
Open Universiteit
www.ou.nl

MASTER'S THESIS

Model-based fuzzing REST web services to detect vulnerabilities

Gerritsen, A (Arjan)

Award date:
2020

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

https://research.ou.nl/en/studentTheses/c13b8751-a5d3-4e43-926d-8afbe29815cb

Model-based fuzzing REST web services
to detect vulnerabilities

Author : A. Gerritsen Student
number : 000000000000000000000

Date of presentation : November 27, 2020

Title Model-based fuzzing REST web services to detect
vulnerabilities

Author Arjan Gerritsen

Student number 851368230

Institute Open University of the Netherlands, Faculty of
Science

Degree Master’s Programme in Software Engineering

Chair dr. ir. H. P. E. Vranken

Primary supervisor dr. ir. H. P. E. Vranken

Secondary supervisor dr. G. Alpár

Course code IM9906

Acknowledgements

This thesis could not have been realised without the help and support of several
people. Therefore, I would like to share some words of thanks in this section.

Firstly, I wish to express my sincere appreciation to my supervisors, Harald
and Greg. Thank you both for giving me the chance to do this research under your
directions and I am grateful for the valuable time you invested during this period.
Harald, thank you for having our three weekly consultations. All the feedback you
gave me was incredible valuable and enhanced the quality of this research and
thesis. It has been a real pleasure working with both of you.

Secondly, I would like to thank my employer, the Belastingdienst and my
former employer Oblivion. Thank you for believing in me and investing the needed
resources to make this study possible. Furthermore, I would like to thank my
colleagues Pascal and Asif for debating software security topics and discussing my
research with you.

Thirdly, I would like to pay special regards to my loved ones. My parents, you
provided me with a solid base, a safe place to grow up, and always emphasised the
importance of education. That has shaped me into who I am today, I will always be
grateful for that. My parents in law, you always were interested in my research,
asked how things were going, and always remembered when I had an exam. Thank
you for caring and sympathising so much. Finally, I would like to express my deepest
gratitude to my wife, Karin. Your love for learning inspired me to start this journey
and you also helped me immensely in arriving to where I am now. When the journey
was tough, you motivated me to continue. Furthermore, you always supported me
when I needed (academic) advise. I could not have done it without you.

Arjan Gerritsen
Apeldoorn, November 2020

Table of contents

Summary

Samenvatting

1 Introduction 1
1.1 Consequences of vulnerabilities in software 2
1.2 REST web services susceptible to exploitation of vulnerabilities 2
1.3 Precautionary measures . 2
1.4 Research questions . 4
1.5 Chapter overview . 5

2 Technical background 6
2.1 REST web services . 6
2.2 OpenAPI specification . 7
2.3 Model-based security testing . 8
2.4 Fuzzing . 10

2.4.1 Model-based (behavioural) fuzzing 12
2.4.2 Model-based (behavioural) dictionary fuzzing 12

3 Vulnerability types in REST web services 13
3.1 Method: systematic literature review . 13

3.1.1 Search strategy for scientific databases 13
3.1.2 Synthesis scientific articles . 14
3.1.3 Verification with additional evidence 15

3.2 Results . 16
3.2.1 Injection . 18
3.2.2 Broken authentication . 19
3.2.3 Broken access control . 19
3.2.4 Cross-site scripting . 20
3.2.5 Uncategorised . 20

4 Developing a model-based (behavioural) dictionary fuzzer 21
4.1 Method: experimental prototyping . 21

4.1.1 Selection and installation of the SUT 23
4.1.2 Developing a SUT containing SQL vulnerabilities 24
4.1.3 Model-based (behavioural) fuzzing 25
4.1.4 Model-based (behavioural) dictionary fuzzing 29
4.1.5 Measuring effectiveness . 30

4.2 Architecture . 32
4.2.1 Global overview . 32
4.2.2 Service layer (RPC-JSON) . 34
4.2.3 Data layer . 34

4.3 Components . 35
4.3.1 Frontend module . 36
4.3.2 Backend module . 38

4.4 Results . 43
4.4.1 Model-based (behavioural) fuzzing 43
4.4.2 Model-based (behavioural) dictionary fuzzing 47
4.4.3 The effectiveness of model-based (behavioural) dictionary fuzzing 52

5 Discussion, conclusion and recommendations 55
5.1 Vulnerability types in REST web services 55
5.2 Developing a model-based (behavioural) dictionary fuzzer 57

6 Reflection 61
6.1 Vulnerability types in REST web services 61
6.2 Developing a model-based (behavioural) dictionary fuzzer 61

References 62
Peer-reviewed . 62
Other . 67

Credits 71

Appendices 72
Appendix A: Results literature review . 72
Appendix B: Architecture diagram . 80
Appendix C: Screenshots RESTFuzzer . 81
Appendix D: Information related to the experiments 87

Summary

An effective automated technique to detect vulnerabilities is fuzzing, i.e. a software
program sends generated random or unanticipated data to a system under test
(SUT). Currently, new hybrid forms of fuzzing, combining different techniques, are
used to increase their effectiveness on complex software systems. Prior research
showed that REST web services are a good candidate for applying these hybrid
forms. This research examines a new hybrid form: model-based behavioural
dictionary fuzzing, a guided fuzzer that uses a list of strings that contain values that
are likely to detect vulnerabilities. This leads to the main research question: How
can model-based behavioural dictionary fuzzing be applied effectively on REST web
services to detect vulnerabilities?

Firstly, a systematic literature review was conducted. The results showed that
the four most important types of vulnerabilities in web services are: injection,
broken authentication, broken access control, and cross-site scripting. Secondly,
RESTFuzzer was developed by executing experimental prototyping. This fuzzer was
tested on WordPress and SutSqlI, a self-developed SUT that intentionally contains
SQL injection vulnerabilities. RESTFuzzer proved to be capable of executing
model-based behavioural dictionary fuzzing, which means sending a high percentage
of valid requests, detecting vulnerabilities, and executing fast. Also, RESTFuzzer is
effective, which means achieving sufficient amount of code coverage.

Overall, this research contributes to the security awareness and emphasises
the importance to put REST web service vulnerabilities more prominent on the
software security research agenda. Furthermore, it shows that fuzzers can be used
as a capable and effective security testing tool to detect vulnerabilities in REST web
services. The open source applications RESTFuzzer and SutSqll can be applied in
practice and in further research. Moreover, this research demonstrates the
effectiveness of using a new hybrid form of fuzzing, a combination of model-based
and dictionary fuzzing on REST web services.

Samenvatting

Een effectieve geautomatiseerde techniek om kwetsbaarheden te detecteren is
fuzzing, dat wil zeggen dat een softwareprogramma willekeurige of onverwachte
data naar een system under test (SUT) stuurt. Tegenwoordig worden nieuwe hybride
vormen van fuzzing bestaande uit een combinatie van verschillende technieken
gebruikt om de effectiviteit te verhogen wanneer deze worden toegepast op
complexe software systemen. Eerder onderzoek heeft aangetoond dat deze hybride
vormen van fuzzing geschikt zijn om uit te voeren op REST webservices. Dit
onderzoek richt zich op een nieuwe hybride vorm van model-based en dictionary
fuzzing, een gestuurde fuzzer die een lijst van strings gebruikt met waarden die
waarschijnlijk kwetsbaarheden kunnen detecteren. Dit leidt tot de vraag: Hoe kan
model-based behavioural dictonary fuzzing effectief toegepast worden op REST
webservices om kwetsbaarheden te detecteren?

In het eerste deel van dit onderzoek is een systematische literatuurstudie
uitgevoerd. De resultaten laten zien dat de vier belangrijkste typen kwetsbaarheden
in webservices zijn: injection, broken authentication, broken access control en
cross-site scripting. In het tweede deel van dit onderzoek is door middel van
experimental prototyping RESTfuzzer ontwikkeld. Deze fuzzer is getest op
WordPress en SutSqlI, een zelfontwikkelde SUT met de naam SutSqlI, die opzettelijk
toegevoegde SQL injection kwetsbaarheden bevat. RESTFuzzer bleek geschikt te
zijn voor het uitvoeren van model-based behavioural dictionary fuzzing, dat betekent
het sturen van een hoog percentage van valide requests, detecteren van
kwetsbaarheden en snel kunnen uitvoeren. Daarnaast is RESTFuzzer effectief, er
wordt een voldoende mate van code coverage behaald.

Dit onderzoek draagt bij aan security bewustzijn en benadrukt daarbij het
belang om REST kwetsbaarheden prominenter op de software security
onderzoeksagenda te zetten. Verder laat dit onderzoek zien dat fuzzers gebruikt
kunnen worden als een geschikte en effectieve security testing tool om
kwetsbaarheden in REST webservices te detecteren. De open source applicaties
RESTFuzzer en SutSqll kunnen toegepast worden in de praktijk en in
vervolgonderzoek. Bovendien heeft dit onderzoek laten zien dat een nieuwe hybride
vorm van fuzzing, een combinatie van model-based en dictionary fuzzing, effectief
toegepast kan worden op REST webservices.

1 Introduction

Nowadays, software security is of crucial importance, because computers are
present in every aspect of personal life. Computers are no longer only personal
computers or bulky laptops on a desk in a workplace or at home. In contrast,
computers are everywhere. For example, they are on the wrist as smartwatches, in
the bathroom as smart scales, in the pocket as smartphones, and in the living room
as intelligent speakers. The number of vulnerabilities in software increases for
various reasons.

Firstly, the number of computers has increased enormously. Due to the
decrease in size and power consumption, computers can be deployed for many goals
at many locations. Furthermore, computers become more affordable to produce.
This results in for example, the Internet of Things (IOT), which is a large network of
small and low power devices, that are able to exchange data through the Internet.

Secondly, devices are connected to the Internet, all the time. Most devices
require some kind of data transfer between the device and a server where data is
collected and processed. Furthermore, many devices need to be reachable from the
Internet to offer some kind of functionality. For example, devices for home
automation need to be controlled from a website or an application installed on a
smartphone. Therefore, all devices are really easy to access from the Internet, also
by malicious actors who intend to steal data or disrupt availability of services.

Thirdly, the extensive amount of data that is collected by devices might be of
value for malicious actors. A large amount of the gathered data is personal and
privacy sensitive. Data can also contain e-mail addresses, usernames, passwords, or
credit card information. This information can be sold on the Internet. Therefore,
malicious actors will put in much effort to steal data.

Fourthly, the complexity and extensibility of software has increased. Software
solutions are growing in size and therefore become more complex. Due to this
complexity it is harder to oversee all the consequences of choices made by software
developers when writing source code, also with regard to security. Also extensibility
has increased, systems are more and more connected to each other, to exchange
data between client and server or with other systems. An activity that often occurs
over the Internet.

1

1.1 Consequences of vulnerabilities in software

Exploitation by a malicious actor of vulnerabilities in software can cause serious
damage. Various threats to confidentiality exists, which means that (sensitive)
information is accessible by unauthorized people. For example, individuals can be
affected by losing control to whom they want to share their privacy-sensitive
information with. Moreover, companies can be damaged directly by information
leakage, like e-mails that include valuable information for competitors. In addition,
security and/or safety of a country can be threatened when government agencies
lose important information [1]. Also, integrity and availability can be threatened.
The integrity is not guaranteed when data can be modified by a malicious actor and
availability is at risk when an application or data is unavailable.

1.2 REST web services susceptible to exploitation of vulnerabilities

Representational State Transfer (REST) web services is a type of software that is
susceptible to exploitation of vulnerabilities [2, 3]. REST is a software architectural
style that comprises a set of constraints for the development of stateless web
services to use in system-to-system communication in a network environment [4].
More on REST can be read in section 2.1. Especially Structured Query Language
(SQL) injection vulnerabilities are found in web services [5].

In addition, the use of REST web services is growing significantly. This becomes
visible in the popularity of service-oriented architectures (SOA), in which system-to-
system communication is often realised via REST web services, in web development
with the use of microservices [6], and Asynchronous JavaScript And XML (AJAX) web
applications, in which communication between frontend and backend is achieved with
REST web services. Due to the complexity, connectivity, and extensibility of these
web services, the number of vulnerabilities is growing [7]. To minimise the number
of vulnerabilities in production software, precautionary measures are needed.

1.3 Precautionary measures

Precautionary measures are needed to ascertain that software meets certain
security quality standards. For example, the OWASP Application Security
Verification Standard (ASVS) [8]. This standard provides a foundation for security
testing of web applications and also can be used by development teams as a
guideline for developing more secure software. Software development teams
incorporate these measures to increase software security. In addition, researchers
and developers will learn from malicious actors. Techniques used by malicious actors
can also be converted into precautionary measures to increase quality of software
solutions and decrease the amount of vulnerabilities present in production software.

2

Different types of precautionary measures are available, e.g. abuse cases can
be drafted, static software analyses can be used, and security tests can be executed
[7]. As stated by McGraw [7], multiple precautions at different stages of the software
development life cycle (SDLC), so called touchpoints, should be applied. Executing
security tests can only be applied to functioning software. Furthermore, security
testing is a frequently applied and important precautionary measure.

For security testing, model-based security testing (MBST) can be applied as an
automated precautionary measure. This technique can be used to reduce the
number of vulnerabilities that end up in production software, because MBST helps to
automate security related tests. At first, model-based testing (MBT) was used to
automate the generation of functional test cases based on a model. In this context a
model is a simpler representation of the system under test (SUT). In this way the
model will be easy to maintain and test cases can be generated and executed
automatically every time a change in the software is made. For more information on
MBST, see section 2.3.

Another form of security testing is attack and penetration testing. This is a
valuable tool for discovering security flaws in web services. It is of special interest to
execute these attack and penetration tests automatically, because that enables
executing tests more often during the development process, in contrast to manual
tests that are labour intensive and therefore expensive. Integrating attack and
penetration tests in the SDLC will lead to discovering vulnerabilities early in the
development process and results in cheaper and higher quality web services [7].
Moreover, automating attack and penetration tests standardises the testing process,
which does benefit the quality of the test suite, in contrast to manual unstructured
tests [9]. In addition, this also applies to precautionary measures regarding security
testing in general.

An effective automated tool used for attack and penetration testing is fuzzing
[10]. A fuzzer is a software program that can send random or unanticipated
generated data to a SUT. The first fuzzer, originated from 1990, was used to test
parts of the operating system UNIX [11]. The complexity of software has increased
significantly since then. More on fuzzing can be read in section 2.4. With the
increasing complexity of REST web services, the number of possible paths to go
through the software (search space) increases. The coverage of a fuzzer using
generation of random input will be low on applications with large search spaces.
Consequently, the original type of fuzzing is not very effective when applied to
complex software solutions. Therefore, new (hybrid) forms of fuzzing are being
researched by combining fuzzing with different existing techniques to increase their
effectiveness, e.g. dynamic symbolic execution, coverage guide, grammar
representation, scheduling algorithms, dynamic taint analysis, static analysis, and
machine learning [10].

3

One of these hybrid forms of fuzzing is model-based (behavioural) fuzzing,
which is part of the research field MBST [9]. This approach uses a model that guides
the fuzzer to go effectively through the search space and deals with software
complexity [12]. Effectively, in this context, is the goal to cover as much of the
search space in as few tests as possible. Furthermore, the largest possible part of
the program should be executed while fuzzing the SUT, with as few tests as possible.
This can be achieved by sending input that is not rejected by input validation. In
order to achieve that, the fuzzer is able to generate data that is conform the input
specification. Model-based or behavioural fuzzing can also be combined with data
fuzzing [13], for example with dictionary fuzzing. Dictionaries are collections of
strings. When sent to a SUT, these strings are likely to detect or exploit a
vulnerability. Examples from a dictionary containing strings to discover SQL
injection vulnerabilities in MySQL databases are: 1’1, 1 exec sp_ (or exec xp_),
and 1 and 1=1 [14]. A successful exploit of such a SQL injection vulnerability can
result in access to data or the ability to modify or delete data by an attacker.

Currently, not much research has been done on model-based (behavioural)
dictionary fuzzing on REST web services. Atlidakis et al. [15] described in their
research how a model can be derived from an OpenAPI Specification (OAS) and how
this model can be used to fuzz REST web services on a locally installed web
application (GitLab [16]). Atlidakis et al. recommended more research to find more
systematic answers: what kinds of and how many bugs can be found with
model-based fuzzing web services, and how severe will these security issues be?

1.4 Research questions

To conclude, the never-ending race between software developers and malicious
actors continues. Software developers will try to create better quality software, so
software contains fewer vulnerabilities. On the other hand, malicious actors will use
new techniques, e.g. fuzzing, to exploit vulnerabilities present in software. In
response, researchers will use those same techniques to develop tools for developers
that helps creating more secure software.

This thesis describes a research that builds on the study of Atlidakis et al. [15]
by applying model-based fuzzing techniques on REST web services. The main
research question (RQ) is: How can model-based behavioural dictionary fuzzing
be applied effectively on REST web services to detect vulnerabilities? To
answer this research question, the following sub-questions are formulated:

• RQ1: What types of vulnerabilities can be detected in REST web
services?
A systematic literature review will be conducted to answer this question.

4

• RQ2: How can a model-based behavioural fuzzer be developed that is
capable of detecting vulnerabilities in REST web services?
A prototype will be developed capable of model-based behavioural fuzzing.
Several properties of that prototype will be tested in an experiment on a
selected SUT to determine its capability.

• RQ3: How can a model-based behavioural dictionary fuzzer be
developed that is capable of detecting SQL injection vulnerabilities in
REST web services?
The prototype will be extended to also support model-based behavioural
dictionary fuzzing. Several properties of that prototype will be tested in an
experiment on a selected and self-developed SUT to determine its capability.

• RQ4: How effective is a model-based behavioural dictionary fuzzer in
detecting SQL injection vulnerabilities in REST web services?
Code coverage will be measured in an experiment when the prototype executes
model-based behavioural dictionary fuzzing on a selected SUT.

1.5 Chapter overview

This thesis consists of six chapters. Chapter 2 presents the technical background of
this research. The main technical concepts of this thesis, REST web services,
OpenAPI specification, model-based security testing, and fuzzing, will be elaborated.
Two studies were executed to answer the research question and its sub-questions.
Chapter 3 presents the first study of this thesis which focuses on the vulnerability
types found in REST web services (RQ1). The applied method, systematic literature
review, is described. Furthermore, the results are presented to provide an overview
of the types of vulnerabilities found in REST web services. Chapter 4 presents the
second study of this thesis which focuses on the development of a model-based
(behavioural) dictionary fuzzer (RQ2, RQ3, and RQ4). It describes how the method,
experimental prototyping, was applied to develop the prototype. This will be
followed by a description of the architecture and the main components of the
developed prototype. This chapter ends with the presentation of the results of
executing different types of fuzzing on a SUT. Chapter 5 provides a general
discussion of this thesis related to the research questions. Also, implications for
further research and practices are given. Finally, chapter 6 contains a reflection on
the research process.

5

2 Technical background

Knowledge on the applied techniques and used concepts is needed to understand
this thesis. Therefore, this section describes those techniques and the main concepts
used in this research. Firstly, REST web services, the targeted type of software for
this research is described. Secondly, OpenAPI specification (OAS), a description
languages (DL) is elaborated. Thirdly, model-based security testing is highlighted.
Fourthly, different forms of fuzzing are presented.

2.1 REST web services

A web service is a software solution developed to enable machine-to-machine
communication in a network environment. More specifically, a REST web service is a
software architectural style for distributed systems that comprises a collection of
rules to describe how web services should operate, introduced by Roy Fielding in
2000 [4]. Web services that are compliant with these rules are also called RESTful
web services. REST web services provision an application programming interface
(API) to create, access, modify, and delete (web) resources through a uniform and
prearranged collection of stateless operations in a network environment [4]. These
APIs or interfaces can be described by a DL [17, 18]. A DL is the specification for a
machine interpretable file that describes the resources provided by a web service
and the relationships between those resources [19].

Resources are an important aspect of REST web services, which are entities,
that can be identified, modified, or deleted in a network environment by their
Universal Resource Locators (URLs). REST web services often use the Hypertext
Transfer Protocol (HTTP) to communicate. The communication protocol for REST is
not only restricted to HTTP, but most of the time when REST is mentioned, REST
over HTTP is actually meant, which also applies to this thesis. When using REST web
services, an HTTP request is sent to a Universal Resource Identifier (URI) on a
server, to which an HTTP response with an optional payload is returned to the client.
This payload can be formatted in Extensible Markup Language (XML) or JavaScript
Object Notation (JSON). The response indicates what result is achieved, this can be a
notification that a resource is stored, modified, deleted or one or more resources
itself can be returned. Information about the result is indicated by the HTTP
response status code, e.g. 201 for a resource that is created or 404 when the
requested resource cannot be found. The create, read, update, and delete (CRUD)
operations are performed with consecutively the POST, GET, PUT, and DELETE HTTP
methods. These operations are illustrated with an example resource user in Table 1.

6

Table 1: Examples of CRUD actions on resource user on a REST web service.

Action URI HTTP method

Create a user /users POST

Read all users /users GET

Read user with id 1 /users/1 GET

Update user with id 1 /users/1 PUT

Delete user with id 1 /users/1 DELETE

The goals of REST are: creating a scalable solution that has simple interfaces,
performing well, being able to adapt to changing needs, delivering visible
communication between service agents, enhancing the portability of components,
and being reliable [4]. These characteristics are realised by the six guidelines that
REST prescribes [4]. Firstly, the client-server architecture style enforces separation
of concerns. A single component can be replaced, just by honouring the existing
interfaces. Secondly, the statelessness of requests, which entails that when an
operation is performed on the server all information should be included in a single
request. This enhances the visibility, reliability, and scalability of a system. Thirdly,
clients are able to cache the results. Per response, the server indicates if that
specific response can be cached by the client. Fourthly, a layered system is required.
A client cannot see beyond the server, multiple layers can be hidden behind it. As a
result, scalability is attained, e.g. load balancers can be placed between the layers.
Fifthly, uniform interfaces, the foundation of REST, ensure that implementations are
decoupled from the provided services. Therefore, these components can evolve
separately. Sixthly, an optional constraint is presented, namely code-on-demand.
This allows the response from the server to contain executable code, to temporarily
enhance or add functionality to a service.

2.2 OpenAPI specification

The OpenAPI specification (OAS) is a description language (DL). To simplify the
development of REST web services, DLs are developed. These DLs help with the
automated processing and human understanding of REST APIs. DLs are available to
provide a structured view of what information can be used through that API and how
to manipulate and obtain that information. For example, these formal languages can
aid in providing generated documentation for programmers or tools that can be built
around a DL to aid in developing APIs.

Different DLs were developed through time. The Web Services Description
Language 2.0 (WSDL) [20] and Web Application Description Language (WADL) [19]
were developed and mostly used with Simple Object Application Protocol (SOAP)
web services. These DLs are not used much by the industry for describing REST web
services. Therefore, new DLs are developed, e.g.: RESTful API Modeling Language
(RAML) [21], Open Data Protocol (OData) [22], and OAS [23].

7

Figure 1: Google trends screenshot displaying the popularity of DLs: OAS (blue), OData (red), WADL (yellow), and RAML (green).

Although, various DLs are available, different sources indicate that OAS is the
preferred choice at the moment [24, 25, 26]. Their research is based on, among
other things, the GitHub ranking system. All GitHub users can give a star to a
project, so active and much appreciated projects get higher ratings. Furthermore,
the number of Google searches gives an indication on how often a technique is used.
This also applies to the number of hits on Stack Overflow, a public Internet forum
that allows users to ask and answer questions on various technical topics. Moreover,
Google trends [27], Figure 1, shows an increasing interest in OAS, in contrast to
other DLs.

