Problems of Physics, Mathematics and Technics, № 1 (26), 2016

=МАТЕМАТИКА =

УДК 512.542

О КОНЕЧНЫХ π -РАЗРЕШИМЫХ ГРУППАХ БЕЗ ШИРОКИХ ПОДГРУПП

И.Л. Сохор

Гомельский государственный университет им. Ф. Скорины

ON FINITE π -SOLUBLE GROUPS WITH NO WIDE SUBGROUPS

I.L. Sokhor

F. Scorina Gomel State University

Подгруппу будем называть широкой, если ее порядок делится на каждый простой делитель порядка всей группы. Получено строение конечных *π*-разрешимых групп, не содержащих широких максимальных подгрупп, индекс которых есть *π*-число. Исследуются группы с нильпотентными широкими подгруппами.

Ключевые слова: конечные группы, π-разрешимые группы, нильпотентные группы.

A subgroup H of a finite group G is said to be wide if each prime divisor of the order G divides the order H. We obtain the description of finite π -soluble groups with no wide maximal subgroups with π -number indices. We also investigate groups with π -special subgroups.

Keywords: finite groups, π -soluble groups, nilpotent groups.

Introduction

All groups in this paper are finite. Let *G* be a group. We use $\pi(G)$ to denote the set of all prime devisors of |G|. By $|\pi(G)|$ we denote a number of different prime devisors of |G|. We also use M < G to denote that *M* is a maximal subgroup of *G*.

A subgroup *H* of a group *G* is said to be wide if $\pi(H) = \pi(G)$. In soluble groups maximal subgroups have primary indices. Therefore in soluble groups a non-wide maximal subgroup is a Hall subgroup. And conversely, every Hall maximal subgroup of a soluble group is not wide. V.S. Monakhov [3], N.V. Maslova and D.O. Revin [4]–[5] investigated groups all whose maximal subgroups are Hall subgroups. Simple groups with wide subgroups were enumerated in [6]. Thus, the questions of V.S. Monakhov in the Kourovka notebook [7] were solved in full.

If a group *G* has no wide subgroups and $k = \max_{M < G} |\pi(M)|$, then *G* is called quasi-*k*-primary. A quasi-1-primary is also called quasiprimary, and a quasi-2-primary group is also called quasibiprimary group. The order of a nilpotent quasiprimary group is equal to pq, where *p* and *q* are different primes. The order of a nonnilpotent quasiprimary group is equal to $p^a q$, its Sylow *p*-subgroup is a minimal normal subgroup, and *a* is the minimal positive integer such that *q* divides $p^a - 1$. It is followed from Shmidt theorem [8] of groups with nilpotent proper subgroups.

S.S. Levischenko [9] investigated quasibiprimary groups. He proved that a soluble quasibiprimary group G can be represented as the semidirect product [P]M of an elementary abelian Sylow *p*-subgroup *P* and a quasibiprimary maximal subgroup *M* of *G* [9, Theorem 3.1]. In a nonsoluble quasibiprimary group *G* the Frattini subgroup $\Phi(G)$ is primary [9, Theorem 3.2], the factor group $G/\Phi(G)$ is simple, and all such groups are enumerated [9, Theorem 2.1].

Let π be a fixed set of primes. We consider the class $\mathfrak{X}(\pi)$ of all π -soluble groups *G* which have no wide maximal subgroups with π -number indices:

 $\mathfrak{X}(\pi) = \{ G \in \pi \mathfrak{S} : | \pi(M) | < | \pi(G) |,$

 $\forall M < G, \pi(G:M) \subseteq \pi \}.$

Here $\pi\mathfrak{S}$ is the class of all π -soluble groups.

In this paper we obtain the properties of the class $\mathfrak{X}(\pi)$ and describe the structure of groups from this class. Furthermore, we prove that the factor group of a π -soluble group by its hypercenter belongs to $\mathfrak{X}(\pi)$ under certain conditions.

1 Preliminaries

If $\pi(m) \subseteq \pi$, then a positive integer *m* is called π -number. A group *G* is called π -group if $\pi(G) \subseteq \pi$, and π' -group if $\pi(G) \subseteq \pi'$. A group is called π -soluble if it has a subnormal series whose factors are either soluble π -groups or π' -groups.

