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ABSTRACT. For operators defined in function spaces, the algebraic
interpolation formula of Hermite type is constructed. The interpolati-
on formula of similar type, containing the value of the Gateaux di-
fferential of an arbitrary order, is constructed for operators on the set
of matrices. Matrix analogues of the Leibniz formula are obtained.
The formula for approximate calculation of the Gateaux differential
of an arbitrary order of the matrix argument function is constructed.
Based on the matrix interpolation formula of the Hermite type, the
approximate method for solving the Cauchy problem for the matrix-
differential equation is obtained. The illustrative example of approxi-
mate solving the Cauchy problem for a first-order matrix-differential
equation is constructed. A parametric family of trigonometric matrix
interpolation polynomials of Hermite-Birkhoff type is constructed
and investigated.
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AHoTALId. s oneparopis, 3aganux B (PYHKIIOHAJBHUX IIPOCTO-
pax, MobyI0BaHO aaredOpaidHy iHTepHoNAIiiiny HopMyIy epMiTOBO-
ro tuiy. [HTeprossniitny GpopMy/ly aHAJOriIHOrO THUITY, IO MICTUTH
sHaveHHs qudepen iana ['aTo q0BIIEHONO TOPSIIKY, MTOOYI0BAHO It
orepaTopiB Ha MHOXKUHI MaTpuilb. OTPUMAaHO MATPUIHI aHATIOTH (DOP-
mymu Jleitbuina. Ilobymosamo dopmysny HAOIMKEHOrO OOYUCIEHHS
nudepentiaia ['aTo T0BITBHOTO MOPAAKY Bif QyHKIN] MATPUIHOTO
aprymenty. Ha ocHoBi maTpu4Hnoi iHTeprosnsaniitnol dopmMynu epmi-
TOBOI'O THUILy OTPUMAHO HaOJIMXKEHUIT MeTo/ po3B’si3aHHst 3a1a4i Ko-
i st MaTPUIHO-IudepeHIiaabHoro piBasiHHs. [loOymoBano ismo-
CTPATUBHUI IPUKJIA] HAOJIM2KEHOTO O3B’ a3yBanus 3a1a4i Kol 1yis
MaTPUIHO-TU(EPEHITATHLHOTO PIBHAHHS TEPITOTO TOopsaaky. [1obymo-
BAHO Ta JOCJi/P)KEHO IlapaMeTpPUYHEe CiIMefICTBO TPUIOHOMETPUUHUX
MaTPUYHUX IHTEPIOJIANIHHNX MHOrO4wIeHiB Epmita-Bipkroda.
KJ/II04YOBI CJIOBA: ¥Y3araabHeHe inTepnomioBannsa Epmita-Bipkroda,
mudepentian [aro, dopmysta Jleitbnina, pyHKIS MATPUIHOTO apry-
MeHTY, 3aada Kot 11s MaTpuaHo-1ndepeHiaabHOr0 piBHAHHS.

INTRODUCTION

The fundamentals of the theory of operator interpolation are given in [1,2].
Here, in particular, the problem of operator interpolation of Hermite-Birkhoff
type is investigated. The complexity of this problem lies in the fact that even
with different interpolation nodes it can either have a non-unique solution, or do
not have a solution at all. Some basics of matrix interpolation are also contained
in [1,2]. The theory of matrix interpolation is quite fully given in [3]. The
papers [4-6| are devoted to the construction and research of Hermite-Birkhoff
generalized matrix interpolation formulas for concrete Chebyshev systems.

In the given work the interpolation formulas for functions of a scalar argument,
constructed and investigated in [7,8|, are summarized to the case of operators
defined in functional spaces and on the set of matrices. When proving the
theorems on the fulfillment of interpolation conditions for the respective polyno-
mials, matrix analogues of the Leibniz formula are used, which are also obtained
in this work. The parametric family of trigonometric matrix Hermite-Birkhoff
polynomials is constructed.

