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Summary
Cell formulae for the effective crack resistance of a heterogeneous medium obey-
ing Francfort-Marigo's formulation of linear elastic fracture mechanics have
been proved recently, both in the context of periodic and stochastic homog-
enization. This work proposes a numerical strategy for computing the effec-
tive, possibly anisotropic, crack resistance of voxelized microstructures using
the fast Fourier transform (FFT). Based on Strang's continuous minimum
cut—maximum flow duality, we explore a primal-dual hybrid gradient method
for computing the effective crack resistance, which may be readily integrated
into an existing FFT-based code for homogenizing thermal conductivity. We
close with demonstrative numerical experiments.

K E Y W O R D S

brittle fracture, computational homogenization, FFT-based method, maximum flow, primal-dual
algorithms

1 INTRODUCTION
Multiscale methods in mechanics use information about the mechanical behavior of the individual phases and their
spatial arrangement on a particular length scale to draw conclusions about the mechanical behavior on a coarser length
scale. For strain-hardening material behavior, multiscale methods have been established as a powerful and viable tool,
see the recent survey of Matouš et al.1 In the context of homogenization methods, continuum mechanical computations
are performed either on a periodic cell2 or a representative volume element.3

Applying multiscale methods to fracture mechanics, however, is not so straightforward. Classically, linear elastic
fracture mechanics, see Gross and Seelig4 for an elementary exposition, concerns the propagation of preexisting cracks.
However, in the context of homogenization, the stress singularity at the crack tip precludes scale separation. It is pos-
sible to conduct direct numerical simulations on volume elements, as done in the context of cohesive zone models,5
local and nonlocal damage models6-10 or phase-field fracture,11-13 and to subsequently identify the parameters of a pos-
tulated macroscopic model. However, upon strain localization, the results may depend strongly on the chosen cell14

and the imposed boundary conditions.15-17 This contrasts with homogenization of strain-hardening materials, where a
representative volume is characterized by the effective stress being independent of the imposed boundary conditions.18

Even more to the point, Gitman et al14 demonstrate by numerical simulations that the critical stress of their investigated
continuum damage model approaches zero in the infinite volume limit.
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To overcome these limitations, several approaches have been developed, including coupled volume methods,19

second-order computational homogenization,20 coarse-graining of failure modes,21-25 and failure-zone averaging.26-28

In contrast, for the Francfort-Marigo model,29 which generalizes Griffith's energy criterion30 and serves as continuum
limit of some phase-field fracture models,31-33 Braides et al34 provide a homogenization result and corresponding cell
formulae for heterogeneous elastic tensor and crack resistance in the context of periodic homogenization and antiplane
shear. More precisely, they provide a formula for the effective stiffness tensor and a formula for the effective crack resis-
tance (as a function of the unit normal), both of which are decoupled. We will recapitulate these formulae in Section 2.1.

This decoupling of elasticity and crack resistance may be startling at first. However, it is a result of the different scaling
of the summands in the Francfort-Marigo model. The elastic energy is a volumetric quantity, whereas the crack resistance
is multiplied by an area. For other models, such a decoupling through homogenization is well-known. For instance, in
the context of fully coupled thermomechanics, the mechanical problem and the heat equation decouple almost entirely
upon homogenization.35

In a recent work, Cagnetti et al36 extended the homogenization result and the cell formulae to stochastic homogeniza-
tion. In particular, the existence of the representative volume element is ensured for homogenizing the crack resistance.

Apparently unaware of the homogenization results34,36 for brittle fracture, Hossain et al37 introduced a notion of
effective fracture toughness and conducted computational studies by a phase-field fracture model.31-33 We discuss the
differences between the two approaches in Section 2.1.

Contributions

In this work, we propose a numerical strategy for computing the effective crack resistance of Braides et al34 and Cagnetti
et al36 on large-scale digital volume images based on the fast Fourier transform (FFT). For prescribed average cracksurface
normal, we introduce a convenient cell formula for computing the effective crack resistance which permits arbitrarily
periodic crack surfaces. The proposed formula is related to the original cell formula of Braides et al34 in the same way
that imposing periodic boundary conditions is related to imposing displacement boundary conditions for mechanical
problems.18 In particular, in the infinite volume limit, both approaches are expected to coincide.

Based upon Strang's work,38 we recast the weighted minimal surface problem central to the cell formula as a convex
optimization problem (the minimum cut formulation). The latter program, being convex, has the advantage that any
critical point is a global minimizer. Again building upon Strang's insights,38 we exploit dual and primal-dual formulations
of the minimumcut problem, leading to the maximumflow problem. The details comprise Section 2.2.

Based upon the primal-dual formulation, we propose a numerical algorithm for computing the effective crack resis-
tance. More precisely, we investigate the primal-dual hybrid gradient (PDHG) method,39,40 which has been successfully
applied to image segmentation problems41, and point out similarities to polarization-based methods42-44 popular in
FFT-based computational micromechanics, see Section 3 for details.