All unexplained notations and terminology are standard. The reader is referred to [1], [2] if necessary.

The following properties of π -soluble groups are well known [10].

Lemma 1.1. *Let* G *be a* π *-soluble group. The following assertions hold.*

(1) *G* is π_1 -soluble for every $\pi_1 \subseteq \pi$.

(2) In G there exist π -Hall and π' -Hall subgroups.

(3) In G there exist $\pi \cup \{r\}$ -Hall subgroups for every $r \in \pi'$.

(4) In G there exist q'-Hall subgroups for every $q \in \pi$.

Recall that $O_{\pi}(G)$ and $O_{\pi'}(G)$ are the unique largest normal π -subgroup and the unique largest normal π' -subgroup of a group G, respectively.

Lemma 1.2. *Let* G *be a* π *-soluble group. The following assertions hold.*

(1) If N is a minimal normal subgroup of G, then N is either an elementary abelian p-subgroup for some $p \in \pi$ or a π' -subgroup, [3, Lemma 1].

(2) If M is a maximal subgroup of G, then either $|G:M| = p^m$ for some $p \in \pi$ and positive integer m or $\pi(G:M) \subseteq \pi'$, [3, Lemma 1].

(3) If $\pi \cap \pi(G) \neq \emptyset$, then $O_{\pi}(G / O_{\pi}(G)) \neq 1$; if $\pi' \cap \pi(G) \neq \emptyset$, then $O_{\pi}(G / O_{\pi}(G)) \neq 1$, [10].

Lemma 1.3. Let G be a π -soluble group. Then for every $q \in \pi \cap \pi(G)$ in G there exists a maximal subgroup M such that $|G:M| = q^m$ for some positive integer m.

Proof. By Lemma 1.1 (1), a group G is q-soluble, and so by Lemma 1.1 (2) in G there exists a q'-Hall subgroup H. If M is a maximal subgroup of G containing H, then $|G:M| = q^m$ for some positive integer m. Lemma is proved.

We define the core of a subgroup *H* of a group *G* by $H_G = \bigcap_{x \in G} x^{-1} Hx$. Clearly, H_G is the largest normal subgroup of *G* contained in *H*. A group is called primitive if it has a maximal subgroup with the trivial core.

Lemma **1.4** [1, Theorem 4.40].

(1) The Fitting subgroup of a primitive group is either trivial or a minimal normal subgroup.

(2) A nontrivial nilpotent normal subgroup of a primitive group coincides with the Fitting subgroup and it is a minimal normal subgroup.

(3) The Frattini subgroup of a soluble primitive nontrivial group is trivial and the Fitting subgroup is a minimal normal subgroup.

A formation is a class of groups \mathfrak{F} with the following two properties:

(i) if $G \in \mathfrak{F}$ and $N \triangleleft G$, then $G / N \in \mathfrak{F}$;

(ii) if N_1 and N_2 are normal subgroups of G

and $G / N_1, G / N_2 \in \mathfrak{F}$, then $G / N_1 \cap N_2 \in \mathfrak{F}$.

It is easy to prove the following result.

Lemma 1.5. Let \mathcal{F} be a saturated formation and G a group. If $G \notin \mathcal{F}$ but $G / N \in \mathcal{F}$ for every $N \triangleleft G, N \neq 1$, then G is primitive. By G_{π} and $G_{\pi'}$ we denote the π -Hall and π' -Hall subgroups of G, respectively. In particular, G_n denotes a Sylow *p*-subgroup of G.

Lemma 1.6. Let G be a π -soluble group. If every maximal subgroup with π -number index is normal in G, then $G = G_{\pi}[G_{\pi'}]$ and G_{π} is nilpotent. Conversely, if $G = G_{\pi}[G_{\pi'}]$ and G_{π} is nilpotent, then every maximal subgroup with π -number index is normal in G.