1. ALGEBRAIC INTERPOLATION

Let X be a certain given set of functions z = z(s), defined on the segment
[a,b], Y = {y(s,t),t eT C RN} — some function space where T is a gi-
ven numerical set of N-dimensional space RY, and let F(z) = F(t;x(s)) be
an operator mapping X into Y. Let’s assume that in the various elements
zp = xk(s) (k= 0,1,...,n) of the set X, such that zx(s) # x,(s) on [a,b],
the values F'(zy) of the operator F(x), z € X are known. We choose in the set
X functions hq(s), ha(s), ..., hpt1(s) such that hi(s)ha(s) - hny1(s) # 0 on
[a, b]. Let the value Dy, +1(F; xp41) of the operator of the form

Dn+1F(.CU) = 5”+1F[x; hlhg cee hn+1],
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where 6" F[x; hihg - - - hyy1] is the Gateaux differential of the order n + 1 of
the operator F'(x) at the point x in the directions hy, hg, ..., hyt1, be known
in the node ;11 = zp+1(s) € X.

We now consider further the operator polynomials P,+1 : X — Y of the

form
n+1

Posi(z) = Y ay(t,s)a"(s), (1)
v=0

where a,(t, s) are some functions of the variables ¢ and s.
We introduce the polynomials [, x(x) = (x — x0)(x — 1) - (x — 2p—1) %
X (@ — T41) - (2 — B0), wn(@) = (@ — 20)(z — 21) -+~ (@ — 2).

Theorem 1. The interpolation polynomial

7 wn(m)Dn-&—lF(fcn—s—l)
Ln = Ln )
#@) = Lal®) + o b s

where
n
L o () F' ()
Lo(z) =S 2Tk P
satisfies the interpolation conditions (k =0,1,...,n)
Lny1(zx) = F(z1); Dppa (INJnH; $n+1) = Dypt1(F; Tnt1). (3)

The formula (2) is exact for the operator polynomials of the type (1) of the
degree not higher than n + 1.

Proof. Since Iy, (z;) = Okilnk(zk), where Oy; is the Kronecker symbol, and
wp(zg) =0, k,i=0,1,...,n, then the fulfillment of the first group of interpolati-
on conditions in (3) is obvious.

Since 6" P,[x;hihy---hyi1] = 0, where P,(z) is an arbitrary operator
algebraic polynomial of a degree not higher than n, then

" L[ hihy - - hyi] = 0.

It is also obvious that 6" tw,[z; hihs - - hpy1] = (n + 1)hihg - - - hyyq. Taking
into account the structure of the polynomial (2), we will obtain that the last
condition in (3) also holds.

We now prove the invariance of the formula (2) with respect to the polynomi-
als of the form (1) of the degree not higher than n+ 1. If F'(z) = P,(z), where
P, (z) is a polynomial of the form (1) of the degree not higher than n, then as is
known in |2, p. 361], L,(P,; x) = P,(x). And since in this case Dy41P,(x) =
= 0, then Ly, 1(Pn;x) = P,(z). Let further suppose F(z) = P,yi(x) =
= 2"t (s), then Dn+1]3n+1(:c) = (n+ 1)!hihg - hpt1, and

Lyi1(Ppy1;2) = Ly (Pry1; @) + we(x).

By analogy with to the scalar case [7, p. 6], En+1 (]5n+1; x) = ]5n+1(x).

Thus, the formula (2) is exact for operator polynomials of the form (1) of the
degree not higher than n + 1. O
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We now consider the problem of interpolating operators on the set of matri-
ces. Let X be the set of functional or stationary square matrices A = A(t),
t € T C R. Let’s introduce differential operator of type

_FE L 4 aex, (4)

D"F(A
(4) dz" |,_4 dz

where F'(z) is the entire function.

The value of the operator (4) for the matrix function of the type By F'(A)Ba,
where B; and Bs are some fixed matrices from X, is calculated by the formula
D™ (B1F(A)By) = B1D"F(A)Bs. The operator D, which is included in (4), for
the function of the type F(cA+ B), where ¢ € C, and B is a certain fixed matrix
of X, defined by the equality DF(cA+B) = cF'(2)|,_.4, p, and for the product
U(A)V(A) by the formula D (U(A)V(A)) = DU(A)V(A)+U(A)DV(A). In the
last expression, it is important in what order the multipliers in matrix products
are taken. For example, D (V(A)U(A)) = DV(A)U(A) + V(A)DU(A), and
in the general case, D (U(A)V(A)) # D (V(A)U(A)). Similarly, the values of
higher-order operators are calculated, as well as operators from the products of
functions with a number of multipliers more than two.

In mathematical analysis, the Leibniz formula for the derivative of n-th order
(n € N) of the product of two scalar functions is known [9]

n!

