
Open Universiteit
www.ou.nl

Developing scenario-based serious games for complex
cognitive skills acquisition:
Citation for published version (APA):

Slootmaker, A., Kurvers, H., Hummel, H., & Koper, R. (2014). Developing scenario-based serious games for
complex cognitive skills acquisition: Design, development and evaluation of the EMERGO platform. Journal of
Universal Computer Science, 20(4), 561-582. https://doi.org/10.3217/jucs-020-04-0561

DOI:
10.3217/jucs-020-04-0561

Document status and date:
Published: 30/07/2014

Document Version:
Peer reviewed version

Document license:
CC BY-NC-SA

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09 Sep. 2021

https://doi.org/10.3217/jucs-020-04-0561
https://doi.org/10.3217/jucs-020-04-0561
https://research.ou.nl/en/publications/5f903bda-afab-4395-85f5-85c13692944a

Developing scenario-based serious games for

complex cognitive skills acquisition: Design, development

and evaluation of the EMERGO platform

Aad Slootmaker
(Open University of the Netherlands, Heerlen, The Netherlands

aad.slootmaker@ou.nl)

Hub Kurvers
(Open University of the Netherlands, Heerlen, The Netherlands

hub.kurvers@ou.nl)

Hans Hummel
(Open University of the Netherlands, Heerlen, The Netherlands

hans.hummel@ou.nl)

Rob Koper
(Open University of the Netherlands, Heerlen, The Netherlands

rob.koper@ou.nl)

Abstract: Serious games are considered to provide powerful and attractive ways to acquire

complex cognitive skills for education and training. But existing platforms for development of

game-based e-learning often appear either not to be very user-friendly or too rigid or costly.

This article addresses the design, development and evaluation of a generic platform for fast and

flexible development and delivery of a wide variety of scenario-based games that enables

complex cognitive skills acquisition. We present the requirements for the EMERGO platform

and which common components it offers to cater for most of the needed functionalities within

scenario-based games. We explain how users in various roles can use the platform to manage,

develop, deliver and play a broad variety of scenario-based games. Evaluation data are

presented to back up the claim that the platform indeed allows for faster, more user-friendly

and less costly development and delivery of scenario-based games. Seven years after the

platform has been launched, it until now has proven successful and still continues to evolve.

We close off with some conclusions and needs for further development.

Keywords: Adaptive eLearning, eLearning Platforms, Technology Enhanced Learning, Game

Based Learning

Categories: L.2.0, L.3.0, L.3.6, L.5.1

1 Introduction

Serious games offer a solution for enabling professional learning at a distance, when

the acquisition in actual practice would be impossible or rather hard to realize.

Professional education requires students to practice complex cognitive skills in

authentic professional settings. These skills involve cognitive processes, e.g. problem

solving, reasoning, taking decisions or reflecting in context. This kind of experiential

education often is difficult to organize in a practical, e.g., because there are more

students than internships available or because the supervision of students would be

too time-consuming, risky or insufficient in actual practice.

Existing development frameworks for games often are inadequately tuned toward

specific learning needs [Nadolski, 12], and game engines often have been developed

for just one specific aspect of a game (e.g., graphical rendering). There are

frameworks that integrate a number of these more specific engines, but don’t support

teachers that well in the process of developing serious games, or have a steep learning

curve [de Freitas, 10]. For further take-up in education there was a hard felt need to

provide teachers with a user-friendly author environment. Besides this, existing

frameworks often lack suitable logging of game progress, which impedes research on

the actual effects of serious games.

The Open University of the Netherlands, being a provider of distance education,

has a longer experience in developing serious games for complex cognitive skills

acquisition in various content domains and with different learning purposes. These

serious games were developed on client computers and delivered on cd/dvd. Not all

operating systems were supported, delivery was demanding (reproduction), and

technical or functional bug fixes could not be delivered easily. And there was little

reuse of game components. Games were mostly built from scratch. There was a need

for a platform that would simplify and broaden delivery. The platform should further

foster reuse and exchange between serious games for different content domains by

offering reusable and adaptable components for game development.

Developing serious games is often a costly business. Most games are developed as

3D environments requiring a vast investment in 3D graphics that cannot be reused

easily in other games. However, use of 3D is not always needed, because maximum

fidelity of the environment does not necessarily lead to better learning [Herrington,

07]. Furthermore, the development and testing of the didactic scenarios of serious

games is quite time consuming, because the intended complex skills require many

steps to take and many hours to acquire. There was a need for an approach and

platform that would support more cost-effective development of scenario-based

serious games.

Some ten years ago the need for a user-friendly author environment providing

teachers with reusable and adaptable components to develop serious games cost-

effective was commonly felt in many higher education institutions. This need then

was expressed in the development of a number of online platforms that enabled

teachers to develop their own serious games without programming. Examples are

Fablusi (http://www.fablusi.com/), Unigame (http://www.unigame.net/) and

Cyberdam (http://www.cyberdam.nl/). These platforms enabled the development of

multi-role-playing games where learners take on the role profiles of specific

characters or representatives of organizations. However, our focus was broader than

just role-play. We wanted to offer a rich environment for experiential education where

students mostly learn on their own and where other actors are mostly implemented as

non-playing characters.

The central research question of this article is how to design and develop a

generic platform for fast and flexible development and delivery of a wide variety of

scenario-based serious games which enable complex cognitive skills acquisition.