Proof. By Theorem VI.9.3 [2], *G* is π -supersoluble. By \mathfrak{N}_{π} we denote the formation of all nilpotent π -group, $\mathfrak{E}_{\pi'}$ denotes the formation of all π' -group, and $\mathfrak{F} = \mathfrak{E}_{\pi'}\mathfrak{N}_{\pi}$ is their formation product. Then \mathfrak{F} is a saturated formation and $G \in \mathfrak{F}$ if and only if $G = G_{\pi}[G_{\pi'}]$.

Assume that every maximal subgroup with π -number index is normal in G. If M < G and $\pi(G:M) \subseteq \pi$, then M is normal in G. Therefore $|G:M| = p \in \pi$.

Now we prove $G \in \mathfrak{F}$. Suppose that it is not true. If $X \neq 1$ is normal in G, then $G/X \in \mathfrak{F}$ by induction. In view of Lemma 1.5, G is primitive and $\Phi(G) = O_{\pi'}(G) = 1$. Let N be a minimal normal subgroup of G. Then $|N| = q \in \pi$ and G = [N]H, where H is a maximal subgroup with the trivial core. By hypotheses, H is normal in G, a contradiction.

Suppose that $G = G_{\pi}[G_{\pi'}]$ and G_{π} is nilpotent. If M is a maximal subgroup of G with π -number index, then $G_{\pi'} \subseteq M$ and $M/G_{\pi'}$ is a maximal subgroup of $G/G_{\pi'} \simeq G_{\pi}$. Hence $M/G_{\pi'}$ is normal in $G/G_{\pi'}$ since G_{π} is nilpotent, and so M is normal in G. Lemma is proved.

2 Properties of the class $\mathfrak{X}(\pi)$

Lemma **2.1.** (1) $\mathfrak{X}(\pi)$ *is a saturated homomorph.*

(2) If $\pi_1 \subseteq \pi$, then $\mathfrak{X}(\pi) \subseteq \mathfrak{X}(\pi_1)$.

(3) If $G \in \mathfrak{X}(\pi(G))$ and $\pi(G) \subseteq \pi$, then $G \in \mathfrak{X}(\pi)$.

(4) Let N be a normal π' -subgroup of π -soluble group G. Then $G \in \mathfrak{X}(\pi)$ if and only if $G / N \in \mathfrak{X}(\pi)$.

Proof. (1) Suppose that $G \in \mathfrak{X}(\pi)$ and $N \triangleleft G$. Let M / N be a maximal subgroup with π -number index in G / N. Then M is a maximal subgroup with π -number index in G, and so $|\pi(M)| < |\pi(G)|$. If $r \in \pi(G) \setminus \pi(M)$, then

$$r \notin \pi(N), r \in \pi(G / N) \setminus \pi(M / N).$$

Hence $|\pi(M / N)| < |\pi(G / N)|$ and $G / N \in \mathfrak{X}(\pi)$. Thus, $\mathfrak{X}(\pi)$ is a homomorph. Now we show that $\mathfrak{X}(\pi)$ is a a saturated class. Assume that $G / \Phi(G) \in \mathfrak{X}(\pi)$ and let *M* be a maximal subgroup with π -number index in *G*. Then $M / \Phi(G)$ is a maximal subgroup with π -number index in $G / \Phi(G)$. By hypothesis, $|\pi(M / \Phi(G))| < <|\pi(G / \Phi(G))||$. In view of [1, Theorem 4.33], $\pi(G / \Phi(G)) = \pi(G)$. Therefore

 $|\pi(M)| = |\pi(M / \Phi(G))| <$

$$<\mid \pi(G / \Phi(G)) \mid = \mid \pi(G) \mid, G \in \mathfrak{X}(\pi).$$

(2) Suppose that $G \in \mathfrak{X}(\pi)$. Then *G* is π -soluble, and in view of 1.1 (1) *G* is π_1 -soluble. If *M* is a maximal subgroup of *G* such that $\pi(G:M) \subseteq \pi_1 \subseteq \pi$, then $|\pi(M)| < |\pi(G)|$ since $G \in \mathfrak{X}(\pi)$. Consequently, $G \in \mathfrak{X}(\pi_1)$ and $\mathfrak{X}(\pi) \subseteq \mathfrak{X}(\pi_1)$.

