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Abstract: Structural waves transmitted solely through the
pipe wall influence the accuracy in a Clamp-On ultra-
sonic flow measurement system because of the superpo-
sition with the signals of interest. To improve the mea-
surement against temperature variations, an algorithmic
compensation of the structural waves using a tempera-
ture model is required. This paper proposes a temperature
model for structural waves, using the Matching Pursuit
method. In the first section, a sparse signal representation
is presented to approximate the structural wave signals.
The resulting signal coefficients are used to describe the
temperature dependency in a linear model. The method
is validated using measurements of structural waves in a
circular pipe over a temperature range between 20 ∘C and
80 ∘C. Based on these measurements, the accuracy of the
approximated temperature model is evaluated and com-
pared against the baseline signal-stretch method.

Keywords: Structural waves, ultrasound, modeling.

Zusammenfassung:Strukturschallwellen,welche sichnur
über die Rohrwand ausbreiten, beeinflussen aufgrund
der Überlagerung mit dem Nutzsignal die Genauigkeit
in einem Clamp-On-Durchflussmesssystem. Um die Mes-
sung robust gegenüber Temperaturänderungen zu ma-
chen, wird eine algorithmische Kompensation der Struk-
turschallwellen mithilfe eines Temperaturmodells benö-
tigt. In dieser Arbeit wird ein Temperaturmodell für
Strukturschallwellen basierend auf derMatching-Pursuit-
Methode vorgestellt. Im ersten Abschnitt wird eine geeig-
nete Signaldarstellung eingeführt, um die Strukturschall-
wellen mit möglichst wenig Koeffizienten zu approximie-
ren. Die Signalkoeffizienten werden verwendet, um die
Temperaturabhängigkeit durch ein lineares Modell zu be-
schreiben. Die Methode wird anhand von Strukturschall-
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messungen an einem Rohr über einem Temperaturbereich
von 20 ∘C bis 80 ∘C validiert. Basierend auf diesen Mes-
sungen, wird die Genauigkeit des Temperaturmodells be-
stimmt und anschließend mit der Baseline-signal-stretch-
Methode verglichen.

Schlagwörter: Strukturschallwellen, Ultraschall, Model-
lierung.

1 Introduction

Ultrasonic flowmeters (UFM) are increasingly popular due
to the non-existence of moving parts, the response time
and low energy consumption [6]. The working principles
can be separated into the transit time method and the
Doppler method. Using the transit time method is more
popular because it does not require the presence of im-
purities in the fluids. Clamp-On systems, in which the
ultrasonic pulses are excited through the pipe wall, are
often preferable due to their non-intrusiveness. Further-
more, the sensors are protected from corrosive fluids and
are easy to install [9]. However, the ultrasonic pulses prop-
agate partly through thepipewalls as structuralwaves and
partly through the fluids [1]. The part which solely prop-
agates as structural waves can be regarded as correlated
noise. This noise is a deterministic signal, which is inter-
fering with the desired signal, and the accuracy of transit
time measurements in ultrasonic flow measurement ap-
plications is highly dependent on the level of this noise
[10, 12]. For example, a superposition of sinusoidal desired
signals with a sinusoidal noise signal at a signal-to-noise
ratio of 20 dB leads, in the worst case, to a measurement
error of 10%.

An algorithmic approach to reduce the level of cor-
related noise is preferable, because it allows to save up
constructivemethods for suppressing the structural waves
such as damping mats. One solution to this problem is to
measure the structural waves before filling the pipes with
water and then subtract the measured structural waves,
but these waves are shown to be temperature dependent
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[2], which leads to wrong estimates of the structural waves
during flow measurement.

