system, with

the objective of minimizing hardening investment and the worst-case load shedding cost. An

infrastructure fragility model is exploited by considering a time-varying uncertainty set of

disastrous events. Even though the above works adopt realistic uncertainty sets for modeling

the contingency, challenges still exist for the robust optimization approaches. Indeed, they

completely neglect the probabilistic characteristics of the contingency. Accordingly, the

robust optimization approaches may only focus on the worst-case contingency and yield

over-conservative solutions.

To tackle these challenges, distributionally robust (DR) models have been proposed [65].

The DR models consider a set of probability distributions of the uncertain parameters (termed

ambiguity set) using certain statistical characteristics (e.g., moments). Then, we search for a

solution that is optimal with respect to the worst-case probability distribution within the

ambiguity set. DR models have been applied on various power system problems, such as unit

commitment [68], reserve scheduling [99], congestion management [100], and transmission

expansion planning [101].

To the best of our knowledge, this chapter conducts the first study of DR models for

distribution network configuration when facing contingency. Our main contributions include:

(a) by incorporating the contingency probability distribution, our DR model is able to

capture the contingencies with lower probability but high impacts, two key features of natural

disaster-induced outages; (b) we recast the DR model as a two-stage robust optimization

formulation that facilitate the column-and-constraint generation algorithm (see Proposition

2); (c) solving the DR model yields a worst-case contingency distribution, which can be used
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(e.g., in simulation models) to examine other topology configuration/re-configuration policies

facing random contingency (see Proposition 3); (d) numerical case studies demonstrate the

better out-of-sample performance of our DR model.

The remainder of the chapter is organized as follows. In Section 4.3, we describe the DR

formulation including the network configuration, the restoration process, and the ambiguity set

of contingency probability distribution. In Section 4.4, we derive an equivalent reformulation

and employ the column-and-constraint generation framework to solve the problem. In

Section 4.5, we conduct case studies and analyze the computational results. Finally, we

conclude this Chapter in Section 4.6.

4.2 Nomenclature

A. Sets

T Set of time periods.

N Set of nodes.

E Set of power lines.

B. Parameters

By Available budget for power line constructions.

Bw Available number (budget) of distributed generators for allocation.

Nz Maximum number of affected power lines during the contingency.

cmn Construction cost of line (m,n).

φmn Resistance of the power line (m,n).

ηmn Reactance of the power line (m,n).

Kmn Upper limit of active power flow in line (m,n).

Rmn Upper limit of reactive power flow in line (m,n).

Dp
nt Active power load at node n in time t.

Dq
nt Reactive power load at node n in time t.
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Cp
n Active power capacity of substation or distributed generation unit at node n.

Cq
n Reactive power capacity of substation or distributed generation unit at node n.

νmax Upper bound of voltage.

νmin Lower bound of voltage.

V0 Reference voltage value.

µmaxmn,t Upper bound of failure rate in line (m,n) in time t.

τ rst
mn Minimum restoration time of line (m,n) during contingency.

C. First-stage Decision Variables

ymn Binary variable for network configuration; equals 1 if line (m,n) is constructed,

0 otherwise.

wn Binary variable; equals 1 if the distributed generation unit is placed at node n,

0 otherwise.

fmn Fictitious flow across line (m,n) for configuring the network.

g Vector of first stage decision variables including ymn, wn, and fmn.

β, γ Dual variables in the reformulation of the distributionally robust model.

D. Second-stage Decision Variables

pmn,t Active power flow across line (m,n) in period t.

qmn,t Reactive power flow across line (m,n) in period t.

xpnt Active power generation at node n in period t.

xqnt Reactive power generation at node n in period t.

νnt Voltage magnitude at node n in period t.

snt Load shedding at node n in period t.

π Dual variables in subproblem reformulation.

u Vector of second-stage decision variables including pmn,t, qmn,t, x
p
nt, x

q
nt, νnt, and snt.

E. Random Parameter
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zmn,t Bernoulli random variable; equals 0 if line (m,n) is affected in period t, 1 otherwise.

4.3 Mathematical model

We propose a distributionally robust optimization model for a distribution network facing

random contingency. The model involves two stages. In the first stage, we form a set of

radially configured networks, each energized by a substation within the network. In addition,

we allocate a set of available DGs in the system. Then, the contingency launches a set of

disruptions to the system to inflict damages. In the second stage, we take restoration actions

to minimize the load shedding by rescheduling the output of substations and DGs.