Due to formal similarities to the homogenization of thermal conductivity problems, we investigate two popular
discretization schemes used in FFT-based methods: the under-integrated Fourier-Galerkin discretization, pioneered
by Moulinec and Suquet45,46 and the rotated staggered grid discretization,47 which may also be interpreted as an
under-integrated finiteelement discretization.48

The approach in this article differs from other FFT-based computational approaches to phase-field crack
propagation,11-13 as we do not compute stress-strain curves for applied mechanical loading. Instead, the effective, possi-
bly anisotropic crack resistance is our quantity of interest. The latter may be used in a phase-field crack model49,50 on the
macroscale.

We demonstrate the power of the proposed numerical schemes for problems of industrial complexity, cf. Section 4.

2 HOMOGENIZATION OF BRITTLE FRACTURE AND CELL FORMULAE

2.1 Homogenization of brittle fracture

In the context of quasi-static small-strain brittle fracture mechanics, let Ω be a domain in Rd with sufficiently smooth
boundary, and let a linear elastic tensor C ∈ L(Sym(d)) and a positive crack resistance* 𝛾 be given. Herein, Sym(d) denotes

*In linear elastic fracture mechanics, the terms fracture toughness, crack resistance, and critical energy release rate are used synonymously. In this
work, we consistently use “crack resistance”.
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the vector space of symmetric d × d matrices. For prescribed boundary displacements u0 ∶ 𝜕Ω × [t0, t1] → Rd, depending
on (pseudo-)time, the Francfort-Marigo model29 seeks a displacement field u ∶ Ω × [t0, t1] → Rd, such that, for any t ∈
[t0, t1], u(⋅, t) minimizes the energy

W(u) = 1
2∫Ω

∇su ∶ C ∶ ∇su dx + ∫Su

𝛾 dA, (1)

where Su denotes the set of jump points of u (away from the boundary 𝜕Ω) and ∇s stands for the symmetrized
gradient, subjected to prescribed boundary displacements u(⋅, t) = u0(⋅, t) on 𝜕Ω and the constraint that cracks may
only grow,

Su(⋅,t) ⊇ Su(⋅,𝜏) for all t0 ≤ 𝜏 ≤ t ≤ t1,

and an initial crack set Su(⋅,t0). To render the model Equation (1) well-defined for each instant of time, the displacement
field u needs to be chosen in a suitable function space of discontinuous functions, see Chambolle et al.51,52

To treat the Francfort-Marigo model numerically, it is customary to discretize the quasi-static evolution53 in
time by a backward Euler scheme, that is, to subdivide the time interval [t0, t1] into K+1 increasing time instants
t0 = t0, t1, t2,… , tK−1, tK = t1 and to minimize, for each k = 1, 2,… ,K, the functional (1) subjected to the boundary con-
dition uk = u0(⋅, tk) on 𝜕Ω and the constraint Suk ⊇ Suk−1 , where uk and uk−1 denote minimizers of the functional (1)
corresponding to the time steps tk and tk−1, respectively.

For a (periodically) microstructured material, let a rectangular unit cell Y ⊆ Rd be given, together with a heteroge-
neous elastic tensor field C ∶ Y → L(Sym(d)) and a lower semicontinuous crack resistance 𝛾 ∶ Y → R+, both of which
we consider as Y -periodically extended functions on Rd. For 𝜂 > 0 and a given time discretization, we consider the
heterogeneous problem

W𝜂(u) =
1
2∫Ω

∇su ∶ C

(
x
𝜂

)
∶ ∇su dx + ∫Su

𝛾

(
x
𝜂

)
dA(x) −→ min

u
, (2)

subjected to similar boundary conditions and constraints as above, see the left-hand side of Figure 1 for a schematic. For
𝜂 ≪ 1, the functional W𝜂 in Equation (2) is very difficult to solve numerically (in addition to the “usual” computational
challenges associated to the Francfort-Marigo model, see Bourdin et al31). Thus, for 𝜂 ≪ 1, it is convenient to approximate
Equation (2) by a suitable homogenized model, as is common for other types of multiscale problems.1

In the context of antiplane shear, Braides et al34 have shown a periodic homogenization result for problems of the type
(2). To be more precise, a special case of their result concerns a given rectangular unit cell Y ⊆ Rd, together with periodic,
possibly discontinuous, coercive elastic tensor field C ∶ Y → L(Rd×d), and lower semicontinuous crack resistance 𝛾 ∶
Y → R+, bounded from above and from below. Then, under suitable conditions on C as well as on 𝛾 and as 𝜂 → 0, the
functionals

W̃𝜂(u) =
1
2∫Ω

∇u ∶ C

(
x
𝜂

)
∶ ∇u dx + ∫Su

𝛾

(
x
𝜂

)
dA, 𝜂 > 0, (3)

Ω Ω
Y

η 0

F I G U R E 1 Schematic of a precracked domain Ω, occupied by a periodic microstructured material with period 𝜂Y, and the limiting
procedure toward a homogenized medium [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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converge, in the sense of Γ-convergence, to the homogenized functional