(u(z) -v(z))(") = kZ::OC,Ifu("_k)(z)v(k)(z), where Clrf = m, (5)

which holds if the functions u(z) and v(z) are n times differentiable at the
point z € C. We generalize this formula to the case of functions of the matrix
argument and operator of the type (4).

Theorem 2. If the functions U(z) and V (2) (z € C) are differentiable n times,
then the formula

D™ (U(A)V(A)) = i CFDFU(A) D *V(A), Aec X, (6)
k=0

1s valid.

Proof. We apply the method of mathematical induction. When n = 1 we will
have

DY (U(A)V(A)) = DU(A)V(A) +U(A)DV(A) =
= CYD'U(A)V(A) + CIU(A)D'V (A).
Let’s assume that the formula (6) is exact for n = k. We prove that it also
holds for n =k + 1.

DFL(U(AV(A) =D

> ChD'U(A) DRV (A)
k=0

= Zn: cy [Dk“U(A)D"""V(A) + DkU(A)D”—’fHV(A)} =
k=0
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= COD"U(A)D" IV (4) + 3 (ChH + CF) DRU(A) D"V (4)+

k=1
+Cm DU (A) DOV (A).
Since CA~t+Ck=CF, |, CO=CY,, =1, Cr =Clf] =1, then
n+1
DY U(A)V(A) =) CF DFUA)D ™V (A).
k=0

We now introduce the differential operator of the form

Dypi1F(A) = D1 F(A; Hyy 1 Hyy -+ Hy) = 6" F[A; Hy (1 H,y, - Hi),  (7)

where 8"t F[A; H,,1H, --- Hy] is Gateaux differential of order n + 1 at the
p~oint A € X in the directions Hiy, Ho,..., H,11 from X. We assume that
DyF(A) = F(A).

Theorem 3. If the functions U(A) and V(A) are Gateaux differentiable n
times at the point A € X, then the formula

Dn (U(A)V(A)7 H,Hy 1--- Hl) =

= Z Z [)kU(A; Hik T Hil)Dn—k’V(A; Hjnkajnfkfl T Hjl) (8)

k=0 i1,...,ik
Jlseedn—k
holds true.
Here, for each value of k (0 < k < n) the summation is over for all disjoint
sets (i1,12,...,1k) and (§1,72, .- Jn—k) Such that 1 < iy <o < ... < i < n;

1<n<p<...<jpkr<n

Proof. We use, as in the proof of theorem 2, the method of mathematical
induction. If n = 1 by the definition of the Gateaux differential we will have

~ UA+ X H)V(A+ \H
Dy (UIAYV (A): 1) = S[U(AV (4): 1] = i (TEALATEA AT
A—=0 A
U(A)V(A)> . (U(A+)\H1)V(A+)\H1) —U(A)V(A+ \Hy)
———— | = lim +
A A—0 A
UA)V(A+ X H,) -UA)V(A)
A
= D1U(A; H1)V(A) + U(A)D1V(4; Hy). (9)
Hereinafter the expression of the form ¢ [U(A)V (A); Hi] should be understood
as the Gateaux differential dW[A; H;|, respectively, of the function W(A) =
=U(A)V(A) at the point A in the direction Hj.
Let’s suppose that formula (8) is true when n = m. We show that it holds
for n = m + 1. From (7)-(9) we have

Dunsr (U(AYV(A); Hypy - Hy) =6 [[)m (U(AV (A); Hyy -+ Hy) 3 Hopyr| =

N ) — SUA: Hi]V(A) + U(A)SV]A; Hy] =
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n
=y > (Dk+1U(A; Hyy1Hi, - Hiy) DoV (A5 H, -+ Hj, ) +
E=0 i1, ik
jlr--vjn—k

+DyU (A; Hyy -+ Hy)) D1V (A; Hy Hj, - "Hjl)) =

n+1
_Z Z DkU(A H, - Hiy )Dn+1 kV(A Hj 1o Hjl)'

Ulyensll
.717 7]n+1 k

Here the summation is carried out in the same way as in the formulation
of the theorem, while 1 < i1 < i < ... < ix <n+ 1L 1< j1 <jo<...<
<Jnt1-k <n+ 1 O

In the special case, for example, for n = 3 the formula (8) has the form
D3 (U(A)V(A); HsHyHy) = DsU (A; HsHaH1) V(A) 4+ DoU (A; HsHa) X
x D1V (A; Hy) + DoU (A; H3Hy) D1V (A; Hy) + DU (A; HyHy) x
><D1V (A, Hg) + DlU (A, Hl) DQV (A, H3H2) + DlU (A, HQ) X
x DoV (A; HsHy) + DyU (A; Hs) DoV (A; HyHy) + U(A)D3V (A; HsHoHy) .