4.3.1 Distribution network configuration

We plan to establish a distribution system in a new community without existing facilities. In

this community, only the locations of loads and substations are identified. It is assumed that

the substations are connected to a higher-level substation in the grid. Let graph G = (N , E)

represent the distribution network, where N denotes the set of nodes and E denotes the set

of distribution lines that can be constructed. Also, assume that substations are located in

the set R ⊂ N . In the devised network configuration, the distribution system consists of a

set of radial networks in the sense that each load bus is connected to a substation directly or

via other nodes. In other words, we construct a spanning forest with |R| components, each

s

Substation Higher-level substation New lines

Figure 4.1: Example of a spanning tree representation

rooted at one substation. For this purpose, we add a new higher-level node s to graph G

68



and connect it to all substation nodes, i.e., nodes in R. We call the new graph G′ = (N ′, E ′).

Now constructing a spanning forest rooted in R is equivalent to constructing a spanning tree

of this new graph G′, where all newly added lines (i.e., E ′\E) are included in the tree (see

Fig. 4.1 for an example). To formulate the spanning tree, we employ the single commodity

formulation [102] as follows:

∑
n|(s,n)∈E ′

fsn = |N ′| − 1, (4.1a)

∑
m|(m,n)∈E ′

fmn −
∑

m|(n,m)∈E ′
fnm = 1, ∀n ∈ N ′\s, (4.1b)

∑
(m,n)∈E ′

ymn = |N ′| − 1, (4.1c)

fmn ≤ (|N ′| − 1)ymn, ∀(m,n) ∈ E ′, (4.1d)

ymn = 1, ∀(m,n) ∈ E ′\E , (4.1e)

fmn ≥ 0, ymn ∈ {0, 1}, ∀(m,n) ∈ E ′. (4.1f)

We remark that fmn does not represent the power flow along the line (m,n). Instead, it

represents fictitious flow to mathematically guarantee that the distribution network is radial.

Constraint (4.1a) indicates that there must be |N ′| − 1 arcs leaving the root node s in order

to form a spanning tree. Constraints (4.1b) ensure the connectivity of the spanning tree.

Constraint (4.1c) specifies that, in the constructed spanning tree, the number of connected

lines should be one unit less than the number of nodes. Constraints (4.1d) designate that the

capacity of fictitious flow on each line should be no more than the total number of connected

lines. Constraints (4.1e) indicate that all substations should be connected to the higher-level

node s.

Furthermore, we consider the budget constraints on the number of available DG units for
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installation and the total construction costs, as stated in (4.1g) and (4.1h), respectively:

∑
n∈N

wn ≤ Bw, (4.1g)∑
(m,n)∈E

cmnymn ≤ By. (4.1h)

4.3.2 Post-contingency restoration process

In this study, we model the whole restoration process using a number of corrective actions

to minimize the load shedding. We adopt the well-studied linearized approximation of the

DistFlow model (see, e.g., [86, 103]) to formulate power flow in the distribution system after

the contingency. According to this model, active and reactive power balance flows at each

bus are expressed as follows:

∑
k|(n,k)∈E

pnk,t = pmn,t −Dp
nt + xpnt + snt,

∀n ∈ N , ∀(m,n) ∈ E , ∀t ∈ T , (4.2a)∑
k|(n,k)∈E

qnk,t = qmn,t −Dq
nt + xqnt,

∀n ∈ N , ∀(m,n) ∈ E , ∀t ∈ T . (4.2b)

According to the linearized DistFlow model, the relationship of voltage level between any

pair of adjacent nodes is characterized by the following constraints:

νntymn = νmtymn − (φmnpmn,t + ηmnqmn,t)/V0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T . (4.2c)
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Moreover, the voltage level at each node should be within a permissible range:

νmin ≤ νnt ≤ νmax, ∀n ∈ N , ∀t ∈ T . (4.2d)

Additionally, if line (m,n) is not constructed in the configuration stage or constructed

but disrupted during the contingency, the power flow on line (m,n) should be zero. These

restrictions are described by the following constraints:

0 ≤ pmn,t ≤ Kmnzmn,tymn, ∀(m,n) ∈ E , ∀t ∈ T , (4.2e)