There are different tools available that are built on DLs. Swagger [28] is an
example that builds on the OAS. For example, Swagger UI [29] is a library that can
parse an OAS file and provide a graphical user interface (GUI) in the browser. This
enables viewing documentation, dynamically executing REST calls, and displaying
the responses from those calls. Furthermore, server-side tools are available, e.g.
Swagger Core [30]. When developing a REST server in a Java server environment,
annotations can be used to generate an OAS file from source code. This ensures
documentation is up-to-date and not much work to maintain.

2.3 Model-based security testing

When considering security requirements of a software system, security testing can
be applied. In case that model-based testing (MBT) focuses on detecting security
vulnerabilities, it is called model-based security testing (MBST) [9]. Two primary
methods are available, namely security functional testing and security vulnerability
testing [31]. Security functional testing can be applied to verify the functionality,
efficiency, and availability of the developed security functionalities. Security
vulnerability (or penetration) testing is executed to detect and exploit security
vulnerabilities in a system by executing an authorised simulated attack on a SUT
[32].

8

At first, MBT was introduced to automate the process of generating test cases.
Testing software, in general, can be defined as an activity with the purpose to detect
errors while running a software program [33]. The first software testing activities
were executed by hand. Because of the increasing complexity of software and the
pressure to release software faster, automated testing is being applied more often.
Due to the automated generation of test cases that MBT offers, the labour-intensive
and error-prone manual processes can be replaced by MBT. As a result, the number
of errors in the software will be reduced and the efficiency of the development
process will be increased.

In MBT, a (collection of) model(s) is used to automatically generate test cases
[9]. The model should be a simpler representation of the SUT, in other words, more
abstract. This enhances the ability to check, modify, and maintain the model. [34].
The models used in MBT can be classified into three groups, namely: formal,
semi-formal, and informal models [35]. The formal models have a mathematical
foundation. Use of these models in the software development industry is very
limited, because scaling up to large systems is problematic. In addition, informal
models are less applicable due to the absence of a uniform definition, which makes it
difficult to model the complexity of modern applications. For these reasons most
models are semi-formal, for example UML diagrams or DLs for REST web services.
They cannot be used to prove properties mathematically, but they allow structured
automated testing of complex applications.

For automated MBT three different components should be present in the
model: an interface description, a behavioural model, and deployment information
[12]. The interface description is a definition of the available interfaces of the SUT.
Such a description should consist of the actions that can be executed on the SUT.
Also, input (types) and output (types) should be included in the description. This
enables successful execution of those actions and correct processing of the received
data. Often Unified Modelling Language (UML) is used to acquire this kind of
information, e.g. a class diagram can be used to identify data structures.
Furthermore, how the SUT behaves should be captured in a behavioural model.
Such a model describes how the SUT interacts with other sources, such as users of
the software or other software systems. What actions can occur, and in what order,
by a certain actor, are made visible in behavioural models, in UML a sequence
diagram can be used for that purpose. Finally, deployment information is needed.
This information comprises of information where the SUT is deployed, in the case of
a REST web service, the base URL or a link to a specification file conforming to a DL.
Deployment data can be stored in the model itself or is added to the test, via
configuration, when the test case generation is executed.

9

In MB(S)T test cases are generated systematically from a model. How these
test cases are generated depends on the model and the generation method. The
method for MBST of REST web services applied by Atlidakis et al. [15] uses the OAS
of a REST web service to create a model. The information on what REST web
services are available and what input is needed to successfully execute those web
services calls are extracted from the OAS. Furthermore, the output information from
the OAS is used to determine the order in which calls can be executed. For example,
inserting a blog post can only succeed with an mandatory author, it has to be an
existing resource in the SUT. So, an author must be created before a blog post can
be created. These dependencies can be derived from the OAS and the REST
conventions. All this data is part of the model representing that SUT.

Previous research focused on MBT of REST web services, e.g. Fertig and
Braun [36] stated that different types of test cases are needed for REST web
services, namely: functional, security, performance, behaviour, and compliance
testing. In their study a domain specific language (DSL) was developed to generate
test cases. Furthermore, Pinhiero et al. [37] used a protocol state machine to
generate test cases for REST web services. In UML, the state machine is a type of
diagram that visualises the different states of an object while being executed.
Behavioural and protocol state machines are available to express state transitions.
The behavioural state machines are used to model single entities, while for REST
web services (interaction between multiple resources) a protocol state diagram can
be used.

2.4 Fuzzing

Fuzzing or fuzz testing is an automated software testing technique that may reveal
faults in software by sending (unanticipated) data to the SUT and monitor how the
system responds to this input [38]. This is a form of negative testing [39]. An
example of unanticipated data with negative testing is when date typed values are
expected (an age in a create user form), but alphanumeric or extreme long strings
are sent. Fuzzing is related to boundary value analysis (BVA), a technique in which
ranges of values are tested to verify if the systems reacts as expected, focusing on
edge cases. In contrast to BVA, fuzzing will not only test edge cases, but aims at any
input that can trigger unexpected or insecure behaviour [38].

10

Fuzzing can be applied in two different ways to find different types of
vulnerabilities. Data fuzzing, which is applied the most, consists of sending invalid
input to test the correct functioning of input validation mechanisms and parts of the
SUT that process the entered data. This form of fuzzing is for example very usable
for the detection of injection vulnerabilities. Another form is behavioural fuzzing
where the emphasis is on detecting state related vulnerabilities. These can be
caused by executing actions in an order that has not been taken into account by the
development team, e.g.: an order could be placed, without verifying if the payment
was successfully performed. To detect these vulnerabilities a subset of all possible
sequences is performed to trigger faults in the SUT [13]. Security vulnerabilities
that require manipulation of the state of an application can be tested with this form
of model-based (behavioural) fuzzing [15].

There are different ways to classify fuzzing techniques [10]. One way is the
categorisation by considering the amount of knowledge the fuzzer has of the SUT,
namely: black-box, grey-box, or white-box. A black-box fuzzer does not consider
internal logic. In contrast, white-box fuzzers contain a considerable amount of
detailed knowledge. Grey-box fuzzers are positioned somewhere in between: some
knowledge of the SUT is present, but not in detail. In addition, fuzzers can be typed
as mutation-based or generation-based, consequently, the type of data generation is
considered [38]. Mutation-based fuzzers start with an input seed and keep mutating
that data while presenting it to the SUT. On the other hand, generation-based
fuzzers generate data without a seed. These fuzzers can generate data randomly or
from a (formal) specification, e.g. a model, or a grammar.

Through the years, the effectiveness of fuzzers has increased significantly, so
more vulnerabilities can be detected [10]. The first fuzzer, developed by Barton
Miller [11], consisted of a software program that generated random input data. With
the increased complexity of software, this approach will not be able to cover much of
the search space of complex software solutions. Therefore, much effort is spent on
improving the main part of the fuzzing system, the test case generator, which is
responsible for creating test cases. Different approaches are available to increase
efficiency. The test case generator itself can be improved: instead of using randomly
generated tests, a grammar can be used to generate test cases. Generation input by
a grammar ensures that the generated input is more likely to bypass validation and
still can cause an exception to occur. Furthermore, the test case generator can be
provided with runtime information on how the SUT responds to the generated tests,
e.g. dynamic symbolic execution, coverage guide, or dynamic taint analysis. Feeding
the fuzzer with runtime feedback guides the fuzzer, to improve the code coverage
while executing the SUT. Finally, static analysis can be done, also to improve the
process of guiding the fuzzer. This can be achieved with source code analysis or
creating a model [15].

11

An additional benefit of applying fully automated fuzzing to detect security
vulnerabilities is the possibility to integrate this solution in the SDLC. This can be
realised with tools that support the SDLC with continuous integration and
continuous deployment, e.g. Jenkins [40]. A common practice is that, after
automated building and deploying an application, functional tests are executed
automatically. In this phase, also tests for security testing can be executed.
Vulnerabilities are detected earlier by facilitating these tests in the SDLC. This will
lead to the development of more secure software and potential vulnerabilities can be
detected and eliminated before the software is deployed and taken into production
[7].

Measuring the effectiveness of fuzzers is often realised by measuring code
coverage [10, 41, 42]. This is an essential metric to determine the effectiveness of a
particular fuzzing implementation, because it gives an indication on what percentage
of the source code is executed [41]. The number of instructions, basic blocks, or
routines that are executed during the execution of the test are counted and the
percentage of the total of these source code components, determine the coverage
[42]. A disadvantage of this method is that it does not indicate how much of the
vulnerabilities in the SUT are found. Existing open source projects can be fuzzed and
the amount of detected vulnerabilities gives a good impression of the effectiveness in
detecting vulnerabilities of the fuzzer. Although, some criticism to this method must
be brought under attention, because it is unknown how many vulnerabilities are
present in the SUT. Therefore, the results are difficult to compare and judge.

2.4.1 Model-based (behavioural) fuzzing

Research showed that combining different techniques with fuzzing results in
effective solutions to find security vulnerabilities. Using the advantages of the
combined techniques will lead to improved effectiveness of future fuzzers [10]. For
example, Atlidakis et al. [15] created REST-ler, a tool that combines MBT with
behavioural fuzzing. Test cases are automatically generated, without human
intervention, and also this solution guides the fuzzer efficiently through the search
space, by using a model. This solution executes REST calls in different sequences to
achieve behavioural fuzzing.

2.4.2 Model-based (behavioural) dictionary fuzzing

Behavioural fuzzing can also be combined with data fuzzing [13], for example with
dictionary fuzzing. Such dictionaries contain a list of strings, that will possibly
exploit a vulnerability when presented to a SUT. An example is FuzzDB [14], which
contains different types of dictionaries, e.g. for the detection of SQL or JSON
injection vulnerabilities. Another example of dictionary fuzzing is using dictionaries
containing frequently used usernames and passwords to gain entry to a system in a
brute force manner. Attack and penetration tools have built-in functionality to
execute dictionary fuzzing, such as Zed Attack Proxy (ZAP) [43] or Burp Suite [44].

12

3 Vulnerability types in REST web services

This chapter presents the first study which focusses on the vulnerability types found
in REST web services. The applied method is elaborated in the next section.
Subsequently, the results are presented.

3.1 Method: systematic literature review

A systematic literature review was executed to create an overview of the types of
vulnerabilities that can be detected in REST web services (RQ1). Therefore, a
systematic procedure was executed to identify, appraise and synthesise relevant
studies [45]. The advantage of this procedure is that it restricts bias by reducing the
amount of data to its essence in verifiable steps.

3.1.1 Search strategy for scientific databases

Firstly, the keywords for this search were determined. An initial keyword list was
constructed consisting of the key terms of RQ1. Additional related terms were added
from the IEEE Thesaurus 2019 [46] and the ACM Computing Classification System,
revision 2012 [47]. Iteratively, the search terms were tested and corresponding
results were reviewed. Search terms were dropped when they were too short to be
included by some of the search engines (e.g. the abbreviations REST and API) or did
not result in relevant results regarding answering RQ1. Table 2 gives an overview of
all the keywords that were investigated. The selected search terms were: “web
service" and “vulnerability".

Table 2: Overview of the keywords investigated for the systematic literature review.

Initial keyword IEEE Thesaurus 2019 ACM computing classification,
2012 Revision

Own insight

representational state transfer
(REST)

[BT] Software architecture - [BT] Client-server systems
[BT] Microarchitecture

application programming
interface (API)

[BT] Computer interfaces
[RT] Software defined networking

- -

web service OR web services [BT] Internet Middleware
[RT] Asynchronous
communication
[RT] Cloud computing
[RT] Service computing
[NT] Message service
[NT] Service-oriented
architecture
[NT] Simple Object Access
Protocol (SOAP)

[NT] Simple Object Access
Protocol (SOAP)
[NT] RESTful web services
[RT] Web Services Description
Language (WSDL)
[RT] Universal Description
Discovery and Integration (UDDI)
[RT] Service discovery and
interfaces

[BT] Interface

vulnerability OR vulnerabilities - [RT] Vulnerability management
[BT] Penetration testing
[BT] Vulnerability scanners

[RT] Susceptibility
[RT] Weakness
[RT] Threat
[RT] Risk
[RT] Exploit

BT = broader term | RT = related term | NT = narrow term

13

Secondly, IEEE Xplore [48], ACM digital library [49], and ScienceDirect [50]
were systematically searched using the selected search terms. The search was
restricted to the years 2003 up to and including 2019. The concept REST was
introduced in 2002, therefore no vulnerabilities were found before 2003.
Furthermore, to reduce the number of hits, only the abstracts were searched, since
that is the summary of an article (i.e. a short description of the purpose, method and
main findings). For comparability, the same search strategy was used for all three
databases. Some variation in the formulation of the queries was required, due to
technical differences between the databases:

• For IEEEXplore this resulted in the query (“web services" IN abstract) OR
(“web service" IN abstract) AND (vulnerabilit* IN abstract) and produced
76 results. Double quotes were used to exclude non-relevant results, as “web
application". To acquire the single and plural form of web service in the results
double quotes had to be used. A wildcard, as used with vulnerability to get
single and plural forms did not work for this search engine in combination with
double quotes.

• The ACM digital library was searched with query recordAbstract(+“web
services" +vulnerability) and produced 42 results. Changing from plural to
singular forms of the search terms resulted in the same number of results.
Therefore, no extra arguments needed to be added to the query.

• ScienceDirect was queried for “web services vulnerability" in the abstracts
and this produced 116 results. The executed search in ScienceDirect produced
the same results, regarding the use of singular of plural forms of the search
terms.

The titles and abstracts of these 234 results were exported and converted into
a spreadsheet per database and imported in MaxQDA [51]. A study should “focus on
web services" and “focus on one or more types of vulnerabilities" to be included in this
review, so all titles and abstracts were assessed for these two tags. Only articles that
got both tags were selected for further analysis. A total of 23 articles satisfied these
constraints. These articles were downloaded and the pdf documents were added to
the MaxQDA database.

3.1.2 Synthesis scientific articles

The selected articles were read completely and tagged, so all relevant information of
each article was systematically and explicitly collected. The applied tagging system
is displayed in Table 3. Reliability was enhanced because a tagging system was used.
The content of each article was evaluated on the same criteria and this increased the
reproducibility. For most tags deductive tagging was applied with the predefined
tagging system. It is not always possible to create an exhaustive list on forehand,
therefore inductive (i.e. open) tagging was used to determine the types of
vulnerabilities and types of web services incrementally. This means that tags have
arisen from the data of the original articles. An additional benefit of this approach is
that the terminology of the authors was used which enhances the validity.

14

Then the inductive tags were grouped into meaningful categories using the
OWASP Top 10 (2017) [52]. One additional category “uncategorised" was added for
vulnerability types that do not fit existing categories. The OWASP Top 10 is a
taxonomy of the ten most prevalent vulnerabilities in web applications. This list is
based on a large amount of data from several organisations around the world and
upon community feedback. Grouping these vulnerabilities in categories made it
possible to compare and verify the results of literature (theory) with additional
evidence of the National Vulnerability Database (practice), see section 3.1.3. The
categories were prioritised based on the frequencies of corresponding vulnerabilities
found in literature.

In Appendix A: Results literature review multiple tabulations (Tables 11, 12,
and 13) are presented to enhance the transparency of this literature review [45].
These tabulations provide an overview of all the included articles (i.e. reference, title,
authors, year of publication, keywords, research questions, type(s) of web service,
type(s) of vulnerabilities, research method and a short description for each of these
articles).

Table 3: The tagging system used with MaxQDA.

Tag group Tags

Article inclusion focus on web service, focus on one or more vulnerabilities

Meta information title, authors, year of publication, keywords, research questions, extra information

Study types case study/series, experiment (cause effect), literature review

Web service types JSON-RPC, REST, RPC, SOAP, stateful, XML-RPC

Vulnerability types access validation, authentication, authorization, unavailability, buffer overflow, code execution, command injection,
confidentiality and integrity vulnerability, cross-site scripting (XSS), denial of service (DOS), error on interface,
forcing error, invalid parser, invalid XML, logging vulnerability, parameter tampering, password in clear, script
injection, server path disclosure, service traversal, session hijacking, session replay, spoofing, SQL injection, WSDL
scanning, XML injection, XML rewriting attacks, XPath injection

3.1.3 Verification with additional evidence

The results of the literature review were verified with another source to support the
findings from literature. Also, it supports that the outcome of this literature review
also applies to REST web services and not only to web services in general. Additional
validity evidence was collected from the National Vulnerability Database (NVD) [53].
The NVD is a repository containing vulnerabilities maintained by the National
Institute of Standards and Technology (NIST) [54]. This database will give a
complete and up-to-date overview of vulnerabilities found in practice. The NVD
retrieves vulnerabilities from the Common Vulnerabilities and Exposures (CVE)
database [55] and software security experts enrich those vulnerabilities (e.g. by
adding impact metrics and vulnerability types). Various CVE Numbering Authorities
(CNAs) are granted to add CVEs to the database. This process enhances the
reliability of the data and therefore the NVD was a useful source for verification.

15

Querying the database via the website for the terms REST or RESTfull did not
lead to acceptable results. Therefore, another solution was chosen. The
vulnerabilities from this database are also presented in JSON feed files. All JSON
feed files [56], with all vulnerability entries grouped per year, from 2002 until 2019
were downloaded. A small JAVA program was written to search and group the
entries to create a comprehensive overview. In this program different actions were
executed. Firstly, entries were included when the description matches this JAVA
regular expression: (?i:.*[^\\w](rest|restful)[^\\w].*). This resulted in
inclusion of all the entries in which the descriptions contained the text ’rest’ or
’restful’ preceded and followed with a non-word character. The matching process
was executed case insensitive and resulted in 277 vulnerability entries. After
reviewing the results, a filter was applied to exclude all entries containing the string
’ the rest of the ’. As a result, 13 entries were excluded. Finally, the remaining
entries were reviewed again by the researcher and another 5 were removed,
because they were File Transfer Protocol (FTP) related items. In the context of FTP,
Restart of Interrupted Transfer (REST) is a FTP command. Only information from
the years 2009 until 2019 was selected, because before 2009 no REST related
vulnerabilities were registered in the NVD.

Also, the Common Weakness Enumeration (CWE) [57] information was
extracted from the JSON files. This information was used to group the vulnerabilities
by type, see Table 14 in Appendix A: Results literature review. To compare these
results with the results of the literature review, the discovered vulnerability types
were also categorised in the OWASP Top 10 categories.

3.2 Results

The first research question is addressed in this section: What types of vulnerabilities
can be detected in REST web services? In literature, 29 types of vulnerabilities were
found based on 23 articles, see Tables 11, 12, and 13 in Appendix A: Results
literature review for all details. Furthermore, in the NVD 49 types of vulnerabilities
were found, see Table 14 in Appendix A: Results literature review. Table 4 provides
an overview on vulnerability types in web services found in literature and the NVD
with a categorisation based on the OWASP Top 10.

Table 4: Categorised vulnerability types found in literature and the NVD for (REST) web services.

OWASP Top 10 categories Literature NVD

Rank Count Vulnerability types Rank Count Vulnerability types

A1 Injection 1 32 4 13

14 SQL injection 9 SQL injection

7 XML injection 4 command injection

5 XPath injection

2 code execution

1 script injection

1 invalid XML

1 invalid parser

1 parameter tampering

A2 Broken authentication 2 6 1 22

3 credentials exposure 16 improper authentication

16

continued ...

OWASP Top 10 categories Literature NVD

Rank Count Vulnerability types Rank Count Vulnerability types

2 broken authentication 3 session fixation

1 session replay 2 insufficiently protected credentials

1 insufficient session expiration

A5 Broken access control 3 3 2 22

1 session hijacking 9 path traversal

1 authorisation issues 7 access control issues

1 inadequate or missing
access validation

6 improper access control

A7 Cross-site scripting 4 3 3 22

3 cross-site scripting 22 cross-site scripting

A10 Insufficient logging &
monitoring

5 1 - -

1 logging vulnerability

A4 4 XML external entity
reference

- - 5 9

9 information leak through XML
external entity file disclosure

A3 Sensitive data exposure - - 6 5

2 missing encryption of sensitive data

2 cleartext storage of sensitive
information

1 cleartext transmission of sensitive
information

A8 Insecure deserialization - - 7 3

3 deserialisation of untrusted data

Uncategorised - 22 - 165

5 denial of service 32 information exposure

4 spoofing 22 improper input validation

2 XML rewriting 20 permissions, privileges, and access
controls

2 buffer overflow 19 insufficient information

1 unavailability 17 cross-site request forgery

1 confidentiality and integrity
vulnerability

4 credentials management

1 error on interface 4 incorrect authorization

1 server path disclosure 4 failure to sanitize data into a
different plane

1 forcing error 4 other

1 services traversal 3 cryptographic issues

1 information exposure 3 resource management errors

1 WSDL scanning 3 inconsistent interpretation of HTTP
requests

1 XML signature wrapping 2 failure to constrain operations within
the bounds of a memory buffer

2 7PK - security features

2 permission issues

2 uncontrolled resource consumption

2 incorrect permission assignment for
critical resource

2 uncontrolled memory allocation

2 missing authorisation

2 failure to control generation of code

1 deprecated

1 integer flow or wraparound

1 improper privilege management

1 incorrect default permissions

1 improper verification of
cryptographic signature

1 race condition

1 improper resource shutdown or
release

1 unrestricted upload of file with
dangerous type

1 information leak through log files

1 improper link resolution before file
access

17

continued ...

OWASP Top 10 categories Literature NVD

Rank Count Vulnerability types Rank Count Vulnerability types

1 exposed dangerous method or
function

1 allocation of resources without limits
or throttling

1 inclusion of functionality from
untrusted control sphere

The four most important OWASP Top 10 categories of vulnerability types in
web services based on literature will be presented in the next sections: injection,
broken authentication, broken access control, and cross-site scripting. The top four
ranked OWASP Top 10 categories found in the NVD support and verify the four
categories found in literature, only in a different order, namely: broken
authentication, broken access control, cross-site scripting and injection, see Table 4
for the details.

Twenty articles in this literature review focus solely on SOAP web services,
one on stateful, and two on a combination of web services namely SOAP, REST, and
RPC protocols. The results of the NVD are only vulnerabilities related to REST web
services and have shown that the amount of REST web services vulnerabilities in
the NVD increases over time, both in numbers and as a percentage of the complete
number of registered vulnerabilities (see Table 14 in Appendix A: Results literature
review). In the next paragraphs a short description of the corresponding OWASP
category will be given. Thereafter, the most mentioned vulnerability types within that
category will be defined, possible consequences of exploitation will be described, and
will be illustrated with vulnerabilities in REST web services found in the NVD.

3.2.1 Injection

The category injection contains eight types of vulnerabilities found in literature, see
Table 4. Having injection vulnerabilities can lead to sending non-validated data to an
interpreter by means of a command or query. This can result in execution of
commands or bypassing authorisation by a malicious actor [52]. The most frequent
mentioned vulnerability types in literature are SQL injection, XML injection, and
XPath injection. Especially, SQL injection is a risky vulnerability in web services,
because it can change the SQL queries that are executed on the database [58, 59,
60]. For example, in the NVD, a SQL injection vulnerability was registered for
Apache Fineract. This vulnerability made it possible to inject SQL via its REST web
service, by directly appending existing queries via the parameters ‘orderBy’ and
‘sortOrder’ [61]. Consequently, SQL injection can lead to the theft of user
information [62]. With XML injection, parts of XML messages are added and/or
modified, by appending or alternating user input, which results in XML messages
that are harmful [63, 64]. This can result in the collection and manipulation of data
[65]. Comparable to SQL injection, when XPath injection is applied, malicious actors
can retrieve or manipulate data by changing queries. Only with XPath injection the
targets are XML oriented databases, in which data is stored in XML documents [58].