The effects of temperature on structural waves in thin
plates have also been extensively studied in the context of
structural health monitoring [8, 5]. Dan et al. [3] extended
theRayleigh-Lambequations (for further information refer
to [11]) by variable coefficients to model the temperature
effects and used the baseline signal-stretch (BSS) method
to compensate them in a scenario, where the dominantly
propagating wave was the S0 lamb wave. However, the
problems of applicability in case ofmultiple reflection and
multimode propagation still exist. Croxford et al. [2] quan-
titatively analyzeddifferent compensation strategies using
time shifts,multiple reference signals obtained at different
temperatures and BSS. Themodels are applied after a sep-
aration into the different wave packets and can be formu-
lated as

u(t,Tm) ≈∑
j
ajsj(t/β̂ − tj) . (1)

The signal-stretch was performed using a resampling
method and the influence of the quantization noise on
the BSS has been examined. Harley and Moura [4] ad-
dressed the implementation of signal-stretching using the
scale-transform domain to improve the computational ef-
ficiency.

Another aspect of structural waves analysis is the
identification of different modes or temperature effects.
For this purpose Xu et al. [13] used the Matching Pursuit
(MP) algorithm with a Gabor dictionary and a chirplet dic-
tionary and showed that the propagation mode can be
identified by evaluating the sign of the chirp rate. Extend-
ing the MP algorithm by a second constrained MP algo-
rithm, Lu andMichaels [7] could differentiate between sig-
nal changes due to temperature variation and damage. Al-
though the combination of two MP algorithms allows an
identification of temperature variation, an exact estima-
tion of signals at different temperatures has not been re-
searched.

In this paper we propose a new method to model the
temperature dependency of structural waves in a multi-
mode and multipath scenario. The method is based on a
signal decomposition using theMP algorithm and a subse-
quent constraint MP algorithm. The signal decomposition
results in a set of parameters. We show that in the new pa-
rameter spacewe can approximate signals at temperatures
which are in-between the initial measurement tempera-
tures by using a linear interpolation. Using the method re-
duces the necessary structural waves measurements and
the transformation parameters can be directly calculated

from the temperature. This paper is organized as follows.
In the second section, the usedMP algorithm is presented.
The extension of the existing MP approach to compensate
varying temperatures is shown in Section 3. Finally, the
method is validated and compared against signal-stretch
based methods using measured signals from a Clamp-On
system in a circular pipe.

2 Signal representation

The first step is to decompose the measurement signal us-
ing the MP algorithm. In this section, a short introduction
into the algorithm and an extension to use constraints is
given. The aim is to transform the signal s(t) in a sparse
representation, meaning that in the transformed signal
representation the signal energy is compressed in as few
as possible coefficients ak . Coefficients which are nearly
zero can be omitted. MP tries to approximate a signal as
weighted sum of functions:

s(t) ≈ ̂s(t) =∑
k
ak gk(t) . (2)

Therefore, thebest functions gk(t)are chosen fromanover-
complete function set D = Frame{gk(t), k = −∞, . . . ,∞}
such that given a constant K the optimization problem

minimize
"""""""""
s(t) −

K
∑
k=1

ak gk(t)
"""""""""

2

2

w.r.t. gk(t) ∈ D (3)

is solved. The MP algorithm does not provide an optimal
solution to (3). It is based on a greedy algorithm which
always chooses the locally optimal function in which op-
timality is defined as the function with the biggest inner
product with the residual signal ri(t) at the iteration i.
The iterative MP can be formulated as follows [13]:

{{{{{{{
{{{{{{{
{

r0(t) = s(t) ,
gi(t) = arg max

gk(t)∈D
|⟨ri(t), gk(t)⟩| ,

ai = ⟨ri(t), gi(t)⟩ ,
ri+1(t) = ri(t) − ai ⋅ gi(t) .

(4)

After every iteration the residual signal energy is reduced.
The iterations are continued until a termination criterion
is reached. This can be either a maximum number of iter-
ations or a minimum residual signal energy.