W̃(u) = 1
2∫Ω

∇u ∶ C
eff ∶ ∇u dx + ∫Su

𝛾eff(n) dA, (4)

for homogeneous, effective “stiffness” Ceff and crack resistance 𝛾eff ∶ Sd−1 → R, a (symmetric) function of the unit
vector n normal to the crack surface. Furthermore, cell formulae for both Ceff (the formula appearing in classi-
cal works like in Babuška2) and 𝛾eff are provided. More precisely, the effective crack resistance 𝛾eff ∶ Sd−1 → R, is
given by

𝛾eff(n) = lim
L→∞

𝛾eff
L (n), n ∈ Sd−1, (5)

and, for L > 0,

𝛾eff
L (n) = inf

S

1|QL(n)|∫S
𝛾 dA, (6)

where QL(n) is the cube
[
− L

2
, L

2

]d
rotated in such a way that the e1-axis is mapped onto n, and the infimum is

taken over all surfaces S lying inside QL, whose boundary is constrained to 𝜕QL ∩ {x ∈ Rd|x ⋅ n = 0}. Geometrically,
Equation (6) seeks the 𝛾-weighted minimal surface with fixed boundary conditions on the halved cube QL. The lat-
ter definition is visualized in Figure 2A, where the case d = 2 is considered. The figure shows nine copies of the unit
cell, with 𝛾 attaining two distinct values 𝛾1 and 𝛾2. QL is centered at the origin, such that one of the face normals
corresponds to n. Furthermore, we see two competitors for the “shortest line,” shown in green and blue, both with
identical, fixed boundary conditions. The blue line is shortest if 𝛾2 < 𝛾1, whereas the green line is (almost) optimal
if 𝛾2 ≫ 𝛾1.

As the basis for this work, we assume that the homogenization result of Braides et al34 continues to hold beyond the
restrictive case of antiplane shear, that is, we assume that the limiting model, as 𝜂 → 0 and in the sense of Γ-convergence,
of the multiscale problem (2), is given by

W(u) = 1
2∫Ω

∇su ∶ C
eff ∶ ∇su dx + ∫Su

𝛾eff(n) dA, (7)

where the effective stiffness Ceff is determined by the usual formula54

E ∶ C
eff ∶ E = inf 1|Y |∫Y

(E + ∇su(y)) ∶ C(y) ∶ (E + ∇su(y)) dy, E ∈ Sym(d), (8)

the infimum is taken over all smooth, periodic fields u ∶ Y → Rd (|Y| denotes the volume of the cell Y ), and the effective
crack resistance 𝛾eff ∶ Sd−1 → R may be computed as detailed in Equation (5).

To conclude this section, several comments are in order.

Ω
Y

(A) (B)

F I G U R E 2 Schematics for 𝛾eff
L (n), cf.

Equation (6), and for determining the
effective fracture toughness following
Hossain et al37
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1. From a mechanical point of view, the result of Braides et al34 may be surprising, as the “elastic” and the fracture
part decouple during homogenization, that is, Ceff solely depends on C and 𝛾eff can be determined from 𝛾 alone. On
second thought, the result becomes clearer taking into account the different scaling of the two summands entering
the Francfort-Marigo energy (1).

Indeed, for more general energies of Mumford-Shah type, these two summands may interact. For instance, Braides
et al55 consider the relaxation of energies of the form

W̃(u) = 1
2∫Ω

f (x,∇u) + ∫Su

g(x,n, [u]) dA,

where the surface part is 1-homogeneous in the displacement jump [u] = u+ − u− across the interface. Due to this
1-homogeneity, the bulk and surface parts have the same scaling, and may interact upon relaxation.

Also, for functionals of the type (3) with high-contrast coefficients, interaction upon homogenization can be proved.
More precisely, Barchiesi et al56 and Pellet et al57 provide examples of such an interaction if either the bulk or the
surface part in Equation (3) degenerates as 𝜂.

2. The results of Braides et al34 hold for a more general class of (possibly nonconvex) bulk energy densities and
(anisotropic) crack resistances. We will focus on strongly-convex quadratic bulk energies.

3. Cagnetti et al36 extended the results of Braides et al34 to the case of stochastic homogenization. In engineering termi-
nology, they show the existence of a representative volume element for homogenizing 𝛾 . This result might surprise the
informed reader, as it appears to contradict results of Gitman et al,14 who show the nonexistence of a representative
volume element by computational means. However, there is no contradiction, because the assumptions of the mod-
els in question differ. More precisely, whereas Gitman et al14 incorporate the “smaller is stronger” principle into their
damage model, Cagnetti et al36 prove a “larger is stronger” principle. This apparent contradiction is resolved by not-
ing that Cagnetti et al36 assume a uniform lower bound on 𝛾 , whereas the “smaller is stronger” principle is typically
explained by minx∈A𝛾(x) ≥ minx∈B𝛾(x) for A ⊆ B, that is, larger sets have more defects on average.