18

3.2.2 Broken authentication

The category broken authentication consists of three types of vulnerabilities found in
literature, see Table 4. These vulnerability types are related to the flawed
implementation of authentication and session management. These types of
vulnerabilities allow malicious actors to obtain passwords, keys, or session tokens.
Also, other erroneous implementations can lead to take over user identities for some
time or enduringly [52]. The most frequently mentioned vulnerabilities in literature
are credential exposure and broken authentication (similar to the category name).
Credential exposure occurs when the response of the web service reveals credentials
of the user [5]. An example is ‘password in clear’, when the web service reveals the
password of the user, because it is sent unencrypted [58] or valid usernames are
revealed by inspecting behaviour of the response from logging in on a web service
[66]. During an authentication attack, the mechanism and methods used to
authenticate the software system are attacked [62]. Examples of such an attack are:
password exposure or phishing attacks [62]. The main risk of broken authentication
is that third parties, without the identity of the user, have access to the system [62,
67]. In the NVD, a case of broken authentication led to the possibility for an
unauthenticated malicious actor to bypass the authentication of Cisco Elastic
Services Controller. By sending a specially created request to the REST web service,
an attacker could execute administrative privileged actions [68].

3.2.3 Broken access control

The category broken access control comprises three types of vulnerabilities in
literature, see Table 4. All these vulnerabilities are related to incorrect
implementation of access management. Exploitation of these types of vulnerabilities
lead to accessing program functionalities or data by an unauthorised user [52].
These vulnerability types are session hijacking, authorisation issues, and inadequate
or missing access validation. With session hijacking a malicious actor monitors and
reads network traffic. Then the session key or cookies are stolen to access a valid
web session. The consequence is that a malicious actor gets unauthorised access to
the web server [59]. Authorisation issues, by other authors called, inadequate or
missing access validation are problems with access policies, used to express which
authenticated users can access whatever resources [66, 67]. These issues are
caused by resources that are missing proper access control mechanisms [66]. This
can result in data leakage [66]. A vulnerability of the type broken access control
registered in the NVD led to enumeration of usernames in some versions of Jira. An
incorrect authorisation check on the REST web service (/rest/api/2/user/picker)
disclosed if the supplied username was known to the system [69]. Valid usernames
acquired by this form of enumeration can then be used to guess their corresponding
passwords. Guessing the password has a greater chance of success now one of the
two variables is confirmed correct. Furthermore, a list of earlier leaked username
and password combinations can be consulted for occurrences of these known
usernames.

19

3.2.4 Cross-site scripting

The category cross-site scripting includes the vulnerability type ’cross-site scripting’
in literature, see Table 4. According to the OWASP Top 10, it refers to the inclusion
of malicious code into a web page caused by improper validation or escaping. A
cross-site scripting (XSS) vulnerability is successfully exploited when the malicious
code injected by a malicious actor is executed in the browser of the victim [52]. As
described by Salas and Martins [70], the main purpose of XSS: ‘is to store, modify, or
delete requests, misleading the servers and the user of the web services’.
Consequently, sensitive information might be stolen and the systems integrity might
be compromised [70]. Also, unauthorised access may be achieved [66] or the user
can be redirected to a special constructed website by the attacker [62]. An example
of a XSS vulnerability, found in the NVD, is a version of Silver Peak EdgeConnect
SD-WAN was susceptible for XSS. Via a crafted URL, malicious JavaScript could be
executed in the browser by users of the REST web service [71].

3.2.5 Uncategorised

In literature, uncategorised contains thirteen types of vulnerabilities that could not
be classified to one of the OWASP Top 10 categories, see Table 4. The most
commonly mentioned vulnerability types are denial of service and spoofing. A denial
of service (DOS) attack means that a malicious actor makes an attempt to overload
the resources of the victim. This can lead to a reduced or a denied access for valid
users to the victim’s web service [72]. As a result, this leads to ineffectiveness, a loss
of profit, or even reputational damage of the victim’s organisation [72]. REST web
services are also susceptible for DOS vulnerabilities. For example, in the NVD was
registered that systems installed with specific versions of the cluster database
management component of Cisco Expressway Series Software and Cisco
TelePresence Video Communication Server Software were vulnerable to DOS
attacks. By sending a crafted request to the REST web service a restart of the
system could be forced, resulting in a temporary unavailability of the service [73].

In literature, several forms of spoofing were distinguished. The general
characteristic of these forms is that a malicious actor pretends to be someone or
something else [74]. Principal spoofing is a form of spoofing in which a malicious
actor pretends to be a user to access a web service [75]. Other forms of spoofing are
WSDL spoofing (i.e. serving a modified WSDL) and security policy spoofing (i.e.
removing or modifying security requirements) [64].

20

4 Developing a model-based (behavioural) dictionary
fuzzer

This chapter presents the second research of this thesis which focuses on the
development of a model-based (behavioural) dictionary fuzzer to detect (SQL
injection) vulnerabilities. The results of the literature review showed that the most
occurring type of vulnerabilities in REST web services is injection and then in
particular SQL injection. Therefore, the focus in this research will be mainly on
detecting SQL injection vulnerabilities.

This section is structured in four parts. Firstly, the research method is
presented. In this subsection is explained how the prototype is developed. Secondly,
a description of the architecture is given. The chosen three layered architecture is
explained and how it relates to the prototype is presented. Thirdly, the main
components of the developed prototype are elaborated. The responsibility of each
component is given and the relation between the components is explained. Finally,
the results of this research are presented.

4.1 Method: experimental prototyping

Experimental prototyping was executed to answer three research questions: How
can a model-based behavioural fuzzer be developed that is capable of detecting
vulnerabilities in REST web services? (RQ2), How can a model-based behavioural
dictionary fuzzer be developed that is capable of detecting SQL injection
vulnerabilities in REST web services? (RQ3), and How effective is a model-based
behavioural dictionary fuzzer in detecting SQL injection vulnerabilities in REST web
services? (RQ4).

Experimental prototyping is a process in which one or more prototypes are
developed to be evaluated in an experiment [76, 77]. A prototype is according to
Naumann & Jenkins “a system that captures the essential features of a later system
(. . .) intentionally incomplete, is to be modified, expanded, supplemented, or
supplanted” [78, p. 30]. Thus, in this study, a prototype was developed that was
extended vertically, meaning adding functionality through all layers of the system
[77]. The prototype needs an environment to test its capabilities on, therefore an
experiment was conducted on a SUT [76]. This process of experimental prototyping
is characterised by exploring, verifying and validation of the performance of the
prototype [76]. The design and implementation of the prototype was adapted based
on the results of these tests [76, 79, 80], which enhances the effectiveness of the
prototype. This process was executed iteratively, which is visualised in Figure 2. The
process of experimental prototyping was stopped when the desired result was
reached.

21

(re)designanalyse

test implement

Figure 2: The process of experimental prototyping applied in this study to develop RESTFuzzer 1.

In this study, the desired result is a model-based fuzzer and model-based
dictionary fuzzer. These fuzzers should be capable of and effective in detecting
vulnerabilities. Capable is defined as sending a high percentage of valid requests,
the ability to detect vulnerabilities, and operate fast. Effective is defined as
executing a large part of the functionality of the SUT. Therefore, these four aspects
were taken into consideration:

• These fuzzers can send a high percentage valid requests to the SUT, which
means that the HTTP response codes are in the 200 range [15, 39].
Comparable research of Atlidakis et al. [15] showed that a model-based fuzzer
was able to send 80% valid requests. Therefore, in this study anything above
75% will be classified as a high percentage. Consequently, a valid request
conforms to the validation rules imposed by the SUT. For REST web services
and HTTP traffic in general the status code of the response informs the sender
about the result of processing the request. Therefore, response codes can be
used to reflect the quality of the requests sent to the SUT. Thus, sending a high
percentage valid requests is important because it influences the extent to
which a fuzzer succeeds in detecting vulnerabilities in REST web services.

• These fuzzers can detect vulnerabilities. This is difficult to prove because it is
unknown whether there are detectable vulnerabilities in a SUT, this also
depends on the quality of the SUT. It is possible to know what vulnerabilities do
exist in a SUT. Vulnerabilities can be injected in an existing SUT or a SUT with
known vulnerabilities can be developed or used. There are open source
applications available with built-in vulnerabilities for educational purposes, e.g.
OWASP WebGoat [81]. Such a REST web service with vulnerabilities and an
OAS was not available.

• These fuzzers can operate fast. This means the number of requests should be
sufficient to be able to execute fuzzing. The success of fuzzers relies on
executing many requests, therefore the performance of a fuzzer impacts the
capability of the fuzzer.

1Derived from the iterative prototype experiment cycle by Tronvoll et al. [76].

22

• These fuzzers are effective in executing a large part of the functionality. Insight
is given by measuring source code coverage. Code coverage is an important
metric for measuring effectiveness of fuzzers, for more detail see section 2.4.
Furthermore, previous research showed that code coverage is an important
predictor for the amount of vulnerabilities found, namely, an increase of 1%
code coverage leads to finding approximately 1% more vulnerabilities [39].

As part of the experimental prototyping, a SUT was selected, of which the
selection process is described in section 4.1.1. Moreover, a SUT with vulnerabilities
was developed, see section 4.1.2. The development of the prototype was divided into
three phases. Firstly, the prototype was able to extract the REST model description
from the OAS and execute model-based behavioural fuzzing, this is described in
section 4.1.3. Secondly, the existing prototype was extended to be able to execute
model-based behavioural dictionary fuzzing, see section 4.1.4. Thirdly, the
effectiveness of the developed prototype was measured, this is elaborated in section
4.1.5. In each of the phases an iterative approach was used ((re)design, implement,
test, and analyse) to improve the results of the prototype, see Figure 2.
Furthermore, the architecture of the prototype was designed and the main
components were defined. The elaboration of the architecture, its components and
techniques that were applied are presented in section 4.2 and 4.3.

4.1.1 Selection and installation of the SUT

To be able to execute the experiment a SUT was needed to test the developed
prototype on. A query was executed on Google [82] to find a suitable SUT. The
following search terms were used: Open source, CMS, Swagger, OpenApi
Specification, OAS, REST, and API.

Next, the acquired results were filtered by applying a list of five requirements:
the SUT should contain REST web services, a description language (DL) should be
available for the REST web services of the SUT, preferably OAS, the source code of
the SUT should be available for inspection/modification, source code coverage
measurement should be possible, and it should be possible to install the SUT on a
personal computer. Accordingly, a SUT was suitable and selected for the experiment.
This search from Google yielded five possible SUTs, displayed in Table 5 in order of
most used, according to the website BuiltWith [83].

Table 5: Overview systems under test considered for the experiment.

Reference System under test Programming language Live websites according to BuiltWith [83]

[84] WordPress PHP 27,021,750

[85] Drupal PHP 568,141

[86] Magento PHP 190,731

[87] Mediawiki PHP 91,817

[88] Bloomreach Java 1,254

23

All these software systems require a web server to serve the (generated) HTML
to a client browser, a database to store data, and a way to run the code. XAMPP [89]
makes it possible to easily run an Apache webserver, a MariaDB [90] database and
a PHP module for Apache. The requirements for all five SUTs were met in theory.
The list of possible SUTs was prioritised on impact or in measurable terms: most
frequently used. To keep schedule on track and since installing and getting a SUT to
completely work requires a lot of time, one SUT was selected. Therefore, the first item
on the prioritised list was chosen: WordPress. A running environment was realised to
use the SUT for actual development and testing of the prototype. The plugin WP API
SwaggerUI [91] had to be installed, to make the OAS available for WordPress. The
SUT was successfully installed and running, as a result the OAS schema was available
at: http://localhost/wordpress/rest-api/schema. Eventually, an installation of the SUT
was also realised on another computer with a Linux distribution (Ubuntu). This was
done because of the increased performance, which doubled, in comparison to the
development environment. Therefore, all the experiments were conducted on the
Ubuntu installation. The (hardware) specifications of the development environment
and the test setup are presented in Table 15 and Table 16 in Appendix D: Information
related to the experiments.

4.1.2 Developing a SUT containing SQL vulnerabilities

Also, in this study, a SUT was developed that intentionally contained SQL injection
vulnerabilities. This SUT will be referred to as system under test SQL injection
(SutSqlI) from now on. SutSqlI can be used to validate the capability of detecting
vulnerabilities of the prototype. Therefore, a REST web service with create, read,
update, and delete (CRUD) actions for comment entities was developed.

SutSqlI is a Spring Boot application [92] and is written in Java and built with
Maven [93]. To supply an OAS v2, the third party library SpringFox [94] was used. In
addition, SpringFox also supplies a Swagger UI [29], see Figure 3. This makes it
possible to execute REST actions of this SUT via the browser.

Figure 3: A screenshot of the Swagger user interface interpreting the OpenAPI specification of SutSqlI containing SQL vulnerabilities.

24

No PreparedStatements were used to interact with the database, which causes
the SQL injection vulnerability in SutSqlI. PreparedStatements are database
statements containing placeholders for variables used in queries. These
placeholders are commonly filled with user input. The use of PrepraredStatements
allows safely including user input in the query by escaping possible unsafe
characters, like ’ or ;. In this SUT plain queries were used for creating, updating,
reading and deleting comments, therefore this SUT is vulnerable to SQL injection.
See Listing 1 for the Java DAO class that was created to interact with the database.

1 @Service

2 public class CommentService {

3
4 // variable(s)

5 @Autowired

6 private JdbcTemplate jdbcTemplate;

7
8 public Comment create(Comment comment) {

9 jdbcTemplate.execute("INSERT INTO comments (description) values (’"+ comment.getDescription() +"’);");

10 Long id = jdbcTemplate.queryForObject("SELECT LAST_INSERT_ID();", Long.class);

11 comment.setId(id);

12 return comment;

13 }

14
15 public Comment read(Long id) {

16 Comment comment = jdbcTemplate.queryForObject("SELECT * FROM COMMENT WHERE ID = " + id + ";", Comment.class);

17 return comment;

18 }

19
20 public Comment update(Comment comment) {

21 jdbcTemplate.execute("UPDATE comments SET description = ’"+ comment.getDescription() +"’ WHERE id = " + comment.getId() +";");

22 return comment;

23 }

24
25 public void delete(Long id) {

26 jdbcTemplate.execute("DELETE FROM comments WHERE id = " + id +";");

27 }

28 }

Listing 1: Service class of SutSqlI for interacting with the database.

Note that queries on lines sixteen and twenty-six are not exploitable, due to
the fact a Long type is supplied as argument. Therefore, a string value supplied by a
malicious actor can never be injected in those queries, because the conversion to a
Long number will fail. The exploitation in this example can occur in the queries on
lines nine and twenty-one. The description of the comment object is a string that can
be injected in the create and update query by a malicious user.

4.1.3 Model-based (behavioural) fuzzing

Model-based fuzzing was implemented in the prototype in different phases. The
development started with the implementation of a framework to support
model-based fuzzing. In this phase the project was set up and a mechanism to
execute long running asynchronous tasks was added. Then, the extractor was built.

25

Extracting REST model description from the OpenApi Specification The
initial version of the extractor was able to obtain basic information from the OAS of
the SUT and save that into the database. In the next phases this was incrementally
enhanced to gather more information from the OAS. Furthermore, a dependency
extractor was developed as a separate process that starts after extracting the data
from the OAS. Also, manual adding dependencies between REST web services in the
GUI was implemented. For example, creating a new post depends on the existence of
an author. The automatic dependency extractor could not recognise the author
parameter as being a user entity (according to REST conventions user_id was
expected). Therefore, this mapping had to be added manually, see Figure 4. By
implementing this mechanism also dependencies can be added that do not follow the
REST conventions.

Figure 4: A manual dependency registered in the prototype.

From basic fuzzer to model-based fuzzer Next, the basic fuzzer was developed.
The basic fuzzer was able to send requests to the REST API of the SUT and
responses were persisted to the database. This basic fuzzer was mainly used to
discover what configuration features were needed to create valid requests.
Therefore, a configuration mechanism was developed. The configuration started
with the inclusion or exclusion of one or more REST actions based on a regular
expression. This functionality was added to limit the number of requests by including
only certain actions. Also, excluding certain actions prevented the fuzzing process to
update the password of the user that was executing the fuzzing process. The
configuration mechanism was enhanced with multiple features, in various
increments, namely: exclusion of parameters, default values for parameters, and
basic authentication. All these features were introduced to get better responses
from the SUT, e.g. fewer responses with status codes 400 and 403.

26

Then, the actual model-based fuzzer was developed. Implementation started
with the sequence generator. Since, research of Atlidakis et al [15] showed that
execution of sequences in random order yielded the best result, this approach was
also chosen for this prototype. However, the actual implementation for sequence
generation differs. All possible sequences were generated in advance, then the order
of the collection was randomised. The implementation of this fuzzer allowed to
specify some parameters, e.g. the maximum number of requests sent for that fuzzing
project.

The developed sequence generator starts with determining all possible
combinations (sequences) of these actions. For example, given a SUT that has three
different actions (a=3) and a maximum sequence length of two (sMax=2). Also,
action a2 has a dependency on action a3, in other words action a3 has to be
executed before action a2. In general, the number of possible sequences can be
expressed as:

∑sMax
s=1 as = numSeqs, in which sMax is the maximum sequence length,

a is the number of actions, and numSeqs is the number of possible sequences. This
results for this example in

∑2
s=1 3

s = 12 possible sequences. However, not all these
sequences are valid (due to the dependency), the sequence generator only adds valid
sequences and would end up with seven valid sequences, see Table 6.

Table 6: All possible valid and invalid combinations of actions (sequences) for the supplied example.

Sequences with length = 1 Sequences with length = 2

valid invalid valid invalid

[1] - [1,1] [1,3] [1,2]

- [2] - [2,1] [2,2] [2,3]

[3] - [3,1] [3,2] [3,3] -

27

Experiment (WordPress) Two types of experiments were conducted. The first
experiment was executing basic and model-based fuzzing on the SUT configured
with a maximum of 5,000 requests with a basic configuration and an optimised
configuration, see respectively Listing 4 and Listing 5 in Appendix D: Information
related to the experiments. The basic configuration only ensured the fuzzing process
keeps functioning by excluding REST web services that could lock out the fuzzer, by
invalidating the username and password combination used by the fuzzer. The
optimised configuration was established iteratively, by executing a task, analysing
the results, and adapting the configuration. The same basic and optimised
configuration were used in all conducted experiments. The goals of this experiment
are to demonstrate the ability of the model-based fuzzer to generate and execute
valid requests and to determine code coverage. The reason to maximise the number
of requests to 5,000 was threefold. Firstly, the distribution of HTTP status codes
turned out to be constant in various experiments. As a result, the percentages of
valid requests were almost equal in those experiments after sending for example
5,000 or 10,000 requests. Therefore, 5,000 requests in one experiment was enough
to establish the percentage of valid requests. Secondly, the code coverage
percentage increased fast at the beginning of the test, but remained almost constant
after a certain number of requests. Therefore, increasing the maximum number of
requests would not give new insights. Thirdly, the experiment was executed various
times to establish the optimised configuration, so execution time for 5,000 requests
was acceptable and processing the code coverage data was doable for that amount
of requests.

The second experiment was a long running model-based fuzzing task with
optimised configuration and a maximum of 500,000 requests. Time was measured in
both experiments to be able to present data about the speed of the different types of
fuzzers. All invalid responses (with HTTP response code not in the 200 range) were
analysed by the researcher to determine if a vulnerability was detected. The goal of
this long running experiment was to detect vulnerabilities. Especially, response
codes in the 500 range are worth investigating, since this indicates that a server
error has occurred. This can indicate a functional error or a vulnerability. The
number of 500,000 was chosen to cap the maximum running time of the experiment.
Furthermore, it is not expected that running the experiment longer would trigger
new functionality, since code coverage was almost constant after 5,000 requests.

28

4.1.4 Model-based (behavioural) dictionary fuzzing

Lastly, the model-based (behavioural) dictionary fuzzer was developed. Firstly,
managing dictionaries was realised in the prototype. Support for any type of
dictionary was built in. Various types of dictionaries can be found in FuzzDB [14], a
GitHub open source project. For example, a JSON injection dictionary can contain:
{}, {"1":"0"}, or {"0":"\x00"}. Via the GUI a SQL dictionary was created, the
items were extracted from FuzzDB’s SQL list. Only SQL dictionary fuzzing was
applied in this experiment in order to answer RQ3, but the prototype can also be
used with other types of dictionaries, e.g. path traversal or JSON.

A new fuzzing project was created in the prototype and configured as type
model-based dictionary. The interface then displayed an option to select one or more
dictionaries to include in the fuzzing attack. The MySQL exploit dictionary from
FuzzDB [14] was used to detect SQL injection vulnerabilities, since the database
used for the SUT is MariaDB. MariaDB is a fork of the original open source MySQL
database, originated after MySQL was bought by Oracle.

The model-based dictionary fuzzer iterated all selected actions. A selection of
the available REST web service calls can be made by specifying a configuration, see
section 4.3.2. For each of these actions the parameters of these actions were also
iterated. This number of parameters could be limited to a maximum via the
configuration to decrease execution time. For every selected parameter a value from
the dictionary was randomly selected. This process was repeated until all the items
from the dictionary were selected or until the maximum value specified in the
configuration was reached. Then each request was executed on the SUT and the
response was captured and persisted in the database.

Experiment (WordPress) Two types of experiments were conducted with the
model-based dictionary fuzzer on the REST web services of WordPress. The first
experiment was executing basic and model-based dictionary fuzzing on the SUT
configured with a maximum of 5,000 requests with a basic configuration and an
optimised configuration. The second experiment was a long running model-based
dictionary fuzzing task with optimised configuration and a maximum of 500,000
requests. Time was measured in both experiments to be able to present data about
the speed of the different types of fuzzers. All invalid responses (with HTTP response
code not in the 200 range) were analysed manually by the researcher, to determine if
a vulnerability was detected.

29

Experiment (SutSqlI) An experiment was conducted on SutSqlI to prove these
SQL vulnerabilities can be detected by the developed prototype. By using the
model-based capabilities the read, update, and delete action can be executed. For
those actions to be successfully executed an existing comment must be used. Also,
for this experiment the MySQL exploit dictionary from FuzzDB [14] was used to
detect SQL injection vulnerabilities. The number of requests will be capped at 5,000.
But due to the relative simplicity of this application, that number won’t be reached.
All possible combinations of actions, parameters and dictionary items were executed
in this experiment.

4.1.5 Measuring effectiveness

To determine the effectiveness of the prototype in this study code coverage was
measured. Measuring code coverage is a method to get insight in how many and
sometimes also which parts of the source code were executed during the execution
of the fuzzing process [95]. It is a method often used in literature [39]. Two related
terms are often used with software security: vulnerability coverage and code
coverage. Vulnerability coverage can be described as the number of vulnerabilities
found in the source code. Code coverage is, in the context of static analysis, the
amount of code that is analysed or scanned to detect vulnerabilities in a system. For
example, this is applied by Vieira et al. [5]. In this experiment code coverage is
defined as measuring the amount of lines of code that are executed, since analysis is
carried out on a running software application. This approach was also applied by
Atlidakis et al. [15]. Also, a distinction was made between code coverage for the
attack surface and the complete application. The attack surface is a part of the
application that is directly accessible by malicious actors [39].

