
Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films
V. V. Lazenka, A. F. Ravinski, I. I. Makoed, J. Vanacken, G. Zhang et al. 
 
Citation: J. Appl. Phys. 111, 123916 (2012); doi: 10.1063/1.4730896 
View online: http://dx.doi.org/10.1063/1.4730896 
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v111/i12 
Published by the American Institute of Physics. 
 
Related Articles
Giant negative uniaxial magnetocrystalline anisotropy of Co80Ir20 sputtered films with perfect hexagonal-close-
packed and composition-modulated atomic layer stacking 
Appl. Phys. Lett. 102, 012407 (2013) 
Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition 
J. Appl. Phys. 113, 023303 (2013) 
Magnetic properties of copper hexadecaphthalocyanine (F16CuPc) thin films and powders 
J. Appl. Phys. 113, 013914 (2013) 
Low temperature oxidation mechanisms of nanocrystalline magnetite thin film 
J. Appl. Phys. 113, 013510 (2013) 
In situ control of electronic phase separation in La1/8 Pr4/8Ca3/8MnO3/PNM-PT thin films using ferroelectric-
poling-induced strain 
J. Appl. Phys. 113, 013705 (2013) 
 
Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/ 
Journal Information: http://jap.aip.org/about/about_the_journal 
Top downloads: http://jap.aip.org/features/most_downloaded 
Information for Authors: http://jap.aip.org/authors 

Downloaded 10 Jan 2013 to 134.58.253.57. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://jap.aip.org/?ver=pdfcov
http://aipadvances.aip.org
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=V. V. Lazenka&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. F. Ravinski&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=I. I. Makoed&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=J. Vanacken&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=G. Zhang&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4730896?ver=pdfcov
http://jap.aip.org/resource/1/JAPIAU/v111/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4773998?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4774238?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4773456?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4772714?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4772673?ver=pdfcov
http://jap.aip.org/?ver=pdfcov
http://jap.aip.org/about/about_the_journal?ver=pdfcov
http://jap.aip.org/features/most_downloaded?ver=pdfcov
http://jap.aip.org/authors?ver=pdfcov


Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films

V. V. Lazenka,1,a) A. F. Ravinski,2 I. I. Makoed,3 J. Vanacken,1 G. Zhang,1

and V. V. Moshchalkov1

1Institute for Nanoscale Physics and Chemistry (INPAC), KU Leuven, Celestijnenlaan 200D,
Leuven B-3001, Belgium
2Bialystok Technical University, Wiejska 45A, Bialystok 15-351, Poland
3Department of Physics, Brest State University, Boulevard of Cosmonauts 21, Brest 224016, Belarus

(Received 20 February 2012; accepted 28 May 2012; published online 26 June 2012)

Bi1�xLaxFeO3 thin films (x¼ 0.0, 0.3, 0.5) were grown on glass substrates by thermal physical

vapor deposition. The monoclinically distorted crystal structure of the films was revealed by x-ray

diffraction at room temperature. Field and temperature (up to 1000 K) dependences of

magnetization were studied. Saturation of the room temperature magnetic hysteresis loop has been

observed at magnetic field above 0.15 T, demonstrating the weak ferromagnetic nature of the thin

films. Our magnetic force microscopy results show clearly the presence of magnetic domains in

BFO thin films. These structural and magnetic properties suggest the absence of magnetic spiral

spin structure in monoclinically distorted BFO-based thin films. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4730896]

I. INTRODUCTION

Ferromagnetoelectric materials (multiferroics) are com-

pounds with coexistence of long-range magnetic and electric

order parameters in the same phase.1,2 The coupling between

the spontaneous polarization and spontaneous magnetization

can be used for developing a novel memory media which

combine the advantages of ferroelectric random access mem-

ories (FeRAMs) and magnetic random access memories

(MRAMs) in the form of non-volatile magnetic storage bits

that are switched by an electrical field.3

Among the several classes of multiferroics, BiFeO3

(BFO) has already attracted the greatest attention4,5 for its

room temperature multiferroic properties. In this compound

the ferroelectric Curie temperature is about 1098 K and the

antiferromagnetic Neel temperature is about 643 K.4 Bulk

bismuth ferrite can be described as a rhombohedrally dis-

torted ferroelectric perovskite with R3c space group. The

unit cell parameters are a¼ 3.96 Å, a¼ 89.76�.4 The antifer-

romagnetic ordering of bulk BFO corresponds to a spiral

spin structure with an incommensurate long-wavelength pe-

riod of 62 nm, resulting in the suppression of net magnetiza-

tion.6 The lack of saturation and remanent magnetization

appears to be the main obstacles for the wide practical appli-

cations and hence make bulk BFO less interesting for poten-

tial use in magnetic device research.