(3) Assume that $G \in \mathfrak{X}(\pi(G))$. Then G is soluble and has no wide subgroups, that is, for every maximal subgroup M of G we have

 $\pi(G:M) \subseteq \pi(G) \subseteq \pi, | \pi(M) | < | \pi(G) |.$ Hence $G \in \mathfrak{X}(\pi)$.

(4) If $G \in \mathfrak{X}(\pi)$, then by assertion (1) $G/N \in \mathfrak{X}(\pi)$ for any normal subgroup *N* of *G*.

Conversely, let N be a normal π' -subgroup of a π -soluble group G. Suppose that $G \notin \mathfrak{X}(\pi)$. Then $\pi(A) = \pi(G)$ for some maximal subgroup A of G such that $\pi(G:A) \subseteq \pi$. Since N is a π' -group, we have $N \subseteq A$. Now, A/N is a maximal subgroup of G/N and

 $|G:A| = |G/N:A/N|, \pi(G/N:A/N) \subseteq \pi.$

By inductive hypothesis, $G/N \in \mathfrak{X}(\pi)$, consequently, $|\pi(A/N)| \neq |\pi(G/N)|$. Assume that

 $r \in \pi(G / N) \setminus \pi(A / N).$

Then $r \in \pi(G) = \pi(A)$. Since $r \in \pi(A)$ and $r \notin \pi(A/N)$, it follows that some Sylow *r*-subgroup A_r of *A* is contained in *N*. As *N* is a π' -subgroup, therefore $r \in \pi'$. Since $\pi(G:A) \subseteq \pi$, we see that A_r is a Sylow *r*-subgroup of *G* and $r \notin \pi(G/N)$, a contradiction. Thus we conclude that $G \in X(\pi)$.

Lemma is proved.

Example 2.2. Let p and q de different primes, n be the least positive integer such that q devides $p^n - 1$. There exists $S = [E_{p^n}]Q$, where E_{p^n} is an elementary abelian subgroup of order p^n , |Q| = q. In S all proper subgroups are primary. Therefore $S \in \mathfrak{X}(\{p,q\})$. It is clear that a cyclic group Z_p of order p belongs to $\mathfrak{X}(\{p,q\})$. A group $G = S \times Z_q$ contains a wide subgroup $E_{p^n} \times Z_q$. Hence $G \notin \mathfrak{X}(\{p,q\})$. Since a formation is closed under direct products, we obtain that $\mathfrak{X}(\{p,q\})$ is not a formation.

Further note that if a maximal subgroup M of G contains a Sylow p-subgroup, then M is normal in G. Hence the order of the factor group G/M_G is equal to q and $G/M_G \in \mathfrak{X}(\{p,q\})$. If a maximal subgroup H of G contains a Sylow q-subgroup, then H is not normal in G and coincides with a Sylow q-subgroup. Therefore $H = Q^g \times Z_q$, $g \in S$, and $H_G = Z_q$. Hence $G/H_G \simeq S$ and $G/H_G \in \mathfrak{X}(\{p,q\})$. It follows that all primitive factor groups of G belong to $\mathfrak{X}(\{p,q\})$, but $G \notin \mathfrak{X}(\{p,q\})$. Thus $\mathfrak{X}(\{p,q\})$ is not a Schunck class.

Lemma 2.3.

(1) If $G \in \mathfrak{X}(\pi)$, then $\Phi(G)$ is a π' -group.

(2) $G \in \mathfrak{X}(\pi)$ if and only if $G / \Phi(G) \in X(\pi)$.

(3) If $G \in X(\pi)$ and $O_{\pi'}(G) = 1$, then F(G)

is a Hall subgroup and every Sylow subgroup of F(G) is a minimal normal subgroup in G.

Proof. (1) Suppose that $p \in \pi(\Phi(G)) \cap \pi$. By Lemma 1.3, in *G* there exists a maximal subgroup *M* such that $|G:M| = p^a$. Note that *M* is a Hall subgroup in *G* since $G \in \mathfrak{X}(\pi)$, and so $p \notin \pi(M)$. But $p \in \pi(\Phi(G)) \subseteq \pi(M)$. This contradiction shows that $\Phi(G)$ is a π' -group.