The options for how to execute source code coverage measurement were
limited. This was due to the fact that the SUT is built in PHP and served via an
Apache web server. For a SUT built in Java or .NET, a OWASP supported solution,
Code Pulse [96] is available. This is a tool that allows real-time code coverage
monitoring, while executing penetration testing activities.

PHPUnit was the first option explored for the analysis of the SUT. This is a
framework used to execute functional tests for PHP oriented projects [97]. After
some experimenting this option was abandoned. The problem was that this method
only gave insight after the fuzzing process was completely executed. For good
insight, the code coverage over time was needed.

30

The underlying mechanism PHPUnit uses to acquire its code coverage
information from is Xdebug. Xdebug is a debugger and profiler tool for PHP. It is
mostly used by an integrated development environment (IDE) to debug a software
solution to detect where and what things go wrong in a program. Xdebug can give
detailed information on what PHP files are included during execution and which
lines of these files are executed. Therefore, Xdebug was explored and eventually also
chosen to measure the code coverage during the fuzzing process.

Firstly, a PHP file was created, see Listing 2. The file was loaded automatically
before any other PHP files were loaded, with the auto_prepend_file function in the
global configuration file for the PHP module (PHP.ini). This was needed for Xdebug
to load correctly with the given filter. In this file three functions are available. From
the WordPress code, these functions were called. The first function startCoverage
on line 6 was called before the REST call was executed. After the response was
generated and served to the prototype the function dumpCoverageInfo was called, to
save the coverage data to a file on the hard disc drive. All the REST API related
functionality in WordPress could be found in directory
<WORDPRESS_ROOT>/wp-includes/rest-api/, the main class was located in
class-wp-rest-server.php. The functions to create and save the source code
coverage data were injected in that class.

1 <?php

2 xdebug_set_filter(/* this block of code was eventually deleted */

3 XDEBUG_FILTER_CODE_COVERAGE, XDEBUG_PATH_WHITELIST, [’c:\\xampp\\apps\\wordpress\\htdocs\\wp-includes\\rest-api\\’]

4);

5
6 function startCoverage() {

7 xdebug_start_code_coverage(XDEBUG_CC_UNUSED);

8 }

9
10 function dumpCoverageInfo() {

11 $file = fopen(getFilename(), "w");

12 $data = xdebug_get_code_coverage();

13 fwrite($file, json_encode($data));

14 fclose($file);

15 }

16
17 function getFilename() {

18 $now = DateTime::createFromFormat(’U.u’, microtime(true));

19 return "c:/xdebug_dump/" . $now->format("Y_m_d_H_i_s_v");

20 }

21 ?>

Listing 2: PHP code to obtain code coverage data from Xdebug and save it to the hard disc drive.

As a result, for each request executed on the REST API of the SUT a file was
created with code coverage data from Xdebug. In these files, the names of all
included PHP files were listed. For each of these files a multi-dimensional array held
all line numbers and per line a value 1 or -1 to respectively indicate if a line was
executed or not. This data only contained information on the code coverage of a
single request. To get insight in the code coverage over time, while the fuzzing
process was executed, this data needed to be summarised. For this goal the
Reporter, see section 4.3.2, was developed.

31

Whitelisting could be achieved by activating lines from 2 until 4 from Listing 2.
This resulted in keeping track of the source code coverage of only the files defined
on line 6. These files can be marked as the attack surface of the SUT. Applying
whitelisting would have resulted in only measuring code coverage for the attack
surface of the application. An advantage of this approach was shorter response
times, as omitting the whitelisting resulted in gaining a performance penalty. Also,
the coverage data files were smaller in size on disc (∼500kB versus ∼50kB). Reports
generated by the Reporter also took considerably less time to create. Finally, no
whitelisting was applied in the experiment. So, all PHP files were included in the
code coverage measurement. Performance issues were mitigated by installing
WordPress on a Ubuntu operation system, which boosted performance. The number
of requests per second were doubled.

Experiment (WordPress) For both, the model-based and model-based dictionary
fuzzer, code coverage was measured in an experiment. This way effectiveness of
both types of fuzzers could be compared. The coverage for all loaded PHP classes
and for only the attack surface (PHP classes in the
<WORDPRESS_ROOT>/wp-includes/rest-api/ directory) was presented. This
distinction was made in the reporter tool. The maximum requests to send was
capped at 5,000 and the optimised configuration was used.

4.2 Architecture

This section describes the architecture of the prototype.

4.2.1 Global overview

The developed prototype is a web application, i.e. a Java Maven [93] project. Maven
is a tool that helps with building the project and managing third party libraries used
in a Java based project. The project consists of two modules, namely: backend and
frontend. The backend module is among other things responsible for: running
background tasks (e.g. the actual fuzzing process), saving and providing data from
the database (e.g. extracted OAS information, requests send, and responses
received) and extracting a REST model description (RMD) from an OAS file.
Furthermore, the frontend module delivers a graphical user interface (GUI) for the
users of this prototype. In contrast to a command line tool, a GUI offers easy access
to and operation of all functionalities. The process and results of the fuzzing process
are presented to the user in clear overviews, to help with the interpretation of the
data.

32

The architecture of this prototype is based on a three layered architecture,
often used in Java enterprise applications. In this architecture the following principle
layers are distinguished: presentation, domain and data source [98]. The structure
of the prototype related to this three layered architecture principle is displayed in
Figure 5. The presentation layer is realised in the frontend module, this comprises
everything related to the user interface. The domain and data source layer are
accommodated in the backend module. A service layer is often wrapped around the
domain related components, in which security and transaction control can be
imposed [98], which is also applied in the prototype. The domain layer in the
prototype comprises of the modules: service layer, task executor, RMD extractor,
fuzzer, and reporter. All business logic is encapsulated in those components. The
data source layer is partly present in the data layer. Hibernate [99] is used, which is
an Object/Relational Mapping (ORM) framework to manage database connections,
persisting, and populating objects. Therefore, in the data layer, only domain models
and service classes are present for communication between database and
application. Much of the (database) functionality needed in the data layer is
provided by Hibernate.

Frontend

GUI1

Backend

service layer

task executor

RMD2 extractor

fuzzer

reporter

data layer

Prototype

Presentation layer

Domain layer

Data source layer

Figure 5: An overview of the modules (frontend and backend) and components (GUI1, service layer, task executor, RMD2 extractor, fuzzer, reporter and
data layer) of the prototype and their positioning in the three layered architecture.

33

The backend is written in the programming language Java. Spring Boot [92] is
used as framework to aid in focussing on writing features instead of infrastructure.
The backend consists of six components: service layer, data layer, task executor, RMD
extractor, fuzzer, and reporter. The two components, service layer and data layer,
which are architectural components, are elaborated in the next two subsections.

4.2.2 Service layer (RPC-JSON)

The responsibility of the service layer is to exchange data with the frontend. A HTTP
request from the frontend is sent to the service layer by means of executing a remote
procedure call (RPC) in the JSON format. The service layer delegates any requests
for data to the data layer. For interaction between the service layer and data layer,
data transfer objects (DTOs) sent by the clients (browsers) are converted to domain
objects and vice versa.

The Spring framework supplies all the building blocks to built REST web
services and these are also used for this prototype. Since, the web services of this
prototype are not fully compliant to the REST conventions, they are called RPC calls
using JSON. The service layer consists of different types of building blocks, namely:
controllers, mappers, and DTOs. Entry points for the controller are defined in
controllers. A class is annotated with @RestController() and
@RequestMapping("<PATH>") to notify the Spring framework this class serves as
REST controller and what the base path is for this controller. All accessible methods
in the class for the web service are annotated with
@RequestMapping(path = "<PATH>", method = RequestMethod.<METHOD>). This
makes the method available for a certain URL and HTTP method. Furthermore,
mappers and DTOs are used. Mappers are Java classes that convert DTOs to domain
objects and vice versa. The DTOs contain information in a form usable for the
frontend. These DTOs are sent via the Internet in JSON format and the conversion to
JSON is handled by the Spring framework.

4.2.3 Data layer

The data layer is responsible for storing and retrieving the data from the database.
This layer comprises three components: data access objects (DAOs), domain classes,
and factory classes. The DAOs are interfaces extending Spring’s CrudRepositories.
These CrudRepository classes support CRUD (create, read, update, and delete)
functionality. The extending DAOs are provided with @Query annotations to execute
complex queries. These DAOs are implementations of a design pattern that hides the
underlying database and its dependencies. Using another database type, would only
require changes in the DAOs or in this case no changes at all, because Spring’s
CrudRepositories are used, which are compatible with many different database
types. Eventually these are also facades for Hibernate, the unlaying ORM.
Therefore, only minors tweaks are needed if database dependant queries are used.

1Graphical User Interface
2REST model description

34

The domain objects are Java classes that describe the database structure
(fieldnames, types, validations, and relations to other objects/tables). Java
annotations are used to map Java types to database types (i.e. java.util.String →
varchar(32) and java.util.Boolean → tinyint(1)). Other annotations are used
to impose constraints (i.e. @NotNull or @NotEmpty), or to indicate the type of
relations objects have (i.e. @OneToMany or @ManyToMany).

Also, factory classes that implement the Factory design pattern are used. This
enables the decoupled instantiating of objects, instead of using the class
constructors directly [100]. As a result, the SOLID (Single-responsibility principle,
Open–closed principle, Liskov substitution principle, Interface segregation principle,
and Dependency inversion principle) principle of programming are applied [101].

4.3 Components

This section describes the main components of the developed prototype. A global
overview of interaction between backend, frontend and SUT is displayed in Figure 6.
A more detailed description of these two modules and its components is presented in
the next paragraphs.

Backend

service layer

data layer

task executor

RMD2 extractor

fuzzer

reporter

Frontend

GUI1

Database

database

Code coverage data

hard disk
drive

Prototype

OAS3

REST

application

System under test

Figure 6: An overview of the modules and components of the prototype and their interaction with a SUT.

1Graphical User Interface
2REST model description
3OpenAPI Specification

35

4.3.1 Frontend module

The frontend module consists of one component, the graphical user interface (GUI).
In the next section a global overview of the functionality of the GUI and how it was
realised is presented.

Graphical user interface The functionality of the prototype is grouped into four
parts in the GUI: System under test, Fuzzing, Reports and Tasks. These parts are
accessible from the main menu via links with corresponding names. Executing a
fuzzing task starts with adding a new SUT to the system. A SUT is added by entering
the URL to the OAS. Then, in the detail panel from the added SUT, an extract task
can be started. All relevant information from the OAS is extracted and saved into the
database. While this process is running, the task is displayed in the tasks menu.
After completion, an overview from actions, parameters, and dependencies is
available from the detail panel of the selected SUT, see Figure 21 in Appendix C:
Screenshots RESTFuzzer. From the tab that is displaying the automatically
extracted dependencies, also manual dependencies can be added.

The next step is creating a fuzzing project in the GUI. A prerequisite is that a
configuration is available. So, first a configuration should be added to the system,
see Figure 22 in Appendix C: Screenshots RESTFuzzer. A configuration consists of a
name and a JSON formatted block holding the actual configuration. An empty block
is displayed for the user to supplement. After the configuration is added, the fuzzing
project can be added. A fuzzing project consists of a description, type (basic,
dictionary, model-based, or model-based dictionary), configuration, maximum
number of requests, and a SUT. Depending on the type of fuzzer that is chosen extra
options are displayed. If a dictionary typed fuzzer is selected, one or more
dictionaries must be selected. The maintenance of dictionaries is also available via
the GUI, see Figure 23 in Appendix C: Screenshots RESTFuzzer.

When the project is saved into the system, a fuzzing task can be started. While
the long running tasks is executing, progress can be monitored via the tasks link in
the menu. After completing the task, the detail page of the project refreshes
automatically and the the results are displayed. A tab with responses and requests
will be displayed, presenting all the requests that are sent by the fuzzer and all the
corresponding responses received are also visible in another tab. If model-based
fuzzing is executed an extra tab with sequences is displayed, see Figure 24 in
Appendix C: Screenshots RESTFuzzer. It is possible to view a sequence, see what
requests were sent in that sequence and what the corresponding responses were.
From a response, the corresponding request is visible. Filter options are available in
each tab to display only the information that is interesting, e.g. only the responses in
the HTTP 200 range.

36

Also, two types of reports can be created via the GUI, see Figure 25 in
Appendix C: Screenshots RESTFuzzer. The first report gives insight in the HTTP
response codes that were received after executing a fuzzing task. The second report
gives insight in the code coverage. A report consists of a description, type
(responses or code coverage), project, interval, grid x-as, and grid y-as. After adding
a new report to the system via the GUI, a long running task can be started to
generate the report. The result is a LaTeX formatted file containing graphs to
visualise the type of HTTP response codes and code coverage during a fuzzing task.

The long running tasks can be monitored in the GUI. An overview with queued
and running tasks is presented first, see Figure 26 in Appendix C: Screenshots
RESTFuzzer. This overview is refreshed automatically every 1.5 seconds, so all
information is up to date. The other overview presents all the tasks that are finished.
Each row of both overviews can be clicked on, to display the detailed information of
that task.

Some background information on the applied techniques in the GUI is
described in this and the next paragraphs. Most modern web applications offer a
rich user experience using JavaScript libraries. A GUI allows users to get a clear
overview of data present in the system and easy operation of that system, for
screenshots of the GUI see Appendix C: Screenshots RESTFuzzer.

The first frontend applications that provided rich user experiences were built
with HTML, cascade style sheets (CSS), and JavaScript. The disadvantage of this
approach is that these applications were very hard to maintain and contained
security issues, e.g. XSS. Therefore JavaScript libraries, like Prototype or JQuery,
were developed. These bundled most frequently used functions, e.g. toggle the
visibility of HTML elements. This enhances maintainability and security, if the library
was frequently updated. As a result, many new libraries were introduced and used in
projects, which resulted again in complex, insecure, and hard to maintain
applications. So, new libraries were introduced to maintain and bundle all assets
(HTML, JavaScript, and images) to decrease maintenance effort. For this purpose
Webpack [102] was used for this prototype. At the same time many frameworks that
apply structure in frontend applications are introduced, such as React, Angular, or
Vue.js [103]. Vue.js is chosen for the development of this GUI.

Bootstrap [104] is used for the layout, this is a component based library that
allows to built responsive (mobile first) websites and web applications. BootstrapVue
[105] provides Vue.js components that make use of the Bootstrap layout. This allows
fast development and results in a uniform interface. Therefore, BootstrapVue is used
for this prototype. Frontend applications also have state, that needs to be
administrated. The Veux [106] state management library is used to store all data
(state) centralized, with rules ensuring that state can only be manipulated in a way,
that always results in the same output. Furthermore, the frontend needs to
communicate with the backend, this is realised with RPC using JSON. A JavaScript
library named Axios [107] is chosen to realise that functionality.

37

4.3.2 Backend module

In contrast to the frontend module, the backend consists of many components. These
components will be elaborated in the next sections.

Task executor The role of the Task executor is to execute long running tasks
asynchronously in the background. In a web application an action starts with
sending a request and ends with receiving the response. Accepted lead times are in
the range of a few seconds. Some tasks can take up much time, for example a
fuzzing task can run for days. Therefore, those tasks have to be executed in a
separated thread on the server. Progress information is persisted to the database by
long running asynchronous tasks, so that progress can be monitored from the web
application, by accessing progress information from the frontend.

The task executor is implemented with Spring’s @Scheduled and @Async
annotations. A service class using a method annotated with @Scheduled allows
repeated execution at a given interval. The prototype checks every 10 seconds in the
database if there are jobs to be run using cron like notation
@Scheduled(cron = "*/10 * * * * * *"). Cron is a time based job scheduler on
Unix typed operation systems. The syntax supports specifying values for the
following attributes: second, minute, hour, day of the week, day of the month, month,
and year. A star value means that a job is executed for every allowable value of that
attribute. Also, the division symbol can be used to run each time that division yields
a residue of zero. Furthermore, a TaskExecution interface is used, which is
implemented by every executable task. A contract is drafted for new tasks by using
this interface. A Java class named TaskExecutionFactory is used to create running
tasks from the saved tasks from the database. Also, a TaskExecutor class using the
@Async annotation makes it possible to run jobs in their own Java threads.

RMD extractor The task of the RMD extractor component is twofold. Firstly, the
OAS schema files are read and its content is converted to usable objects for the
prototype and those objects are persisted in the database. Secondly, relations
between web services are derived from the extracted OAS data. The RMD
information is saved in the prototype database to the table names starting with the
rmd_ prefix. The entity relationship diagram (ERD), an overview of the database
structure, is presented in Figure 20 in Appendix B: Architecture diagram. The
diagram is created with DBeaver [108], a universal database manager.

There are different versions of the OAS at the moment of writing, namely
versions v2 and v3. For the actual parsing of the OAS schema file a third party open
source library is used, namely: Swagger Parser [109]. This library only supports v2
and is used because the selected SUT implements version v2 of the OAS schema. In
the OAS parser a wrapper is developed that includes this library, therefore the
communication takes place via wrapper. Accordingly, it will be easy to extend the
wrapper to also support v3.

38

Fuzzer The fuzzer component is responsible for the creation of test cases (HTTP
requests). These test cases are executed by sending the HTTP requests to the SUT,
and capture the results (HTTP responses). Functionalities of the fuzzer are divided
into smaller logic units of functionality. There is a Java package containing Java
classes representing all types of available fuzzers: FuzzerBasic, FuzzerModelBased,
FuzzerDictionary, and FuzzerModelBasedDictionary. Furthermore, there is an
interface Fuzzer.java, which describes the interface these classes have to implement.
All fuzzers extend FuzzerBase which contains functionality that is common for all
types of fuzzers and related data is persisted in the database tables with the prefix
fuz_, for details see Figure 20 in Appendix B: Architecture diagram. Additionally,
there are utility classes that all provide a small piece of functionality, namely:
MetaDataUtil, RequestUtil, ParameterUtil, SequenceUtil, and ExecutorUtil. In the
next paragraphs these types of fuzzers and units of functionality are further
explained.

FuzzerBasic The basic fuzzer is a fuzzer, capable of fuzzing without using
the dependency information from the prototype. It uses some information from the
extracted OAS, like which actions are available and what parameters these actions
have.

FuzzerModelBased This model-based fuzzer can execute model-based
fuzzing, by using the dependency information from the OAS and the manual added
dependencies. This extracted model enhances the fuzzing process in comparison to
the FuzzerBasic which does not use this information.

FuzzerDictionary Dictionary fuzzing can be executed with this type of fuzzer.
This form of fuzzing uses items from a dictionary that are likely to trigger some form
of vulnerability, e.g. SQL or JSON injection. The dictionaries entered in the prototype
are used.

FuzzerModelBasedDictionary The FuzzerModelBasedDictionary is capable
executing of model-based dictionary fuzzing. Dependency information from the OAS
and manual added information is used, to create valid requests. For every action,
parameter, and dictionary item a request can be sent (depending on the
configuration), in which every time a parameter is filled with a value from the
dictionary.

MetaDataUtil The responsibility of this utility class is to validate and
convert the metadata supplied with the fuzzing task. The metadata is persisted in
the database formatted in JSON. This JSON data has to be converted before it can be
processed by the prototype. Various types of fuzzers require different metadata to
work with. The metadata required for all fuzzers is described in a configuration
block. All fuzzer type specific data is declared outside the configuration block. A
sample configuration for a model-based type fuzzer is presented in Listing 3.

39

1 {

2 configuration: {

3 authentication: {

4 method: "BASIC", username: "username", password: "password"

5 },

6 includeActions: [

7 {

8 path: ".*", httpMethod: ".*"

9 }

10],

11 excludeActions: [],

12 excludeParameters: [

13 {

14 action: {

15 path: ".*", httpMethod: ".*"

16 },

17 parameter: {

18 name: "meta"

19 }

20 },

21 {

22 action: {

23 path: ".*", httpMethod: ".*"

24 },

25 parameter: {

26 name: "template"

27 }

28 }

29],

30 defaults: []

31 },

32 maxSequenceLength: 3,

33 maxNumRequests: 2500

34 }

Listing 3: An example configuration describing how a model-based fuzzer should behave.

The configuration block consists of four different types of information.
Firstly, the authentication block contains information on how to authenticate to the
REST web service. The prototype supports basic authentication, which is configured
by specifying method: "BASIC". Furthermore, a username and password are
required to execute basic authentication. An empty block {} can be used to specify
that no authentication should be used. Secondly, includeActions is specified. This
array of actions is included for this fuzzing project. A path and httpMethod are
required to provide, because those are the properties that define an action. Both
parameters are interpreted as regular expressions, so in this case (.*) all actions
known for this SUT are included. Thirdly, actions that should be excluded from the
fuzzing project are specified by using excludeActions. This should also be an array
as used with includeActions. Fourthly, exclusion of parameters could be configured
by using excludeParameters. This should be an array of parameters. A parameter is
identified by name and the action it belongs to. All these values are regular
expressions as well. Therefore, specific parameters for specific actions can be
excluded or specific parameters for all actions. Also, default values for parameters
can be assigned, in the defaults block.

40

Besides the general configuration which applies to all types of fuzzers, there is
metadata specific for only one type of fuzzer. In the example supplied above, a
configuration for a model-based fuzzer is supplied. A model-based fuzzer is
instructed to create sequences with a maximum length, in this example the length of
three is configured by specifying maxSequenceLength: 3. Since, the amount of
requests grows enormously with an increasing sequence length, also the number of
requests for that test can be limited. For example to limit the number of requests to
2500 for that test, the configuration should include maxNumRequests: 2500.

RequestUtil Requests are generated by the RequestUtil from actions, which
are extracted from the OpenAPI description. These actions contain a path (URI),
an HTTP method, and a collection of parameters. The RequestUtil class creates a
request database record from an action. The population of parameters is delegated
to the ParameterUtil.

ParameterUtil The ParameterUtil uses information from the RMD to
generate valid values for parameters in the request, which eventually are sent to the
SUT. Parameters in the RMD contain information, which is used to generate valid
values for these parameters. Next, four examples of how RMD information is used to
construct valid parameter values are given. Firstly, four different types are
identified: ARRAY, BOOLEAN, STRING, and INTEGER. Secondly, four different formats
are identified for the type STRING, namely: ip, uri, email, and datetime. Thirdly, for
the type INTEGER a minimum and maximum value are specified. Fourthly, an ARRAY
can be defined as an ENUM, which contains predefined values. A value is selected
randomly from these options.

Furthermore, when model-based fuzzing is executed, the ParameterUtil uses
dependency information between parameters and actions to enhance the number of
valid requests. So, when a sequence of requests is executed, values for parameters
are retrieved from requests executed earlier in that specific sequence. Also, when
dictionary fuzzing is executed, values for specific parameters are filled with values
from a dictionary.

SequenceUtil The SequenceUtil is a Java class, only used with the
model-based typed fuzzers. A sequence consists of a range of one or more generated
requests. The RMD contains information on actions (e.g. what parameters they have
and what types these parameters are). The SequenceUtil is responsible for
generating valid sequences with a maximum given length.

The SequenceUtil starts with generating all possible sequences for the actions
used for that specific fuzzing project. The generated sequence is verified by checking
if the dependencies are met for every request in that sequence. That means that if a
request is dependent on one or more other actions, that action or actions have to be
executed in the same sequence before that specific action. The sequence is only
added to the collection of valid generated sequences if these conditions are met.