According to [Westera, 01] cognitive skills are skills that involve mental processes

that occur in the mind while using, transforming or supplementing available

http://www.fablusi.com/
http://www.unigame.net/
http://www.cyberdam.nl/

knowledge. Complex cognitive skills are associated with higher-order activities like

problem solving, reasoning, thinking, assessing and concluding. They include the

mental processes of analysis, synthesis and evaluation to produce a re-ordering or

extension of the existing cognitive structure. Scenario-based serious games are games

where learners are placed in complex problem spaces, which mimic real world

situations. They are confronted with ill-defined problems, often allowing multiple

solutions and requiring application of necessary methodologies or tools and

collaboration with fellow learners [Westera, 08]. To enable the acquisition of these

complex cognitive skills and this type of games the scenario describes the problem

space, which activities have to be done, which materials are needed and how the

problem space should be adjusted while the student is playing.

To answer the research question, the remainder of this article will be structured as

follows. In section two we elaborate on the type of scenario-based games the platform

supports. In section three we present the requirements for the platform. In section four

we describe how we developed the platform and present the history of versions. In

section five we present the platform roles, the domain model and common reusable

components and their underlying generic design. In section six we evaluate if the

platform satisfies the requirements and compare it to related work. In section seven

we summarize our findings and present our plans for future work.

2 Scenario-based serious games supported by the platform

Figure 1: Screen of a game showing a square with buildings to visit. On the bottom

left corner we see an icon for the tablet. On the bottom right corner we see a mike to

record parts of interviews and a notepad to make contextualised notes

The platform supports games where the student works as a trainee in an immersive

virtual environment that resembles real-life environments like a law firm or an office

environment. His virtual supervisor will give him assignments, and will react to and

reflect on his outcomes. He will meet virtual experts or other people to gain

background knowledge about the skills to acquire. Within the environment the student

has a tablet with apps that provide background materials, enable communicating with

virtual persons and other students, and help the student to acquire the skills. The

student will be confronted with the consequences of his acts. This means that the

environment must be able to respond to student actions by giving clear feedback, and

adjust itself according to the progress of the student.

Within a game on Sexology for instance, the student attends two patient

interviews and a multidisciplinary meeting, and interviews four subject matter

experts. He has to learn to prepare himself for the patient interview, to write a

summary of the interview, to work out a model related to the causes of the patient’s

problem, and to write a proposal for treatment. The student starts the game on a

square with buildings related to the Sexology course: a hospital, a university, a

school, a health service, an aids center and a station (see Figure 1). The station is used

to visit virtual patients at home. Within the hospital the student finds his supervisor,

subject matter experts, rooms for patient interviews and meetings, and his own room.

He has a notepad to make contextualized notes and a recorder to record parts of

interviews. On his tablet the student finds background materials like the patient

records, a log containing all notes made with the notepad, an app with all recordings

made during interviews, a manual explaining the interface of the game and an email

app to get mails and send in assignment outcomes.

3 Requirements for the platform

The objective of the platform is to enable the fast and flexible development and

delivery of a wide variety of scenario-based serious games which enable complex

cognitive skills acquisition. Intended users of the platform are teachers, students,

administrators and programmers. Teachers will develop games by writing a game

scenario, selecting relevant educational material and using the platform to enter game

data, game materials and game script, and they will monitor students; Students will

use the platform to play games; Administrators will manage platform users; and

Programmers will extend the platform. Based on our experience and studies carried

out by others [Aldrich, 05], as well as on aforementioned problems with current

development, we now list following functional (F) and non-functional (N)

requirements for the platform (Table 1).

F1 Offer teachers an intuitive and user-friendly author environment where

they independently can create and edit games.

F2 Enable teachers to create and edit game roles, so students playing together

in one game can have different roles.

F3 Offer teachers a set of common reusable and adaptable components that

covers most of the needed functionalities to acquire complex cognitive

skills using scenario-based serious games. Teachers should be able to

select components they need and edit these now called game components.

F4 Enable several teachers working together on the same game so work can

be divided.

F5 Enable teachers to preview games or a single game component as a

student, at any stage of the development process.

F6 Enable teachers to test games as a student at any stage of the development

process and starting from multiple points within the game script.

F7 Enable teachers to import and export games so games can be distributed to

other platform instances and their content can be reused.

F8 Enable teachers to import and export game components so game content

can be reused.

F9 Enable teachers to monitor progress of students.

F10 Enable teachers to interfere in a running game, for instance if outcome

quality is insufficient or if a student is stuck in the game.

F11 Offer students an intuitive immersive player environment where they play

developed games. The player environment should be adjusted according to

the actions and progress of a student by using game script.

F12 Enable to save and persist all student actions, for game script to operate

on, and for evaluation and research purposes.

F13 Enable students to send in assignment outcomes, allowing progression

within the game (triggered by game script) and monitoring of progress.

F14 Enable students to enrich the running game with user generated content

and share this content with other students.

F15 Enable administrators to manage platform users and their roles.

F16 Enable administrators to manage game runs, by assigning a cohort of

students to a run and assigning students to game roles.

F17 Enable administrators to manage game teams, teams of students operating

within the same game run.

F18 Enable programmers to easily extend the platform with new languages.

F19 Enable programmers to rather easily extend the set of common reusable

components with new components.

F20 Enable programmers to extend the player environment with new skins, to

be able to offer (external) parties their own look and feel.

N1 Be reliable and stable.