0 ≤ qmn,t ≤ Rmnzmn,tymn, ∀(m,n) ∈ E , ∀t ∈ T . (4.2f)

In our proposed framework, each radial network is rooted at a node where the substation

is placed. Moreover, the DG units can supply power not only to their neighboring loads but

also to all nodes in the connected network. The active and reactive power capacity of the

substations and DGs are described by the following constraints:

0 ≤ xpnt ≤ Cp
n, ∀n ∈ R, ∀t ∈ T , (4.2g)

0 ≤ xqnt ≤ Cq
n, ∀n ∈ R, ∀t ∈ T , (4.2h)

0 ≤ xpnt ≤ wnC
p
n, ∀n ∈ N\R, ∀t ∈ T , (4.2i)

0 ≤ xqnt ≤ wnC
q
n, ∀n ∈ N\R, ∀t ∈ T . (4.2j)

Finally, the unsatisfied active demand at each node should be no more than the active

demand at that node:

0 ≤ snt ≤ Dp
nt, ∀n ∈ N , ∀t ∈ T . (4.2k)
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4.3.3 Ambiguity set of contingency

Different approaches have been proposed in the literature to deal with the uncertainty of

contingency. Stochastic programming (SP) is well-known for modeling contingency due to

natural disasters (see, e.g., [104, 105, 106]). Using statistical methods, SP estimates the joint

probability distribution of contingency and then generates a set of scenarios to represent

the stochastic contingency in decision making. The major drawback of this approach is

that the underlying probability distribution often cannot be estimated accurately, and the

computational effort significantly increases as the number of contingency scenarios increases.

Robust optimization (RO) is another well-known approach to cope with the uncertainty of

contingency (see, e.g., [86, 87]). Applied on the distribution network configuration problem,

RO identifies the most critical contingencies by solving the following bilevel model:

max
z∈D(g)

Q(g, z) (4.3a)

s.t. D(g) =

{ ∑
(m,n)∈E

(1− zmn,t) ≤ Nz, ∀t ∈ T , (4.3b)

1− zmn,t ≤ ymn, ∀(m,n) ∈ E , ∀t ∈ T , (4.3c)

zmn,t+τ ≤ zmn,t, ∀(m,n) ∈ E , ∀τ ≤ τ rst

mn

}
, (4.3d)

where,

Q(g, z) = min
u∈H(g,z)

∑
t∈T

∑
n∈N

snt, (4.4a)

s.t. H(g, z) =

{
u : Constraints (4.2a)-(4.2k)

}
, (4.4b)

where, g := (y,w, f) indicates network configuration and DG allocation decision variables,

u := (p,q,xp,xq,ν, s) denotes the post-contingency decision variables, and Q(g, z) represents

the minimum load shedding for given topology g and contingency z. Moreover, D(g) specifies
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the set of all possible contingency scenarios. We assume by constraints (4.3b) that the number

of simultaneous line outages is bounded by Nz, which can be calibrated based on reliability

analyses of distribution lines during contingency (see, e.g., [107]). Constraints (4.3c) designate

that only constructed lines can be affected, i.e., zmn,t is set to be one whenever ymn equals

zero. However, variables zmn,t only appear in constraints (4.2e)–(4.2f), whose right-hand sides

equal zero if ymn = 0, regardless of the value of zmn,t. Hence, we can relax constraints (4.3c)

without loss of optimality. Constraints (4.3d) model the minimum restoration time of failing

distribution lines. As discussed in Section 4.1, the RO model may only focus on the worst-case

contingency (i.e., z ∈ D(g) that maximizes Q(g, z) in (4.3a)) and yield over-conservative

topology design and/or DG allocation.

To overcome the challenges of the classical stochastic and robust approaches, we propose a

DR framework considering a family of joint probability distributions of contingency based on

the moment information of the random parameters (see, e.g., [65, 68, 108]). More specifically,

we define the ambiguity set as follows:

D =

{
P ∈ P

(
D(g)

)
: 0 ≤ EP[1− z] ≤ µmax

}
, (4.5)

where P
(
D(g)

)
consists of all probability distributions on a sigma-field of D(g). Constraints

(4.5) imply that the marginal probability of each line (m,n) not working during time unit

t has an upper limit µmax. We note that, although D models the contingency of new

distribution lines, the distributional information (e.g., µmax and D(g)) can be calibrated

based on reliability analyses of distribution lines (see, e.g., [107]). Accordingly, we consider

the following DR model:

max
P∈D

EP[Q(g, z)]. (4.6)
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Here, instead of considering the worst-case scenario of contingency as in the RO model, we

consider the worst-case distribution of contingency and the corresponding expected load

shedding. Hence, our approach, though still risk-averse, is less conservative than the RO

approach.