41

Furthermore, a maximum number of requests is supplied to keep the time to
execute the generated requests in manageable proportions. This is demonstrated by
the next formula that expresses the number of possible requests (r) in relation to the
number of actions (a) of a SUT and the maximum sequence length (sMax):∑sMax

s=1 as · s = r. For example, given a SUT with 25 actions (a=25) and a maximum
sequence length of three (sMax = 3) results in executing

∑3
s=1 25

s · 3 = 48, 150

requests. While this amount of requests is still executable in reasonable time,
increasing the maximum sequence length to five (sMax = 5) results in∑5

s=1 25
s · s = 50, 438, 775 requests. In these examples multiple dependencies

between actions will be present, therefore some sequences will be invalid and
therefore are excluded. But this does not influence the order of magnitude, and the
exponential grow of the number of requests with an increasing maximum sequence
length.

ExecutorUtil The ExecutorUtil is a wrapper around the open source library
Apache HttpClient [110]. This library takes care of all connection related
functionality. For example, pooling mechanisms are available to keep a connection
open, so the same connection can be used for sending requests and receiving
responses without the need to establish a new connection every time a request is
sent. The responsibility of ExecutorUtil and some related helper classes are to send
requests to the SUT and capture the response and delegate persisting to the
database. A helper class (ExecutorUtilHelper) maps domain objects (FuzRequest) to
objects that can be handled by the Apache HTTPClient (HttpUriRequest).

Reporter The reporter tool is developed to easily create reports. Two different
types of reports can be generated, namely: code coverage and cumulative responses
count grouped by HTTP status code. The input for the code coverage report are data
dumps containing information about which lines of code are executed related to the
PHP classes of the SUT. Information from the prototype’s database is needed to
generate a report for the cumulative responses count. More in-depth detail on how
this data is gathered and aggregated is presented in section 4.1.5.

This reporter tool is incorporated in the prototype for the re-use of existing
data access functionalities. Furthermore, the process to generate the code coverage
report is a long running task and therefore the task executor of the prototype can be
used very effectively. The generated reports are presented as line graphs in this
thesis. Therefore, the output of these reporters are LaTeX snippets, which are
inserted in the LaTeX file of this thesis. The Tikz and PGFPlots packages are used to
produce these line charts. Examples of these reports, e.g. Figure 7 and Figure 10,
can be found in section 4.4.

42

4.4 Results

In this section the results of the second part of this research, experimental
prototyping are elaborated. The results for answering research questions 2, 3, and 4
are presented respectively.

4.4.1 Model-based (behavioural) fuzzing

The second research question is addressed in this section: How can a model-based
behavioural fuzzer be developed that is capable of detecting vulnerabilities in REST
web services? This research question is answered by addressing three aspects
regarding the capability of the developed model-based behavioural fuzzer: valid
requests, speed, and the ability to detect vulnerabilities. This section ends with a
summary of the main findings. A description of the architecture and its components
is presented in section 4.2 and 4.3.

Valid requests Regarding the aspect valid requests the results of four experiments
are presented. The experiments with the basic fuzzer without model-based
capabilities (basic and optimised configuration) were conducted to establish a
baseline to compare the model-based fuzzer (basic and optimised configuration)
with. The listings of the configurations are presented respectively in Listing 4 and
Listing 5 in Appendix D: Information related to the experiments. The number of
requests for these experiments were limited to 5,000, see section 4.1.3 for more
information.

0 22 44 65 86 108 128 149 169 190 211

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

500

1,000

1,500

2,000

2,500

2,352

1,769

775

78
26

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 400

HTTP status: 404

HTTP status: 200

HTTP status: 403

HTTP status: 501

Figure 7: Overview cumulative response codes using the basic fuzzer on WordPress configured with basic configuration.

43

0 28 57 85 114 144 172 200 230 260 288

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

500

1,000

1,500

2,000

2,500

3,000
2,884

1,432

411

205
34

34

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 404

HTTP status: 200

HTTP status: 201

HTTP status: 403

HTTP status: 501

HTTP status: 400

Figure 8: Overview cumulative response codes using the basic fuzzer on WordPress configured with optimised configuration.

The results of the first experiment using the basic fuzzer with basic
configuration showed that only 15.50% of the requests were valid (HTTP status
codes from responses in the 200 range). This percentage is the ratio of responses
with status code HTTP 200 (n=775) to the total number of requests (n=5,000), see
Figure 7. Furthermore, the second experiment using the optimised configuration
resulted in a higher percentage of valid requests, namely 36.86% returning HTTP
response codes in the 200 range. This percentage is the ratio of responses with
status code HTTP 200 (n=1,432) and HTTP 201 (n=411) to the total number of
requests (n=5,000), see Figure 8.

0 41 86 128 166 204 218

time [seconds]

0 500 1,000 1,500 2,000 2,500 2,664
0

500

1,000

1,260

1,086

288

30

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 400

HTTP status: 200

HTTP status: 404

HTTP status: 403

Figure 9: Overview cumulative response codes using the model-based fuzzer on WordPress configured with basic configuration.

44

0 61 124 183 246 308 368 426 485 542 598

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 4,992
0

500

1,000

1,500

2,000

2,500

3,000

3,500
3,610

1,362

10 8 2

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 200

HTTP status: 201

HTTP status: 403

HTTP status: 501

HTTP status: 404

Figure 10: Overview cumulative response codes using the model-based fuzzer on WordPress configured with optimised configuration.

The results of the third experiment using the model-based fuzzer with the
same basic configuration showed that 40.77% of the requests were valid (HTTP
status codes from responses in the 200 range). This percentage is the ratio of
responses with status code HTTP 200 (n=1,086) to the total number of requests
(n=2,664), see Figure 9. Furthermore, the fourth experiment using the same
optimised configuration resulted in a higher percentage of valid requests, namely
99.60% returning HTTP response codes in the 200 range. This percentage is the
ratio of responses with status code HTTP 200 (n=3,610) and HTTP 201 (n=1,362) to
the total number of requests (n=4,992), see Figure 10. In these two experiments not
all of the 5,000 pre-calculated requests were executed, because sequences were
aborted if one of the requests in that sequence did not return a response with an
HTTP status code in the 200 range. So, from these four experiments can be
concluded that the number of valid requests was significantly higher for the
model-based fuzzer than the basic fuzzer. Furthermore, using the optimised
configuration resulted in higher percentages of valid requests than the basic
configuration.

Speed In these four experiments, regarding the aspect speed can be observed that
the basic fuzzer with basic configuration executed 23.7 requests per second and with
the optimised configuration 17.4 requests per second. Furthermore, the
model-based fuzzer with the basic configuration executed 12.2 requests per second
and with the optimised configuration 8.3 requests per second. So, from the data can
be concluded that the basic fuzzer is about twice as fast as the model-based fuzzer.
Also, the configuration had influence on the speed of the fuzzer, using the basic
configuration resulted in faster execution.

45

0 1.78 3.66 5.59 7.50 11.42 13.40 15.42 17.47 18.47 19.25

time [hours]

0 50 100 150 200 250 300 350 400 450 493.98
0

50

100

150

200

250

300

350 346,767

141,220

2,542

2,398

835
124
71
27

responses [x1,000]

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

[x
1
,0

0
0
]

HTTP status: 200

HTTP status: 201

HTTP status: 501

HTTP status: 403

HTTP status: 404

HTTP status: 400

HTTP status: 500

HTTP status: 410

Figure 11: Overview cumulative response codes using the model-based fuzzer on WordPress configured with optimised configuration (maximum number of
500,000 requests).

Detect vulnerabilities A fifth experiment was executed with a long running
model-based fuzzing task to detect vulnerabilities in WordPress. For this experiment
the maximum number of requests was set to 500,000 requests. The optimised
configuration was used and the maximum sequence length was set to 5. As a result,
493,984 requests were sent to WordPress in nineteen hours, fifteen minutes and
fourteen seconds, see Figure 11. Furthermore, all responses that contained an HTTP
status not in the 200 range were examined. A database query was composed to
group all different response codes and bodies in the ranges not equal to 200, see
Figure 27 in Appendix D: Information related to the experiments. All unique results
(n=43) were manually inspected. No indication for revealing a vulnerability was
found, all these responses were traceable to valid situations. For example, four
different types of errors in the HTTP 500 range were detected: 501 (terms can’t be
placed in the recycle bin), 501 (users can’t be placed in the recycle bin), 500
(username already exists), and 500 (this slug is already in use by another term).

In sum The model-based behavioural fuzzer is capable of sending a high
percentage of valid requests, the speed of the developed prototype is sufficient, and
no vulnerabilities in the REST web services of WordPress were detected. A summary
of the results in this section is provided in Table 7.

46

Table 7: Summary of the results of the experiments with the basic and model-based behavioural fuzzer.

type of fuzzer configuration meta data valid requests [%] speed [requests per second] vulnerabilities detected

basic basic 5,000 requests
WordPress

15.50 23.7 -

basic optimised 5,000 requests
WordPress

36.86 17.4 -

model-based basic 5,000 requests
WordPress

40.77 12.2 -

model-based optimised 5,000 requests
WordPress

99.60 8.3 -

model-based optimised 500,000 requests
WordPress

- - no

4.4.2 Model-based (behavioural) dictionary fuzzing

The third research question is addressed in this section: How can a model-based
behavioural dictionary fuzzer be developed that is capable of detecting SQL injection
vulnerabilities in REST web services? This research question is answered by
addressing three aspects regarding the capability of the extended prototype, a
model-based behavioural dictionary fuzzer: valid requests, speed, and the ability to
detect SQL injection vulnerabilities.

Valid requests Regarding the aspect valid requests the results of four experiments
are presented. The experiments with the dictionary fuzzer without model-based
capabilities (basic and optimised configuration) were conducted to establish a
baseline to compare the model-based dictionary fuzzer (basic and optimised
configuration) with. The basic and optimised configuration were identical to the ones
used for the basic and model-based fuzzer, see section 4.4.1. The projects were
configured to use all items from the dictionary for all parameters for all the actions
from the SUT.

0 19 37 54 77 95 111 134 151 168 192

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
3,840

955

199

6

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 400

HTTP status: 404

HTTP status: 200

HTTP status: 403

Figure 12: Overview cumulative response codes using the dictionary fuzzer on WordPress configured with basic configuration.

47

0 24 59 91 110 148 179 201 240 269 289

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

500

1,000

1,500

2,000

2,500
2,580

1,640

355
300

80
45

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 400

HTTP status: 404

HTTP status: 200

HTTP status: 201

HTTP status: 403

HTTP status: 500

Figure 13: Overview cumulative response codes using the dictionary fuzzer on WordPress configured with optimised configuration.

The results of the first experiment using the dictionary fuzzer with basic
configuration showed that only 3.98% of the requests were valid (HTTP status codes
from responses in the 200 range). This percentage is the ratio of responses with
status code HTTP 200 (n=199) to the total number of requests (n=5,000), see
Figure 12. Furthermore, the second experiment using the optimised configuration
resulted in a higher percentage of valid requests, namely 13.10% returning HTTP
response codes in the 200 range. This percentage is the ratio of responses with
status code HTTP 200 (n=355) and HTTP 201 (n=300) to the total number of
requests (n=5,000), see Figure 13.

The results of the third experiment using the model-based dictionary fuzzer
with the same basic configuration showed that 4.76% of the requests were valid
(HTTP status codes from responses in the 200 range). This percentage is the ratio of
responses with status code HTTP 200 (n=206) to the total number of requests
(n=4,330), see Figure 14. In this experiment not all of the 5,000 requests were
executed due to aborted sequences receiving erroneous status codes in the
responses. Furthermore, the fourth experiment using the same optimised
configuration resulted in a higher percentage of valid requests, namely 66.50%
returning HTTP response codes in the 200 range. This percentage is the ratio of
responses with status code HTTP 200 (n=567) and HTTP 201 (n=2,758) to the total
number of requests (n=5,000), see Figure 15. So, from these four experiments can
be concluded that the number of valid requests was significantly higher for the
model-based dictionary fuzzer than the dictionary fuzzer. Furthermore, using the
optimised configuration resulted in higher percentages of valid requests than the
basic configuration.

48

0 47 92 135 176 219 259 299 339 394

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,330
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

4,090

206
30
4

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 400

HTTP status: 200

HTTP status: 404

HTTP status: 403

Figure 14: Overview cumulative response codes using model-based dictionary fuzzer on WordPress with basic configuration.

0 150 323 486 586 667 769 938 1073 1147 1253

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

1,000

2,000

3,000

2,758

1,384

567

243

27
21

responses

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

HTTP status: 201

HTTP status: 400

HTTP status: 200

HTTP status: 404

HTTP status: 403

HTTP status: 500

Figure 15: Overview cumulative response codes using model-based dictionary fuzzer on WordPress with optimised configuration.

Speed In these four experiments, regarding the aspect speed can be observed that
the dictionary with basic configuration executed 26.0 requests per second and with
the optimised configuration 17.3 requests per second. Furthermore, the
model-based dictionary fuzzer with the basic configuration executed 11.0 requests
per second and with the optimised configuration 4.0 requests per second. So, from
the data can be concluded that the dictionary fuzzer is faster than the model-based
dictionary fuzzer. Also, the configuration had influence on the speed of the fuzzer,
using the basic configuration resulted in faster execution.

49

0 9.62 20.97 30.40 35.78 43.12 54.30 58.93 66.35 76.63 87.03

time [minutes]

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

11,180

5,766

2,229

826
737
128

responses [x1,000]

cu
m

u
la

ti
ve

re
sp

o
n

se
s

co
u

n
t

[x
1
,0

0
0
]

HTTP status: 201

HTTP status: 400

HTTP status: 200

HTTP status: 403

HTTP status: 404

HTTP status: 500

Figure 16: Overview cumulative response codes using the model-based dictionary fuzzer on WordPress configured with optimised configuration (maximum
number of 500,000 requests).

Detect SQL injection vulnerabilities A fifth experiment was executed with a
long running model-based fuzzing task to detect SQL injection vulnerabilities in
WordPress. The maximum number of requests of 5,000 was increased to 500,000.
All possible combinations of actions, parameters, and dictionary items resulted in
sending 20,866 requests to WordPress, see Figure 16. The number of response codes
in the 400 range was high (n=7,329). This is expected due to sending parameters
that were often not compatible with expected parameters, e.g. sending string values
containing characters that could exploit SQL injection vulnerabilities when numbers
were expected. A database query was used to inspect status codes and bodies of the
responses that were not in the 200 range (n=78), to check if vulnerabilities were
uncovered. The results are presented in Figure 28 in Appendix D: Information
related to the experiments. No indications were found that vulnerabilities were
detected by the fuzzing process with the model-based dictionary fuzzer.

Verification to detect SQL injection vulnerabilities The sixth experiment was
executed to validate the capability of the prototype to detect SQL vulnerabilities,
because no SQL vulnerabilities were found in the REST web services of WordPress.
An additional SUT, SutSqlI, was used for this purpose. This SUT was registered in
the prototype and information from the OAS was extracted and dependencies were
determined, for more information see Figures 29, 30, 31, and 32 in Appendix D:
Information related to the experiments.

50

Figure 17: All responses of the SutSqlI experiment in the HTTP 500 range.

As a result of this experiment 81 requests were executed. The HTTP response
code of six of the responses to those requests were in the HTTP 500 range, see
Figure 17. These specific response bodies were examined. The observations are
presented here. Firstly, three responses belonged to the REST action
POST /rest/comments and three belonged to PUT /rest/comments/{id}. These
actions correspond to the create and update functionality, which are vulnerable to
SQL injection. The other actions (read and update) did not return a response in the
HTTP 500 range. Secondly, when examining these bodies three of the nine values
from the MySQL detection dictionary from FuzzDB triggered a SQL exception:
1’ and 1=(select count(*) from tablenames); --, 1’1, and
fake@ema’or’il.nl’=’il.nl. Thirdly, applying values from the dictionary to the id
parameter resulted in an HTTP 400 status code (Failed to convert value of type
’java.lang.String’ to required type ’java.lang.Long’; nested exception is
java.lang.NumberFormatException: For input string: <value from dictionary>). This
can be explained by the fact the code is converting the string into a number.
Therefore, the id parameter is not susceptible to SQL injection. Fourthly, six of the
nine values from the dictionary did not trigger an exception. In these cases the
result was a valid response in HTTP 200 range.

Noteworthy is the speed achieved by the prototype in the experiment on
SutSqlI. The prototype was able to send requests at a faster pace, namely at 40,0
requests per second. Therefore, the prototype is not the bottleneck in the
experiments with WordPress in terms of sending the requests and processing the
responses. The present vulnerabilities in both REST actions were detected by the
prototype. In addition, the method of manual analysis by the researcher of the HTTP
500 responses was successful in determining that a vulnerability was detected.

51

In sum The model-based dictionary fuzzer is capable of sending a high percentage
of valid requests and the speed of the developed prototype is sufficient. Furthermore,
no vulnerabilities in the REST web services of WordPress were detected, but all the
SQL injection vulnerabilities in SutSqlI were detected. A summary of these results is
provided in Table 8.

Table 8: Summary of the results of the experiments for the dictionary and model-based dictionary fuzzer.

type configuration meta data valid requests [%] speed [requests per second] vulnerabilities detected

dictionary basic 5,000 requests
WordPress

3.98 26.0 -

dictionary optimised 5,000 requests
WordPress

13.10 17.3 -

model-based
dictionary

basic 5,000 requests
WordPress

4.76 11.0 -

model-based
dictionary

optimised 5,000 requests
WordPress

66.50 4.0 -

model-based
dictionary

optimised 500,000 requests
WordPress

- - no

model-based
dictionary

optimised 500,000 requests
SutSqlI

- - yes

4.4.3 The effectiveness of model-based (behavioural) dictionary fuzzing

The last research question is addressed in this section: How effective is a model-based
behavioural dictionary fuzzer in detecting SQL injection vulnerabilities in REST web
services? This research question is answered by addressing one aspect regarding the
effectiveness of the developed model-based dictionary fuzzer: code coverage.

Code coverage The results of the first experiment using the model-based fuzzer
showed that after 5,000 requests were executed, a total of 6,819 lines of codes were
at least executed once. This corresponds to 49.74% of all lines of code loaded for
serving the requests. The results of this experiment are presented in Figure 18. The
top line presents the executed lines of code of all the loaded PHP classes needed for
serving these requests. The bottom line presents execution of a specific part of the
application which includes the classes in the folder \rest-api\. These classes can
be indicated as the attack surface of the REST web services of WordPress.

The results of the second experiment using the model-based dictionary fuzzer
showed that after 5,000 requests were executed, a total of 6,234 lines of codes were
at least executed once. This corresponds with 45.36% of all lines of code loaded for
serving the requests. The greatest increase can be noticed at the beginning of the
experiment. After sending 250 requests, already 5,005 lines of code (38.36%) were
executed. So, most of the code is already executed after sending a small amount of
requests. These results are presented in Figure 19.

52

0 137 277 411 547 686 824 967 1101 1240 1380

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 4,989
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

6,819 (49.74%)

1,783 (38.27%)

number of responses

e
xe

cu
te

d
li

n
e
s

o
f

co
d

e

lines of code executed of all loaded PHP classes

lines of code executed of the attack surface

Figure 18: Overview code coverage executing the model-based fuzzer on WordPress.

0 185 400 606 729 831 960 1172 1341 1434 1608

time [seconds]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

1,000

2,000

3,000

4,000

5,000

6,000

6,234 (45.36%)

1,204 (25.90%)

number of responses

e
xe

cu
te

d
li

n
e
s

o
f

co
d

e

lines of code executed of all loaded PHP classes

lines of code executed of the attack surface

Figure 19: Overview code coverage executing the model-based dictionary fuzzer on WordPress.

Some observations can be made, in comparison with the experiment of the
model-based fuzzer. Firstly, for both type of fuzzers, the increase of code coverage
was reached for the greatest part at the beginning of the experiment. For the
model-based experiment the amount of code coverage almost becomes constant. In
contrast, the model-based dictionary fuzzer achieved some increase of code
coverage over time. Secondly, the speed of both types of fuzzer decreased. The
speed of the model-based and model-based dictionary fuzzer were decreased to 3,6
and 3,1 requests per second respectively. This is about 50% of the speed in
comparison to the experiments in which code coverage data was not captured.

In sum These experiments have shown the prototype was quite effective in
executing its tasks by achieving high percentages of code coverage. A summary of
these results is provided in Table 9

53

Table 9: Summary of the results of the experiments for measuring code coverage of the model-based and model-based behavioural dictionary fuzzer.

type configuration meta data code coverage total [%] code coverage attack surface [%]

model-based
dictionary

optimised 5,000 requests
WordPress

45.36 25.90

model-based optimised 5,000 requests
WordPress

49.74 38.27

54

5 Discussion, conclusion and recommendations

This research focuses on the types of vulnerabilities that can be found in REST web
services and how a model-based behavioural fuzzer that is capable of detecting these
vulnerabilities can be developed. This is achieved by answering four research
questions:

• RQ1: What types of vulnerabilities can be detected in REST web services?

• RQ2: How can a model-based behavioural fuzzer be developed that is capable
of detecting vulnerabilities in REST web services?

• RQ3: How can a model-based behavioural dictionary fuzzer be developed that
is capable of detecting SQL injection vulnerabilities in REST web services?

• RQ4: How effective is a model-based behavioural dictionary fuzzer in detecting
SQL injection vulnerabilities in REST web services?

This section provides an overview and discussion of the main findings. The
strengths and weaknesses of this study are described in relation to other studies.
Furthermore, conclusions are drawn and implications are given for immediate
practice and further research.

5.1 Vulnerability types in REST web services

In the first part of this study, a systematic literature review was conducted. The
following three conclusions can be drawn.

Firstly, 29 types of vulnerabilities in web services were identified based on
literature and 49 types of vulnerabilities were found in the NVD (focus solely on
REST). The most commonly found vulnerability types in this study (SQL injection,
XML injection, XPath injection, cross-site scripting, and authentication and access
control related vulnerabilities) are also presented by studies executed by Iqbal et al.
[62] and Mouli and Jevitha [74]. It is interesting to note that in this study more types
of vulnerabilities were found in comparison to those other studies. This might be
caused by the usage of more specific, search terms [62], a difference in focus (e.g.
cloud computing [74], instead of, in this study REST web services), or a difference in
the type of sources (e.g. only literature [62, 74], instead of in this study, also the
NVD).

The merit of this study is that the focus is on REST web services. Most of the
sources found in this literature review do not focus on REST, but on SOAP related
web services. These results are likely to be generalisable to REST, because the
results were verified with additional validity evidence of the NVD. Only REST related
vulnerabilities were selected from the NVD. In other words, the same types of
vulnerabilities were found in literature and in the NVD.

55

Furthermore, a difference in the amount of types of vulnerabilities between
the NVD and literature is found. A possible explanation is that the vulnerability types
(CWEs) in the NVD sometimes are very specific and somewhat overlapping, e.g.:
CWE-284 Access Control (Authorization) Issues and CWE-863 Incorrect
Authorization, while in literature these types are more likely to be grouped together.
Also, some CWEs need to be reclassified, because they are obsolete (i.e.
NVD-CWE-other or CWE-17 Deprecated).