N2 Be usable on multiple operating systems, e.g., at and across institutions.

N3 Offer efficient development and delivery of games. Delivering and

updating the platform and developed serious games should be easy and not

affect student’s progress.

N4 Be backward compatible, authoring and playing of earlier developed

games should be possible.

N5 Be integrated with institutional infrastructures.

Table 1: Functional (F) and non-functional (N) requirements for the platform

Requirements F3 and F11 directly relate to acquiring complex cognitive skills.

Learners will perform authentic tasks in an environment that challenges and makes

them curious, presents appropriate and unambiguous outcome goals and provides

clear, constructive and encouraging feedback [Nadolski, 12]. Requirements F1, F5

and F6 relate to aforementioned need for a more user-friendly author environment.

Requirements F3, F7 and F8 relate to the need for reusable and adaptable

components. Requirements F1, F2 till F8, and N3 relate to the need for more cost-

effective development. The requirements are elaborated in a use case diagram (see

Figure 2).

Figure 2: Use case diagram for the platform. Requirements are indicated

Rectangles indicate the boundaries of the author and player environment. These

boundaries are debatable. For instance previewing and testing a game could be done

outside of the author environment, but we feel these options should be an integral part

of it. In the next section we elaborate on the development of the platform.

4 Development of the platform

Version 1 of the platform was developed within the EMERGO project (2006-2007)

that was co-funded by SURF foundation, and was intended to be used by all SURF

members. The project had three outcomes: a methodology to support writing the

scenario for scenario-based serious games [Nadolski, 08], a platform for developing

and delivering the games and five games that were used in education. This article will

focus on the EMERGO platform. Version 2 of the platform was one of the outcomes

of the Skills Labs project, also co-funded by SURF foundation, and was released in

2010. The project also delivered four games that were used in education. Version 3

was an outcome of a couple of projects and was released in 2013. The platform is

Open Source and can be found on SourceForge [EMERGO, 13].

The first development step was to choose an application architecture. We choose

for a multi-tier client-server architecture, because one tier can be substituted by

another implementation without affecting the other tiers. To meet requirement F12

(save and persist all student actions) we choose to use a centralized database on a

server so game script, also located on a server, can operate on student actions, and

student data can be shared within multi-role games and is easily available for

evaluation and research. To meet requirements N1 (reliable and stable) and N2

(usable on multiple operating systems), and because we had broad experience with it,

we choose the Java EE platform. To meet requirement N3 (efficient development and

delivery of games), we choose the client to be web-based, requiring no installation of

dedicated client software to develop or play a game and enabling easily updating the

platform and developed games. To meet requirement N1 (reliable and stable) we

choose the Spring application framework [Spring framework, 13], to implement our

domain model and business logic, and the MySQL database server for data

persistence in a centralized database. Both are proven technology and widely used

within the Open Source community. For the client web interface we choose ZK

framework [ZK framework, 13] that runs on all common browsers. ZK framework is

a so called RIA (Rich Internet Application) offering the same interactivity and

responsiveness as a desktop application, and therefore offered the best guarantee to

meet requirements F1 (intuitive and user-friendly author environment) and F11

(intuitive immersive player environment). ZK comes with a very rich set of visual

components, which offered the best guarantee to be able to build our own

components, meeting requirements F3 (common reusable and adaptable components)

and F19 (extend with new components). ZK is very fast and Ajax based, so all

student actions can be saved immediately, meeting requirement F12 (save and persist

all student actions).

The platform was developed by a multidisciplinary team of educational

technologists, interaction designers and programmers. For the development process

we used an agile methodology similar to Scrum, implying always delivering working

software, short iterations, quick response to change and close cooperation within the

development team.

We started the development process with the design of the platform, which

involved following five steps: (1) Identify needed platform roles; (2) Create a domain

model for the platform; (3) Identify needed common reusable components, meeting

requirement F3 (common reusable and adaptable components); (4) Create a generic

component design, meeting requirement F19 (rather easily extend with new

components); and (5) Design the component for handling game script, meeting

requirement F11 (using game script, the player environment should be adjusted). In

the next section we will present the results of these five design steps.

 Next we started the implementation of the platform. After implementing the

domain model and business logic we could start implementing the use cases in a

certain order. Most use cases depend on each other, e.g., before you can create a

game, you must first be added as a platform user. While implementing the use cases,

we also started implementing components in a certain order, determined by their

mutual dependency and by the priority within the development team. Version 1 of the

platform contained an initial set of common components. This set was extended with

new components in version 2 and version 3.

The evaluation of the platform involved measuring if requirements F1 (intuitive

and user-friendly author environment), F11 (intuitive immersive player environment)

and N3 (efficient development of games) were satisfied. The evaluations of the other

requirements were based on our experiences with the users of the platform, ourselves

included. Versions 1 and 2 of the platform were evaluated on the aspects of intuitivity

and user-friendliness for teachers using the author environment to enter data. Both

versions were evaluated on the production ratio for developed games and on student

satisfaction with the user-interface of the player environment. Besides this, version 1

was evaluated on student satisfaction, and version 2 on the aspects of quality,

studiability and effectiveness of developed games as perceived by students. Intuitivity

and user-friendliness as perceived by teachers were operationalized by ‘the capacity

to use the platform components independent without help’ and ‘the simplicity

encountered when using platform components to enter data’, respectively. Intuitivity

and user-friendliness were measured using a questionnaire containing questions, like

‘Were you able to use the component independently?’ and ‘How simple was it to use

the component?’. Production ratio (as main indicator for efficient development) was

measured by comparing development hours (as were recorded in the project

administration) with the estimated or measured study time. Student satisfaction was

operationalized and questioned as the appreciation of the player environment. Quality

and studiability were operationalized in twenty two questions, like ‘Were the

instructions for performing a task clear enough?’ and ‘Did you get enough

background material to perform a task?’. Effectiveness of developed games was

determined by students’ grades, in one case also by comparing them with grades

obtained in classroom education.