Recently, it has been shown that the spiral modulated

spin structure can be suppressed by fabricating BFO in thin

film form.7,8 BFO thin films have been successfully made by

many researchers using pulsed laser deposition (PLD),7–9

metalorganic chemical vapor deposition,10 chemical solution

deposition,11,12 sol-gel,13 etc. The value of remanent magnet-

ization of bismuth ferrite thin film has reached Mr� 8 emu/g

at room temperature.7 The origin of ferromagnetism in epi-

taxial BFO films is not clear yet and, despite extensive study

on this subject, there are still many diverse scenarios dis-

cussed in the literature.7–16 Wang et al.7 first proposed spin

canting due to epitaxial constraint resulting from the lattice

mismatch between the film and substrate, as a possible

mechanism of the weak ferromagnetism in BFO thin films.

Eerenstein et al.14 and Chang et al.9 suggested that ferromag-

netism originated from the presence of a substantial fraction

of the Fe2þ ions. In this case, ferrimagnetic alignment of

Fe3þ and Fe2þ ions may give rise to a net magnetization. At

the same time further development of these materials

using Bi-site doping with rare-earth elements is of prime in-

terest. In this paper we investigate the magnetic properties of

Bi1�x LaxFeO3 (BLFO) thin films as a function of external

magnetic field and temperature. The BiFeO3–LaFeO3 solid

solutions with perovskite-like structure are typical magneto-

electric materials which exhibit the coexistence of antiferro-

magnetic and ferroelectric orders.1,2

II. EXPERIMENTAL DETAILS

BLFO (x¼ 0.0, 0.3, 0.5) thin films of 90 nm thickness

were grown on SiO2-glass substrates using a thermal physi-

cal vapor deposition method in a UVM-71 R-2 vacuum div-

ice.17 In this method, container with previously synthesized

BLFO powder is placed at an angle of 20� to horizontal axis

and is connected to the Ta evaporator by the groove. After

the container has been shaken, a small amount of the powder

(�10 mg) is moved to the Ta evaporator through the groove.

The temperature of Ta evaporator was around 2300 K. Glass

substrate was placed at a distance of 100 mm from the heater

which enabled to keep the substrate temperature at 570 K

during deposition. The chamber pressure was about 10�3 Pa.

The crystal structure was studied at room temperature

by x-ray diffraction (XRD) using a Siemens D 5000 diffrac-

tometer with CuKa (a¼ 1.5418 Å) radiation. The surface

morphological study of the films was carried out by scanning

electron microscopy (SEM, Hitachi S-3000 N) and atomica)Electronic mail: Vera.Lazenka@fys.kuleuven.be.
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force microscopy (AFM, XE-100 Park systems). The ele-

mental composition was determined using ARL QUANTRIS

Emission Mass Spectrometer Thermo (CCD). The magnet-

ization hysteresis (M-H) loops were measured using an auto-

mated vibrating sample magnetometer (VSM, Oxford

instruments). For the measurements of magnetization as a

function of temperature, the device17 based on the pondero-

motive method was used. The ponderomotive method con-

sists in measurement of the mechanical force acting upon the

sample being studied in a nonuniform magnetic field. In

order to study the magnetic domain structure of BFO based

thin films, magnetic force microscopy (MFM) measurements

were done at room temperature using an Autoprobe M5

setup (VEECO Instruments).

III. RESULTS AND DISCUSSION

Figure 1 shows typical SEM (a) and AFM (b) images of

the BLFO thin films deposited on glass substrate. The one-

dimensional cross section scan of the surface profile is also

plotted in Fig. 1(b). As it can be seen, La-doped BFO thin

films are quite rough. The surface morphology of the film

consists of hills and craters and has a RMS surface roughness

(Rq) of approximately 42.4 nm and the average height

roughness (Ra) of 34.4 nm (see Fig. 1(b)). As seen in

Fig. 1(a), the round-like outgrowths reaching the size of

2 lm were also formed on the surface of BLFO thin films.

The x-ray fluorescence spectroscopy (XRF) was used for the

element analysis of these hillocks. Figure 2 indicates that

the outgrowths on the surface of the BFO film correspond to

the Bi-rich phase in contrast to the black background. These

outgrowths may originate from unreacted bismuth oxide dur-

ing deposition. The absence of spurious Fe2O3 phase in

BLFO thin films was also confirmed by XRF.

Figure 3 shows the XRD data obtained at room tempera-

ture for the BLFO thin films. The diffraction peaks of the

BLFO thin films have a slight shift as compared to those of

undoped BFO caused by the La substitution of Bi atoms.

This may result from a slight difference in ionic radii

between Bi3þ (1.03 Å) and La3þ (1.032 Å) ions.18 However,

the phase structure of the BLFO thin films does not change

with increasing La concentration, which is consistent with

other report.19 In contrast, analysis of the XRD patterns of

the source BLFO powders revealed that the lattice symmetry

gradually changes from rhombohedral (R3c) to orthorhombic

(Pnma) when Bi atoms are substituted by La. Singh et al. in

his work on the La doping of BFO films observed structural

changes upon doping.20

FIG. 1. (a) SEM and (b) AFM images of the Bi0.5La0.5FeO3 thin film.