4.3.4 Distributionally robust optimization model

Our distributionally robust optimization model aims to find an optimal distribution system

configuration to minimize the load shedding under random contingency:

min
g∈G

max
P∈D

EP[Q(g, z)], (4.7a)

s.t. G =

{
g : Constraints (4.1a)-(4.1h)

}
. (4.7b)

In above formulation, the objective function (4.7a) aims to minimize the worst-case

expected load shedding Q(g, z).

4.4 Solution methodology

In this section, we first derive reformulations of the worst-case expectation model (4.6) and

the DR model (4.7a)–(4.7b), respectively. Then, we describe a solution approach based on

the column-and-constraint generation (CCG) framework. Finally, we derive the worst-case

distribution of contingency.

4.4.1 Problem reformulation

Proposition 2. For fixed g ∈ G, we have

max
P∈D

EP[Q(g, z)] =
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min
β≥0

max
z∈D(g)

{
Q(g, z) +

∑
t∈T

∑
(m,n)∈E

(µmaxmn,t + zmn,t − 1)βmn,t

}
,

where β represent dual variables associated with constraints (4.5).

Proof. We rewrite maxP∈DEP[Q(g, z)] as:

max
P∈D

EP[Q(g, z)] = max
P

∫
D(g)

Q(g, z)dP, (4.8a)

s.t.

∫
D(g)

dP = 1, (4.8b)∫
D(g)

(1− zmn,t)dP ≤ µmaxmn,t,∀(m,n) ∈ E , ∀t ∈ T . (4.8c)

The feasible region of the problem (4.8a)–(4.8c) has an interior point. In other words, there

exists a P̂ that satisfies constraint (4.8b) at equality and constraint (4.8c) strictly. For

example, we can set P̂ to be the probability distribution solely supported on the scenario that

no contingency arises in the system, i.e., zmn,t = 1,∀(m,n) ∈ E , t ∈ T . Thus, the Slater’s

condition holds between the problem (4.8a)–(4.8c) and the following dual formulation:

min
β≥0,γ

γ +
∑
t∈T

∑
(m,n)∈E

µmaxmn,tβmn,t, (4.9)

s.t.

γ +
∑
t∈T

∑
(m,n)∈E

(1− zmn,t)βmn,t ≥ Q(g, z), ∀z ∈ D(g). (4.10)

where γ and β are dual variables associated with constraints (4.8b) and (4.8c), respectively.

In the dual formulation, we observe that the optimal γ should satisfy

γ = max
z∈D(g)

{
Q(g, z)−

∑
t∈T

∑
(m,n)∈E

(1− zmn,t)βmn,t
}
. (4.11)

Substituting γ from (4.11) to the objective function (4.9) completes the proof.
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By Proposition 2 and combining two minimizations, we obtain the following equivalent

reformulation of formulation (4.7a)–(4.7b):

min
β≥0,g∈G

max
z∈D(g)

min
u∈H(g,z)

∑
t∈T

∑
n∈N

snt +
∑
t∈T

∑
(m,n)∈E

(µmaxmn,t + zmn,t − 1)βmn,t. (4.12)

Therefore, the DR model (4.7a)–(4.7b) is transformed into the classical robust optimization

problem (4.12).

4.4.2 Column-and-constraint generation framework

We employ the CCG framework [77] to solve the problem (4.12). We describe the master

problem in the rth iteration of the CCG framework as follows:

min
β≥0,g∈G,λ,uj

∑
t∈T

∑
(m,n)∈E

(µmaxmn,t − 1)βmn,t + λ (4.13a)

s.t. λ ≥
∑
t∈T

∑
n∈N

sjnt +
∑
t∈T

∑
(m,n)∈E

zjmn,tβmn,t,

∀zj ∈ F , ∀j = 1, ..., r, (4.13b)

uj ∈ H(g, zj), ∀zj ∈ F , ∀j = 1, ..., r, (4.13c)

where F ⊆ D(g). In the CCG framework, set F is iteratively augmented by incorporating

more scenarios. Note that, the master problem is a relaxation of the original problem, in

which the set of contingency D(g) consists of all possible scenarios satisfying constraints (4.3b)

(note that, as discussed in Section 4.3.3, we have relaxed (4.3c) without loss of optimality).