5 Design of the platform

In this section we present the design of the platform; the platform roles, the domain

model, the implemented common reusable components, the underlying generic

component design and the script component.

5.1 Platform roles

Starting from the use case diagram defined in section three (Figure 2) we identified

five platform roles that should have their own working environment within the

platform: administrator, developer, run manager, tutor and student. The administrator

and run manager platform role are best filled in by user ‘administrator’. The

developer and tutor platform role are filled in by the user ‘teacher’. The student

platform role is filled in by the user ‘student’, or if a teacher has a role within the

game, by the user ‘teacher’. The user ‘programmer’ has no counterpart as platform

role, he has his own development environment to extend the platform.

The administrator platform role manages all users and their platform roles

(requirement F15). Further he can help students who get technically stuck in a game,

by inspecting a student’s progress in the player environment, and adjusting his

progress if necessary (requirement F10). If for instance certain materials don’t

become available for a student, due to a bug, the administrator can make them

available.

Figure 3: Game component content editor showing a dialogue screen to enter a

conversation fragment

The developer uses the author environment to create and edit games (requirement

F1). Per game he can create and edit game roles (requirement F2) and game

components by selecting components to use and enter their content (requirement F3).

If needed the game owner (the developer who created the game) can assign other

developers as author of certain game components (requirement F4). All game

component content is entered using one editor (see Figure 3). During authoring the

developer can preview the game or a game component in the player environment

(requirement F5). And he can test the game in the player environment from multiple

points within the game script (so in time) (requirement F6) and for every game role,

and even can test with multiple players. Finally he can import and export a game or a

game component as an IMS content package [IMS, 07] (requirements F7 and F8).

The run manager creates and updates runs of developed games (requirement F16)

and he defines run users by assigning users to a run. Further he can run users to a

certain game role and define run teams of run users if appropriate (requirement F17).

The tutor monitors the progress of students (requirement F9). He gets overviews

of tasks students have completed and assignment outcomes they have submitted. If

needed, he can interfere in the game by sending an email as if it is sent by a non-

playing character (requirement F10), so students don’t notice the difference. This way

thresholds can be raised, e.g., to guarantee the quality of students outcomes. Further

he can help students who get stuck in a game by inspecting a student’s progress in the

player environment and instructing how to proceed (requirement F10).

The student sees an overview of games to play and can start the player

environment (see Figure 1) with a chosen game (requirement F11). The player

environment renders all developed games in 2D, and mimics the professional practice

students later have to work in. All student progress is saved and persisted

continuously (requirement F12).

5.2 Domain model

The resulting domain model (see Figure 4) shows all entities of the platform and how

they are related. Components are the most important concept of the platform.

Components are used to build and play a game. Programmers maintain the set of

components and can extend it. Users of the EMERGO platform can get multiple

platform roles. As an administrator, a User can manage Users and give them platform

roles. As a developer, a User can manage multiple Games and is the owner of the

Games he creates. Per Game he is the author of multiple Game Roles and Game

Components. He can make other developers author of his Game Components. The

Game itself is not much more than a container for Game Roles and Game

Components. Components can have multiple Game Component instances and a

certain Game Component can be used by multiple Game Roles. As a run manager, a

User manages Runs. A Game can have multiple Runs. The run manager allocates

Users to a Run as Run Users. He also can create Run Teams of Run Users. As a tutor,

a User can monitor Runs. As a student, a User can participate in multiple Runs as Run

User and can be member of multiple Run Teams. A Run User has Run User Progress

within a Run and a Run Team has Run Team Progress. Note that both type of

progress can be present in one Run. Progress is related to a Game Component.

Figure 4: Domain model of the platform

5.3 Common platform components

Based on our experience in developing scenario-based serious games over the years,

we have identified a number of components that represent common functionalities for

this kind of games. Students are always placed in an environment with multiple

locations where they can interview people, and have a virtual tablet with apps to help

them with their assignments. Table 2 lists all components that we have implemented

and in which version of the platform.

Component Function Version

Locations Navigate through the game and stage setting 1

Navigation More naturally navigate through the game, using hyper

regions on location backgrounds and the parallax effect

(see Figure 1)

3

Conversations Interact with non-playing characters on location, using

video

1

Alerts Provide popup instructions 1

Notepad Make contextualized notes. Available on every location 1

Memo

recorder

Record parts of interviews. Available on every location 3

Profile See each other’s profile and scores defined in the

‘Scores’ component. Available on every location

3

Chat Chat in game. Available on every location 3

Tablet Provide available apps. Available on every location 1

Assessments Enable in game assessment, using items defined in

‘Items’ component. App on tablet

1

Directing Examine an interview using different camera angles.