Due to the narrowband characteristic of ultrasonic sig-
nals, Gabor wavelets with variable time delays tk, modu-
lation frequencies fk and time duration σk are chosen to
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build the frame:

gk(t) = ck exp(−
(t − tk)2

2σ2k
+ j2πfkt) (5)

with ck subject to

⟨gk(t), gk(t)⟩ = 1 . (6)

Equation (4) implies that the usage of complex Gabor
wavelets results in complex projections, which is not
wanted, because the input signals are real and the resid-
uals should be real as well. As in the Fourier transform,
this could be solved by using the positive and negative fre-
quency components of the same wavelet. However, it is
simpler to take the real part of the projection. Thus, the
update rule (4) is changed to

ri+1(t) = ri(t) − Re{⟨ri(t), gi(t)⟩ ⋅ gi(t)} . (7)

Simple usage of the trigonometric relations can show that
the update rule (7) in connection with the Gabor wavelet
(5) as gi(t) is equivalent to using the update rule

ri+1(t) = ri(t) − ⟨ri(t), gi(t)⟩ ⋅ gi(t) (8)

with the frame function

gi(t) = ci exp(−
(t − ti)2

2σ2i
) ⋅ cos(2πfit + ϕ) (9)

and the optimal phase parameter ϕ, as done by Xu et al.
[13]. Therefore, by using the complex Gabor wavelet (5),
the phase parameter ϕ at iteration i can be calculated di-
rectly by

ϕ = arctan( Im{⟨ri(t), gi(t)⟩}
Re{⟨ri(t), gi(t)⟩}

) (10)

and is automatically optimal. Lastly, due to the normaliza-
tion (6), we have to add the factor two in the update rule
to compensate that the energy is halved by only taking the
real part:

ri+1(t) = ri(t) − 2 ⋅ Re{⟨ri(t), gi(t)⟩ ⋅ gi(t)} . (11)

The problem that requires the most computational ef-
fort is finding the best function in D. Suppose the func-
tions are built fromamodel gk(t) = g(θ, t)with aparameter
vector θ ∈ ℝP. If every parameter is discretized in N steps,
then a brute force search would need to calculateNP inner
products. Therefore, in this work we use an optimization
method to solve a constrained optimization problem. This
reduces the computing time and at the same time allows a
high resolution of the parameter space.

Additionally, we extend the optimization problem to
use constraints. This way, we can force the decomposition
to approximate the signals only in the time ranges of inter-
est. Furthermore, we can limit the duration σk and mod-
ulation frequencies fk of the best matching functions gk(t)
to have physicallymeaningful values. If constraints for the
parameters in (5) are used, the optimization problem in (4)
changes to

[tk , fk , σk] = arg max
tk ,fk ,σk

Q([tk , fk , σk]) (12)

with the quality function

Q([tk , fk , σk]) =|⟨ri(t), g(t, [tk , fk , σk])⟩|

+ cf ⋅ (fk − fset)
2 + cσ ⋅ (σk − σset)

2

+ ct ⋅ (tk − tset)
2

+ ct,max ⋅ (tk − tmax)
2 ⋅ h(tk − tmax) , (13)

and h(t) denoting the Heaviside step function. The con-
straints can be regulated by themultipliers cf, cσ , ct, which
allows using different combinations of constraints. Using
ct,max, the MP algorithm can be restricted to a maximal
time range, but restricting the maximal time delays may
lead to suboptimal solutions due to the occurrence of lo-
cal minima, which can lead to convergence problems of
the MP. Therefore, the parameter ct,max was tuned to be
very small and all the solutions that violated the constraint
were used tominimize the residuum, butwere not saved to
be used for the temperature model.

3 Temperature model

In the following, the temperature model using the MP
decomposition is presented. Given two measurements
s(t,T0) and s(t,Tm) recorded at two different temperatures
T0 and Tm, the model tries to estimate the signals for tem-
peratures T ∈ [T0,Tm]. The idea of the model is pictured
in Fig. 1. It consists of two MP decompositions: First the
baseline signal s(t,T0) is decomposed into K coefficients
ak and K functions gk(t). In the following, this is called

Figure 1:Matching Pursuit model.
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the baseline Matching Pursuit (BMP). As stopping crite-
rion, the residual signal energy in the desired time range
has to be damped below a configurable value. The second
step is to decompose the signal s(t,Tm) using a constraint
MP, in which the time delays tk resulting from the decom-
position of s(t,T0) are used as start values for the optimiza-
tion algorithm and the number of coefficients is kept con-
stant. This is done to guarantee the same decomposition
order, which is necessary because the functions gk(t) are
not orthogonal. Furthermore, to improve robustness, some
of the model parameters σk, fk or tk can be kept constant
using the constraints given in (12) to reduce the degrees of
freedom. In the following, the second MP decomposition
is called constraint Matching Pursuit (CMP).