4. Linear elastic fracture mechanics concerns the symmetrized gradient, as in Equation (1), and not only the antiplane
shear case of Equation (3). When this article was written, the author of these lines was not aware of an extension of the
work of Braides et al34 to the case of elasticity, mainly because of reported severe technical challenges. More precisely,
as a precursor to homogenization statements, robust existence results need to be provided, see the recent article of
Chambolle et al.58

5. Hossain et al37 introduced a notion of effective crack resistance that is different from the expression 𝛾eff, cf.
Equation (5), that was established by Braides et al34 and Cagnetti et al.36 Hossain et al consider mode-I-crack
propagation in a plane-stress setting, cf. Figure 2B. More precisely, they consider a square cell Ω centered at the
origin, with a preexisting crack located at the negative x-axis, and filled by the periodic material. They investigate
the Francfort-Marigo model (1) subjected to “surfing” displacement boundary condition, that is, those which solve
mode-I-crack propagation in a homogeneous isotropic setting, and determine the time-dependent energy release
rate by evaluating the J-integral59,60 on the boundary 𝜕Ω. As a result, they obtain a function Jeff, depending on
(pseudo-)time, and define

𝛾eff
HHBB ∶= max

t
Jeff(t).

This choice is motivated by the interpretation of the crack resistance as the critical energy releaserate, that is, as the
minimum value of the energy release-rate which permits unhindered crack growth. With this definition at hand,
Hossain et al37 show that heterogeneity in the elastic moduli as well as in the crack resistance may lead to an increase
in the crack resistance. These conclusions appear to contradict the homogenization theory of Braides et al34 and
Cagnetti et al.36

These differences in predictions originate from the different scales of the boundary-condition increments Δu0 for
a discretization in time. Hossain et al37 consider increments which are only a fraction of the microstructural length.
Otherwise, crack propagation would not be able to stagnate between the microstructural phases. In the setup of
Equation (2), the incrementsΔu0 are macroscopic, that is, the crack growth between successive time steps may traverse
a large number of unit cells.

Notice that the setup of Hossain et al,37 cf. Figure 2B, constitutes a special case of the heterogeneous
Francfort-Marigo model (2), cf. Figure 1. In particular, upon 𝜂 → 0, the homogenized functional (7) is recovered,
together with the corresponding cell formulae. Put differently, 𝛾eff arises from a suitable averaging procedure of Jeff

𝜂 as
𝜂 → 0.
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From a physical point of view, the toughening effect of heterogeneous media predicted by Hossain et al37 may be
observed experimentally if 𝜂 is small, but not exceedingly so, that is, for microtensile experiments61 if the length scale
of the heterogeneities is small. In contrast, for purely macroscopic loading conditions, the homogenization theory of
Braides et al34 and Cagnetti et al36 is more appropriate.

2.2 A fully periodic cell formula and the maximum flow formulation

To work with the homogenized model (7)

W(u) = 1
2∫Ω

∇su ∶ C
eff ∶ ∇su dx + ∫Su

𝛾eff(n) dA,

the effective stiffness Ceff and the effective crack resistance 𝛾eff ∶ Sd−1 → R need to be determined, either analytically
or by computational means. The cell formula (8) for Ceff is the usual one, and classical techniques may be applied, see
Matouš et al1 for a recent overview.

In contrast, the cell formulas (5) and (6),

𝛾eff(n) = lim
L→∞

inf
S⊆QL(n)

1|QL(n)|∫S
𝛾 dA

and n ∈ Sd−1, are less standard, essentially for three reasons. First, the minimal surface problem with prescribed bound-
ary condition is nonconvex in its original formulation. We will see below that the minimal surface area may be computed
using convex functionals, however. Second, in contrast to the cell formula (8), the definition (5) of 𝛾eff(n) involves a
limiting procedure on cells of growing size. Such formulae are well-known in mathematical, asymptotic, and compu-
tational homogenization of random materials or in the nonconvex setting. As 𝛾eff may be computed by minimizing a
(sequence of) convex functional(s), the level of difficulty is comparable to the computational homogenization of random
strain-hardening materials.

The third difficulty in treating the cell formulas (5) and (6) is the intrinsic degeneracy of the functional. Indeed, there
may be several (or even a continuum of) minimizers of the functional in Equation (6), and the computational method
needs to account for that.

Last but not least, by engineering experience it appears to be smarter to use periodic boundary conditions for the
“cutting surface,” although we do not provide a mathematical proof that our formulation is equivalent to the original
formulation. With these considerations in mind, we fix the cell QL ≡ Q and assume that 𝛾 ∶ Q → R is defined on Q per se,
that is, we do not care whether 𝛾 arises from periodization or not, and seek, for prescribed 𝜉, the infimum of the variational
problem

1|Q|∫Q
𝛾||𝜉 + ∇𝜙|| dx to be minimized over all smooth periodic functions 𝜙 ∶ Q → R. (9)

Herein, 𝜉 plays the role of the unit normal (typically normal to one of the faces of Q) and |Q| denotes the volume
of Q. It can be shown, cf. Strang,38 that Equation (9) gives rise to a well-defined problem on the space of (periodic)
functions of bounded variation, and the interfaces of sublevel sets {x ∈ Y|𝜙(x) < t} of the minimizer 𝜙, for almost any
t ∈ (0, 1), are periodic 𝛾-weighted minimal surfaces. Actually, Strang only considers the case of continuous 𝛾 . However,
Hintermüller et al62 provide a corresponding result for crack resistances with jumps using a Fenchel predualization
technique.