App on tablet

3

Email Enable in game email, e.g., for providing predefined

assignments to students and sending in assignment

outcomes by students. App on tablet

1

Google Maps Enable showing maps with markers. App on tablet 2

Logbook Provide overview of notes made with the ‘Notepad’

component. App on tablet

2

Memo player Look back interview recordings. App on tablet 3

Resources Provide background material. App on tablet 1

Tasks Provide tasks overview or to do list. App on tablet 1

Video manual Explain the player environment interface. App on tablet 3

Items Provide item bank of multiple choice and multiple

answer questions to be used in the ‘Assessments’

component

1

States Enable defining game properties that can be read and

changed in game script

3

Scores Enable defining scores to be shown in the ‘Profile’

component

3

Script Enable dynamical adjustment of the player environment

using game script

1

Relations Store relations between content of different components 1

Table 2: Common components, their function and in which version of the platform

they were implemented

The last two components don’t represent game functionalities, but are added

because they are common in every game. The Script component is used by developers

to enter the game script. The Relations component is used by the platform to store

relations between content of different game components, e.g., which items belong to a

certain assessment.

5.4 Generic component design

To be able to meet requirement F19 (rather easily extend with new components), we

wanted the domain model to remain unchanged if we extend the platform with a

component. We therefore choose to store all component related content in XML. It

concerns the component itself, the game component content entered by developers

and the game component progress of students, as can be seen in the domain model.

To be able to meet Requirement F19 (rather easily extend with new components),

we had to come up with a generic design for components, so components could be

added in the future too. We choose to define every component by an XML definition

(see example in Figure 5), that includes:

1. component properties (e.g., a component is present for a student or not);

2. relations with other components (e.g., the Logbook component will show all notes

entered in the Notepad component);

3. possible content elements, that make up the content of a component (e.g.,

locations, folders, resources, interviews, questions);

4. mutual hierarchy of content elements, indicating which content element must be

part of another one (e.g., questions are part of an interview);

5. relations with other content elements (e.g., an item belongs to an assessment);

6. content to be entered by a developer (e.g., the text of a question to be asked or a

reference to a video stream to be played);

7. content to be entered by a student, e.g. (an email text or attachments)

8. content elements’ properties (e.g., an email is sent);

9. the type of the properties;

10. the default values of the properties;

11. which property values can initially be changed by developers; and

12. which property values can be read and/or changed by game script.

Figure 5: Simple example of an XML definition: the Alerts component

Properties have different purposes. There are properties that determine visibility

or accessibility in the player environment (requirement F11). These properties

typically can change during the game and are set by developers, initially or by using

game script. Other properties determine the adaptability of a component (requirement

F3) in either functionality or layout, and are initially set by developers. Most

properties are used to handle progress within the game and are set triggered by

student actions (e.g., opening a resource), game script (e.g., sending a predefined

email) or the platform itself (keeping game time). We have defined over thirty

properties. Table 3 lists properties that are used most often.

Property Type Purpose Example

Present Boolean Does a student see a

component or content

element?

A tablet app is present or

not

Accessible Boolean Can a student access a

component or content

element?

A door is locked or not

Expandable Boolean Can a student expand a

content element?

A resource folder can be

expanded or not

Expanded Boolean Is a content element

expanded by a student?

A resource folder is

expanded or not

Opened Boolean Is a component or content

element opened by a

student?

A door is opened

Started Boolean Is a component or content

element started by a

student or the platform?

A video stream is started

by the platform

Finished Boolean Is a component or content

element finished by a

student or the platform?

An assessment is

finished by a student

Sent Boolean Is a content element sent

by a student or the

platform?

An email is sent by a

student or the platform

Table 3: Most used properties and their purpose

All game component content entered by game developers and all game component

progress of students is stored in XML, in a structure defined by the XML definition of

the corresponding component. Progress is formed by all property changes in time and

possibly associated content like an email text and attachments entered by a student.

Some components allow a developer to set properties that enable students to create

and share user generated content (requirement F14). This content is saved within

progress too.

The generic component design assures that adding new components has a minimal

effect on the author environment. Only if a new component demands a new content

format, a corresponding input element has to be added in the game component content

editor. This however does not account for the player environment. It has to be

extended with an embedded player for the component.

5.5 The Script component

By using the Script component a developer enters the dynamics of the game scenario,

thus determining how the player environment should be adjusted according to the

actions and progress of a student. Conditions and actions are entered using dialogues

that require no programming (requirement F1). A condition and its related actions

resemble an ‘if-then’ statement in a programming language (see Figure 6).

A script condition enables the developer to check whether properties have been set

to certain values, e.g. if a student has opened a location then its opened property is set

true. A condition can be built up by sub conditions using logical operators. Conditions

are triggered by events, either by student actions or timer events, resulting in a

property change. If the condition becomes true its related actions will be executed.

A script action enables the developer to set a property to a certain value, e.g., a

new conversation can be made available by setting its present property to true. When

a property is set, the execution of a script action can result in other conditions being

triggered. A special kind of script action is the definition of a script timer. If its

‘parent’ condition becomes true, the timer will start. Another condition then can be

used to check if the timer fires. Timers have a certain delay, can be defined to be

repetitive, and can measure game-time or real-time.

Conditions and actions themselves have properties too. One of them is the present

property. By setting its value to true or false a developer can switch conditions and

actions on and off, meaning the working of the script itself can be changed too. The

Script component only allows conditions and actions to be defined on existing content

entered by developers, not on user generated content entered by students.

In the next section we present the evaluation of the platform and its relation to

other work.

Figure 6: An example of script (entered for the game described in section two).