Secondly, the results of this study have shown that the number of REST web
services vulnerabilities in the NVD increases over time, both in numbers and as a
percentage of the total number of registered vulnerabilities (see Table 14 in
Appendix A: Results literature review. This finding is substantiated by the
significantly increasing use of REST web services. As a result, the number of
vulnerabilities is also growing, due to the complexity, connectivity, and extensibility
of these web services [7]. In line with this development, it is worth mentioning, that
this study also revealed that most studies focus solely on SOAP web services.

Thirdly, the vulnerabilities are categorised according to the OWASP Top 10.
The four most important categories are: injection, broken authentication, broken
access control, and cross-site scripting. The order of these four categories confirm
the most important OWASP Top 10 categories of vulnerability types in web services
[52]. This is not surprising, because the OWASP Top 10 is, comparable to this
literature review, also based on the occurrence of vulnerabilities, aside the extent to
which the vulnerabilities are exploitable, detectable, and the impact they have [52].
Although, the top four ranked OWASP Top 10 categories found in the NVD are
conform the four categories found in literature, they are in a different order. This
might be explained by not taking into account the extent to which these vulnerability
types are exploitable, detectable and how much impact they have.

In conclusion, this research presented an overview of the (REST) web service
vulnerability types categorised conform the OWASP Top 10. A practical implication
of these findings is that it can help organisations to increase the general security
awareness among software architects, developers, and managers in organisations
using (REST) web services. This can be achieved by using this thesis as input for
conversations or education about these types of vulnerabilities, the impact of those
vulnerabilities for practice, and the precautionary measures the team should
undertake. This awareness and ensuing actions will contribute to increase the
quality of software. By reducing the amount of vulnerabilities that are present in
software systems serious damage can be avoided (e.g. losing privacy-sensitive
information or reputational damage for companies). This research makes these
theoretical findings more accessible for further use in practice, because a well
known and adopted categorisation system, the OWASP Top 10 [52] was used.

56

Moreover, this research highlighted that the number of REST web services
vulnerabilities in the NVD increases over time. It also showed that most articles in
literature focus solely on SOAP web services. This study also showed that the types
of vulnerabilities in web services in general are generalisable to REST. Taken
together, these findings implicate that further research should focus on methods for
detection and prevention of vulnerabilities in REST web services and whether
existing methods for other types of web services (i.e. SOAP) are to some level
applicable to REST. In other words, this research emphasises the importance to put
REST vulnerabilities more prominent on the software security research agenda. To
continue this first part of research, the next part will focus on detecting
vulnerabilities in REST web services and will mainly concentrate on the most
commonly found type of vulnerabilities in literature: SQL injection vulnerabilities.

5.2 Developing a model-based (behavioural) dictionary fuzzer

In the second part of this study a prototype capable of executing different types of
fuzzing was developed by applying experimental prototyping. Different types of
fuzzing were implemented iteratively, namely: basic fuzzing, dictionary fuzzing,
model-based fuzzing, and model-based dictionary fuzzing. Also, various experiments
were executed with these different types of fuzzers on WordPress and a
self-developed SUT named SutSqlI. These experiments demonstrated the capability
and effectiveness of the developed prototype. The following six conclusions can be
drawn.

Firstly, results showed that the developed model-based fuzzer was successful
in sending a high percentage of valid requests. A request is considered valid when
the response of the server contains an HTTP status code in the 200 range [39],
which applies to all HTTP related traffic, so also to REST over HTTP. With
model-based fuzzing the sequence of requests is valid when all requests in that
sequence are valid [15]. The model-based fuzzer in this study was capable of sending
a high percentage of 99.60% valid requests. This finding shows that the prototype is
successfully in executing model-based fuzzing tasks. These results are explainable
because type information and dependency (or relational) information were extracted
from the OAS and used to create a behavioural model that allowed to satisfy
validations imposed by the SUT. Research of Atlidakis et. al [15] underlined the
merit of using dependency information for model-based fuzzing.

57

Secondly, the percentages valid requests from the model-based typed fuzzers
were considerably higher than of the variants that did not use model-based fuzzing,
see Table 10. This implies that model-based fuzzing has an advantage over the
variants that did not use the model-based information for fuzzing REST web services.
Noteworthy is the difference between the model-based variants in achieving
generating valid requests. The model-based fuzzer achieves a higher percentage
than the model-based dictionary fuzzer. This can be explained, because parameters
were deliberately filled with invalid values from the dictionary. This resulted in many
responses with HTTP status code 400, indicating input validation errors, which can
be seen in figure 28 in Appendix D: Information related to the experiments.
Additionally, the model-based capabilities are only required to create requests that
are mostly valid (for example, the update of an entity can only occur on an existing
entity), except the one parameter that is replaced by a value from the dictionary.

Table 10: Overview valid requests model-based versus non model-based typed fuzzers.

basic model-based dictionary model-bassed
dictionary

basic
configuration

15.50% 40.77% 3.98% 4.76%

optimised
configuration

36.86% 99.60% 13.10% 66.50%

Thirdly, the prototype detected no vulnerabilities in WordPress. Not finding
any vulnerabilities in WordPress can be explained by the following reasons. Recently,
not many vulnerabilities of any kind were found in REST web services of WordPress
[111]. Furthermore, the vulnerabilities that were found in the REST web services
were not in the core functionality, but in plugins [55]. This is caused by the fact that
WordPress takes security very seriously, as can be read in a white paper on the topic
[112]. For example, WordPress has a quality security team, consisting of fifty
software security experts, that monitor the software security quality. Furthermore,
the OWASP Top 10 is used to present APIs, resources, and policies that are used to
prevent those top ten types of vulnerabilities. Also, the bug bounty program
HackerOne is used by WordPress, in which beta versions were subjected to security
testing by researchers and software producers (since July 2016). Correspondingly,
previous research presented that these programs can be effective in detecting
vulnerabilities [111]. However, for practice, this does not imply that fuzzing is not
necessary on software systems that have undergone severe security checks in the
SDLC, because different means should be applied in various stages of the SDLC [7].

Fourthly, the developed prototype did detect SQL injection vulnerabilities in
SutSqlI. This proves that RESTFuzzer is a capable fuzzer. The quality of the
methodology of this study is strengthened by using a second source, SutSqlI, as a
verification method to support the previous findings. Besides the already provided
indirect evidence, like a high percentage of valid requests, there is now also direct
proof of the capability of the fuzzer to detect SQL injection vulnerabilities.

58

Fifthly, the prototype can send requests fast enough to be capable of fuzzing.
In the current experiment setup on WordPress, speeds from 3,1 to 23,7 requests per
seconds were reached (without registering code coverage data). The current speed
of the prototype were sufficient to execute long running tasks (500,000 requests) in
reasonable time (approximately nineteen hours). Executing the fuzzing task on
SutSqlI, resulted even in sending 40,0 requests per second. Therefore, the limitation
in terms of speed was in the case of the experiment WordPress and not the
prototype. Comparing results to other fuzzers in terms of speed is difficult, because
the SUT also impacts the speed. To make a comparison, the research of Atlidakis et
al. [15] was consulted, as the type of fuzzer and SUT is comparable to this research.
From the graphs in their paper can be calculated that the speed of their fuzzer
ranges from 2,9 to 4,5 requests per second. This is comparable to the speed of
RESTFuzzer. A final remark on this topic was that the applied configuration had
impact on the speed of the fuzzer, using the basic configuration instead of the
optimised resulted in all situations a higher speed.

Sixthly, this research showed the fuzzer was effective in executing its tasks by
achieving high percentages of code coverage. The model-based dictionary typed
fuzzer executed 45.36% of all lines of code of the loaded PHP class files after
sending 5,000 requests. The model-based fuzzer achieved an even higher
percentage, namely: 49.74%. In previous research no clear threshold percentage
was found for an acceptable or required code coverage. Although, in comparison to
previous research of Takanen et al. [39] (e.g. ten different fuzzers achieve code
coverage between approximately 20-42% while fuzzing a FTP server software
program) the results achieved in this study seem to be solid enough for a fuzzer to
be capable of detecting vulnerabilities. Furthermore, code coverage is also an
important predictor for the number of vulnerabilities found [39].

Noteworthy is the higher percentage of code coverage for the model-based
fuzzer. This can be caused by using the randomised application of sequences. As a
result, much of the REST functionality is executed at the beginning of the
experiment. In contrast, the model-based dictionary fuzzer iterates over all existing
actions, parameters, and dictionary items, in a fixed order. Therefore, there is less
spread in executing the functionality. Furthermore, the fast increase of code
coverage in the beginning of both experiments is noticeable. This can be explained
by the fact that a part of the source code is generic and is used in most of the
actions, i.e. that generic code is executed the first time a REST action is processed.

59

Further research could focus on using other types of dictionaries in
model-based dictionary fuzzing REST web services. In this research SQL injection
dictionaries were explored. Since, injection is one of the most common type of
vulnerabilities in REST web services, further research could focus on using JSON
injection dictionaries. These forms of fuzzing might also be applicable to SOAP web
services. The SOAP technique is somewhat obsolete, but many software applications
still rely on this form of machine-to-machine communication. Therefore, it might be
interesting to see if model-based dictionary fuzzing is also able to detect
vulnerabilities in SOAP web services. Finally, integrating this or another form of
fuzzing in the SDLC could also be an interesting topic for further research.

In conclusion, the product of this part of the research is a prototype
(RESTFuzzer) capable of four different types of fuzzing, i.e. basic, dictionary,
model-based, and model-based dictionary fuzzing on REST web services. Also, for
validation purposes, a SUT (SutSqlI) was developed that intentionally contains SQL
injection vulnerabilities. These products, RESTFuzzer and SutSqlI, can be used for
further research as well as in practice. In this research the developed prototype was
tested in practice, by conducting various experiments on the REST web services of
WordPress and SutSqlI. The results showed that fuzzers can be used as a security
testing tool, which is a methodological contribution as well as a practical one. Also,
due to the modular architecture of the program new DLs can be supported or other
versions of the OAS. Furthermore, a theoretical implication is that further research
should focus on executing model-based fuzzing on more SUTs to determine if this
form of model-based fuzzing can be successful in detecting vulnerabilities. Overall,
this thesis contributes, not only to increase the awareness of vulnerabilities in REST
web services, but provides also a capable and effective fuzzer (RESTFuzzer) and a
SUT (SutSqlI) for practical use. Furthermore, it demonstrates the effectiveness of
using a new hybrid form of fuzzing, a combination of model-based and dictionary
fuzzing on REST web services. All this results in creating more secure software and
eventually decreases the chance of exploitation of vulnerabilities by malicious
actors, which can cause serious damage for individuals and companies.

60

6 Reflection

In this section, the researcher reflects on the process and products. This means that
lessons learned while conducting the research are shared.

6.1 Vulnerability types in REST web services

The first lesson learned from this systematic literature review was the importance of
executing such a research method systematically. Therefore, the accurate
documenting of all steps in the method section is absolutely necessary. Furthermore,
a proposal is an adequate guideline to do research, but sometimes adjustments have
to be made, along the way, in order to get sufficient answers to one or more of the
research questions. As expected, not much could be found in literature on especially
REST web services related to vulnerability types. Therefore, in order to answer the
first research question, another source, the NVD, was consulted. This turned out to
be a good source to verify results found in literature. Regarding the process can be
concluded that the planning in terms of hours is pretty accurate, but spending the
amount of hours per week, is often not feasible. Therefore, holidays and weekends
are necessary to catch up for lost hours, in order to stay on track with the planning.

6.2 Developing a model-based (behavioural) dictionary fuzzer

The first lesson learned in the second part of this study was how to develop different
types of fuzzers. The process of developing the software took more time than initially
expected and calculated in the planning. Some of the extra time needed was caused
by the fact that not all dependencies could be extracted automatically, due to not
following the REST conventions completely. Additionally, manual adding of
dependencies had to be developed. Also, some parts of the development just were
underestimated, since some applied techniques and frameworks were new to me.
Like, LaTeX was chosen as tool to create this document. It had great benefits which
are really appreciated by me. In contrast, it should be emphasised that the learning
curve of LaTeX is rather steep and more time was spent on some simple lay-out
issues than calculated. The second lesson learned is regarding the selection of the
SUT. The SUT was selected by applying a list of five requirements described in
section 4.1.1. Looking back, a sixth requirement should have been added:
plausibility of the presence of vulnerabilities. Then a less mature SUT than
WordPress was selected in which it was more likely to detect vulnerabilities. Finally,
experimental prototyping worked very well for developing a prototype for
functionality that was not completely clear at the start of a project. Adjusting the
software to newly found obstacles is fast, due to the short cycles of (re)design,
implement, test, and analyse.

61

References

Peer-reviewed

[1] G. Yee, “Removing software vulnerabilities during design,” in 2018 IEEE
42nd Annual Computer Software and Applications Conference (COMPSAC),
IEEE, Jul. 2018. DOI: 10.1109/compsac.2018.10284.

[2] N. Antunes and M. Vieira, “Designing vulnerability testing tools for web
services: Approach, components, and tools,” International Journal of
Information Security, vol. 16, no. 4, pp. 435–457, Aug. 2017, ISSN:
1615-5270. DOI: 10.1007/s10207-016-0334-0. [Online]. Available:
https://doi.org/10.1007/s10207-016-0334-0.

[3] A. Masood and J. Java, “Static analysis for web service security - tools &
techniques for a secure development life cycle,” in 2015 IEEE International
Symposium on Technologies for Homeland Security (HST), IEEE, Apr. 2015,
pp. 1–6. DOI: 10.1109/ths.2015.7225337.

[4] R. T. Fielding and R. N. Taylor, “Architectural styles and the design of
network-based software architectures,” PhD thesis, University of California,
2000.

[5] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners to
detect vulnerabilities in web services,” in 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks, IEEE, Jun. 2009. DOI:
10.1109/dsn.2009.5270294.

[6] N. Antunes and M. Vieira, “Penetration testing for web services,” Computer,
vol. 47, no. 2, pp. 30–36, Feb. 2014. DOI: 10.1109/mc.2013.409.

[7] G. McGraw, Software security: building security in. Addison-Wesley
Professional, 2006, vol. 1.

[9] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-based security
testing,” EPTCS 80, pp. 1–12, Feb. 28, 2012. DOI: 10.4204/EPTCS.80.1.
arXiv: http://arxiv.org/abs/1202.6118v1 [cs.SE].

[10] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A systematic review of
fuzzing techniques,” Computers & Security, vol. 75, pp. 118–137, Jun. 2018.
DOI: 10.1016/j.cose.2018.02.002.

[11] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
UNIX utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, Dec.
1990. DOI: 10.1145/96267.96279.

[12] S. Herbold and A. Hoffmann, “Model-based testing as a service,”
International Journal on Software Tools for Technology Transfer, vol. 19,
no. 3, pp. 271–279, 2017. DOI: 10.1007/s10009-017-0449-2.

[13] M. Schneider, J. Grossmann, I. Schieferdecker, and A. Pietschker, “Online
model-based behavioral fuzzing,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops,
IEEE, Mar. 2013. DOI: 10.1109/icstw.2013.61.

62

https://doi.org/10.1109/compsac.2018.10284
https://doi.org/10.1007/s10207-016-0334-0
https://doi.org/10.1007/s10207-016-0334-0
https://doi.org/10.1109/ths.2015.7225337
https://doi.org/10.1109/dsn.2009.5270294
https://doi.org/10.1109/mc.2013.409
https://doi.org/10.4204/EPTCS.80.1
https://arxiv.org/abs/http://arxiv.org/abs/1202.6118v1
https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/s10009-017-0449-2
https://doi.org/10.1109/icstw.2013.61

[15] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19, Montreal, Quebec, Canada: IEEE Press, May 31,
2019, pp. 748–758. DOI: 10.1109/ICSE.2019.00083. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3339600.

[17] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web services,” in Web
Services, Springer Berlin Heidelberg, 2004, pp. 123–149. DOI:
10.1007/978-3-662-10876-5_5.

[24] M. N. Lucky, M. Cremaschi, B. Lodigiani, A. Menolascina, and F. D. Paoli,
“Enriching API descriptions by adding API profiles through semantic
annotation,” in Service-Oriented Computing, Springer International
Publishing, 2016, pp. 780–794. DOI: 10.1007/978-3-319-46295-0_55.

[25] R Tsouroplis, M. Petychakis, I. Alvertis, E Biliri, F. Lampathaki, and
D. Askounis, “Community-based api builder to manage apis and their
connections with cloud-based services,” CEUR Workshop Proceedings,
vol. 1367, pp. 17–23, Jan. 1, 2015. [Online]. Available:
https://www.researchgate.net/publication/283771397_Community-
based_API_builder_to_manage_APIs_and_their_connections_with_

cloud-based_services.

[31] G Tian-yang, S Yin-sheng, and F You-yuan, “Research on software security
testing,” Engineering and Technology, vol. 69, pp. 647–651, 2010.

[32] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, “Model-based
security testing: A taxonomy and systematic classification,” Software Testing,
Verification and Reliability, vol. 26, no. 2, pp. 119–148, Jul. 2015. DOI:
10.1002/stvr.1580.

[33] G. J. Myers, The Art of Software Testing, Second Edition. Wiley, 2004, ISBN:
0-471-46912-2.

[34] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software Testing, Verification and Reliability, vol. 22,
no. 5, pp. 297–312, Apr. 2011. DOI: 10.1002/stvr.456.

[35] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich, “Model-based testing in
industry - a case study with two mbt tools,” in Proceedings of the 5th
Workshop on Automation of Software Test, ACM Press, 2010, pp. 87–90. DOI:
10.1145/1808266.1808279.

[36] T. Fertig and P. Braun, “Model-driven testing of restful apis,” in Proceedings
of the 24th International Conference on World Wide Web, ACM Press, 2015,
pp. 1497–1502. DOI: 10.1145/2740908.2743045.

[37] P. V. P. Pinheiro, A. T. Endo, and A. Simao, “Model-based testing of restful web
services using uml protocol state machines,” in Brazilian Workshop on
Systematic and Automated Software Testing, 2013.

[38] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional, 2007, ISBN: 0321446119.

63

https://doi.org/10.1109/ICSE.2019.00083
https://dl.acm.org/citation.cfm?id=3339600
https://doi.org/10.1007/978-3-662-10876-5_5
https://doi.org/10.1007/978-3-319-46295-0_55
https://www.researchgate.net/publication/283771397_Community-based_API_builder_to_manage_APIs_and_their_connections_with_cloud-based_services
https://www.researchgate.net/publication/283771397_Community-based_API_builder_to_manage_APIs_and_their_connections_with_cloud-based_services
https://www.researchgate.net/publication/283771397_Community-based_API_builder_to_manage_APIs_and_their_connections_with_cloud-based_services
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1002/stvr.456
https://doi.org/10.1145/1808266.1808279
https://doi.org/10.1145/2740908.2743045

[39] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for software security testing
and quality assurance. Artech House, 2018.

[41] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “A taint based approach for
smart fuzzing,” in 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, IEEE, Apr. 2012, pp. 818–825. DOI:
10.1109/icst.2012.182.

[42] M. O. Shudrak and V. V. Zolotarev, “Improving fuzzing using software
complexity metrics,” in Information Security and Cryptology - ICISC 2015,
Springer International Publishing, 2016, pp. 246–261. DOI:
10.1007/978-3-319-30840-1_16. [Online]. Available:
https://www.researchgate.net/publication/312577578_improving_

fuzzing_using_software_complexity_metrics.

[45] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences,
M. Petticrew and H. Roberts, Eds. Blackwell Publishing Ltd, Jan. 2008. DOI:
10.1002/9780470754887.

[58] S. Karumanchi and A. C. Squicciarini, “In the wild: A large scale study of web
services,” in Proceedings of the 29th Annual ACM Symposium on Applied
Computing - SAC ’14, ACM Press, 2014. DOI: 10.1145/2554850.2555010.

[59] A. Ghourabi, T. Abbes, and A. Bouhoula, “Experimental analysis of attacks
against web services and countermeasures,” in Proceedings of the 12th
International Conference on Information Integration and Web-based
Applications & Services - iiWAS ’10, ACM Press, 2010. DOI:
10.1145/1967486.1967519.

[60] N. Antunes and M. Vieira, “Detecting SQL injection vulnerabilities in web
services,” in 2009 Fourth Latin-American Symposium on Dependable
Computing, IEEE, Sep. 2009. DOI: 10.1109/ladc.2009.21.

[62] S. Iqbal, M. L. M. Kiah, B. Dhaghighi, M. Hussain, S. Khan, M. K. Khan, and
K.-K. R. Choo, “On cloud security attacks: A taxonomy and intrusion detection
and prevention as a service,” Journal of Network and Computer Applications,
vol. 74, pp. 98–120, Oct. 2016. DOI: 10.1016/j.jnca.2016.08.016.

[63] S. Jan, C. D. Nguyen, and L. C. Briand, “Automated and effective testing of
web services for XML injection attacks,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis - ISSTA 2016,
ACM Press, 2016. DOI: 10.1145/2931037.2931042.

[64] M. Jensen, N. Gruschka, R. Herkenhoner, and N. Luttenberger, “SOA and
web services: New technologies, new standards - new attacks,” in Fifth
European Conference on Web Services (ECOWS ’07), IEEE, Nov. 2007. DOI:
10.1109/ecows.2007.9.

[65] M. I. P. Salas, P. L. D. Geus, and E. Martins, “Security testing methodology for
evaluation of web services robustness - case: XML injection,” in 2015 IEEE
World Congress on Services, IEEE, Jun. 2015. DOI:
10.1109/services.2015.53.

64

https://doi.org/10.1109/icst.2012.182
https://doi.org/10.1007/978-3-319-30840-1_16
https://www.researchgate.net/publication/312577578_improving_fuzzing_using_software_complexity_metrics
https://www.researchgate.net/publication/312577578_improving_fuzzing_using_software_complexity_metrics
https://doi.org/10.1002/9780470754887
https://doi.org/10.1145/2554850.2555010
https://doi.org/10.1145/1967486.1967519
https://doi.org/10.1109/ladc.2009.21
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1145/2931037.2931042
https://doi.org/10.1109/ecows.2007.9
https://doi.org/10.1109/services.2015.53

[66] W. Yu, P. Supthaweesuk, and D. Aravind, “Trustworthy web services based on
testing,” in IEEE International Workshop on Service-Oriented System
Engineering (SOSE ’ 05), IEEE, 2005. DOI: 10.1109/sose.2005.38.

[67] S. Salva, P. Laurencot, and I. Rabhi, “An approach dedicated for web service
security testing,” in 2010 Fifth International Conference on Software
Engineering Advances, IEEE, Aug. 2010. DOI: 10.1109/icsea.2010.84.

[70] M. Salas and E. Martins, “Security testing methodology for vulnerabilities
detection of XSS in web services and ws-security,” Electronic Notes in
Theoretical Computer Science, vol. 302, pp. 133–154, Feb. 2014. DOI:
10.1016/j.entcs.2014.01.024.

[72] T. Vissers, T. S. Somasundaram, L. Pieters, K. Govindarajan, and P. Hellinckx,
“DDoS defense system for web services in a cloud environment,” Future
Generation Computer Systems, vol. 37, pp. 37–45, Jul. 2014. DOI:
10.1016/j.future.2014.03.003.

[74] V. R. Mouli and K. Jevitha, “Web services attacks and security - a systematic
literature review,” Procedia Computer Science, vol. 93, pp. 870–877, 2016.
DOI: 10.1016/j.procs.2016.07.265.

[75] J. Muñoz-Arteaga, E. B. Fernandez, and H. Caudel-García, “Misuse pattern:
Spoofing web services,” in Proceedings of the 2nd Asian Conference on
Pattern Languages of Programs - AsianPLoP ’11, ACM Press, 2011. DOI:
10.1145/2524629.2524643.