Therefore, solving the master problem (4.13a)–(4.13c) yields a lower bound for that optimal

value of (4.12). In contrast, the following subproblem yields an upper bound:

max
z∈D(ĝ)

min
u∈H(ĝ,z)

∑
t∈T

∑
n∈N

snt +
∑
t∈T

∑
(m,n)∈E

β̂mn,tzmn,t, (4.14)
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where decisions ĝ and β̂ are obtained from solving the master problem (4.13a)–(4.13c). Note

that (ĝ, β̂) is feasible to the problem (4.12). Hence, the optimal objective value of (4.14),

plus constant
∑

t∈T
∑

(m,n)∈E(µ
max
mn,t − 1)β̂mn,t, is an upper bound for (4.12). Moreover, since

the inner minimization problem of (4.14) is always feasible and bounded (a trivial solution is

when all loads are shed), we take the dual of this minimization problem with strong duality

and convert the bilevel subproblem (4.14) into the following single-level bilinear maximization

problem:

max
z∈D(g),π

∑
t∈T

∑
(m,n)∈E

β̂mn,tzmn,t −
∑
t∈T

∑
n∈N

Dp
ntπ

1
nt

−
∑
t∈T

∑
n∈N

Dq
ntπ

2
nt +

∑
t∈T

∑
(m,n)∈E

Kmnπ
3
mn,tzmn,tymn

+
∑
t∈T

∑
(m,n)∈E

Rmnπ
4
mn,tzmn,tymn

+
∑
t∈T

∑
n∈N\R

wnC
p
nπ

5
nt +

∑
t∈T

∑
n∈N\R

wnC
q
nπ

6
nt

+
∑
t∈T

∑
n∈R

Cp
nπ

7
nt +

∑
t∈T

∑
n∈R

Cq
nπ

8
nt

+
∑
t∈T

∑
n∈N

vmaxπ10
nt −

∑
t∈T

∑
n∈N

vminπ11
nt

+
∑
t∈T

∑
n∈N

Dp
ntπ

12
nt (4.15a)

s.t. π3
mn,t + π1

mt − π1
nt +

φmn
V0

π9
nt ≤ 0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T , (4.15b)

π4
mn,t + π2

mt − π2
nt +

ηmn
V0

π9
nt ≤ 0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T , (4.15c)

−π1
nt + π5

nt ≤ 0, ∀n ∈ N\R, ∀t ∈ T , (4.15d)

−π2
nt + π6

nt ≤ 0, ∀n ∈ N\R, ∀t ∈ T , (4.15e)

−π1
nt + π7

nt ≤ 0, ∀n ∈ R, ∀t ∈ T , (4.15f)
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−π2
nt + π8

nt ≤ 0, ∀n ∈ R, ∀t ∈ T , (4.15g)

π10
nt − π11

nt + π9
jt −

∑
i|(n,i)∈E

π9
it ≤ 0,

j|(j, n) ∈ E , ∀n ∈ N , ∀t ∈ T , (4.15h)

−π1
nt + π12

nt ≤ 1, ∀n ∈ N , ∀t ∈ T , (4.15i)

π1
nt, π

2
nt, π

9
nt are free and other variables are nonpositive,

where π represent dual variables pertaining to constraints (4.2a)–(4.2k). Note that bilinear

terms πz in the objective function (4.15a) can be linearized using the McCormick method

[109], which recasts the problem (4.15a)–(4.15i) as a mixed-integer linear program and fa-

cilitates efficient off-the-shelf solvers like CPLEX. The CCG framework is summarized as

follows:

Step 0: Initialization. Pick an optimality gap ε. Set LB = −∞, UB = +∞, set of contin-

gencies F = Ø, and iteration index r = 1.

Step 1: Solve the master problem (4.13a)–(4.13c), obtain the optimal value objMP and

optimal configuration decisions ĝr and β̂
r
, and update LB = objMP.