From a computational point of view, the minimization problem (9)

1|Q|∫Q
𝛾||𝜉 + ∇𝜙|| dx → min

𝜙∶Q→R periodic
(10)

appears somewhat innocent. If the norm term in the integrand of Equation (10) was raised to a power of two, we would
face a homogenization problem that typically arises, for instance, in thermal conductivity. However, the exponent one
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gives rise to some difficulties. Although, the existence of minimizers for Equation (10) is easy to establish†, the solution
may not be unique. For instance, if 𝛾 is homogeneous, any cut across Q normal to 𝜉 gives rise to a minimizer. Also, the
functional in Equation (10) is not classically differentiable. Still, Equation (10) involves a convex function, that is, on the
one hand we may use subdifferential calculus to characterize critical points, and, on the other hand, know that any critical
point is global minimzer. Thus, all we need to find is some critical point.

Naive subgradient algorithms are comparatively slow, cf. Section 4.3 in Chambolle and Pock.41 Thus, following similar
approaches for image processing problems, we investigate dual and primal-dual formulations of Equation (10).

For fixed 𝜉 ∈ Rd, introduce the (convex) set 
𝜉

of kinematic constraints


𝜉
= {𝜉 ∶ Q → R

d periodic | 𝜉 = 𝜉 + ∇𝜙 for some periodic 𝜙 ∶ Q → R}

and denote by ⟨⋅⟩Q the averaging operator on Q. Then, for a convex function f , the formal dual of the problem

f (𝜉) → min
𝜉∈

𝜉

(11)

is given by

f ∗(v) − 𝜉 ⋅ ⟨v⟩Q → min
div v=0

, (12)

see Hintermüller et al,62 where f∗ denotes the Legendre-Fenchel dual of f , that is,

f ∗(v) = sup
𝜉

⟨𝜉 ⋅ v⟩Q − f (𝜉). (13)

The primal minimizationproblem (10) may be put in the abstract primal form (11) by setting f(𝜉) = ⟨𝛾||𝜉||⟩Q. Then,
the Legendre-Fenchel dual function according to Equation (13) computes as the indicator function 𝜄 of the convex set ,

𝜄(v) =
{

0 v ∈ ,
+∞ otherwise, where  =

{
v ∶ Q → R

d periodic || ||v(x)|| ≤ 𝛾(x) for a.a. x ∈ Q
}
. (14)

Thus, the dual formulation of the problem (10) seeks a vector field v ∶ Q → Rd, such that,

min
div v=0

f ∗(v) − 𝜉 ⋅ ⟨v⟩Q = min
div v=0

𝜄(v) − 𝜉 ⋅ ⟨v⟩Q = − max
div v=0,||v||≤𝛾 𝜉 ⋅ ⟨v⟩Q (15)

holds. Put differently, the formal dual of the minimum cut problem (10) is the maximumflow problem (15), which seeks
to maximize the flow ⟨v⟩Q in direction 𝜉 subject to an incompressibility constraint and a bound constraint on the flow v.
The strong duality of these problems, that is,

𝛾eff(𝜉) ≡ min
𝜉∈

𝜉

⟨𝛾||𝜉||⟩Q = max
div v=0,||v||≤𝛾 𝜉 ⋅ ⟨v⟩Q (16)

was first shown by Strang38 for continuous 𝛾 and extended to piece-wise continuous 𝛾 by Hintermüller et al.62 This
minimum cut—maximum flow duality immediately gives rise to simple bounds on the effective crack resistance.
Indeed, inserting 𝜉 = 𝜉 into the primal problem, and v = (min 𝛾) 𝜉 into the dual problem provides the two-sided
bound

min
x∈Q

𝛾(x) ≤ 𝛾eff(𝜉) ≤ ⟨𝛾⟩Q (17)

on the effective crack resistance.

†At least for continuous 𝛾 . For 𝛾s with jumps, the Fenchel predualization framework of Hintermüller et al62 may be used instead. However, to keep the
technicalities to a minimum, we argue as if 𝛾 was continuous. The latter distinction is only relevant for the nondiscretized case, anyway.
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Last but not least, we will discuss briefly a primal-dual formulation of the minimal cut problem (16). As f is convex,
its bidual f∗∗ equals f , and we may write f as the Legendre-Fenchel dual of its Legendre-Fenchel dual

f (𝜉) = sup
v

⟨𝜉 ⋅ v⟩Q − f ∗(v).

Thus, we may write

𝛾eff(𝜉) ≡ min
𝜉∈

𝜉

⟨𝛾||𝜉||⟩Q = min
𝜉∈

𝜉

max
v

⟨𝜉 ⋅ v⟩Q − 𝜄(v) = min
𝜉∈

𝜉

max||v||≤𝛾 ⟨𝜉 ⋅ v⟩Q

in saddle point form. This saddle point formulation

𝛾eff(𝜉) = min
𝜉∈

𝜉

max||v||≤𝛾 ⟨𝜉 ⋅ v⟩Q (18)

serves as the starting point of the PDHG method introduced by Pock et al40 and Esser et al.39

3 A PDHG METHOD FOR COMPUTING THE EFFECTIVE CRACK
RESISTANCE

To find a saddle point of the primal-dual formulation (18)