(2) Assume that G ∈ X(π). Then by assertion
(1), Φ(G) is a π' -group. Consequently, by Lemma 2.1 (4), G / Φ(G) ∈ X(π).

Conversely, let $G / \Phi(G) \in \mathfrak{X}(\pi)$. Hence, in view of Lemma 2.1 (1), $G \in \mathfrak{X}(\pi)$.

(3) By assertion (1), $\Phi(G) = 1$. Let *N* be a minimal normal subgroup of *G*. Then *N* is a *p*-subgroup for some $p \in \pi \cap \pi(G)$. By [1, Theorem 3.20], there exists a subgroup *M* such that G = [N]M. Note that *M* is a maximal subgroup and $\pi(G:M) = \{p\}$. By hypothesis, $\pi(M) \neq \pi(G)$, therefore *M* is a *p'*-Hall subgroup and *N* is a Sylow *p*-subgroup of *G*.

Lemma is proved.

Lemma 2.4. *A soluble group G is quasi-k-primary if and only if* $G \in \mathfrak{X}(\pi(G))$ *and* $|\pi(G)| = k + 1$.

Proof. Suppose that a soluble group *G* is quasi*k*-primary. Then *G* has no wide maximal subgroups and $G \in \mathfrak{X}(\pi(G))$. We show that $|\pi(G)| = k + 1$. Since *G* is quasi-*k*-primary, it follows that for every maximal subgroup *H* of *G* we have $|\pi(H)| \le k <$ $<|\pi(G)|$, and there exists a maximal subgroup *M* such that $|\pi(M)| = k$. In view of [1, Theorem 4.14], maximal subgroups of a soluble group have primary indices, and so $|G:M| = p^{\alpha}$, $p \in \pi(G)$, $\alpha \in \mathbb{N}$. Since $|G| = |M| \cdot |G:M|$, we have $|\pi(G)| \le k + 1$. Thus, $|\pi(G)| = k + 1$. Conversely, assume that $G \in \mathfrak{X}(\pi(G))$ and $|\pi(G)| = k + 1$. Then *G* is $\pi(G)$ -soluble, and so *G* is soluble. Also, *G* has no wide maximal subgroups, i. e., for every maximal subgroup *M* of *G* we have $|\pi(M)| < |\pi(G)| = k + 1$. Hence $|\pi(M)| = k$ and *G* is quasi-*k*-primary. Lemma is proved.

3 The structure of groups from the class $\mathfrak{X}(\pi)$

In π -soluble groups indices of maximal subgroups are primes from π or π' -numbers. It follows that if a group belongs to the class $X(\pi)$, then its every maximal subgroup with π -number index is a Hall subgroup. Such groups are described by V.S. Monakhov [3].

Lemma 3.1. [3]. Let G be a π -soluble group. The following assertions are equivalent.

(1) Chief π -factors of G are isomorphic to Sylow subgroups.

(2) Every maximal subgroup with π -number index is a Hall subgroup.

(3) The set of all maximal subgroups with π -number indices of *G* coincides with the set of all *p*-supplements for all $p \in \pi$.

(4) A Hall π -subgroup of every normal πd -subgroup of G is a π -Hall subgroup of G.

Theorem 3.2. Let G be a π -soluble group, $\pi \cap \pi(G) \neq \emptyset$ and $O_{\pi}(G) \neq 1$. Then $G \in \mathfrak{X}(\pi)$ if and only if $G = [G_p]M$, where G_p is a minimal normal Sylow p-subgroup of G for some $p \in \pi(O_{\pi}(G))$, M is a maximal subgroup of G and $M \in \mathfrak{X}(\pi)$.

