
Open Universiteit
www.ou.nl

Commentary on Chapter 7:

Citation for published version (APA):

Sloep, P. (2006). Commentary on Chapter 7: Reusable Educational Software: a basis for generic e-learning
tasks. Journal of Interactive Media in Education, 2003(1). https://doi.org/10.5334/2003-1-reuse-10

DOI:
10.5334/2003-1-reuse-10

Document status and date:
Published: 14/09/2006

Document Version:
Peer reviewed version

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09 Sep. 2021

https://doi.org/10.5334/2003-1-reuse-10
https://doi.org/10.5334/2003-1-reuse-10
https://research.ou.nl/en/publications/c8100d57-bc13-413a-8b97-9d8f3782eece

Chapter 7: Reusable Educational Software: a basis for generic learning activities

Diana Laurillard and Patrick McAndrew

Commentary by Peter Sloep

Educational Expertise Centre
Open University of the Netherlands

and
Fontys University of Professional Education

Peter.Sloep@ou.nl
P.Sloep@fontys.nl

Summary

The authors of Chapter 7 advocate the use of reusable software. They adduce a
number of reasons, the most important one being that reusable software provides a
perfect foundation for generic learning activities. In this commentary I do not
challenge the basic soundness of their arguments. Rather, I try to argue that their
approach should be taken one step further, from generic learning activities to generic
educational designs, and from design specific software to design agnostic software.

Introduction

Laurillard and McAndrew have written a very enlightening chapter on the reuse of
learning materials. It is set against the backdrop of Laurillard's well-known
Conversational Framework [1]. Fundamental to the argument is that our current
teaching practices must address two challenges. First, technological innovations
deeply influence our present society - education and training not exempted. They
offer all kinds of opportunities for teaching. But to seize them, our academics – and I
presume teachers in general - have to possess an innovative attitude and certain
technological skills. Second, the traditional transmission model of teaching that we
have practiced for so many years, no longer answers to the demands of our
knowledge-based society (But see [2]). We need more sophisticated models. And, of
course, technological innovation, it is argued, should help us in building these
models. (See also [3].)

A problem is that - for lack of training, time, or interest - our academics-teachers are
ill equipped to participate in this transition, let alone lead it. However, leaving it to
support staff and publishers would be a recipe for disaster: "what we teach is
inextricably embedded in how we teach", Laurillard and McAndrew quite correctly
argue. So how do we make sure our teaching staff is up to the daunting task of
implementing the new pedagogies, whilst making use of the new technologies and,
not unimportantly, avoiding an increase in spending on education?

Laurillard and McAndrew offer a solution, at the core of which lie what they refer to
as 'generic learning activities'. These learning activities are construed according to
Laurillard's Conversational Framework and subsequently embedded in software. The
Conversational Framework ensures that modern, constructivist educational
conceptions find their way into the learning activities; using software as their matrix
guarantees access to modern learning technologies, for instance multimedia

capabilities, but also Internet driven facilities such as web resources and groupware.
Finally, by making the learning activities generic, the activities have the quality of
templates that can be reused. Not only does this cut costs, it also allows the less
technically adroit teacher to create both technically sophisticated and educationally
innovative learning activities.

Comments

Although one may question the feasibility of their approach, this is not a line of
argument I would like to pursue. I believe their approach to be basically sound. A
focus on interactive activities rather than content objects makes perfect sense, as it
is through dialogue - if only internal dialogue - that we learn. And similarly, using
software as a carrier for technological innovation seems very plausible in this day
and age. So far, so good. But building software demands expertise that the average
teacher does not possess. Nor is it feasible to train teachers to acquire this expertise,
in addition to the subject matter expertise and pedagogical expertise they also need.
Customisable software, easily customisable software to be more specific, would seem
to meet the needs of modern, innovative teaching and the capabilities of the modern
teacher half way.

The authors discuss a number of examples of this approach. I myself have pursued
this avenue, when attempting to create templates for authentic learning in a
simulated, web-based enterprise [4]. The flaws associated with the approach
reported by Laurillard and McAndrew sound familiar: the adapted product invariably
seems to be of a lesser pedagogical quality than the original from which the template
originated (or, as was my admittedly anecdotal experience, one spends so much
time on avoiding these that the benefits of a template approach become vanishingly
small). To this, I would want to add another problem. The software template, generic
though it may be, is also specific in the sense that it harbours one specific
pedagogical approach only. This means that new software needs to be developed for
each didactic variant. What if it were possible to build software that would be able to
support not only various instantiations of a particularly pedagogy but also a variety
of different pedagogies? That would mean a dramatic extension to the approach
advocated by Laurillard and McAndrew. It would in principle also lower the 'unit cost'
even further. The crucial question of course is whether this can be done without
significantly degrading quality. I believe it can, and in the next section I offer a
sketchy explanation of how it may be accomplished. I'll call this section ‘generic
pedagogies’ to indicate my intention to expand the authors' notion of generic
learning activities.