The frame used in the BMP can have three degrees of
freedom. The combinations of the different free parame-
ters are summarized in following set:

MBMP = {[tk , fk , σk], [tk , fk], tk}
= {m1,BMP,m2,BMP,m3,BMP} . (14)

In a frame with less degrees of freedom, the fixed time du-
ration of the frame functions was set to σk = tmax/20. This
way, an acceptable adaptability to different wave packets
can be attained. By setting the fixed modulation frequen-
cies fk to the excitation frequency f0, the frame functions
are adapted to the expected structural waves. Mathemati-
cally, this is equivalent to setting cf →∞or cσ →∞ in (12).
Nevertheless, even if the setm1,BMP is used, excessive de-
viations from the excitation frequency f0 or time duration
tmax/20 are prevented using moderate values for cf and cσ .
The maximum for the time delays tk is also kept.

After the BMP of s(t,T0) we have a set of parameters
θ = {[ak , tk , fk , σk], k ∈ [1,K]}. Subsequently, the param-
eters tk , fk , σk are used to reduce the search space in the
optimizationproblem (12) during each iteration. Following
the same order as the decomposition in the BMP, the time
durations σk are fixed and tk, fk are either used as starting
values of the optimization algorithmor kept constant. This
results in different grades of freedom, which are described
by the set

MCMP = {[tk , fk], fk , tk , 0}
= {m1,CMP,m2,CMP,m3,CMP,m4,CMP} . (15)

The empty setm4,CMP represents a fully constricteddecom-
position, meaning that no optimization is necessary.

After the BMP of s(t,T0) and the CMP of s(t,Tm), we
have two sets of parameters θBMP and θCMP. The linear in-

Figure 2: Flowchart of the MP method.

terpolation in the parameter space can be formulated as

̃tk(T) = (tk,CMP − tk,BMP) ⋅ p(T) + tk,BMP
̃fk(T) = (fk,CMP − fk,BMP) ⋅ p(T) + fk,BMP
|ãk(T)| = (|ak,CMP| − |ak,BMP|) ⋅ p(T) + |ak,BMP|

arg(ãk)(T) = (arg(ak,CMP) − arg(ak,BMP)) ⋅ p(T)

+ arg(ak,BMP) (16)

with

p(T) = T − T0
Tm − T0

, k ∈ {1, . . . ,K} . (17)

Parameterswhichhavebeenkept constant arenot interpo-
lated and the complex coefficients are reconstructed from
the interpolated absolute values and phase information.
Finally, a reconstruction of the signals from the parameter
space is necessary. This is done by the weighted sum

̃s(t,T) =
K
∑
k=1

ãk(T) g( ̃tk , ̃fk , t;T) . (18)

The overviewof the algorithm is depicted in Fig. 2. Summa-
rized, the algorithm can be described as follows. The first
step is the BMP of the baseline signal s(t,T0). Using the pa-
rameters from the BMP, the CMP is performed on the signal
s(t,Tm). The estimated signal is then reconstructed from
the interpolated parameters using (16) and (18).

4 Experimental results
To validate themodel, in amultimode andmultipath prop-
agation scenario structural wave signals were recorded at
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Figure 3: Experimental setup.