Conditions and actions are added using dialogue screens

6 Evaluation of the platform and related work

6.1 Evaluation of the platform

The EMERGO platform has been used in various projects with both internal and

external partners. In seven years, twenty two games were developed, which were used

in education by nearly 4000 students in total. Games were developed for six content

domains, had a broad variety in scenarios and structure and differed both in

complexity and study load, ranging from 2 to 30 hours. Twenty games were single

user games and two games were multi-role games that involved collaboration between

students. The platform currently is being used by five educational institutions.

 We evaluated requirements F1 (intuitive and user-friendly author environment),

F11 (intuitive immersive player environment) and N3 (efficient development of

games) for nine developed games, five running on version 1 of the platform and four

on version 2. All nine games were of the same type as described in section 2. The

teachers developing with version 1 were different from the ones developing with

version 2. Teachers originated from two educational institutions and had a

background in Environmental Sciences. Nadolski et al. [Nadolski, 08] evaluated

version 1 of the platform and found that teachers only had trouble using the Script

component independently (one out of three) and that the Script and Conversations

components were most difficult to use. They also found that students (n = 8) were

very satisfied with the user interface of the platform and with the developed games.

Furthermore they found an average production ratio of 1:25 (1 hour study load costs

25 hours development time) four five developed games, compared with average

production rates of 1:100 and higher found before [Alessi, 01]. Version 2 of the

platform was evaluated in the Skills Labs project (for evaluation results see

http://dspace.ou.nl/handle/1820/2385). Again teachers only had trouble using the

Script component independently (one out of four), and found the Script and

Conversations components most difficult to use. Students (n = 40) were satisfied with

the user interface of the platform. The average production ratio for four developed

games was 1:30. Version 2 was also evaluated regarding quality and studiability, and

effectiveness of developed games. Students (n = 40) judged quality and studiability of

the four developed games as sufficient (three games) or good (one game).

Effectiveness was determined by student’s grades. The average grade was sufficient

to good, only two students out of forty scored insufficient. For one game grades were

compared with grades obtained in classroom education, and were slightly better.

Evaluation of the other requirements is based on our own experiences with the users

of the platform, ourselves included.

Below we discuss if the functional and non-functional requirements were satisfied.

 F1 (intuitive and user-friendly author environment) was partly satisfied. All

teachers could author all components independently, except for the Script

component. The Script and Conversations component were quite difficult to use.

 F2 (multiple game roles) was satisfied, but only used in two games.

 F3 (common reusable and adaptable components) was satisfied. One component

can be used in multiple games and game components can be imported and exported.

http://dspace.ou.nl/handle/1820/2385

The generic component design assures that components can be defined to be

adaptable.

 F4 (several teachers working together on the same game) was satisfied.

 F5 (preview games and game components) was satisfied. It was an indispensable

option while developing games and new platform components.

 F6 (test games) was satisfied. It was an indispensable option for fast development

of games and new platform components.

 F7 (import and export games) was satisfied. It turned out to be very handy for

distribution of games to other platform instances.

 F8 (import and export game components) was satisfied.

 F9 (monitor progress) was satisfied.

 F10 (interfere in a running game) was satisfied. In some games this option was

predesigned in the game scenario. However, the option was mostly used by

administrators to help students who were stuck in a game.

 F11 (intuitive immersive player environment) was satisfied. Students were satisfied

or very satisfied with the player environment.

 F12 (save and persist all student actions) was satisfied. Students almost never lost

data and could always continue a game the next session. A first scientific article

based on the logging data is in preparation [Westera, 14].

 F13 (send in outcomes) was satisfied. Outcomes are sent in as an attachment of an

in-game email.

 F14 (enrich running game with user generated content) was satisfied. It was

implemented for the Resources and Google Maps components.

 F15 (manage platform users) was satisfied.

 F16 (manage game runs) was satisfied.

 F17 (manage game teams) was satisfied.

 F18 (extend with languages) was satisfied. Currently supported languages are

English, Dutch and Spanish.

 F19 (rather easily extend with new components) was satisfied. In version 2 and 3,

the platform was extended with new common components. The generic component

design assures no or very little adjustment of the author environment, although

adjustment of the player environment still is time consuming.

 F20 (extend with skins) was satisfied. In version 3, the platform was expanded with

the ability to support multiple skins. The current platform has three skins and new

skins can be added rather easily.

 N1 (reliable and stable) was satisfied. It is demonstrated by the many games

developed and many students playing them.

 N2 (usable on multiple operating systems) was satisfied. The platform currently

runs on Windows and Linux servers.

 N3 (efficient development and delivery of games) was satisfied by our choice for a

web client, and the abilities to update developed games in case of bugs and to help

students who are stuck. Production ratios are better than before.

 N4 (backward compatible) was satisfied. Games developed seven years ago still run

on the platform.

 N5 (be integrated with institutional infrastructures) was satisfied. The platform was

integrated with the ELO of the Open University to enable single sign-on.

6.2 Related work

During the last decade there were a lot of initiatives to get serious game development

on a higher level, strongly supported by the European Commission.

The ELEKTRA project (2006 - 2008) for instance, was a research project that

focused on bridging the gap between computer science and pedagogy. The project

delivered a 3D game on physics meant to engage youngsters for the subject. In-game

feedback of these youngsters was used to fine tune the game. The game is analogue to

the EMERGO platform in being able to adapt the player environment according to

player progress, but differs on being an offline 3D game and not an online

development and delivery platform of multiple games.