We suppose that in the elements A () of the set X such that A (t)—A,(t) are
invertible matrices, t € T', k,v = 0,1,...,n, k # v, the values of the operator
F(A) are known, as well as at the node A;11(t) the value Dy, F(Api1) =
= D F(Api1; HypHp—1 - - - Hy) of the operator (7) from F(A), where 1 < m <
< n, H, € X (k = 1,2,...,m) is known. Let’s introduce the notations
wA)=(A—-A)(A—A1)--- (A=A, x(A) = (A—Ay)- - (A— Ap_1)(A—

—Api1) (A= Ay), Be = Dinli(Anir), Ay = BrAni1+ B, " Y. Dinali(Angr;
=1

Hy - Hig Hioy -+ Hy)ByH; (k= 0,1,...,n). We will assume that the matri-
ces By, lx(Ag), BxAr — A (k=0,1,...,n) and D,,w(A,+1) are invertible.

Theorem 4. The matriz polynomial of the degree not higher than n + 1

~ ~ -1

. -1 .
+w(A) [me(An_,_l)} D F(Apy1) (10)
satisfies the interpolation conditions
En+1(Ak) = F(Ak) (k = 07 17 B TL); Dmf/n—l—l(An-i-l) = DmF(An-i-l) (11)

Proof. Since I (A;) = Okilp(Ax) (k,i = 0,1,...,n), where d; is the Kronecker
symbol, and w(Ag) = 0 for the same values of k, then the first group of the
conditions in (11) is satisfied. By the formula (8)

D,, (lk(A)(BkA A Hyy H1> = Donlp(A; Hyy -+ Hy ) (BrA — Ag)+

+ZDm Vk(As Hy -+ Hig1 Hy oy -« Hy) Dy (BrA — Ag; H;).
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Due to the fact that Dy (BrA — Ay H;) = ByH;, then for A = A, 11

D (lk(A)(BkA — A Hyy - Hl)’ = By(ByAns1 — A+

A=An11
m ~
+ Z Dmfllk(A; Hy - -Hig1Hiq--- Hl)BkHZ =0.
=1

Taking into account the structure of the formula (10), we will obtain that
the last condition in equation (11) also holds. U

Using the interpolation polynomial (10), we can construct a formula for
approximate calculation of the Gateaux differential of the m-th (1 < m < n)
order from the function of the matrix argument F'(A) by its values at the nodes
Ag, Ay, ..., Ay. Indeed, the relation

i . L oq-1
F(A) =) I(A)(BrA - Ay) [lk(Ak)(BkAk —Ap)|  F(Ap)+
k=0

+00(A) [Diol(Ans)| T Do F(Ans1) + Ra(F; A),

where R, (F;A) is the remainder term of the formula (10), holds true. Then,
expressing from the last equality D, F/(A,+1), we will have

D F(Apy1) = Dypw(Apy1)w ™ H(A) (F(A) =) Ik(A)(BrA — Ag)x
k=0

X lk(Ak)(BkAk — Ak)} - F(Ak) — Rn(F; A)) . (12)

Discarding in (12) the remainder term R, (F'; A) of the formula (10), we will
obtain the required approximate formula for calculating the Gateaux differential

0™ F[A; Hy Hyp oy -+ - Hy) 22 Dio(Apt Jw ™ (A) %

n - _o7-1
X <F(A) - Zlk(A)(BkA — Ag) |I(Ag)(Br Ay — Ak)} F(Ak)> . (13)
k=0

Here, the matrix A must be such that the matrices entering into the formula
are invertible.