Step 2: Solve the subproblem (4.15a)–(4.15i), obtain the optimal value objSP and an optimal

contingency scenario ẑr. Update UB = min{UB, objSP +
∑

t∈T
∑

(m,n)∈E(µ
max
mn,t − 1)β̂mn,t},

and F = F ∪ {ẑr}.

Step 3: If Gap = (UB− LB)/LB ≤ ε, then terminate and output ĝr as an optimal solution;

otherwise, update r = r + 1 and go to the next step.

Step 4: Create second-stage variables ur and the corresponding constraints ur ∈ H(g, ẑr).

Add them to the master problem and go to Step 1.

An important by-product of the CCG framework is the worst-case contingency probability

distribution, which is formalized in the following proposition.
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Proposition 3. Suppose that the CCG framework terminates at the Rth iteration with optimal

solutions (β̂R, ĝR, λ̂R, {ûj}j=1,...,R). Then, if we resolve formulation (4.13a)–(4.13c) with

variables g and uj fixed at ĝR and ûj, respectively, then the dual optimal solutions associated

with constraints (4.13b), denoted as {ψj}j=1,...,R, characterize the worst-case contingency

probability distribution, i.e., P{z = zj} = ψj, ∀j = 1, . . . , R.

Proof. With variables g and uj fixed at ĝR and ûj , respectively, we take the dual of formulation

(4.13a)–(4.13c) to obtain:

max
ψ≥0

R∑
j=1

ψj

(∑
t∈T

∑
n∈N

sjnt

)
(4.16a)

s.t.
R∑
j=1

ψj(1− zjmn,t) ≤ µmaxmn,t,

∀t ∈ T , ∀(m,n) ∈ E , (4.16b)

R∑
j=1

ψj = 1. (4.16c)

By constraints (4.16b)–(4.16c), {ψj}j=1,...,R characterize a probability distribution supported

on scenarios {zj}j=1,...,R such that P{z = zj} = ψj, ∀j = 1, . . . , R. As the CCG framework

terminates at the Rth iteration and by the strong duality of linear programming, formulation

(4.16a)–(4.16c) is equivalent to the worst-case expectation formulation (4.6), i.e., these two

formulations yield the same optimal value. It follows that {ψj}j=1,...,R characterize the

worst-case contingency probability distribution.

4.5 Case study

To evaluate the effectiveness of our approach, we conduct three case studies. In the first study,

the distribution network includes 33 nodes, 3 substations, and 2 DG units for allocation.

The 3 substations are located at nodes 1, 11, and 25, respectively. In the second study, the
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system contains 69 nodes, 4 substations, and 3 DG units for allocation. The substations

are located at nodes 1, 13, 39, and 61, respectively. In the third study, the system has 123

nodes, 5 substations, and 5 DG units for allocation. The substations are located at nodes

1, 23, 57, 81, and 100, respectively. The active and reactive power capacities of the DGs

are assumed to be 100KW and 50KVar, respectively. In both studies, we consider 24 hours

in the post-contingency restoration, i.e., T = {1, . . . , 24}. The active and reactive power

loads at each node are randomly generated from intervals [30, 200]KW and [5, 100]KVars,

respectively. The construction costs for distribution lines are randomly generated from

intervals proportional to their length. Overall, the construction costs are within the interval

$[40, 100]×104. The contingency status for distribution lines is assumed to follow independent

Bernoulli distributions with different failure probabilities that vary within the interval [0, 0.01].

Unless stated otherwise, we set the construction budget By and the maximum number of

affected lines Nz to be $1770× 104 and 3 for the 33-node system, and $4480× 104 and 4 for

the 69-node system, and $8580× 104 and 5 for the 123-node system, respectively. All case

studies are implemented in C++ with CPLEX 12.6 on a computer with Intel Xeon 3.2 GHz

and 8 GB memory.
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Figure 4.2: Optimal configuration for the 33-node distribution system
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Figure 4.3: Optimal configuration for the 69-node distribution system
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Figure 4.4: Optimal configuration for the 123-node distribution system

4.5.1 Optimal distribution network configuration

We report optimal configurations for the 33-node, the 69-node, and 123-node distribution

systems in Figs. 4.2, 4.3, and 4.4, respectively. We also compare our DR model with the