different temperatures. An experimental stand consisting
of a circular pipe with piezoelectric Clamp-On transduc-
ers attachedwas erected and thermally insulated. Thepipe
was 0.5m long, made of stainless steel and filled with air,
to validate only the structural waves. The measurement
signals were acquired at a sample rate of fs = 50MHz us-
ing a preamplifier and a PXIe-1062 station with a PXIe-5171
ADC module and a PXI-5412 DAC module. The measure-
ment time was set to 150 µs, to avoid reflections from
the ends of the pipe. Nevertheless, the waves have differ-
ent propagation paths due to multiple circulations of the
wave packets resulting from the circular form of the pipe.
A scheme of the experiment is depicted in Fig. 3. As exci-
tation signal a gaussian modulated cosine signal

u(t) = A ⋅ exp(− (t − tu)
2

2σ2
) ⋅ cos(2πf0t) (19)

has been used, with tu = 5 µs, σ = 1.5 µs and A = 10V.
Due to the excitation frequency, which was set to 700 kHz,
and the material thickness, primarily S0 and A0 modes are
propagating. The pipe was first heated to a temperature of
about 80 ∘C and then thermally insulated using styrofoam.
The natural cooling-off to 20 ∘C took 4 hours. During this
time window 72200 measurement signals and their cor-
responding temperatures were recorded. To reduce elec-
tronic noise, the signals were packaged in blocks of 100
and averaged, which resulted in 722 signals.

The firstmeasurement signal from the temperature ex-
periment and its residuals after increasing number of MP
iterations is shown in Fig. 4. The residual signal energy is
reduced to less than −25 dB after only 14 iterations, but
to reach −40dB 60 iterations are needed. Further increas-
ing the damping setpoints does not further improve the
temperaturemodel, but the computational effort increases
strongly. TheBMPwas configured to reduce the residual by
40 dB in the time range [0µs, 100 µs]. Therefore, the resid-
uals after 100 µs are the same as the original signal. It is

Figure 4: Original measurement signal (blue, bottom) and the resid-
uals from MP after 7 (red, middle) and 60 iterations (green, top).

shown that by limiting the time delays and the width σk
of the frame functions, the MP model can be used to de-
scribe local signal distortions. For example, in Fig. 4 only
the temperature dependency of signal parts arriving in
[0µs, 100 µs] are considered. This shows that the method
can deal with signals where a temperature variation has
different effects on the different propagation paths.

Using the residual signal energy normalized by the
original signal energy

J(T) =
‖ ̃s(t,T) − s(t,T)‖22
‖s(t,T)‖22

, (20)

the model performance was evaluated by comparison of
the interpolated signals with the measured signal in the
desired time range t ∈ [t0, tN−1]. Smaller values of J(T) rep-
resent better model performance. We examined the influ-
ence of the degrees of freedom of MP model, the different
time ranges as well as different temperature differences
ΔT = Tm − T0. The lower temperature T0 is always set to
20 ∘C and the lower limit of the time range is alway set to
t0 = 0 s.

To show that an interpolation in the parameter space
is valid, the optimal parameters were calculated for every
temperature T ∈ [20 ∘C, 81 ∘C]. The function set for decom-
position has been set by BMP of the baseline signal s(t,T0)
with the free parameters tk , fk , σk . Subsequently CMP with
zero degrees of freedom was used on the signals at higher
temperatures to determine the optimal coefficients ak(T).
Figure 5 presents the results of this analysis. In the upper
plot the attained model performance is shown, which is
the optimum under the configured constraints. The asso-
ciated optimal parameters ak are shown in themiddle plot
(absolute value) and in the bottom plot (phase). For the
purpose of better presentation and clarity only the param-
eters of the four frame functions with the highest signal
energy are plotted. The phase of the coefficients ak show
a linear behavior, while their absolute values only show
a small deviation from linearity. The jumps of arg(ak) at
T = 55 ∘C and T = 72 ∘C arise through the 2π indeterminacy
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Figure 5: Upper limit of model performance (top) and parameter
trend of CMP over increasing temperature: absolute values (mid-
dle) and phase information (bottom). The four curves are the four
coefficients with the largest absolute value.

of the phase. One jump per coefficient can be solved by
the assumption that the trend of arg(ak) has to be mono-
tonically decreasingwith increasing temperature. To solve
more than one jump, another measurement with smaller
temperature difference would be needed. In the range of
[45 ∘C, 60 ∘C] inconsistencies can be observed. They also
show up in the model performance of the MP method and
the BSS method. Possible reasons can be disturbances
during the experiment or the influence of the temperature
on the transducers or their coupling.