2. THE SOLVING MATRIX-DIFFERENTIAL EQUATIONS
Let X be the set of square stationary matrices of fixed size. We consider the
matrix equation containing the first-order Gateaux differential of the matrix
function
SU[A;H] = F(U,A), U(Ag) =Uy, A H € X, (14)
where U(A) is a function of the matrix argument, F' is some generally non-

linear function of two arguments, dU[A; H] is the Gateaux differential at the
point A in the direction H satisfying the specified in (14) initial condition.
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For the approximate solving the Cauchy problem (14), we use the formula
(13) for approximating the Gateaux differential of the matrix argument functi-
on. In our case it takes the form

SU[A; H] = dw[A; Hlw ™ (Ant1)(U(Apy1)—

n - L oq-1
= l(Ani1)(BeAn1 — Ar) |le(A)(BrAr — Ap) | U(Ap)), (15)
k=0
where By = Bp(A) = dli[A; H], Ak = Ak(A) = Bp(A)A + B]:l(A)lk(A)X
x Bp(A)H. Here Ag, Ay, ..., A, are the matrices from X such that the inverse
matrices in (15) exists.
Substituting (15) into (14), we obtain

5&][_/4, H]W_I(An+1) (Yn+1 — Z lk(An+1)(BkAn+1 — Ak)x

k=0
L oq-1
X | Uk (Ak) (Br Ay — Ak)} Yk) =F(Y,A), Yo = U, (16)
where Yy, Y1, ..., Y41 is approximate solution of the problem (14) in the matrix
nodes Ag, A1,...,Aps1. If now we substitute the matrix nodes Ag

(k=1,2,...,n+ 1) instead of A in (16), then we obtain the system (in the
general case, non-linear) matrix equations. Solving this system by some direct
or iterative method, we obtain the required approximate solution of the problem
(14).

Example. Let X be the set of square matrices of size 2. We consider the Cauchy
problem for the function of the matrix variable U(A), A € X

SU[A; H] = 3U(A) + 24, U(Ao) = Uy, (17)
0.312 0.467 0.316 0.338 0.021 0.43
where 4o = <0.457 0.02)’ o = <0.23 0.002)’ H = <0.405 0.223)'
. . _ (011 0.032 ~ (0.004 0.085
Let’s introduce the matrix nodes A; = (0.223 0.155>, Ay = < 0.5 0.305>,
A, (0234 0.028)  _ (0.051 0.291
37102 0004) 7 \0.176 0.498)

For the approximate solving of the problem (14) we use the formula (16) for
n = 3. We construct a system of matrix equations. In this case, it is linear. We
have

3
0.316 0.338 ) —1
YE) = U() = (0'23 0.002> s 5w[Ai,H]w (A4) <Y4 — kz_olk(A4) X

X (Bk(Ai)A4 - Ak(Ai)) [lk:(Ak) (Bk(Ai)Ak - zzlk(Ai))] - Yk;) =

=3Y; +24;, i =1,2,3,4. (18)
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Let’s present numerically the system of the matrix equations (18) to within
3 significant digits to determine the unknowns Yg, Y1, Y3, Y5, Yy

Yo = Uy, — <0.992 0.186> Yo <292 302) Vi 4 <0.142 4.05) Yot

0.180 0.0380 47.5 51.9 0.268 6.00
(b e (8 e (0 o).
(2% ) (2 v (28 e
S e (e () o
(2 2t (2 48w (B0 20

N —102 =347\ (712 120, _ (0.468 0.056
1.20 853 )73 1.92 275) 4=\ 04 0.008)°

0.149  0.662 230 340 2.60  3.26
( Joe (G S)rie (B ) s

—0.286 —0.975 —363 —539 —1.86 —2.36
—0.991  0.424 ) o, ~144 156\ _ (0.102 0.582
Tlomr —0138) 3t 150 212 )%= 0352 099"

The system of the matrix equations (19) can be written element-by-element,
having obtained a system of 20 linear algebraic equations with respect to 20
unknowns (elements of matrices Yy, Y1, Y2, Y3, Ys). Immediately excluding Yy
from the remaining matrix equations in (19), we will obtain the system of 16
linear algebraic equations that can be solved, for example, by the Gauss method.
According to this method, the solution of the system (19) has the form

0.00221  0.00618 Vi — —0.0393 0.00504
—0.00177 —0.00416) " "2~ \ 0.0264 —0.0223)"°

Y3:< 0.133  0.132 > Y, — <—0.171 —O.546>
—0.0130 —0.0395 )’ 0.148 0455 /-

The solution of the problem (17) obtained in the matrix nodes can be
restored using the matrix interpolation formula [2, p. 459] of the form L,o(A) =

= > (A1 (Ag)F(Ay), where, as before, Ij,(4) = (A — Ag) -+ (A — Ag_1)x
k=0

Yo = U, Y1—<

X(A—Agy1) - (A—A,) (k=0,1,...,n), satisfying the interpolation condi-
tions Lyno(Ag) = F(Ag) for £ = 0,1,...,n. In our case, n = 4, F(A) = Yj
(k=0,1,2,3,4) and U(A) = Y(A) = Ly o(A).