𝛾eff(𝜉) = min
𝜉∈

𝜉

max||v||≤𝛾 ⟨𝜉 ⋅ v⟩Q, (19)

Arrow et al63 proposed to alternate a (proximal) descent in the variable 𝜉 and an ascent in the dual variable v with
respective step sizes s and t

𝜉k+1 = P
𝜉
(𝜉k − svk),

vk+1 = P(vk + t𝜉k+1), (20)

where P
𝜉

and P denote the L2-orthogonal projections onto the closed convex sets 
𝜉

and , respectively. The iterative
scheme (20) is not convergent; in general. Pock et al40 and, independently, Esser et al39 noticed that, for st ≤ 1, a simple
overrelaxation in one of the variables, that is, in our context,

𝜉k+1 = P
𝜉
(𝜉k − svk),

vk+1 = P(vk + t(2𝜉k+1 − 𝜉k)), (21)

improves the convergence behavior of this primal-dual hybrid gradient method (PDHG). More precisely, Chambolle and
Pock64 showed an ergodic 1

k
-convergence rate for the PDHG method (21) if the step sizes satisfy st ≤ 1.

In the context of FFT-based methods, the Hilbert space under consideration, both for 𝜉 and v, is the space L2(Q;Rd),
equipped with the L2 inner product

L2(Q;Rd) × L2(Q;Rd) ∋ (𝜉, 𝜂) → ⟨𝜉 ⋅ 𝜂⟩Q.

Then, for any 𝜂 ∈ L2(Q;Rd), the projector P
𝜉

becomes

P
𝜉
𝜂 = 𝜉 + Γ𝜂 (22)

in terms of the Green's operator, a linear operator Γ ∶ L2(Q;Rd) → L2(Q;Rd) given by Γ = ∇Δ−1div, see for instance,
Vondřejc et al.65 Also, P may be evaluated explicitly on any 𝜂 ∈ L2(Q;Rd) via

(P𝜂)(x) =
{

𝜂(x), ||𝜂(x)|| ≤ 𝛾(x),
𝛾(x)||𝜂(x)|| 𝜂(x), otherwise. (23)
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Applied to the PDHG iteration (21), we rewrite the first line in the form

𝜉k+1 = P
𝜉
(𝜉k − svk) = 𝜉 + Γ(𝜉k − svk) = 𝜉 − sΓ

(
vk − 1

s
𝜉k
)
.

Introducing the “reference material” 𝛼0 = 1
s
, the associated Green's operator Γ0 = 1

s
Γ, and rewriting st ≤ 1 in the form

t = 𝜌𝛼0 for 𝜌 ∈ (0, 1] the PDHG iteration becomes

𝜉k+1 = 𝜉 − Γ0(vk − 𝛼0𝜉
k),

vk+1 = P(vk + 𝜌𝛼0(2𝜉k+1 − 𝜉k)), (24)

where evaluating P is specified in Equation (23). Thus, the PDHG method alternates a single step of the basic scheme in
thermal conductivity, cf. Eyre and Milton,42 and a local projection operation. Several remarks are in order.

Algorithm 1 Primal-dual hybrid gradient method (maxit, tol, 𝜌)

1: Fix reference material 𝛼0

2: residual ← 1
3: k ← 0
4: 𝜉 ← 𝜉

5: v ← 𝛾𝜉

6: 𝜉old ← 𝜉

7: while k < maxit and residual> tol do
8: k ← k + 1
9: 𝜉 ← v − 𝛼0𝜉

10: 𝜉 ← FFT(𝜉)
11: ⟨v⟩Q ← 𝜉(0) + 𝛼0𝜉

12: 𝜉(𝜂) ←
{

𝜉, 𝜂 = 0
Γ̂0(𝜂)𝜉(𝜂), otherwise

13: 𝜉 ← FFT−1(𝜉)
14: v ← v + 𝜌𝛼0(2𝜉 − 𝜉old)

15: v(x) ←
{ v(x), ‖v(x)‖ ≤ 𝛾(x),

𝛾(x) v(x)‖v(x)‖ , otherwise.

16: residual ←
√
𝛼0‖𝜉−𝜉old‖‖⟨v⟩Q‖

17: 𝜉old ← 𝜉

18: end while
19: return 𝜉, v, residual

1. 𝛼0 has the same dimensions as the crack resistance 𝛾 , whereas the factor 𝜌has dimension 1. In the absence of theoretical
hints for choosing 𝛼0, we investigate several rational choices of 𝛼0 in terms of the function 𝛾 ∶ Q → R in Section 4.

2. We initialize the algorithm by 𝜉0 = 𝜉 and v0 = 𝛾𝜉.
3. As the convergence criterion, we choose

||Γvk||||⟨vk⟩Q|| ≤ tol, (25)

that is, we measure div v in an appropriate norm, cf. Schneider et al44 for elaboration in the context of small-strain
problems.