In the following, the model is compared with the
BSS method presented in [2]. In this work the model
is extended by an amplification factor to deal with
temperature-dependent damping of the transducers.
The estimated signals are calculated by

̃sBSS(t,T) = Ã(T) ⋅ s(α̃(T) ⋅ t,T0) . (21)

The temperature-dependent parameters Ã(T) and α̃(T) are
determined by linear interpolation

Ã(T) = (Â(Tm) − 1) ⋅ p(T) + 1 , (22)

α̃(T) = (α̂(Tm) − 1) ⋅ p(T) + 1 , (23)

Figure 6: Residual signal energy of temperature model with
tN−1 = 100 µs. The degrees of freedom on the BMP have been set
tom1,BMP = [σk , fk , tk] The CMP had zero degrees of freedom.

with

[
Â(Tm)
α̂(Tm)
] = argmin

{A,α}

N−1
∑
n=0
(s(tn,Tm) − A ⋅ s(α tn,T0))

2 . (24)

The time-stretch is done by resampling as described in [2]
with a high amount of zero padding such that granular-
ization noise is lower than expected model errors. Using
equation (21) and the MP method, the signals ̃s(t,T) are
now estimated from the baseline signal s(t,T0) and the sig-
nal s(t,Tm). Figure 6 shows the residual energy level us-
ing (20), with the temperature Tm set to the maximum and
the time range set to [0 s, 100 µs]. The BSS method’s per-
formance decreases with increasing temperature, because
applying a constant amplification and time-stretch cannot
deal with signal distortions such as the shapes of the en-
velopes. Croxford et al. called this frequency noise [2]. Note
that the BSSmethod has less free parameters, so the adap-
tion to signal changes is naturally limited. Because the
stopping criterion of theMPwas set to 40 dB, the accuracy
of the MP method is limited to this damping, even if there
are no temperature variations at all (see Fig. 6). The per-
formance of the MP method is also decreasing, because
the constraints in the CMP limit the adaptability. The point
with least damping (T ≈ 50 ∘C) is due to the combination
of the interpolation errors of the parameters and the lim-
ited adaptability due to the constraints. These results show
that for small temperature deviations from the boundary
T0 the BSS method works better and for temperature de-
viations T − T0 > 30K, the MP method is preferable. This
temperature should not be confused with the difference of
the boundary temperatures Tm −T0 between the signal es-
timation is to be done (see Fig. 1).

In the following, the influence of the constraints and
the chosen dictionary is examined. Therefore the MP
method has been run several times with the different con-
straintsMBMP andMCMP under the conditions ΔT = 60K
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Table 1: Influence of constraints on model performance at tN−1 =
100 µs and ΔT = 60K.

MCMP \MBMP tk , fk , σk tk , fk tk

m1,CMP = [tk , fk] 52.63dB 24.63dB 21.58dB
m2,CMP = fk −13.43dB −10.73dB −14.21dB
m3,CMP = tk 5.00dB 4.80dB 4.59dB
m4,CMP = 0 −13.05dB −14.28dB −13.67dB

and tN−1 = 100 µs. The points of least performance are cal-
culated for the different constraints by

J(MBMP,MCMP) = max
T

J(MBMP,MCMP,T) (25)

and displayed in Table 1. Positive values represent a bad
performance. The results show that the choice of con-
straints in the CMP is very important, as usingm1,CMP and
m3,CMP does not lead to a satisfactory signal estimation.
The reason lies in the optimization procedures which cal-
culate the parameters. If the parameter tk can be adapted,
the optimization may find a completely different frame
function in one step, and therefore lead to a different MP
decomposition. To apply the MP method, the signal de-
compositions of s(t,T0) and s(t,Tm) have to be related. Ta-
ble 1 shows this correlation to be only possible, if the pa-
rameter tk is constrained to the same value as in the BMP
of s(t,T0). Due to these results, in the following evalua-
tions of the method, the constraints of the BMP and the
CMP have been set tom1,BMP andm4,CMP, respectively.