[76] S. A. Tronvoll, C. W. Elverum, and T. Welo, “Prototype experiments: Strategies
and trade-offs,” Procedia CIRP, vol. 60, pp. 554–559, 2017. DOI:
10.1016/j.procir.2017.01.049.

[77] M. Carr and J. Verner, “Prototyping and software development approaches,”
Department of Information Systems, City University of Hong Kong, Hong
Kong, pp. 319–338, 1997. [Online]. Available:
https://www.researchgate.net/publication/238117215_Prototyping_

and_Software_Development_Approaches.

[78] J. D. Naumann and A. M. Jenkins, “Prototyping: The new paradigm for
systems development,” MIS Quarterly, vol. 6, no. 3, p. 29, Sep. 1982. DOI:
10.2307/248654.

[79] R. Nacheva, “Prototyping approach in user interface development,” in -,
Jun. 1, 2017. [Online]. Available:
https://www.researchgate.net/publication/317414969_prototyping_

approach_in_user_interface_development.

[80] G. D. Everett and R. McLeod Jr, Software testing: testing across the entire
software development life cycle. John Wiley & Sons, 2007.

[95] H. Radwan and K. Prole, “Code pulse: Real-time code coverage for
penetration testing activities,” in 2015 IEEE International Symposium on
Technologies for Homeland Security (HST), IEEE, Apr. 2015. DOI:
10.1109/ths.2015.7225269.

65

https://doi.org/10.1109/sose.2005.38
https://doi.org/10.1109/icsea.2010.84
https://doi.org/10.1016/j.entcs.2014.01.024
https://doi.org/10.1016/j.future.2014.03.003
https://doi.org/10.1016/j.procs.2016.07.265
https://doi.org/10.1145/2524629.2524643
https://doi.org/10.1016/j.procir.2017.01.049
https://www.researchgate.net/publication/238117215_Prototyping_and_Software_Development_Approaches
https://www.researchgate.net/publication/238117215_Prototyping_and_Software_Development_Approaches
https://doi.org/10.2307/248654
https://www.researchgate.net/publication/317414969_prototyping_approach_in_user_interface_development
https://www.researchgate.net/publication/317414969_prototyping_approach_in_user_interface_development
https://doi.org/10.1109/ths.2015.7225269

[98] M. Fowler, Patterns of Enterprise Application Architecture. Addison Wesley,
Nov. 1, 2002, 533 pp., ISBN: 0321127420. [Online]. Available:
https://www.ebook.de/de/product/3253239/martin_fowler_patterns_

of_enterprise_application_architecture.html.

[100] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Prentice Hall, Dec. 1, 1995,
ISBN: 0201633612. [Online]. Available:
https://www.ebook.de/de/product/3236753/erich_gamma_richard_helm_

ralph_e_johnson_john_vlissides_design_patterns.html.

[101] R. C. Martin, “Design principles and design patterns,” Object Mentor, vol. 1,
no. 34, p. 597, 2000. [Online]. Available: http://staff.cs.utu.fi/staff/
jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf.

[111] D. Luna, L. Allodi, and M. Cremonini, “Productivity and patterns of activity in
bug bounty programs,” in Proceedings of the 14th International Conference
on Availability, Reliability and Security - ARES '19, ACM Press, 2019. DOI:
10.1145/3339252.3341495.

[113] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea, “An advisor for web
services security policies,” in Proceedings of the 2005 workshop on Secure
web services - SWS ’05, ACM Press, 2005. DOI: 10.1145/1103022.1103024.

[114] K. Bhargavan, C. Fournet, and A. D. Gordon, “Verifying policy-based security
for web services,” in Proceedings of the 11th ACM conference on Computer
and communications security - CCS ’04, ACM Press, 2004. DOI:
10.1145/1030083.1030120.

[115] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated testing
for SQL injection vulnerabilities: An input mutation approach,” in
Proceedings of the 2014 International Symposium on Software Testing and
Analysis - ISSTA 2014, ACM Press, 2014. DOI: 10.1145/2610384.2610403.

[116] N. Antunes and M. Vieira, “Comparing the effectiveness of penetration
testing and static code analysis on the detection of SQL injection
vulnerabilities in web services,” in 2009 15th IEEE Pacific Rim International
Symposium on Dependable Computing, IEEE, Nov. 2009. DOI:
10.1109/prdc.2009.54.

[117] Q. Li, J. Chen, Y. Zhan, C. Mao, and H. Wang, “Combinatorial mutation
approach to web service vulnerability testing based on SOAP message
mutations,” in 2012 IEEE Ninth International Conference on e-Business
Engineering, IEEE, Sep. 2012. DOI: 10.1109/icebe.2012.34.

[118] N. Antunes and M. Vieira, “Assessing and comparing vulnerability detection
tools for web services: Benchmarking approach and examples,” IEEE
Transactions on Services Computing, vol. 8, no. 2, pp. 269–283, Mar. 2015.
DOI: 10.1109/tsc.2014.2310221.

[119] N. Laranjeiro, M. Vieira, and H. Madeira, “A learning-based approach to
secure web services from SQL/XPath injection attacks,” in 2010 IEEE 16th
Pacific Rim International Symposium on Dependable Computing, IEEE, Dec.
2010. DOI: 10.1109/prdc.2010.24.

66

https://www.ebook.de/de/product/3253239/martin_fowler_patterns_of_enterprise_application_architecture.html
https://www.ebook.de/de/product/3253239/martin_fowler_patterns_of_enterprise_application_architecture.html
https://www.ebook.de/de/product/3236753/erich_gamma_richard_helm_ralph_e_johnson_john_vlissides_design_patterns.html
https://www.ebook.de/de/product/3236753/erich_gamma_richard_helm_ralph_e_johnson_john_vlissides_design_patterns.html
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
https://doi.org/10.1145/3339252.3341495
https://doi.org/10.1145/1103022.1103024
https://doi.org/10.1145/1030083.1030120
https://doi.org/10.1145/2610384.2610403
https://doi.org/10.1109/prdc.2009.54
https://doi.org/10.1109/icebe.2012.34
https://doi.org/10.1109/tsc.2014.2310221
https://doi.org/10.1109/prdc.2010.24

[120] N. Antunes and M. Vieira, “Evaluating and improving penetration testing in
web services,” in 2012 IEEE 23rd International Symposium on Software
Reliability Engineering, IEEE, Nov. 2012. DOI: 10.1109/issre.2012.26.

[121] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira, “Effective detection of
SQL/XPath injection vulnerabilities in web services,” in 2009 IEEE
International Conference on Services Computing, IEEE, 2009. DOI:
10.1109/scc.2009.23.

Other

[8] OWASP. (Sep. 14, 2020). Owasp application security verification standard |
owasp foundation, [Online]. Available: https://owasp.org/www-project-
application-security-verification-standard/.

[14] A. Muntner. (May 26, 2019). Dictionary of attack patterns and primitives for
black-box application fault injection and resource discovery., [Online].
Available: https://github.com/fuzzdb-project/fuzzdb.

[16] GitLab. (Feb. 2, 2019). Gitlab, [Online]. Available:
https://about.gitlab.com/.

[18] W3C Working Goup. (Feb. 11, 2004). Web services architecture. W3C
Working Goup, Ed., [Online]. Available: https://www.w3.org/TR/ws-arch/.

[19] Marc Hadley (Sun Microsystems, Inc). (Sep. 25, 2020). Web application
description language, [Online]. Available:
https://www.w3.org/Submission/wadl/.

[20] Erik Christensen (Microsoft), Francisco Curbera (IBM Research), Greg
Meredith (Microsoft), Sanjiva Weerawarana (IBM Research). (Sep. 25, 2020).
Web services description language (wsdl), [Online]. Available:
https://www.w3.org/TR/wsdl.html.

[21] RAML Workgroup. (Apr. 14, 2019). Restful api modeling language.
R. Workgroup, Ed., [Online]. Available: https://raml.org/.

[22] OData. (May 12, 2019). Odata - the best way to rest. OData, Ed., [Online].
Available: https://www.odata.org/.

[23] Open API Initiative. (Feb. 3, 2019). Open api specification, [Online].
Available: https://www.openapis.org/.

[26] L. Heritage. (Feb. 1, 2015). Api description languages: Which is the right one
for me? [Online]. Available:
https://www.slideshare.net/SOA_Software/api-description-
languages-which-is-the-right-one-for-me.

[27] Google. (Jun. 30, 2019). Google trends, [Online]. Available:
https://trends.google.nl/trends/explore?date=2014-01-01%202019-
06-01&q=%2Fm%2F010ppjcy,%2Fm%2F0bhb11q,%2Fm%2F02q151f,%2Fm%
2F01082xym&hl=nl&tz=-120.

[28] Swagger. (Feb. 3, 2019). Swagger, [Online]. Available:
https://swagger.io/.

67

https://doi.org/10.1109/issre.2012.26
https://doi.org/10.1109/scc.2009.23
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://github.com/fuzzdb-project/fuzzdb
https://about.gitlab.com/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/Submission/wadl/
https://www.w3.org/TR/wsdl.html
https://raml.org/
https://www.odata.org/
https://www.openapis.org/
https://www.slideshare.net/SOA_Software/api-description-languages-which-is-the-right-one-for-me
https://www.slideshare.net/SOA_Software/api-description-languages-which-is-the-right-one-for-me
https://trends.google.nl/trends/explore?date=2014-01-01%202019-06-01&q=%2Fm%2F010ppjcy,%2Fm%2F0bhb11q,%2Fm%2F02q151f,%2Fm%2F01082xym&hl=nl&tz=-120
https://trends.google.nl/trends/explore?date=2014-01-01%202019-06-01&q=%2Fm%2F010ppjcy,%2Fm%2F0bhb11q,%2Fm%2F02q151f,%2Fm%2F01082xym&hl=nl&tz=-120
https://trends.google.nl/trends/explore?date=2014-01-01%202019-06-01&q=%2Fm%2F010ppjcy,%2Fm%2F0bhb11q,%2Fm%2F02q151f,%2Fm%2F01082xym&hl=nl&tz=-120
https://swagger.io/

[29] Swagger. (Jun. 15, 2019). Swagger ui, [Online]. Available:
https://swagger.io/tools/swagger-ui/.

[30] Swagger. (Jun. 15, 2019). Swagger core, [Online]. Available:
https://github.com/swagger-api/swagger-core.

[40] Jenkins. (Aug. 17, 2019). Jenkins, [Online]. Available: https://jenkins.io/.

[43] OWASP. (Jul. 1, 2019). Owasp zed attack proxy project. OWASP, Ed.,
[Online]. Available:
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.

[44] PortSwigger. (Jul. 1, 2019). Burp suite scanner - portswigger. PortSwigger,
Ed., [Online]. Available: https://portswigger.net/burp.

[46] IEEE. (Jun. 2, 2019). 2019 ieee thesaurus. IEEE, Ed., [Online]. Available:
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-
thesaurus.pdf.

[47] ACM Computing. (Nov. 2, 2019). The 2012 acm computing classification
system, [Online]. Available:
https://www.acm.org/publications/class-2012.

[48] IEEE. (Nov. 2, 2019). Ieee xplore digital library, [Online]. Available:
https://ieeexplore.ieee.org/.

[49] ACM Computing. (Nov. 2, 2019). Acm digital library, [Online]. Available:
https://dl.acm.org/dl.cfm.

[50] ScienceDirect. (Nov. 2, 2019). Sciencedirect.com | science, health and
medical journals, full text articles and books., [Online]. Available:
https://www.sciencedirect.com/.

[51] MAXQDA. (Dec. 18, 2019). Maxqda | all-in-one tool for qualitative data
analysis & mixed methods - maxqda - the art of data analysis, [Online].
Available: www.maxqda.com.

[52] OWASP. (Dec. 27, 2019). Owasp top 10 - 2017, [Online]. Available:
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf.

[53] NIST. (Jan. 3, 2020). Nvd - home, [Online]. Available:
https://nvd.nist.gov/.

[54] NIST. (Dec. 27, 2019). National institute of standards and technology | nist,
[Online]. Available: https://www.nist.gov/.

[55] CVE. (Jan. 5, 2020). Cve - common vulnerabilities and exposures (cve),
[Online]. Available: http://cve.mitre.org/.

[56] NIST. (Oct. 27, 2019). Nvd - data feeds, [Online]. Available:
https://nvd.nist.gov/vuln/data-feeds#JSON_FEED.

[57] CWE. (Nov. 10, 2019). Cwe - common weakness enumeration, [Online].
Available: https://cwe.mitre.org/.

[61] NVD. (Jan. 12, 2020). Nvd - cve-2018-1289, [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2018-1289.

68

https://swagger.io/tools/swagger-ui/
https://github.com/swagger-api/swagger-core
https://jenkins.io/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://portswigger.net/burp
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-thesaurus.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-thesaurus.pdf
https://www.acm.org/publications/class-2012
https://ieeexplore.ieee.org/
https://dl.acm.org/dl.cfm
https://www.sciencedirect.com/
www.maxqda.com
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://nvd.nist.gov/
https://www.nist.gov/
http://cve.mitre.org/
https://nvd.nist.gov/vuln/data-feeds#JSON_FEED
https://cwe.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2018-1289

[68] NVD. (Jan. 12, 2012). Nvd - cve-2019-1867, [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-1867.

[69] NVD. (Jan. 12, 2012). Nvd - cve-2019-3403, [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-3403.

[71] NVD. (Jan. 12, 2012). Nvd - cve-2019-16104, [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-16104.

[73] NVD. (Jan. 28, 2012). Nvd - cve-2017-12287, [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2017-12287.

[81] OWASP. (Sep. 18, 2020). Owasp webgoat - learn the hack - stop the attack.
OWASP, Ed., [Online]. Available:
https://owasp.org/www-project-webgoat/.

[82] Google. (Jun. 10, 2019). Google, [Online]. Available:
https://www.google.nl/.

[83] BuiltWith. (Mar. 1, 2020). Builtwith technology lookup, [Online]. Available:
https://builtwith.com/.

[84] WordPress. (Feb. 29, 2020). Blog tool, publishing platform, and cms -
wordpress.org, [Online]. Available: https://wordpress.org/.

[85] Drupal. (Feb. 29, 2020). Drupal - open source cms | drupal.org, [Online].
Available: https://www.drupal.org/.

[86] Magento. (Mar. 1, 2020). Ecommerce platforms | best ecommerce software
for selling online | magento, [Online]. Available: https://magento.com/.

[87] MediaWiki. (Feb. 29, 2020). Mediawiki, [Online]. Available:
https://www.mediawiki.org/wiki/MediaWiki.

[88] Bloomreach. (Mar. 1, 2020). Java-based headless cms | bloomreach
developers - bloomreach cms, [Online]. Available:
https://developers.bloomreach.com/products/cms.

[89] XAMPP. (Mar. 1, 2020). Xampp installers and downloads for apache friends,
[Online]. Available: https://www.apachefriends.org/.

[90] MariaDB Foundation. (Aug. 9, 2020). Mariadb foundation - mariadb.org,
[Online]. Available: https://mariadb.org/.

[91] A. Suroyo. (Mar. 1, 2020). Wp api swaggerui, [Online]. Available:
https://wordpress.org/plugins/wp-api-swaggerui/.

[92] Spring. (Mar. 22, 2020). Spring boot, [Online]. Available:
https://spring.io/projects/spring-boot.

[93] Maven. (Mar. 6, 2020). Maven | welcome to apache maven, [Online].
Available: http://maven.apache.org/.

[94] Springfox. (Sep. 20, 2020). Springfox by springfox, [Online]. Available:
https://springfox.github.io/springfox/.

[96] OWASP. (Jun. 26, 2020). Code pulse | real-time code coverage, [Online].
Available: http://code-pulse.com.

69

https://nvd.nist.gov/vuln/detail/CVE-2019-1867
https://nvd.nist.gov/vuln/detail/CVE-2019-3403
https://nvd.nist.gov/vuln/detail/CVE-2019-16104
https://nvd.nist.gov/vuln/detail/CVE-2017-12287
https://owasp.org/www-project-webgoat/
https://www.google.nl/
https://builtwith.com/
https://wordpress.org/
https://www.drupal.org/
https://magento.com/
https://www.mediawiki.org/wiki/MediaWiki
https://developers.bloomreach.com/products/cms
https://www.apachefriends.org/
https://mariadb.org/
https://wordpress.org/plugins/wp-api-swaggerui/
https://spring.io/projects/spring-boot
http://maven.apache.org/
https://springfox.github.io/springfox/
http://code-pulse.com

[97] PHPUnit. (Jun. 26, 2020). Phpunit - the php testing framework, [Online].
Available: https://phpunit.de/.

[99] Hibernate. (May 9, 2020). Ibernate. everything data. - hibernate, [Online].
Available: http://hibernate.org/.

[102] Webpack. (Mar. 23, 2020). Webpack, [Online]. Available:
https://webpack.js.org/.

[103] Vue.js. (Jun. 14, 2019). Vue.js - the progressive javascript framework,
[Online]. Available: https://vuejs.org/.

[104] Bootstrap team. (Mar. 23, 2020). Bootstrap · the most popular html, css, and
js library in the world., [Online]. Available: https://getbootstrap.com/.

[105] Vue.js. (Mar. 23, 2020). Bootstrapvue, [Online]. Available:
https://bootstrap-vue.js.org/.

[106] Vue.js. (Mar. 23, 2020). What is vuex? | vuex, [Online]. Available:
https://vuex.vuejs.org/.

[107] Axios. (Mar. 23, 2020). Github - axios/axios: Promise based http client for the
browser and node.js, [Online]. Available: https://github.com/axios/axios.

[108] DBeaver Community. (Apr. 1, 2020). Dbeaver community | free universal
database tool, [Online]. Available: https://dbeaver.io/.

[109] Swagger. (Mar. 1, 2020). Swagger parser, [Online]. Available:
https://mvnrepository.com/artifact/io.swagger/swagger-parser.

[110] Apache Software Foundation. (Aug. 10, 2020). Apache httpcomponents -
httpcomponents httpclient overview, [Online]. Available:
https://hc.apache.org/httpcomponents-client-5.0.x/index.html.

[112] Sara Rosso. (Aug. 13, 2020). Wordpress security white paper, [Online].
Available: https://raw.githubusercontent.com/WordPress/Security-
White-Paper/master/WordPressSecurityWhitePaper.pdf.

70

https://phpunit.de/
http://hibernate.org/
https://webpack.js.org/
https://vuejs.org/
https://getbootstrap.com/
https://bootstrap-vue.js.org/
https://vuex.vuejs.org/
https://github.com/axios/axios
https://dbeaver.io/
https://mvnrepository.com/artifact/io.swagger/swagger-parser
https://hc.apache.org/httpcomponents-client-5.0.x/index.html
https://raw.githubusercontent.com/WordPress/Security-White-Paper/master/WordPressSecurityWhitePaper.pdf
https://raw.githubusercontent.com/WordPress/Security-White-Paper/master/WordPressSecurityWhitePaper.pdf

Credits

Front cover has been designed using resources from Freepik.com.

71

https://www.freepik.com/free-photos-vectors/background

Appendices

Appendix A: Results literature review

Table 11: Results systematic literature review found in ACM.

Reference Title Authors Year of
publication

Keywords Research questions Web service
type(s)

Vulnerability type(s) Research
method

Short description

[63] Automated and
Effective Testing
of Web Services
for XML Injection
Attacks

Sadeeq Jan, Cu D.
Nguyen, Lionel C.
Briand

2016 XML injection,
security testing,
constraint solving

RQ1 [Effectiveness]: Are the tools
able to generate malicious
messages (tests) bypassing the first
layer of defence (the XML gateway)
and thus reaching the targeted web
services?

RQ2 [Cost]: What is the cost of
using the tools in terms of
generation and execution time?

SOAP XML injection case study -
case series

A tool called SOLMI is developed to manipulate
XML messages by mutating operators. A
constraint solver is used to generate valid
though malicious XML messages, which are
used as test cases.

[113] An Advisor for Web
Services Security
Policies

Karthikeyan
Bhargavan, Cédric
Fournet, Andrew
D. Gordon, Greg
O’Shea

2005 web services, XML
security,
WS-Security,
policy-driven
security

- SOAP XML rewriting experiment XML rewriting attacks on web services exist for
a while now. Several formal analyses were
developed to find these vulnerabilities. Usually
there is a difference between the formal model
and the implementation. This study offers a
trade off between formal correctness and
usability for detecting XML rewriting attacks on
web services.

[114] Verifying
Policy-Based
Security for Web
Services

Karthikeyan
Bhargavan, Cédric
Fournet, Andrew
D. Gordon

2004 web services, pi
calculus, XML
security

- SOAP XML rewriting experiment The tool described in this paper compiles a link
specification to WS-Security policy
configuration files. Also an analyser is
developed to verify (before execution) whether
the security goals are achieved. The analyser
creates a formal model of a collection SOAP
processors. With this tool the formal model can
be verified for vulnerability to XML rewriting
attacks.

[75] Misuse Pattern:
Spoofing Web
Services

Jaime
Muñoz-Arteaga,
Eduardo B.
Fernandez, Héctor
Caudel-García

2011 authentication,
misuse patterns,
security, spoofing
attacks, web
services

- SOAP spoofing (principal) case study -
case series

A misuse pattern: spoofing web services, is
presented. How the attack is performed and
how to stop it is described in this study.

7
2

continued ...

Reference Title Authors Year of
publication

Keywords Research questions Web service
type(s)

Vulnerability type(s) Research
method

Short description

[58] In the Wild: a
Large Scale Study
of Web Services
Vulnerabilities

Sushama
Karumanchi, Anna
Cinzia Squicciarini

2014 - - SOAP confidentiality and
integrity vulnerability,
error on interface,
invalid parser, invalid
XML, logging
vulnerability, credential
exposure, session
replay, SQL injection,
XPath injection

case study -
case series

A new taxonomy to classify vulnerabilities in
web services is presented. Furthermore, 2000
WSDLs are statically checked according to this
new taxonomy.

[59] Experimental
analysis of attacks
against web
services and
countermeasures

Abdallah
Ghourabi, Tarek
Abbes, Adel
Bouhoula

2010 web services
attacks, web
services security,
command
injection, session
hijacking, DoS
attack

- SOAP code execution, denial
of service, parameter
tampering, session
hijacking, SQL
injection, XML injection

experiment Various vulnerabilities and attacks against web
services are discussed. Three types of attacks
are performed and emulated on web services.
The impact of these attacks are observed. Also,
countermeasures are proposed to prevent and
mitigate those attacks.

[115] Automated Testing
for SQL Injection
Vulnerabilities: An
Input Mutation
Approach

Dennis Appelt, Cu
Duy Nguyen,
Lionel C. Briand,
Nadia Alshahwan

2014 mutation testing,
SQL injection, test
generation

RQ1: Are standard attacks and
mutated inputs (generated by
4SQLi) likely to reveal exploitable
SQLi vulnerabilities?

RQ2: With and without the
presence of the WAF, which input
generation technique performs
better? -

SOAP SQL injection experiment A black-box automated testing approach
targeting SQL injection vulnerabilities is
proposed in this study, named 4SQLi. Starting
with legal test cases, this approach applied a
set of mutation operators that are developed to
increase the chance of exploiting SQL injection
vulnerabilities.7

3

Table 12: Results systematic literature review found in IEEE.