4. For 𝜌 = 1, the PDHG iterative scheme (24) may be equivalently rewritten as a Douglas-Rachford method (with relax-
ation factor 1

2
), see Section 5.4 in Chambolle and Pock.41 In the context of FFT-based computational homogenization

methods, the Douglas-Rachford scheme (with relaxation factor 1
2
) was introduced by Michel et al43 as the “Augmented

Lagrangian Method,” see also Schneider et al44 for a broader perspective.
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Applied to the iterative scheme (24) the ergodic estimate of Chambolle and Pock64 becomes

||||||𝜉 ⋅ v∗ −
k∑

i=1
𝜉 ⋅ vi

|||||| ≤
𝛼0||𝜉k − 𝜉∗||2L2 +

𝜌

𝛼0
||vk − v∗||2L2

k
, (26)

where (𝜉∗, v∗) denotes a saddle point, that is, a fixed point of the iterative scheme (24). Some caution has to be taken in
interpreting estimate (26), because 𝜉 will only be a bounded Radon measure, in general. Thus, its L2 norm will not be
finite. However, we are mostly interested in this estimate for the discretized problems. In that case, the L2 norm will be
finite, but not uniformly so. Rather, the norm will blow up as the mesh size gets refined.

4 NUMERICAL EXAMPLES

4.1 Implementation

The PDHG method detailed in Algorithm 1 was implemented into an in-house FFT-based computational homogenization
code, based upon previous work on the computational homogenization of thermal conductivity.66 Python with Cython
extensions was used as the programming language of choice, relying upon OpenMP for parallelization. The examples
were run on a laptop with two 2.70 GHz cores and 16 GB RAM as well as a desktop computer with six 3.70 GHz cores and
32 GB RAM, respectively.

We consider two classical discretization schemes used in FFT-based computational homogenization:

1. The discretization by trigonometric polynomials of Moulinec and Suquet,45,46 where, in addition, the “energy” is
approximated by the trapezoidal rule, cf. Vondřjec et al.65

2. The rotated staggered grid of Willot et al,47 which may be interpreted as a discretization by Q1-(trilinear
hexahedral)-finite elements with reduced integration.48

Formulae for the Γ-operator of these schemes are readily available in the mentioned references.
For both discretizations, we set the Nyquist frequencies of the Γ-operator to zero, that is, we force the Nyquist

frequencies of 𝜉 to be zero (We could have alternatively chosen to force the Nyquist frequencies of v to zero).
In general, we set the parameter 𝜌 entering Algorithm 1 equal to 0.99. We use tol = 10−4 in the convergence criterion

Equation (25), unless mentioned otherwise.

4.2 Validation and calibration

As a warm-up, we consider simple examples with analytically known effective crack resistances. We use these examples
to study the accuracy of the discretizations, and to determine the sensitivity to the algorithmic parameters.

4.2.1 A two-phase laminate

First, we investigate a simple two-phase laminate with volume fractions 𝜙1 = 1
3

and 𝜙2 = 2
3
, with lamination direction ex,

and phase-wise constant crack resistances 𝛾1 and 𝛾2, respectively. Then, we have

𝛾eff(ex) = min(𝛾1, 𝛾2) and 𝛾eff(ey) = ⟨𝛾⟩Q = 1
3
𝛾1 +

2
3
𝛾2.

The microstructure was discretized by 33 = 27 voxels. We test the PDHG solver for different contrasts 𝛾2∕𝛾1 and different
choices of the reference material, that is,

1. Minimum: 𝛼0 = 𝛾−,
2. Geometric mean: 𝛼0 =

√
𝛾−𝛾+,
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T A B L E 1 Influence of the
reference-material choice: iteration
count for the PDHG method and the
laminate microstructure, rotated
staggered grid and Moulinec-Suquet
discretization

𝜸1∕𝜸2 Minimum Geometric mean Arithmetic mean Maximum

0.01 23 26 26 24

0.1 16 22 20 21

10 45 47 48 55

100 50 60 65 65

Abbreviation: PDHG, primal-dual hybrid gradient.

T A B L E 2 Influence of the reference material choice: iteration count for the PDHG method and the single inclusion
microstructure, Moulinec-Suquet/rotated staggered grid discretization, ∗ did not converge to 10−4 within 10 000 iterations

𝜸2∕𝜸1 Minimum Geometric mean Arithmetic mean Maximum 𝜸eff(ex)∕𝜸1

0.01 114∕101 827∕1650 7470∕4159 ∗∕8233 0.6946∕0.6945

0.1 454∕802 2524∕1138 1886∕4387 3324∕7972 0.7225∕0.7224

10 995∕1276 4150∕2197 3372∕7072 6002∕∗ 1.0000∕1.0000

100 1058∕1487 ∗∕5800 ∗∕∗ ∗∕∗ 1.0000∕1.0000

Abbreviation: PDHG, primal-dual hybrid gradient.

3. Arithmetic mean : 𝛼0 = 𝛾−+𝛾+
2

,
4. Maximum: 𝛼0 = 𝛾+,

where 𝛾− = min(𝛾) and 𝛾+ = max(𝛾). Due to the initialization, the case 𝜉 = ey is solved in a single iteration.
Thus, we only investigate 𝜉 = ex. Both the Moulinec-Suquet and the rotated staggered grid discretization give rise
to identical iteration counts (for both solvers). Thus, the number of iterations is collected in a single Table 1.
We see that choosing the minimum for the reference material is best. Furthermore, increasing the contrast
also increases the iteration count. However, the iteration count is not symmetric with respect to multiplicative
inversion.