Proof. Assume that $G \in \mathfrak{X}(\pi)$. If H < G such that $\pi(G:H) \subseteq \pi$, then by Lemma 1.2 (2), $|G:H| = r^{\alpha}$ for some $r \in \pi$ and positive integer α . Since $\pi(G) \neq \pi(H)$, it follows that $r \notin \pi(H)$ and H is a r'-Hall subgroup. Therefore G satisfies assertion (2) of Lemma 3.1. By Lemma 1.2 (1), there exists a minimal normal p-subgroup N for some $p \in \pi(O_{\pi}(G))$ since $O_{\pi}(G) \neq 1$. In view of Lemma 3.1 (4), N is a Sylow p-subgroup of G, i. e., $N = G_p$. By Lemma 1.3, there exists a maximal subgroup M of G such that $|G:M| = p^{\alpha}$, $a \in \mathbb{N}$. Hence $G = [G_p]M$, and so by Lemma 2.1 (1), $M \in \mathfrak{X}(\pi)$.

Conversely, suppose that $G = [G_p]M$, where G_p is a minimal normal Sylow *p*-subgroup of *G* for some $p \in \pi(O_{\pi}(G))$, *M* is a maximal subgroup of *G* and $M \in \mathfrak{X}(\pi)$. Let *K* be a maximal subgroup of *G* with π -number index. Then by Lemma 1.2 (2), $|G:K| = r^{\alpha}$ for some $r \in \pi$ and positive integer α . If r = p, then $G = G_p K$. Hence $G_p \cap K = 1$ and $M \simeq K$, and so $|\pi(K)| = |\pi(M)| < |\pi(G)|$. If $r \neq p$,

then $G_p < K$. Therefore $K = [G_p]M \cap K = [G_p](M \cap K)$, and so $|\pi(K)| < |\pi(G)|$. Otherwise $\pi(M) = \pi(G) \setminus \{p\} = \pi(K) \setminus \{p\} = \pi(M \cap K)$,

and this is a contradiction since $M \in \mathfrak{X}(\pi)$. Thus, $G \in \mathfrak{X}(\pi)$. Theorem is proved.

Corollary 3.2.1. Let G be a π -soluble group and $\pi \cap \pi(G) \neq \emptyset$. Then $G \in \mathfrak{X}(\pi)$ if and only if

 $G / O_{\pi'}(G) = [G_p O_{\pi'}(G) / O_{\pi'}(G)]M / O_{\pi'}(G),$ where $G_p O_{\pi'}(G) / O_{\pi'}(G)$ is a minimal normal Sylow p-subgroup of $G / O_{\pi'}(G)$, $p \in \pi(O_{\pi}(G / O_{\pi'}(G))),$ M is a maximal subgroup of G and $M \in \mathfrak{X}(\pi).$

Proof. If $O_{\pi'}(G) = 1$, then in view of Theorem 3.2 corollary is true.

Let $O_{\pi'}(G) \neq 1$. Then by Lemma 1.2 (3),

$$O_{\pi}(G / O_{\pi'}(G)) \neq 1.$$

Suppose that $G \in \mathfrak{X}(\pi)$. In view of Lemma 2.1 (4), $G / O_{\pi'}(G) \in \mathfrak{X}(\pi)$. By Theorem 3.2,

 $G / O_{\pi'}(G) = [G_p O_{\pi'}(G) / O_{\pi'}(G)]M / O_{\pi'}(G),$

where $G_p O_{\pi'}(G) / O_{\pi'}(G)$ is a minimal normal Sylow *p*-subgroup of $G / O_{\pi'}(G)$, $p \in \pi(O_{\pi}(G / O_{\pi'}(G)))$, and $M / O_{\pi'}(G)$ is a maximal subgroup of $G / O_{\pi'}(G)$, $M / O_{\pi'}(G) \in \mathfrak{X}(\pi)$. Hence M is a maximal subgroup of G and $M \in \mathfrak{X}(\pi)$ in view of Lemma 2.1 (4).

