
Received: 29 March 2019 Accepted: 2 May 2019

DOI: 10.1002/pamm.201900032

A bottom-up continuum approach of crystal plasticity for the analysis of
fcc microwires under torsion

Kolja Zoller1,∗ and Katrin Schulz1,∗∗

1 Institute for Applied Materials - Computational Materials Science (IAM-CMS), Karlsruhe Institute of Technology,
Kaiserstr.12, 76131 Karlsruhe, Germany

The microstructural evolution of face-centered cubic microwires is studied using a physical motivated, homogenized con-
tinuum model of crystal plasticity. The dislocation configuration in the three-dimensional space is thereby described via a
Continuum Dislocation Dynamics (CDD) theory including a dislocation source term. The resulting spatial distribution of
dislocation densities and strain components are shown for a relaxation problem with torsional loading.
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1 Introduction

Microwires under torsion show a pronounced size effect [1], whereby the consideration of single crystal allows to study the
influence of strain gradients independent from grain sizes. Describing dislocation densitiy as a homogenized ensemble of
dislocation lines, the CDD theory [2] is suitable for a physical consideration of such problem providing the benefits of a
continuum formulation. An extension including a dislocation density production term for bending is formulated in [3]. The
connection between pile-ups and size effects is discussed in [4].

2 Dislocation density based continuum model

The considered model describes the elasto-plastic deformation behavior of face-centered cubic single crystal metals, whereby
the plasticity solely results from the evolution of the dislocation microstructure characterized by CDD densities. Operating on
the mesoscopic scale, the model can be divided into two coupled problems using the same length scale: The elastic problem
calculating the stress field σ for a given plastic state and the dislocation problem describing the dislocation evolution for
a given stress field resulting in plasticity via the plastic slip γs on all twelve slip systems S = 12. Each slip systems s
is characterized by its plane normal ms and the Burger’s vector bs = bsds with the length bs and the slip direction ds.
The governing equations of both problems can be found in Tab. 1. Regarding the boundaries, it has to be remarked, that
the dislocations can leave the continuum at the surfaces unhindered. The considered degrees of freedom are three nodal
displacements plus four nodal dislocation density based quantities per slip system.

The curvature production term q̇prods enables the model to increase the number of dislocation loops in the system. The
production term is activated if the local stress exceeds a critical value and accounts for a relaxation of the local stress to its
critical state. The macroscopic ideal plastic material behavior functions thereby as a upper limit for the global production rate.

Table 1: Set of governing equations in the three-dimensional space

Elastic problem Dislocation problem
Decomposed distorsion tensor Du = βel + βpl Orowan equation γ̇s = vsbsρs

Plastic distorsion βpl =
∑S
s=1 γsM s Velocity law vs =

bs
B sgn(τ eff

s )max
{
0, |τ eff

s | − τy
s

}

Schmid tensor M s = ds ⊗ms Effective stress τ eff
s = σ ·M s − τb

s

Infinitesimal total strain ε = symDu Backstress τb
s = Dµbs

ρs
∇ · κ⊥s , κ⊥s = κs ×ms

Stress-strain relation σ = C[ε− εpl] Yield stress τy
s (ρ) = aµbs

√∑
n ρn

Macroscopic balance equation −divσ = fB Dislocation density ρ̇s = −∇ ·
(
vsκ
⊥
s

)
+ vsqs

Dirichlet boundary conditions u = uD GND density κ̇s = ∇× (ρsvsms)

Neumann boundary conditions σn = tN Curvature density q̇s = −vs∇ ·
(
qs
ρs
κ⊥s
)
+ q̇prods
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Boundary condition vs

(
|n×ms|ρs + (n×ms) · κs

)
= 0
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2 of 2 Section 8: Multiscales and homogenization

3 Relaxation of micro-torsion

The used system configuration is shown in Fig. 1. A microwire with an aspect ratio of one to two is examined. The bottom is
fixed and the top is subjected to a twist deformation. The surfaces on the side are traction-free. We consider an instantaneous
loading with an subsequent dislocation relaxation. The resulting stress field consists mainly of two shear components with
a linear distribution. Therefore, the center is stress-free and the highest stress occurs at the surface. The chosen material
parameter in Tab. 2 are based on aluminium with a [0 1 0] crystal orientation. Elastic isotropy is assumed.

The initial condition is dislocation free and the critical stress for the source activation is adapted in such a way, that the
stresses at the surface reach the double of the critical value in the initial step. For the elastic problem a standard FEM solver
with linear ansatz functions is used. The flux-based dislocation transport equations considering dislocation mean-field stresses
are solved by a Runge-Kutta discontinuous Galerkin scheme with upwind flux, an implicit midpoint rule for the evolution
equations and quadratic ansatz functions. Both solvers operate on the same mesh consisting of about 170 000 tetragonal
elements. The spatial distribution over the radius of the resulting microstructure is characterized by Fig. 2 and Fig. 3.

Fig. 1: Geometry

Table 2: Material parameter

µ = 27 GPa
ν = 0.347
b = 0.286 µm
B = 10−4 ns GPa
D = 0.255 µm−3

a = 0.3 µm−2 0 2 4 6 8 10 12
r [ m]

2

4

6

8

,
1,

2 [
(

m
)

2 ]
Density vs Radius

1
2

Fig. 2: Resulting spatial distribution over
the radius r =

√
x2 + z2 of the total dis-

location density ρ as well as screw part κ1

and edge part κ2 of the GND density mea-
sured in the middle of the microwire.
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Fig. 3: Resulting spatial distribution over
the radius r =

√
x2 + z2 of the total

strain ε and its elastic part εel and plas-
tic part εpl measured in the middle of the
microwire.

The expanding dislocation loops produced near the surface in the initial step are leaving the continuum at the surfaces and
moving accordingly to the stress field towards the center forming a pile-up. Accordingly, the piled-up total dislocation density
consists mainly of geometrically necessary dislocation (GND) density. Due to the orientation of the slip systems and loading
case, the screw and edge part of the GNDs are nearly of the same amount.

The total strain has a linear profile over the radius. The resulting plastic strain is nearly constant near the surface and
decreases from a breaking point linear towards the center in the same manner as the total strain. The position of the break
point correlates with the change in the dislocation density. The elastic strain and therefore the shear stress is almost zero near
the center and increase linear from the break point towards the surface with the same gradient as the total strain.

4 Discussion

With the critical thickness theory (CTT) there are analytical studies on this topic [5]. When the strain reaches a critical state,
the area under the elastic strain curve remains constant in the following. The qualitative distribution found by CTT is identical
to the simulation results in this contribution. For the given load even the quantitative distribution is similar except for a
constant higher dislocation production by a factor of one third. This is due to the three-dimensional consideration with an
increasing influence over the radius since each element has the same weight but the area increase with the radius.

One important point is that we wouldn’t expect such a qualitative behavior for a classical continuum approach. The flow
terms of the CDD formulation enable the dislocation produced near the surface to move into the center and therefore plastify
even the material with a local stress smaller than the critical value.
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