Generic pedagogies

Software is written in powerful yet uninviting programming languages. Endowing
software solutions with a modicum of flexibility therefore cannot be achieved by
giving users access to the programming language itself. The software itself must
generate in its user-interface some affordances, some ‘dials and knobs’ that one may
turn in order to change the user experience. In this particular case, it is the teacher
who does the turning and the student whose experience is altered. Although this
works, the software developer sets the limits of change. As a software designer
develops the software to suit a particular educational design, turning the knobs and

dials may result in a different suite of learning activities, but hardly in a different
pedagogy or didactic scenario.

The trick is to not take a particular design as a starting point for generalisation. One
may accomplish this by developing a generic language with which any educational
design - along with the collection of learning activities modelled according to it - can
be described. This language is generic in the sense that it covers all pedagogies, but
specific in the sense that it covers pedagogies only (and not, say, computer games).
So it is much less powerful than a full-blown programming language, but still quite
powerful in the context of learning. Having such a language, one still needs to
develop software that can ‘understand’ it and render the educational events captured
by it through a user interface. Importantly, one piece of software in principle suffices
to support many different pedagogies. Any collection of learning (and support)
activities, modelled according to any pedagogy or learning design can be accessed by
students and teachers. This language actually exists. It is the IMS Learning Design
Specification, which was made public in early 2003 [5]. Players (software
applications) for it do not exist yet, although various implementation projects are
underway. So we have a technological innovation that supports the much-needed
educational innovation, apparently at a significantly decreased unit cost.

Qualms

But what about the ease of use that Laurillard and McAndrew rightly stress so much
in their chapter? And what about the quality of the experience offered. On both
accounts, the verdict is still out.

Although Learning Design’s modelling language is significantly simpler than a full-
blown programming language, it is still too hard for most teachers. This may be
remedied by creating another piece of software, a Learning Design editor. The
situation may be compared to web editing in html. In the early days, html was
hand-coded in generic text editors. Subsequently, various generations of dedicated
html editors were developed and now everybody can put up a decent website
(although for really powerful applications a text editor still is an indispensable tool).
Something similar should happen with respect to Learning Design. Currently, only
generic text editors exist. Ultimately, it is to be hoped that dedicated LD editors will
be built that are powerful yet sufficiently simple to be used extensively by teachers.
Since LD is a public and open specification, perhaps a range of editors will be
developed, from simple ones that are geared towards one particular learning design
each, to complex ones that are template driven and capable of addressing a whole
raft of different designs.

As already mentioned, no software capable of playing Learning Design exists at
present. However, there is some experience with software capable of running EML,
the educational modelling language developed by the Open University of the
Netherlands [6] after which the Learning Design specification was modelled. This
experience does not suggest that being exposed to an almost identical user interface
across different pedagogies decisively influences the student’s perception of quality.
I’m careful in my wording here, quite on purpose, as little to no systematic research
has been published on this subject. What we do know, of course, is that the design
of the user interface itself is a decisive factor; but that is a different matter. [7]

Conclusion

In conclusion, the generic learning activity approach sketched by Laurillard and
McAndrew is very much in line with the ideas behind the IMS Learning Design
Specification, it would seem. Even better, although I say this with some hesitation
for lack of rigorous empirical evidence, the goals Laurillard and McAndrew attempt to
achieve very likely stand to profit from a Learning Design implementation. I would
suggest transforming the notion of a generic learning activity into that of an LD-
template. Such a template represents a particular didactic approach or scenario and
may be filled with content – be instantiated – thus resulting in a suit of concrete
learning activities. We may dispense with design specific software and rely on
generic LD players.

References

[1] Laurillard, D. (2003) Rethinking University Teaching: A Conversational
Framework for the Effective Use of Learning Technologies (2nd ed.) London,
Routledge Falmer.

[2] Dai Griffith and Rocio Garcia in their commentary on Koper’s Chapter 5
(Combining re-Usable Learning Resources to Pedagogical Purposeful Units of
Learning) point to the pervasivess of a conduit metaphor in our language on
knowledge acquisition and exchange. This suggest, quite intriguingly, that perhaps
we never actually taught according to a transmission model, but by the metaphor
were misguided in thinking that we actually did.

[3] Sloep, P.B. (submitted) Learning Objects: the Answer to the Knowledge
Economy's Predicament?

[4] Westera, W., P.B.Sloep, J.Gerrissen (2000) The Design of the Virtual Company;
Synergism of Learning and Working in a Networked Environment. Innovations in
Education and Training International 37 (1), pp. 24-33.

[5] IMS Learning Design Specification [http://www.imsglobal.org/learningdesign/
The language I’m referring to really is the xml-binding of the specification’s
information model.

[6] see http://eml.ou.nl

[7] Learning design also possess a plug-in capability. The specification contains a
services element that allows one to hook up, say, a groupware product to the LD
player which via the services element will be seeded with runtime information. Via
the property mechanism information may also be fed back to the LD player. This
way, the user experience may be enriched significantly, whilst, from a design
perspective, maintaining the integrity of runtime environment. See the LD
specification [5] for more details.