After evaluation of the MP method with a constant
time range of [0µs, 100 µs] and maximal temperature dif-
ference ΔT, in Fig. 7 the influence of the temperature differ-
enceΔT is shown. This is doneby repeating theMPmethod
with decreasing ΔT. The model performance was conse-
quently only evaluated for temperatures T ∈ [T0,T0 + ΔT].
In Figure 7 the worst case for the respective ΔT is depicted
following the equation:

J(ΔT = Tm − T0) = max
T∈[T0 ,Tm]

J(T ;Tm) . (26)

Theworst dampingof theMPmethod is better than theBSS
method for nearly every ΔT. However, the BSSmethod can
attain better signal estimations at small temperature vari-
ations, because the MPmethod cannot estimate the signal
better than the predefined stopping criterion of the MP al-
gorithm.

Figure 8 shows the dependency of the MP method on
the time range in which the signals should be estimated.
Wave packets arriving later correspond to modes which
propagate with a lower group velocity or to wave pack-
ets with a longer propagation path. The performance of

Figure 7: Attained model performance under varied temperature
difference ΔT (BMP set tom1,BMP, CMP set tom4,CMP).

the BSS method decreases for later wave packets, because
the stretch factor is only globally determined and cannot
be adapted individually for every wave packet. However,
Fig. 8 shows that the performance of the MP method also
decreases if the time range is increased. The reason for this
behavior is the linear interpolation to estimate the param-
eters. Later wave packets are more dispersive and over-
lap with wave packets that propagate on a shorter path
but arise from the reverberating transducer. This results in
an increasingly nonlinear relationship of the parameters
with the temperature and therefore reduces model perfor-
mance.

Figure 8: Attained model performance under varied time range ΔT
(BMP set tom1,BMP, CMP set tom4,CMP).

5 Conclusions
This paper investigated the application of the Matching
Pursuit (MP) algorithm for modeling the temperature de-
pendency of structural waves. To this end, two specially
designed MP algorithms were developed, called the base-
line Matching Pursuit (BMP) and the constrained Match-
ing Pursuit (CMP). The numerical implementation was
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described as well as the extensions to use constraints.
The results of different degrees of freedom in the BMP and
CMPwere investigated and compared against the baseline
signal-stretch (BSS) method. In the CMP the time delays tk
needed to be kept constant, because otherwise the corre-
lation between the parameters of BMP and CMP was not
possible. The parameters were shown to have a fairly lin-
ear relation to the temperature. A linear interpolation of
the parameters to estimate the temperature influence on
the signals reached similar residual signal energies as the
BSSmethod in the temperature range [20 ∘C, 50 ∘C]. At tem-
perature variations ΔT > 30 ∘C, the MP method performed
better and yielded a signal damping of at least −13 dB.

Furthermore, the influence of different temperature
differences and time ranges on the performance of
the method have been investigated. For temperature-
differences greater than 10 ∘C, the MP method could es-
timate the temperature dependent signal better than the
BSS method by about 5 dB. Increasing time ranges impair
the estimation accuracy for both the MP method and the
BSSmethod, but at themaximal time range examined, the
MP method still could approximate the signals better.

Using this approach in an ultrasonic flow measure-
ment system to compensate the structural waves, an im-
provement of the robustness against temperature varia-
tions is to be expected. Without a compensation of the
structural waves, the accuracy of flow estimation is depen-
dent on the phase shift of the structural waves compared
to the desired signal. Therefore, performing an experiment
with constant flow, over varying temperature, a ripple in
the accuracy over the temperature can be observed, due
to the varying phase shift. Using our compensation ap-
proach, the peak-to-peak value of this ripple is expected
to get smaller.

In order to validate the compensation of the structural
waves using the MP model, the setup of an experimen-
tal stand, which allows high temperature variations dur-
ing flowmeasurements, is necessary. Furthermore, the ap-
plication of wavelet packets instead of the Gabor wavelet
based Matching Pursuit method and the problem of non-
linearity in later wave packets are subjects of future re-
search.
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