RO model. For comparison purposes, we fix configuration decisions obtained by each model

and then simulate the load shedding using randomly generated contingencies. Table 4.2
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Table 4.2: Comparison of load shedding

DR model Robust model

WCD WCS Sim Time WCD WCS Sim Time

Nodes (kW) (kW) (kW) (s) (kW) (kW) (kW) (s)

33 1655 2535 1451 91 1921 2352 1648 179

69 4297 5119 3594 173 4570 4998 4014 372

123 9704 10359 8771 293 9943 10185 9370 503

reports the expected load shedding under the worst-case contingency distribution (WCD), the

load shedding under the worst-case contingency scenario (WCS), the average load shedding

under a randomly simulated contingency distribution within D (Sim), and the computational

time of both models. The results verify that the DR approach yields lower load sheddings

under both worst-case distribution and randomly simulated distributions. In particular, our

approach leads to more than 11%, 10%, and 6% reduction in average load shedding under

the randomly simulated contingency distribution and more than 13%, 5%, and 3% reduction

under the worst-case distribution for the 33-node, 69-node, and 123-node distribution systems,

respectively. For the worst-case contingency scenario, RO model triggers less load shedding,

which was expected, because RO optimizes the system configuration with respect to the worst-

case contingency scenario. In addition, the CPU seconds taken to solve the test instances

demonstrate the efficacy of the proposed solution approach. To further verify the efficacy, we

replicate the experiments on 10 randomly generated instances. For the 33-node system, the

average and maximum number of iterations the CCG algorithm takes to converge are 7.6

and 12, respectively; for the 69-node system, the average and maximum number of iterations

are 8.4 and 14, respectively; and for the 123-node system the average and maximum number

of iterations are 6.4 and 10, respectively.
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Figure 4.5: Comparisons of optimal and random DG allocation in the 33-node distribution
system
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Figure 4.6: Comparisons of optimal and random DG allocation in the 69-node distribution
system
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Figure 4.7: Comparisons of optimal and random DG allocation in the 123-node distribution
system

4.5.2 On the value of optimal DG allocation

We conduct a set of experiments to evaluate the value of optimally allocating DG units in

the distribution system. In Figs. 4.5, 4.6, and 4.7 we compare the level of load shedding

when DG units are optimally located with the case when DG units are randomly deployed.
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For “optimal DG”, we solve the DR and RO models. For “random DG”, we first randomly

place DGs and then solve both models to configure the distribution system. We perform the

experiments for 5 times and report the average values to mitigate the randomness. From

Figs. 4.5 and 4.6, we observe that locating DGs properly can significantly decrease the load

shedding. This is because when the distribution system is affected by contingencies, the

loads in islanded zones can be effectively picked up by the existing DG resources. As a result,

better DG allocation significantly enhances the system resiliency.
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Figure 4.8: Average load shedding under various line construction budget and affected lines
for the 33-node distribution system
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Figure 4.9: Average load shedding under various line construction budget and affected lines
for the 69-node distribution system

4.5.3 Impact of construction and contingency budgets

In Figs. 4.8, 4.9, and 4.10, we depict the amounts of expected load shedding under various

line construction budgets (i.e., By) and contingency budgets (i.e., Nz). From these two

figures, we observe that load shedding reduces as By increases and as Nz decreases, i.e., as
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Figure 4.10: Average load shedding under various line construction budget and affected lines
for the 123-node distribution system

we allow the contingency to affect less power lines in the DR model. This is intuitive. In

addition, we observe that load shedding is sensitive to the construction budget. For example,

by increasing the budget from $4440×104 to $4480×104 when Nz = 4 in Fig. 4.10, the

load shedding decreases from 5485KW to 4297KW, which means that a 0.9% budgetary rise

translates into a 21.6% load shedding reduction. Furthermore, we observe that the impact

of construction budget is marginally diminishing. For example, increasing the budget from

$4500×104 to $4560×104 (i.e., by 1.3%) results in a 6.7% load shedding reduction. This

observation highlights the necessity of implementing a cost-effective distribution configuration

planning.