Conversely, assume that G can be represented as $G / O_{\pi'}(G) = [G_p O_{\pi'}(G) / O_{\pi'}(G)]M / O_{\pi'}(G),$

where $G_p O_{\pi'}(G) / O_{\pi'}(G)$ is a minimal normal Sylow *p*-subgroup of $G / O_{\pi'}(G)$, $p \in \pi(O_{\pi}(G / O_{\pi'}(G)))$, *M* is a maximal subgroup of *G* and $M \in \mathfrak{X}(\pi)$. Then $M / O_{\pi'}(G)$ is a maximal subgroup of $G / O_{\pi'}(G)$ and $M / O_{\pi'}(G) \in \mathfrak{X}(\pi)$ in view of Lemma 2.1 (4). Consequently, by Theorem 3.2, $G / O_{\pi'}(G) \in \mathfrak{X}(\pi)$. Hence $G \in \mathfrak{X}(\pi)$ by Lemma 2.1 (4). Corollary is proved.

Corollary 3.2.2. A soluble group G is quasi-kprimary if and only if $G = [G_p]M$, where G_p is a minimal normal Sylow p-subgroup of G for some $p \in \pi(G)$, M is a maximal quasi-(k-1)-primary subgroup of G.

Proof. Suppose that a soluble group *G* is quasi*k*-primary. Then in view of Lemma 2.4, $G \in \mathfrak{X}(\pi(G))$ and $|\pi(G)| = k + 1$. By Theorem 3.2, G = [N]M, where *N* is a minimal normal Sylow *p*-subgroup of *G* for some $p \in \pi(G)$, *M* is a maximal subgroup of *G* and $M \in \mathfrak{X}(\pi(G))$. Hence by Lemma 2.1 (2), $M \in \mathfrak{X}(\pi(M))$. Besides, $|\pi(M)| =$ $= |\pi(G)| - |\pi(N)| = k$. Consequently, *M* is quasi-(k-1)-primary by Lemma 2.4.

Проблемы физики, математики и техники, № 1 (26), 2016

Conversely, assume that a soluble group *G* can be represented as G = [N]M, where *N* is a minimal normal Sylow *p*-subgroup of *G* for some $p \in \pi(G)$, *M* is a maximal quasi-(k-1)-primary subgroup of *G*. Then by Lemma 2.4, $M \in \mathfrak{X}(\pi(M))$ and $|\pi(M)| = k$. In view of Lemma 2.1 (3), $M \in \mathfrak{X}(\pi(G))$. Since $|\pi(G)| = |\pi(M)| + |\pi(N)| =$ = k + 1, it follows that *G* is quasi-*k*-primary by Lemma 2.4. Corollary is proved.

If we substitute k = 2 in Corollary 3.2.2, then we obtain the result of S. S. Levischenko.

Corollary 3.2.3 [9, Theorem 3.1]. A soluble quasibiprimary group G is equal to the semidirect product [P]M of its elementary abelian Sylow p-subgroup P and quasiprimary subgroup M, which is also a maximal subgroup of G.

A group G is said to be π -special, if $G = G_{\pi} \times G_{\pi}$ and G_{π} is nilpotent.

Let G be a nontrivial group,

$$Z_0(G) = 1, \ Z_1(G) = Z(G),$$

$$Z_2(G) / Z_1(G) = Z(G / Z_1(G)), \ \dots,$$

$$Z_i(G) / Z_{i-1}(G) = Z(G / Z_{i-1}(G)), \ \dots$$

Then the subgroup $Z_{\infty}(G) = \bigcup_{i=0}^{\infty} Z_i(G)$ is called the hypercenter of G.

Obviously, $Z(G / Z_{\infty}(G)) = 1$.

Theorem 3.3. If every wide maximal subgroup of a π -soluble group G with π -primary index is π -special, then $G/Z_{\infty}(G) \in \mathfrak{X}(\pi)$.