FIG. 2. Energy dispersive XRF spectrum taken at (a) the outgrowth (white

spots) and (b) the plain surface (dark regions) of the BiFeO3 thin film.
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FIG. 3. XRD patterns of the Bi1�xLaxFeO3 (x¼ 0, 0.3, 0.5) thin film sam-

ples. The three upper curves are experimental data, and the bottom one is a

calculated spectrum. Lower ticks denote monoclinic P21/m structure.
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XRD data modeling was performed using Endeavour

1.2 XRD pattern processing software21 in order to analyze

the crystal structure of the BLFO thin films (Fig. 3). The

peak positions and intensities were found to be compatible

with the monoclinic (P21/m space group) phase. Moreover,

the absence of impurity phases that are commonly formed

along with the BFO, such as Bi2O3, Fe2O3, and Bi2Fe4O9,

was confirmed. Thereby we can suggest that the BLFO films

have monoclinically distorted perovskite structure with lat-

tice constants a¼ 3.37 Å, b¼ 3.31 Å, c¼ 4.09 Å, and

b¼ 91.35�. Similar results were reported by Kartavtseva

et al.10 Bai et al.8 inferred that BFO films prepared by PLD

have a rhombohedral structure, in contrast to Wang et al.7

who reported the presence of a tetragonal structure in epitax-

ial BiFeO3 thin films.

The dc magnetization of the films was measured as a

function of temperature and magnetic field up to 1 T. Figure 4

shows the magnetic hysteresis loops M(H) of Bi0.5La0.5FeO3

thin film. The observed M-H curves reveal weak ferromag-

netism in BLFO thin films even at room temperature. As seen

from Fig. 4(a), the value of the remanent magnetization Mr at

room temperature for BLFO (x¼ 0.5) film is about 5 emu/g

which is consistent with the value observed previously

by Wang et al.7 for the PLD deposited BFO films. The mag-

netization at corresponding temperatures is an order of

magnitude higher than that of the bulk BLFO samples (see

inset of Fig. 4(a)). Besides, the saturation magnetization at

room temperature is �7 emu/g at relatively low applied mag-

netic field. In BLFO thin films grown on glass substrate, the

epitaxial strain induced by the substrate and film lattice mis-

match cannot be responsible for the enhanced magnetism.

Neutron diffraction measurements, performed by Béa

et al.,22 revealed that right monoclinically distorted BFO

films show G-type antiferromagnetic ordering with no indi-

cation of any cycloidal modulation. Thus, the observed

M(H) nonlinearity, finite coercitivity (Fig. 4) and the

enhancement of Mr and Ms for BLFO thin films can be

explained due to suppression of the cycloidal spin structure

and the release of the locked magnetization.

Temperature dependences of the zero field cooled (ZFC)

and field cooled (FC) magnetization curves measured at

H¼ 0.86 T for BFO film are presented in Fig. 4(b). When

decreasing the temperature below 200 K, the magnetization

increases with respect to Curie’s law for paramagnets, which

is consistent with the unsaturated hysteresis loop up to 1 T at

low temperatures. An inflexion point in the ZFC magnetiza-

tion curve can be seen at temperature around 400 K, which

could be related to the structural transition from the metasta-

ble monoclinically distorted perovskite phase to its more sta-

ble rhombohedral state. A small maximum at T2¼ 670 K,

which happens to be around TN of bulk BFO, can be attrib-

uted to the AFM-PM phase transition. At temperatures

higher than 800 K, BFO thin film has a magnetization of

�0.6 emu/g which does not correspond to the value typical

FIG. 4. (a) Field dependence of the magnetization obtained for the BLFO

(x¼ 0.5) thin film. Inset shows the M-H curve of corresponding bulk sample

at room temperature; (b) ZFC and FC curves of the BFO thin film.

FIG. 5. MFM images of the BLFO (x¼ 0.5) film: (a) topography, (b) phase,

and (c) amplitude.
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for the ferromagnetic ordering. When field-cooled, the mag-

netization increases monotonically as the temperature

decreases. The significant difference between the ZFC and

FC curves confirms the irreversible structural phase transi-

tion in the thin films, occurred during heating up to 1000 K.

MFM scans were also performed on the BLFO films in

order to study their magnetic domain structure. Figure 5

demonstrates the MFM images of the Bi0.5La0.5FeO3 thin

film obtained at room temperature. The periodic magnetic

structure with a period of 1.5 lm is clearly seen in Fig. 5(c),

which differs significantly from the topography structure

(Fig. 5(a)). This periodicity reflects the presence of magnetic

stripe domains in the BLFO thin films.

IV. CONCLUSIONS

The La-doped BiFeO3 thin films (x¼ 0.0, 0.3, 0.5) were

deposited onto glass substrate by thermal physical vapor

deposition method. Structural and magnetic properties of

thin films have been investigated. A significant enhancement

of magnetization, compared to that of corresponding bulk

ceramics, was observed in the monoclinically distorted

BLFO thin films. The observed hysteresis loops and domain

structure, the measured values of Mr and Ms indicate that the

BLFO (x¼ 0.0, 0.3, 0.5) thin films are weakly ferromagnetic

at room temperature in contrast to the corresponding bulk

antiferromagnetic samples. Therefore, these films are good

candidates for the observation of a linear magnetoelectric

effect, prohibited in the bulk due to the spiral modulation of

the G-type spin ordering.
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