We introduce the matrices of the form A; = (4;_1 +A;)/2 (i = 1,2,3,4) and
define the norms of the residual matrices between the left and right sides of
the matrix-differential equation of the problem (14). We calculate the Gateaux
differential 6Y[A; H] = §L4po[A; H] by the known [10] formula 0Y [Aj; H| =
— tim (A1 [Y(A, + AH) - Y(4)]}.

We denote by R; = ||6Y [A;; H] —3Y (A;) — 2A;]|2, i = 1,2,3,4, where ||-[|2
is the spectral norm of the corresponding matrix [11]. In our case, these norms
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are equal to R; = 0.699, Ry = 0.528, R3 = 0.959, R4 = 0.250. The numerical
experiment shows that the discrepancy between the left and right sides of the
equation (14) is small, however, the accuracy of the approximation is not high.
To obtain a higher accuracy of the solution it is necessary to involve more nodes
or to use other methods of approximating the matrix-differential operator.

Analogous methods for solving matrix-differential equations can be obtained
using the formulas of trigonometric, exponential, and other types of matrix
generalized Hermite—Birkhoff interpolation.

3. TRIGONOMETRIC INTERPOLATION

In [7] for 2m-periodic scalar functions the parametric family of trigonometric
interpolation polynomials of degree not higher than n 4+ 1 of the form

020, () Doy (f; 25)

Doyt1 (QZfl; xj)

T8 (2) = Hp(z) +

n+1 5 (20)

T\ 2n T — Tp

where szl(x) = <C¥Sing + [ cos 5) sin 5 a? + B2 £ 0, Hy(z) is a
k=0

trigonometric interpolation polynomial of degree not higher than n of Lagrange
type, and the differential operator Day+1f(x) is defined by the formula

a
dz’

Dani1 f(x) = (D* +n?)--- (D* +1°)Df(x), D =
is constructed. The polynomial (20) satisfies the interpolation conditions

T,?jr’gl(ﬂﬁi) = f(z;) (i=0,1,...,2n); Dzml(ﬂ?ﬁ;%) = Dony1(f5z5).

We generalize the formula (20) in the case of functions of the matrix argument.
Let X be the set of square matrices, F(z) be an entire 27-periodic functi-
on, z € C. In different matrix nodes A; such that the matrices Ay — A,
(k,v = 0,1,...,2n) are invertible, the values F(A) of the function F(A),
A € X, are known. The value Da,41(F'; Aj) of the matrix-differential operator

d
Don1F(A) = (D* 4+ n?)---(D*+1*)DF(2)|,_,, D = - (21)
is also known in one of the nodes A;.
Let’s consider the differential operator of even order
DonF(A) = (D*+ (n—1)%)--- (D> +1*) D*F(2)|__, - (22)

The values of the operator for functions of the forms By F(A)Bs, F(cA + B)
and U(A)V(A) are calculated similarly, as are the values of the operator (4)
for functions of this type. We assume that DoF'(A) = F(A).

Let’s generalize the Leibniz formula (5) to the case of functions of the matrix
argument, and when the differential operators (21) and (22) are taken instead
of the derivatives. Is valid
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Theorem 5. If the functions U(z) and V(z) (z € C) are differentiable m times,
then the formula

Dy (U(A)V(A)) = Dapi1 (U(A)V(A)) =D CF Dy U(A)DiV (A),  (23)
k=0

Dy (U(A)V(A)) = Dapia (U(A)V(A)) = > Cpi Dy U(A)DyV (A)—
k=0

-3
-1
_m(m4) Y ChoDp 2U(A)DyV(A), A€ X, p=0,1,...
k=1,3,...
18 valid.

The proof of the theorem 5 repeats the proof of the analogous theorem for
the scalar case [8, p. 18-21|. In this case, the order of the multipliers in the
matrix products must be strictly preserved: the values of the operators (21),
(22) from the function U(A) should be located to the left of the values of these
operators from the function V' (A).