Proof. Let $G/Z_{\infty}(G) \notin \mathfrak{X}(\pi)$, and write $\overline{G} = G/Z_{\infty}(G)$. Then in \overline{G} there exists a maximal subgroup $\overline{M} = M/Z_{\infty}(G)$ such that $|\overline{G}:\overline{M}| \subseteq \pi$ and $\pi(\overline{M}) = \pi(\overline{G})$. At the same time M is maximal in G and $\pi(M) = \pi(G)$. By hypothesis, M is π -special. And so \overline{M} is also π -special, that is, $\overline{M} = \overline{M}_{\pi} \times \overline{M}_{\pi'}$ and \overline{M}_{π} is nilpotent. By Lemma 1.2 (2), $|\overline{G}:\overline{M}| = p^a$ for some $p \in \pi$ and positive integer a. It follows that $\overline{M}_p \triangleleft \overline{M}$ and \overline{M}_p is a proper subgroup of \overline{G}_p . Therefore \overline{M}_p is normal in \overline{G} . Thus there exists a notrivial element $\overline{x} \in \overline{M}_p \cap Z(\overline{G}_p)$ such that it belongs to the center of \overline{G} , a contradiction since $Z(G/Z_{\infty}(G)) = 1$. Theorem is proved.

Corollary 3.3.1. If every wide maximal subgroup of a soluble group G is nilpotent, then $G/Z_{\infty}(G)$ is quasi-k-primary, where $k = |\pi(G/Z_{\infty}(G))| - 1$.

Proof. Suppose that every wide maximal subgroup of a soluble group G is nilpotent. Then, substituting $\pi = \pi(G)$ in Theorem 3.3, we obtain $G/Z_{\infty}(G) \in \mathfrak{X}(\pi(G))$. Hence by Lemma 2.4, $G/Z_{\infty}(G)$ is quasi-*k*-primary, where

$$k = |\pi(G / Z_{\infty}(G))| - 1.$$

Corollary is proved.

A group G is π -decomposable if $G = G_{\pi} \times G_{\pi}$.

Corollary 3.3.2. If every maximal subgroup of a π -soluble group G is normal and π -decomposable, then G_{π} is nilpotent and $G/Z_{\infty}(G) \in \mathfrak{X}(\pi)$.

Proof. Since every maximal subgroup of a π -soluble group G is normal, it follows that $G = G_{\pi}[G_{\pi}]$ and G_{π} is nilpotent by Lemma 1.6. Hence since every maximal subgroup of G is π -decomposable, it is π -special, and $G/Z_{\infty}(G) \in \mathfrak{X}(\pi)$ by Theorem 3.3. Corollary is proved.

REFERENCES

1. *Monakhov*, *V.S.* Introduction to the Theory of Finite Groups and their Classes / V.S. Monakhov. – Minsk: Vyshejshaja shkola, 2006. – 207 p.

2. *Huppert, B.* Endliche Gruppen I / B. Huppert. – Berlin-Heidelberg-New York: Springer, 1967. – 796 p.

3. Monakhov, V.S. Finite π -solvable groups whose maximal subgroups have the Hall property / V.S. Monakhov // Math. Notes. – 2008. – Vol. 84 (3–4). – P. 363–366.

4. *Maslova*, *N.V.* Nonabelian composition factors of a finite group whose all maximal subgroups are hall / N.V. Maslova // Siberian Math. J. – 2012. – Vol. 53 (5). – P. 853–861.

5. *Maslova N.V.* Finite groups whose maximal subgroups have the hall property / N.V. Maslova, D.O. Revin // Siberian Advances in Math. -2013. - Vol. 23 (3). - P. 196–209

6. *Zhang*, *Q*. Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup / Q. Zhang, L. Wang // Algebra Colloquium. – 2005. – Vol. 12. – P. 301–307.

7. *The Kourovka Notebook*: Unsolved Problems in Group Theory // Institute of Mathematics, Russian Academy of Sciences. – Novosibirsk, 2014.

8. *Schmidt*, *O.Y.* Groups all of whose subgroups are special / O.Y. Schmidt // Mat. Sb. – 1924. – Vol 31 (3–4). – P. 366–372.

9. *Lewischenko*, S.S. Finite quasibiprimary groups / S.S. Lewischenko // Groups defined by properties of group systems: collection of scientific papers. – Kiev: Inst. matem. AN USSR. – 1979. – P. 83–97.

10. *Chunihin*, *S.A.* Subgroups of finite groups / S.A. Chunihin. – Minsk: Nauka i Tehnika, 1964. – 168 p.

Поступила в редакцию 16.01.16.