Reference Title Authors Year of
publication

Keywords Research questions Web service
type(s)

Vulnerability type(s) Research
method

Short description

[60] Detecting SQL
Injection
Vulnerabilities in
Web Services

Nuno Antunes,
Marco Vieira

2009 - - SOAP SQL injection experiment A new method for the detection of SQL
injection vulnerabilities in web services is
presented. Malicious tests, also named attacks,
are executed to exploit SQL injection
vulnerabilities. Rules are defined to eliminate
false positives. The experiment was performed
on 262 public and 4 private web services.

[116] Comparing the
Effectiveness of
Penetration
Testing and Static
Code Analysis on
the Detection of
SQL Injection
Vulnerabilities in
Web Services

Nuno Antunes,
Marco Vieira

2009 security, vulnerabilities,
SQL injection,
penetration testing,
static code analysis,
web Services

- SOAP SQL injection experiment An experimental study on the comparison of
several web vulnerability detection tools
implementing either penetration-testing or
static code analysis was conducted.
Commercial and open source tools were
compared to discover SQL Injection
vulnerabilities in a collection of vulnerable
services. Results for penetration testing tools
and static code analysis tools were analysed
separately and then compared to gain better
understanding of the strengths and weaknesses
of each approach.

[117] Combinatorial
Mutation
Approach to Web
Service
Vulnerability
Testing based on
SOAP Message
Mutations

Qing Li, Jinfu
Chen, Yongzhao
Zhan, Chengying
Mao, Huanhuan
Wang

2012 web service testing,
SOAP message
mutation, combinatorial
testing, mutation
operator, vulnerability
testing

- SOAP XML injection experiment Many of the running state behaviours are
contained due to the distributed features of
web services. Therefore, new testing
techniques are needed to test web services.
This study presented a method to inject a
collection of mutation operators that can be
combined with combinatorial strategies. So,
multiple mutants are injected together instead
of one mutant at a time.

[118] Assessing and
Comparing
Vulnerability
Detection Tools for
Web Services:
Benchmarking
Approach and
Examples

Nuno Antunes,
Marco Vieira

2014 benchmarking,
vulnerability detection,
penetration testing,
static analysis, runtime
anomaly detection

- SOAP SQL injection experiment A method was proposed that defined
benchmarks for vulnerability detection tools in
web services. Two benchmarks targeting tools
able to detect SQL injection vulnerabilities have
been developed. The first benchmark is based
on a predefined workload, while the second
allows a user defined workload. Several
commercial and open-source tools have been
benchmarked.

[67] An Approach
Dedicated for Web
Service Security
Testing

Sébastien Salva,
Patrice Laurençot,
Issam Rabhi

2010 web Services, security
rules, test purposes,
test generation

- stateful broken authentication,
authorisation issues,
unavailability, SQL
injection, XML injection

experiment A security testing method is proposed in this
study dedicated to stateful web services. There
are security rules defined with the Nomad
language and are translated to so called test
purposes. Then test cases are generated from
these test purposes to verify whether the
security rules are satisfied despite the use of
malicious requests. Many security issues were
detected on real web services with the
developed solution.

7
4

continued ...

Reference Title Authors Year of
publication

Keywords Research questions Web service
type(s)

Vulnerability type(s) Research
method

Short description

[119] A Learning-Based
Approach to
Secure Web
Services from
SQL/XPath
Injection Attacks

Nuno Laranjeiro,
Marco Vieira,
Henrique Madeira

2010 web services, security,
SQL/XPath injection,
vulnerabilities, code
instrumentation

- SOAP SQL injection, XPath
injection

experiment In this study an approach was presented to
improve the security of web services. Pattern
learning was applied in a training period
analysing real requests. This information was
used later to block potentially malicious
requests. To handle unknown cases during
incomplete training another filter was used.
This approach was effective in protecting
various open source and private web services.

[5] Using Web
Security Scanners
to Detect
Vulnerabilities in
Web Services

Marco Vieira,
Nuno Antunes,
Henrique Madeira

2009 - RQ1: What is the coverage of the
vulnerability scanners tested when
used in a web services
environment?

RQ2: What is the false-positive rate
of the vulnerability scanners when
used in a web services
environment?

RQ3: What are the most common
types of vulnerabilities in web
services environments?

SOAP buffer overflow, code
execution, credential
exposure, server path
disclosure, SQL
injection, XPath
injection

experiment Four commercial vulnerability scanners are
compared in this study. There were 300 web
services analysed. Many vulnerabilities were
detected, confirming many web services were
deployed without sufficient testing. Selecting a
vulnerability scanner is a precise task. First,
different types of vulnerabilities were detected
by various scanners. Second, many
notifications are false positives. Finally, the
source code coverage of these scanners is
rather low. A prominent observation is that SQL
injection vulnerabilities are most commonly
detected, because 84% of all types of
vulnerabilities are typed as SQL injection.

[66] Trustworthy Web
Services Based on
Testing

Weider D. Yu,
Passarawarin
Supthaweesuk,
Dhanya Aravind

2005 - - SOAP inadequate or missing
access validation,
forcing error, services
traversal, script
injection, buffer
overflows, cross-site
scripting, credential
exposure, information
exposure, spoofing,
SQL injection

case study -
case series

A procedure was presented on assessing web
services security with the mindset of a
malicious actor. The testing method is created
by analysing common vulnerabilities in web
applications and transferring these to the web
service domain. Three important conclusions
were drawn: no user input should be trusted,
no security mechanism is to be trusted, and a
successful test will only apply to the
configuration that was used.

[64] SOA and Web
Services: New
Technologies, New
Standards - New
Attacks

Meiko Jensen, Nils
Gruschka, Ralph
Herkenhöner,
Norbert
Luttenberger

2007 - - SOAP WSDL scanning, denial
of service (oversize
payload, coercive
parsing, oversized
cryptography), spoofing
(SOAPAction,
metadata), XML
injection

experiment Various attack types are presented to discover
different types of vulnerabilities in web
services. Some of the vulnerabilities are caused
by implementation failures, while most are
introduced by protocol flaws. Also,
countermeasures are presented to mitigate
these vulnerability types.

[65] Security Testing
Methodology for
Evaluation of Web
Services
Robustness - Case:
XML Injection

Marcelo Invert
Palma Salas, Paulo
Lício de Geus,
Eliane Martins

2015 web services, XML
injection, fault
injection, WSSecurity,
UsernameToken

- SOAP XML injection experiment In this study 10 web services were tested on
XML injection vulnerabilities (e.g. Cross-site
scripting and XPath injection). WSInject is used
as proxy between the web service and soapUI.
A script is used for WSInject to mutate the XML
messages. Also eight rules are defined to detect
if XML injection was successful.

7
5

continued ...

Reference Title Authors Year of
publication

Keywords Research questions Web service
type(s)

Vulnerability type(s) Research
method

Short description

[120] Evaluating and
Improving
Penetration
Testing in Web
Services

Nuno Antunes,
Marco Vieira

2012 web-services, security,
vulnerability detection,
attack signatures,
penetration testing,
interface monitoring

- SOAP SQL injection experiment A method using attack signatures and
monitoring interfaces to analyse and improve
attack and penetration testing tools was
proposed and tested in this study. This enabled
the detection of injection vulnerabilities in web
services. A prototype was developed to detect
SQL injection vulnerabilities. This prototype
acts as a proxy and intercepts all requests to
the web service, while injecting the original
message. Furthermore, the communication
with the database is monitored to validate if the
attack was successful. Over 20 web services
were tested by the prototype and compared
with other tools.

[121] Effective Detection
of SQL/XPath
Injection
Vulnerabilities in
Web Services

Nuno Antunes,
Nuno Laranjeiro,
Marco Vieira,
Henrique Madeira

2009 - - SOAP SQL injection, XPath
injection

experiment A new approach is proposed in this study for
the detection of SQL and XPath injection
vulnerabilities in web services. An attack load
generator generates malicious XPath and SQL
commands. These are presented to the web
service. This approach was implemented in a
prototype (CIVS-WS). Automatic detection of
these vulnerabilities was tested on 9 web
services.7

6

Table 13: Results systematic literature review found in ScienceDirect.

Reference Title Authors Year of
publication

Keywords Research questions Web service
type(s)

Vulnerability type(s) Research
method

Short description

[72] DDoS defense
system for web
services in a cloud
environment

Thomas Vissers,
Thamarai Selvi
Somasundaramb,
Luc Pieters,
Kannan
ovindarajan, Peter
Hellinckx

2014 denial-of-service, cloud
computing, mitigation,
web services, SOAP,
XML, HTTP

- SOAP (distributed) denial of
service (HTTP flooding,
oversized XML,
coercive parsing,
oversized encryption,
WS-addressing
spoofing)

experiment Vulnerabilities present in the application-layer
of web services are a great risk for the
availability of these services. Different tests are
presented and demonstrated the unavailability
of web services due to denial of service attacks.
Single machines and even single requests can
cause web services to fail, even without a
distributed attack. A defence system is
proposed to mitigate these attacks.

[74] Web Services
Attacks and
Security- A
Systematic
Literature Review

Varsha R Mouli, KP
Jevitha

2016 web services,
systematic literature
review, attacks,
security

RQ1: How much research has
happened on web service security
since 2005?

RQ2: What are the web service
security issues that are addressed
in the research papers?

RQ3: What are the techniques
proposed to solve web service
security issues?

RQ4: Which are the web service
security areas focused in the
research papers?

SOAP,
XML-RPC,
JSON-RPC

denial of Service, SQL
injection, XML
injection, XPath
injection, spoofing

literature
review

In this study 36 papers on web services attacks
were systematically analysed. Denial of service
attacks are mentioned the most, followed by
XML injection attacks. The focus is mainly on
detecting attacks in these papers.

[70] Security Testing
Methodology for
Vulnerabilities
Detection of XSS
in Web Services
and WS-Security

M.I.P. Salas, E.
Martins

2014 web services, cross-site
scripting, XSS attack,
penetration testing,
fault injection,
WS-Security, WSS,
Security Token, soapUI,
WSInject

- SOAP cross-site scripting experiment A method for determining the robustness of
web services for fault injection using WSInject
is presented in this paper. The tool enabled
emulation and generation of cross-site scripting
(XSS) attacks.

[62] On cloud security
attacks: A
taxonomy and
intrusion detection
and prevention as
a service

Salman Iqbal, Miss
Laiha Mat Kiah,
Babak Dhaghighi,
Muzammil
Hussain, Suleman
Khan, Muhammad
Khurram Khan,
Kim-Kwang
Raymond Choo

2016 cloud computing,
taxonomy, security
attacks, intrusion
detection

- SOAP,
REST, RPC
protocols

broken authentication,
cross-site scripting,
denial of service, SQL
injection, XML
signature wrapping

literature
review

A literature study is executed to present
different vulnerabilities on different layers in
the cloud computing architecture. Software as
a service (Saas), Platform as a service (Paas),
and Infrastructure as a service (Iaas) are
investigated. Each layer of the cloud computing
architecture has its own vulnerability types.
Further research will focus on a defence
mechanism that works on each layer of the
cloud computing architecture.

7
7

Table 14: REST web service related vulnerabilities found in the NVD database grouped per OWASP (2017) Top 10 item, CWE, and year.

Categorised vulnerability types (OWASP/CWE) 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2009 - 2019

A1 Injection 0 0 0 1 0 1 1 1 0 4 5 13

CWE-77 Improper Sanitization of Special Elements used in a Command (’Command Injection’) 0 0 0 0 0 0 0 0 0 1 3 4

CWE-89 Improper Sanitization of Special Elements used in an SQL Command (’SQL Injection’) 0 0 0 1 0 1 1 1 0 3 2 9

A2 Broken authentication 0 0 0 0 1 0 1 0 10 6 4 22

CWE-287 Improper Authentication 0 0 0 0 1 0 0 0 8 4 3 16

CWE-384 Session Fixation 0 0 0 0 0 0 1 0 1 1 0 3

CWE-522 Insufficiently Protected Credentials 0 0 0 0 0 0 0 0 0 1 1 2

CWE-613 Insufficient Session Expiration 0 0 0 0 0 0 0 0 1 0 0 1

A3 Sensitive data exposure 0 0 0 0 0 0 0 0 1 4 0 5

CWE-311 Missing Encryption of Sensitive Data 0 0 0 0 0 0 0 0 1 1 0 2

CWE-312 Cleartext Storage of Sensitive Information 0 0 0 0 0 0 0 0 0 2 0 2

CWE-319 Cleartext Transmission of Sensitive Information 0 0 0 0 0 0 0 0 0 1 0 1

A4 XML external entity reference 0 0 0 0 0 0 2 0 2 4 1 9

CWE-611 Information Leak Through XML External Entity File Disclosure 0 0 0 0 0 0 2 0 2 4 1 9

A5 Broken access control 0 0 0 0 0 0 1 5 4 5 7 22

CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 0 0 0 0 0 0 0 0 4 4 1 9

CWE-284 Access Control (Authorization) Issues 0 0 0 0 0 0 1 4 0 0 2 7

CWE-285 Improper Access Control (Authorization) 0 0 0 0 0 0 0 1 0 1 4 6

A7 Cross-Site Scripting (XSS) 0 0 0 1 1 4 2 2 6 2 4 22

CWE-79 Failure to Preserve Web Page Structure (’Cross-site Scripting’) 0 0 0 1 1 4 2 2 6 2 4 22

A8 Insecure deserialization 0 0 0 0 0 0 0 1 1 1 0 3

CWE-502 Deserialization of Untrusted Data 0 0 0 0 0 0 0 1 1 1 0 3

Uncategorised 1 0 2 7 9 10 20 25 32 25 34 165

CWE-119 Failure to Constrain Operations within the Bounds of a Memory Buffer 0 0 0 0 0 0 0 0 2 0 0 2

CWE-17 Deprecated 0 0 0 0 0 0 1 0 0 0 0 1

CWE-190 Integer Overflow or Wraparound 0 0 0 0 0 0 0 0 0 0 1 1

CWE-20 Improper Input Validation 0 0 1 0 3 0 0 2 5 3 8 22

CWE-200 Information Exposure 0 0 0 0 1 2 8 8 5 5 3 32

CWE-254 7PK - Security Features 0 0 0 0 0 0 1 1 0 0 0 2

CWE-255 Credentials Management 0 0 0 0 0 0 0 0 0 0 4 4

CWE-264 Permissions, Privileges, and Access Controls 0 0 0 2 2 2 3 8 0 0 3 20

CWE-269 Improper Privilege Management 0 0 0 0 0 0 0 0 1 0 0 1

7
8

continued ...

Categorised vulnerability types (OWASP/CWE) 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2009 - 2019

CWE-275 Permission Issues 0 0 0 0 0 0 0 0 0 0 2 2

CWE-276 Incorrect Default Permissions 0 0 0 0 0 0 0 0 0 0 1 1

CWE-310 Cryptographic Issues 0 0 0 0 0 1 1 0 0 1 0 3

CWE-347 Improper Verification of Cryptographic Signature 0 0 0 0 0 0 0 0 0 0 1 1

CWE-352 Cross-Site Request Forgery (CSRF) 0 0 0 1 1 1 2 2 4 3 3 17

CWE-362 Race Condition 0 0 0 0 0 0 0 0 1 0 0 1

CWE-399 Resource Management Errors 0 0 0 0 0 0 3 0 0 0 0 3

CWE-400 Uncontrolled Resource Consumption (’Resource Exhaustion’) 0 0 0 0 0 0 0 0 0 0 2 2

CWE-404 Improper Resource Shutdown or Release 0 0 0 0 0 0 0 0 1 0 0 1

CWE-434 Unrestricted Upload of File with Dangerous Type 0 0 0 0 0 0 0 0 0 0 1 1

CWE-444 Inconsistent Interpretation of HTTP Requests (’HTTP Request Smuggling’) 0 0 0 0 0 0 0 0 0 3 0 3

CWE-532 Information Leak Through Log Files 0 0 0 0 0 0 0 0 0 1 0 1

CWE-59 Improper Link Resolution Before File Access (’Link Following’) 0 0 0 0 0 1 0 0 0 0 0 1

CWE-732 Incorrect Permission Assignment for Critical Resource 0 0 0 0 0 0 0 0 1 1 0 2

CWE-74 Failure to Sanitize Data into a Different Plane (’Injection’) 0 0 0 0 0 0 0 2 1 0 1 4

CWE-749 Exposed Dangerous Method or Function 0 0 0 0 0 0 0 1 0 0 0 1

CWE-770 Allocation of Resources Without Limits or Throttling 0 0 0 0 0 0 0 0 0 1 0 1

CWE-798 Uncontrolled Memory Allocation 0 0 0 0 0 0 0 0 1 0 1 2

CWE-829 Inclusion of Functionality from Untrusted Control Sphere 0 0 0 0 0 0 0 0 0 1 0 1

CWE-862 Missing Authorization 0 0 0 0 0 0 0 0 2 0 0 2

CWE-863 Incorrect Authorization 0 0 0 0 0 0 0 0 1 2 1 4

CWE-918 Server-Side Request Forgery (SSRF) 0 0 0 0 0 0 0 0 1 1 1 3

CWE-94 Failure to Control Generation of Code (’Code Injection’) 0 0 0 0 0 0 0 0 1 0 1 2

NVD-CWE-Other Other 0 0 0 0 0 2 2 0 0 0 0 4

NVD-CWE-noinfo Insufficient Information 1 0 1 4 2 1 0 2 5 3 0 19

Total number of REST web service related vulnerabilities 1 0 2 9 11 15 27 34 56 49 55 259

Total number of vulnerabilities 4968 5086 4628 5559 6182 8545 8296 10191 15883 15908 10007 95253

Percentage REST vulnerabilities 0.02% 0.00% 0.04% 0.16% 0.18% 0.18% 0.33% 0.33% 0.35% 0.31% 0.55% 0.27%

7
9

Appendix B: Architecture diagram

Figure 20: The entity relationship diagram of the database, visualising the tables, types, fieldnames, and relations between entities.

8
0

Appendix C: Screenshots RESTFuzzer

Figure 21: Screenshot of the Systems Under Test overview page.

8
1

Figure 22: Screenshot of the configurations overview page.

8
2

Figure 23: Screenshot of the dictionaries overview page.

8
3

Figure 24: Screenshot of the projects overview page.

8
4

Figure 25: Screenshot of the reports overview page.

8
5

Figure 26: Screenshot of the tasks overview page.

8
6

Appendix D: Information related to the experiments

Table 15: Specifications development environment.

Specification Value

Operating System Windows 10

CPU Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

RAM 16,0 GB

RESTFuzzer v1.0.1

Table 16: Specifications test setup.

Specification Value

Operating System Ubuntu 20.04.1 LTS

CPU Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz

RAM 4,0 GB

WordPress 5.4.2

SutSqlI v1.00

1 {

2 "authentication": {

3 "method": "BASIC",

4 "username": "wordpress",

5 "password": "wordpress"

6 },

7 "includeActions": [

8 {

9 "path": ".*",

10 "httpMethod": ".*"

11 }

12],

13 "excludeActions": [

14 {

15 "path": "/wp/v2/users/me",

16 "httpMethod": ".*"

17 },

18 {

19 "path": "/wp/v2/users/\\{id\\}",

20 "httpMethod": "PATCH|POST|PUT"

21 }

22],

23 "excludeParameters": [],

24 "defaults": []

25 }

Listing 4: Basic configuration used in experiments on REST web services WordPress.

87

1 {

2 "authentication": {

3 "method": "BASIC",

4 "username": "wordpress",

5 "password": "wordpress"

6 },

7 "includeActions": [

8 {

9 "path": ".*", "httpMethod": ".*"

10 }

11],

12 "excludeActions": [

13 {

14 "path": "/wp/v2/users/me", "httpMethod": ".*"

15 },

16 {

17 "path": "/wp/v2/block-renderer/\\{name\\}", "httpMethod": ".*"

18 },

19 {

20 "path": "/wp/v2/pages/\\{parent\\}/revisions/\\{id\\}", "httpMethod": ".*"

21 },

22 {

23 "path": "/wp/v2/posts/\\{parent\\}/revisions/\\{id\\}", "httpMethod": ".*"

24 },

25 {

26 "path": "/wp/v2/users/\\{id\\}", "httpMethod": "PATCH|POST|PUT"

27 },

28 {

29 "path": "/wp/v2/taxonomies.*", "httpMethod": "GET"

30 },

31 {

32 "path": "/wp/v2/types/\\{type\\}", "httpMethod": "GET"

33 },

34 {

35 "path": "/wp/v2/statuses/\\{status\\}", "httpMethod": "GET"

36 }

37],

38 "excludeParameters": [

39 {

40 "action": {

41 "path": ".*", "httpMethod": ".*"

42 },

43 "parameter": {

44 "name": "template|meta|subtype|status|username|roles|parent",

45 "required": "false"

46 }

47 }

48],

49 "defaults": [

50 {

51 "action": {

52 "path": ".*", "httpMethod": ".*"

53 },

54 "parameter": {

55 "name": "sticky",

56 "required": ".*"

57 },

58 "default": "false"

59 },

60 {

61 "action": {

62 "path": "/wp/v2/themes", "httpMethod": "GET"

63 },

64 "parameter": {

65 "name": "status",

66 "required": ".*"

67 },

68 "default": "[active]"

69 }

70]

71 }

Listing 5: Optimised configuration used in experiments on REST web services WordPress.

88

Figure 27: Query with results from experiment with long running task with the model-based fuzzer.

8
9

Figure 28: Query with results from experiment with long running task with the model-based dictionary fuzzer.

9
0

Figure 29: Overview of general information extracted from OpenAPI specification from system under test SutSqlI.

Figure 30: Overview of actions extracted from OpenAPI specification from system under test SutSqlI.

91

Figure 31: Overview of the parameters extracted from OpenAPI specification from system under test SutSqlI.

Figure 32: Overview of the dependencies extracted from OpenAPI specification from system under test SutSqlI.

92

	Summary
	Samenvatting
	Introduction
	Consequences of vulnerabilities in software
	REST web services susceptible to exploitation of vulnerabilities
	Precautionary measures
	Research questions
	Chapter overview

	Technical background
	REST web services
	OpenAPI specification
	Model-based security testing
	Fuzzing
	Model-based (behavioural) fuzzing
	Model-based (behavioural) dictionary fuzzing

	Vulnerability types in REST web services
	Method: systematic literature review
	Search strategy for scientific databases
	Synthesis scientific articles
	Verification with additional evidence

	Results
	Injection
	Broken authentication
	Broken access control
	Cross-site scripting
	Uncategorised

	Developing a model-based (behavioural) dictionary fuzzer
	Method: experimental prototyping
	Selection and installation of the SUT
	Developing a SUT containing SQL vulnerabilities
	Model-based (behavioural) fuzzing
	Model-based (behavioural) dictionary fuzzing
	Measuring effectiveness

	Architecture
	Global overview
	Service layer (RPC-JSON)
	Data layer

	Components
	Frontend module
	Backend module

	Results
	Model-based (behavioural) fuzzing
	Model-based (behavioural) dictionary fuzzing
	The effectiveness of model-based (behavioural) dictionary fuzzing

	Discussion, conclusion and recommendations
	Vulnerability types in REST web services
	Developing a model-based (behavioural) dictionary fuzzer

	Reflection
	Vulnerability types in REST web services
	Developing a model-based (behavioural) dictionary fuzzer

	References
	Peer-reviewed
	Other

	Credits
	Appendices
	Appendix A: Results literature review
	Appendix B: Architecture diagram
	Appendix C: Screenshots RESTFuzzer
	Appendix D: Information related to the experiments