The 80days project (2008 – 2010, http://www.eightydays.eu/) was a follow-up of

the ELEKTRA project and focused on game adaptation to individual learners, their

prior knowledge, abilities, preferences, needs and aims (adaptive personalized

learning). On a micro level by giving feedback or hinting in specific learning

situations, and on a macro level by sequencing and pacing of learning situations

tailored to the individual learner. The project delivered a 3D game on geography

which was developed using the StoryTec framework [Göbel, 08], an authoring tool

for the development of story-based, process-oriented, interactive 3D applications. It

resembles EMERGO in enabling authors to develop games without or with minor

programming skills. The Story Editor within StoryTec has some resemblance with the

Script component of EMERGO in being able to enter conditional transitions within

the game, to go from one scene to another, and to enter actions on content elements.

And both platforms enable adaptive personalized learning. But while StoryTec

focuses on highly graphical oriented 2D/3D games to be developed and played on a

client computer, EMERGO focuses on lesser graphics, use of video and web-based

development and delivery. This different focus is related to different customer

demands for both platforms.

The ImREAL project (2010 – 2013, http://www.imreal-project.eu/), was a

European research project focusing on the development of a suite of learning services

which extract their data from the real world and can be plugged into virtual

environments to augment these environments and enhance self-regulated learning.

The learning services were developed by the participating universities. Two existing

commercial products were extended to make use of these services. In a first use case

an existing role-play simulation environment, developed by EmpowerTheUser

(http://www.etu.ie/), was extended to use services related to cultural variations in

interpersonal communication, to user generated content, to user profiles (extracted

from user activity on the Social Web) and to supporting learners in understanding and

improving how they learn. In a second use case another role-play simulation

environment, developed by Imaginary (http://www.i-maginary.it/en/), was extended

with a story boarding environment for collecting and structuring content for

simulations, and same services as in the first use case. Both commercial simulation

environments require no programming, like is the case with EMERGO, and offer rich

immersive user experiences, but are not freely available. They support web-based

delivery, although it is unclear if all student actions are persisted, but they don’t

support web-based development. It would certainly be interesting to explore if

EMERGO could be extended with the ImREAL learning services.

http://www.eightydays.eu/
http://www.imreal-project.eu/
http://www.etu.ie/
http://www.i-maginary.it/en/

 Another related initiative is the eAdventure project (http://e-adventure.e-ucm.es/),

a research project of Universidad Complutense de Madrid that delivered the

eAdventure authoring tool for the creation of point-and-click adventure games for

educational purposes. Developed games can be exported as SCORM package and

therefore can be integrated with Learning Management Systems, enabling exchange

of adaptation and assessment data. In this respect it is more mature than EMERGO.

eAdventure is more focussed on decision making and influencing or adapting certain

behaviour, while EMERGO focuses on acquiring complex cognitive skills. Games

can be developed on multiple platforms and can be deployed on these platforms and

on the web too, although then not all student actions are persisted. It has an easy-to-

use game editor, which requires no programming, just like EMERGO, but it does not

support multi-role or multi-user games or sharing of content between students.

7 Conclusions and future work

7.1 Conclusions

We demonstrated how to design and develop a generic platform that enables fast and

flexible development and delivery of a wide variety of scenario-based serious games

which enable complex cognitive skills acquisition.

The platform is generic in the sense that it enables a broad variety of game

scenarios to be authored, to be played and to be monitored. It offers a set of common

reusable components a teacher can pick from to develop a game. The components and

their content can be reused in other games. One player environment delivers the

variety of scenarios to students and saves and persist all student actions continuously,

fostering TEL research on all games.

The platform is fast in the sense that teachers can use it mostly independent, can

draw on already developed components and can preview and test a game during

development and from any point in the scenario, which results in more cost-effective

development, as indicated by better production ratios than before. Web-based delivery

assures fast and easy delivery of games, updates of games and the platform itself.

The platform is flexible in the sense that a game can have multiple authors, a

teacher can adjust already deployed games in case of bugs and can interfere in a

running game, and the platform provides tooling to help students who are stuck. The

platform can be extended rather easily with new components and languages, and skins

for the player environment. Developed games can be easily distributed to other

platform instances.

Nineteen out of twenty functional requirements were fully satisfied. Requirement

F1 (intuitive and user-friendly author environment) was partly satisfied. Entering

game script turned out to be too difficult. We could improve its interface, but

scripting still requires more technical skills so probably better could be entered by a

programmer. Another way to improve could be using predefined templates or game

patterns e.g. collaboration scripts (see next subsection). Although requirement F19

(rather easily extend with new components) was satisfied, we expect that extending

the player environment can be improved by constructing it using interface building

blocks based on macros or templates. All non-functional requirements were satisfied.

http://e-adventure.e-ucm.es/

7.2 Future work

Collaboration scripts have been scarcely implemented in serious games so far.

Therefore we have built and evaluated two games using online collaboration

[Hummel, 11; Hummel, 13]. We will use this experience to extend the EMERGO

platform with components that support collaboration. This will involve adding new

components for rating, voting and negotiation, and extending the script component to

enter and handle collaboration script. We also consider integrating an online

conferencing system as an alternative for chat.