Lemma 1. For trigonometric polynomials of the form

P,(A) =sin A _2B1 sin A _232 - -sin%,
where B1, Ba, ..., Bay, are some matrices from X, the following identities are
valid
D;iP,(A)=0,j=2n+12n+2,.... (24)

Proof. Let’s apply the method of mathematical induction. When n =1
A—B A— By

Pi(A) =sin 5 sin 5
and by the formula (23) for m = 3 we have
A-B A-B A-B A-B
D3Pi(A) = Dysin — L sin 5 2 4+ 3Dysin 5 L. Dy sin 5 2
A-B A-B A-B A-B
+3D1 sin ! - Doy sin 2 + sin L - D3 sin )
2 2 2
Since A-B A-B, 1 A-B
. — Dk . — Dk — Dk
D :D = —
18in sin — 5 COS 5
A-B A-B 1. A-B
Dy sin ¥ = D?sin 5 b= 1 sin 2 k,
. A—-DB, 3 . A-DB, 3 A-DBp ,
D3 sin — = (D® 4+ D) sin 5 =g (k=1,2),

then Dgpl(A) =0.

For the operators (21), (22) the properties Do, 2F(A) = DDapi1F(A),
Don3F(A) = (D? + (n+ 1)) Dapt1 F(A), n € N, where F(A) is some matrix
function for which the values of the operators (21) and (22) at the point A € X
exist, are hold. Then it is obvious that D;P;(A) =0 when j =4,5,... .

105



A. P. KHUDYAKOV, YE. V. PANTELEYEVA, A. A. TROFIMUK

Let’s suppose that the relations (24) hold when n = k. We will show that
they are true when n = k + 1. By the formula (23) for m = 2k + 3 we have

2k+3
DigssPes1(A) = Dars (P(A)PI(A)) = 3 ChiyaDanys i Pu(A) - DiPi(A),
1=0

- A-B A-B
where Pj(A) = sin 5 21 gin 5 2kt

identities Dogy3_;Py(A) = 0 hold, and when ¢ > 2 the identities D; P;(A) = 0
are valid. Therefore Doy 3Py 11(A) = 0. O

. For ¢ < 2, by assumption, the

Let « and § be some fixed matrices from X that are not simultaneously zero.
Theorem 6. The trigonometric polynomial
Tni1(A) = Th (A0, B) =
= Ha(4) + Quit (A) [Dansr (Q1s Ansn)] ™ Donsn(Fi Angr),  (25)

where
2n
Ho(A) = Wp(A)U, " (A)F(Ay), (26)
k=0
A-A A— Aj_ A-A A— Ay,
U(A) = sin 0. .sin M1 gin ML gin S22
2 2 2 2
2n
_ A A . A— A
Qn+1(A) = Q1(A5a,B) = <a sin + B cos 2> kl:[Osm 5

satisfies the interpolation conditions
Tny1(Ax) = F(Ag) (k=0,1,...,2n);
Dani1(Tht1; A2nt1) = Dang1 (F5 A2ntr)- (27)

Proof. Since Wy (A;) = 6 Vi(Ag), where dg; is the Kronecker symbol (k,7 =
=0,1,...,2n), then the polynomial (26) coincides with the operator F(A) at
the interpolation nodes Ay, Ay, ..., Agy. It’s obvious that ,,41(Ax) = 0 when
k = 0,2n. Therefore, the polynomial (25) coincides with F(A) at the above-
mentioned interpolation nodes.

We show that the last condition in (27) also holds. By the lemma
Dop 19 (A) =0for k=0,1,...,2n,s0 Doy+1Hy,(A) = 0. Taking into account
the structure of the formula (25), we obtain that the condition stated above for
the polynomial 7T},;1(A) is satisfied. O

CONCLUSION

In this work we obtained the following new results: interpolation formulas
for functions of a scalar argument are generalized to the case of operators
defined in functional spaces and on the set of matrices. The algebraic operator
and matrix interpolation Hermite—Birkhoff polynomials are constructed, as well
as the parametric family of trigonometric matrix interpolation polynomials of
Hermite type. Theorems on the fulfillment of the interpolation conditions are
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proved. For the operator interpolation formula, a class of polynomials for which
it is exact is found. Matrix analogues of the Leibniz formula for linear matrix-
differential operators of a special form are constructed. Based on the matrix
algebraic interpolation polynomial, the formula for the approximation of the
Gateaux differential of an arbitrary order of the matrix argument function is
obtained. This formula is used in the construction of the approximate method
for solving the Cauchy problem with a matrix-differential equation of the first
order. In the computer algebra system, the illustrative example of a numerical
solving the Cauchy problem of the indicated type is realized.
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