4.5.4 Worst-case contingency distribution

The worst-case contingency distribution for the 69-node distribution system is reported in

Table 4.3. We select a subset of representative scenarios to display and omit other scenarios

with smaller probability values. From this table, we observe that the contingency probabilities

for different power lines are highly heterogeneous. This provides the system operator a

guideline on the system vulnerability and a meaningful contingency probability distribution

that can be used in other vulnerability analyses.
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Table 4.3: Worst-case contingency distribution for the 69-node system

Scenario Affected lines Probability
1 6-15,13-14,34-35,39-40 0.0031
2 5-26,6-15,12-13,38-39 0.0025
3 1-2,5-26,38-39,39-40 0.0021
4 12-13,13-14,38-39,61-62 0.0002

4.6 Conclusion

In this Chapter, we studied a DRO approach that configures a distribution system consider-

ing probabilistic characterizations of the contingencies (e.g., the outage probability of each

distribution line). Out-of-sample simulations demonstrated that, comparing with the tradi-

tional robust optimization approach, the proposed DRO approach provides less conservative

configurations that can reduce post-disaster load shedding. Moreover, the computational

results highlighted the values of optimal allocation of DG units and construction budget in

the distribution system resiliency. This study can be extended in the following directions:

(i) incorporating distributed energy resources (such as solar panels and storage units) into

the system via optimized location and sizing, (ii) incorporating network reconfiguration after

the contingencies take place, (iii) adopting ac power flow in the post-contingency restoration

process, and (iv) considering the contingencies of other components.
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CHAPTER V

SUMMARY

Uncertainty is a persistent issue in many power system problems. Renewable energy has

maintained increasing penetration into the power grid due to its environment friendly nature

and economic benefits; However, many utilities express concerns about integration of wind

energy technologies into the power grids due to the variability and intermittency nature of the

renewables and their impacts on reliable operation of the grid. Moreover, system components

are always exposed to failure due to a variety of reasons like natural disaster occurrences,

which are totally unforeseeable with severe potential consequences. Theses uncertainties

crucially challenge current practices for the power system operation and management. In

this dissertation, several optimization under uncertainty models are developed to better

manage the inherent stochasticity in three important problems in the power system area.

More specifically, we begin with proposing a multi-stage stochastic programming formulation

for the wind power supplier to hedge against the risk of energy shortage. Then, we develop

robust optimization and more advanced data-driven models for the aggregated distributed

energy resources and distribution network designing problems. In particular, we propose

distributionally robust formulations, for which the distribution of the random variable varies

within a given ambiguity set. For the ambiguity set construction, we utilize statistical

inferences like variance and covariance information. Possible future directions are as follows.

Due to the sequential dynamics of decisions in many power system problems (like bidding

process in real-time market), a natural way to model this procedure is using Markov Decision

Process (MDP). Using the MDP setting, the decision maker (e.g, the virtual power plant
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operator) can be considered as a goal-seeking agent that has no knowledge of the external

world and interact with the uncertain environment (e.g., ISO and individual DERs) so as to

maximize a numerical performance measure. Reinforcement algorithms like Q-learning and

SARSA can be employed to solve the resulting MDP.
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APPENDIX A

Detailed explanation on deriving model (3.13)

Consider the following second-order conic program:

min fTx

s.t. ||Aix+ bi|| ≤ cTi + di, i = 1, . . . , N,

where x ∈ Rn is the optimization variable, and the problem parameters are f ∈ Rn, Ai ∈

R(ni−1)n, bi ∈ Rni−1, ci ∈ Rn, di ∈ R, and the norm we use in the constraints is the Euclidean

norm, i.e., ||y|| =
√
yTy. The dual of this problem is as follows [110]:

max−
N∑
i=1

(bTi zi + diwi)

s.t.
N∑
i=1

(ATi zi + ciwi) = f,

||zi|| ≤ wi, i = 1, . . . , N,

where zi ∈ Rni−1 and w ∈ RN are dual optimization variables. By applying this primal-dual

relationship, we can get the dual formulation of (3.12). In order to apply it, it suffices that

we reformulate constraints (3.7) as a set of second-order conic constraints. Consider the

following constraint:

(ξ − µ)2 ≤ u
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We can rewrite it as follow:

√
(ξ − µ)2 +

(u− 1

2

)2

≤ u + 1

2
,

or equivalently:

∣∣∣∣∣∣
ξ − µ

u−1
2

∣∣∣∣∣∣ ≤ u + 1

2
,

which is a second-order conic constraint. We can apply the same technique for the other

quadratic constraints in (3.7) and get the dual formulation of (3.12).
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