We would like to extend the platform with real-time elements (known as

augmented virtuality) like web services for presenting real-time data, real-time video

with non-playing characters met in video, and sensor data for better support. With

regard to the latter option, at the Open University research is done and software is

developed for real time emotion recognition using visual and auditory sensors

[Bahreini, 12]. To enable research on the learning benefits of real time emotion

recognition in serious games, we will integrate this software with the EMERGO

platform, so the player environment can be adjusted according to the student’s

emotions.

We are involved in some projects where the EMERGO platform will be used in

developing countries e.g. Kenia, Colombia. In these countries connectivity is a

problem, so we will make the platform better suitable for low bandwidths. The

platform will buffer game content when sufficient bandwidth is available, to account

for low connectivity later on. We consider developing a mobile client app for the

player environment in case of no connectivity at all. We then could extend the

platform to make use of the capabilities of mobile devices like GPS positioning, and

making pictures, video and audio.

We already experimented with integrating the Unity Web Player and the

EMERGO platform, by playing a Unity game embedded in the platform and

exchanging data between player and platform. The platform then could support

students playing an existing Unity game. We would like to further explore this

promising possibility.

Acknowledgements

We wish to thank SURF foundation for co-funding the development and scaling-up of

the EMERGO platform. We also thank all developers, teachers and students of the

institutions contributing to the initial development and extension of the platform.

References

[Aldrich, 05] Aldrich, C. (2005) Learning by doing: the essential guide to simulations,

computer games, and pedagogy e-learning and other educational experiences. San Francisco,

CA: John Wiley & Sons

[Alessi, 01] Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and

development. Needham, MA: Allyn & Bacon.

[Bahreini, 12] Bahreini, Kiavash, Nadolski, Rob, Qi, Wen, Westera, Wim (2012) FILTWAM -

a Framework for Online Game-Based Communication Skills Training - Using Webcams and

Microphones for Enhancing Learner Support. Proceedings of The 6th European Conference on

Games Based Learning, 39-47

[de Freitas, 10] de Freitas, S., Rebolledo-Mendez, G., Liarokapis, F., Magoulas, G., &

Poulovassilis, A. (2010). Learning as immersive experiences: Using the four-dimensional

framework for designing and evaluating immersive learning experiences in a virtual world.

British Journal of Educational Technology, 41(1), 69–85.

[EMERGO, 13] EMERGO project page. (2013) http://sourceforge.net/projects/emergo/

[Göbel, 08] Göbel, S., Salvatore, L., Konrad, R., Mehm, F. (2008). A Digital Storytelling

Platform for the Authoring and Experiencing of Interactive and Non-linear Stories. In

Spierling, U., Cavazza, M., Peinado, F., Aylett, R., Swartjes, I., Kudenko, D., Young, R.,

Tychsen, A., Pizzi, D., El-Nasr, M. (eds.) Interactive Storytelling 2008. LNCS, vol. 5334, pp.

325-328. Springer, Berlin / Heidelberg (2008)

[Herrington, 07] Herrington, J., Reeves, T.C., and Oliver, R. (2007). Immersive learning

technologies: Realism and online authentic learning. Journal of Computing in Higher

Education. 19 (1), 65-84.

[Hummel, 11] Hummel, H. G. K., Van Houcke, J., Nadolski, R. J., Van der Hiele, T., Kurvers,

H., & Löhr, A. (2011). Scripted collaboration in serious gaming for complex learning: Effects

of multiple perspectives when acquiring water management skills. British Journal of

Educational Technology, 42(6), 1029–1041.

[Hummel, 13] Hummel, H., Geerts, W., Slootmaker, A., Kuipers, D., & Westera, W. (2013).

Collaboration scripts for mastership skills: online game about classroom dilemmas in teacher

education. Interactive Learning Environments, 1–13.

[IMS, 07] IMS Content Packaging Information Model. Version 1.2 Final Specification.

Retrieved March 01, 2007, from

http://www.imsglobal.org/content/packaging/cpv1p2pd2/imscp_infov1p2pd2.html

[Nadolski, 08] Nadolski, R.J., Hummel, H.G.K., Van den Brink, H.J., Hoefakker, R.,

Slootmaker, A., Kurvers, H., Storm, J. (2008). EMERGO: methodology and toolkit for efficient

development of serious games in higher education. Simulation & Gaming 39(3), 338-352.

[Nadolski, 12] Nadolski, R. J., Hummel, H. G. K., Slootmaker, A., & Van der Vegt, W. (2012).

Architectures for Developing Multiuser, Immersive Learning Scenarios. Simulation & Gaming,

43(6), 825–852.

[Spring framework, 13] Spring framework. (2013) http://www.springsource.org/

[Westera, 01] Westera, W. (2001). Competences in education: a confusion of tongues. Journal

of Curriculum Studies, 33(1), 75–88.

[Westera, 08] Westera, W., Nadolski, R.J., Hummel, H.G.K., & Wopereis, I. (2008). Serious

Games for Higher Education: a Framework for Reducing Design Complexity. Journal of

Computer-Assisted Learning, 24(5), 420–432.

http://sourceforge.net/projects/emergo/
http://www.imsglobal.org/content/packaging/cpv1p2pd2/imscp_infov1p2pd2.html
http://www.springsource.org/

[Westera, 14] Westera, W., Nadolski, R.J., Hummel, H.G.K. Serious Gaming Analytics: What

Students´ Log Files Tell Us about Gaming and Learning, in preparation, 2014.

[ZK framework, 13] ZK framework (2013) http://www.zkoss.org/

http://www.zkoss.org/