4.2.2 A single-ball inclusion

Next, we investigate a single spherical inclusion in a cubic box with crack resistance 𝛾1. The inclusion has a volume frac-
tion of 12.89%, and is equipped with a crack resistance of 𝛾2. For studying the convergence behavior of the algorithms
for different discretizations and reference-material choices, we work on a 323 microstructure, and solve up to a tolerance
of 10−4. Iteration counts for the Moulinec-Suquet discretization are collected in Table 2. Consistently, a contrast of 100
required more iterations than a contrast of 10, which in turn, was more expensive than a 𝛾2∕𝛾1-ratio of 0.1. For the mini-
mum and the geometric mean reference-material choice strategy and a contrast of 0.01, less iterations were required than
for a contrast of 0.1. For the other two investigated choices, the reverse was true. Still, the “minimum” choice outperformed
all other reference material choices by a large margin.

For Willot's discretization, cf. Table 2, similar conclusions as for Moulinec-Suquet's discretization hold. The number
of iterations differs slightly, but is roughly on the same level.

Last but not least, let us compare the effective crack resistances computed for different discretizations, cf. Table 2. All
obtained values coincide for the first three significant digits.

A local comparison of the solution fields is shown in Figure 3. The crack resistance 𝛾2 of the fibers is chosen as 𝛾2 =
10𝛾1, where 𝛾1 denotes the crack resistance of the matrix. For 𝜉 = ey, it is optimal to crack linearly through the matrix
without touching the inclusion. For the Moulinec-Suquet discretization and the discretization on a rotated staggered
grid, the 𝜉 fields are not homogeneous, as might be expected for the analytical solution. Instead, they exhibit ringing and
checkerboard artifacts, as usual for these types of discretizations, cf. Dorn and Schneider.66 This may also be observed for
the flow fields v, cf. Figure 3A. However, these visual artifacts have no influence on the predictive quality of the computed
effective quantities.
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(A) ‖v‖ for Moulinec-Suquet (left) and rotated staggered grid (right) (B) ‖ξ‖ for Moulinec-Suquet (left) and rotated staggered grid (right)

F I G U R E 3 Visual comparison of the solution fields 𝜉 and v on a crosssection of the 323 ball for different discretizations, 𝜉 = ey and
𝛾2 = 10𝛾1. 𝜉 has units of 1 and v is measured relative to 𝛾1

N3 323 643 1283 2563

𝛾2∕𝛾1 = 0.01 144∕101 318∕350 174∕167 261∕258

𝛾2∕𝛾1 = 0.1 454∕802 2913∕3332 1830∕1459 2602∕2407

𝛾2∕𝛾1 = 10 995∕1276 2567∕1707 2338∕2477 2523∕2298

𝛾2∕𝛾1 = 100 1058∕1487 2783∕1967 2562/2826 2816∕2624

Abbreviation: PDHG, primal-dual hybrid gradient.

T A B L E 3 Iteration count for the PDHG
method with 𝛼0 = min 𝛾 and the single inclusion
microstructure for different resolutions.
Moulinec-Suquet/Rotated staggered grid
discretization

𝜸2∕𝜸1

Resolution 0.01 0.1 10 100

323 0.6946∕0.6946 0.7225∕0.7224 1.0000∕1.0000 1.0000∕1.0000

643 0.6948∕0.6948 0.7224∕0.7225 1.0000∕1.0000 1.0000∕1.0000

1283 0.6966∕0.6966 0.7242∕0.7242 1.0000∕1.0000 1.0000∕1.0000

2563 0.6965∕0.6965 0.7242∕0.7241 1.0000∕1.0000 1.0000∕1.0000

T A B L E 4 𝛾eff∕𝛾1 for the single
inclusion microstructure for
different resolutions.
Moulinec-Suquet/Rotated
staggered grid discretization

Next, we consider a resolution study for the single-ball microstructure. The same geometry was remeshed, using 323,
643, 1283, and 2563 voxels. Using the PDHG iterative scheme, and 𝛼0 = min 𝛾 , the iteration counts are listed in Table 3.
As a general trend, we see that the iteration count increases with increasing resolution. This contrasts with other iterative
algorithms used in FFT-based computational micromechanics, such as the basic scheme45,46 or the conjugate gradient
method.67 However, the mentioned algorithms are applied to less degenerate problems, and the logarithmic convergence
rate Equation (26) of the PDHG scheme implies that the iteration count is very sensitive to the initial condition. Still, the
total iteration counts are on a reasonable level for practical applications.

Turning our attention back to Table 3, we see that the iteration counts of the Moulinec-Suquet discretization and the
discretization on the rotated staggered grid are on a similar level. For 𝛾2∕𝛾1 = 10 and 𝛾2∕𝛾1 = 100, the iteration counts are
comparable for fixed voxel count. For 𝛾2∕𝛾1 < 1, the iteration counts are lower, on average. However, the iteration counts
for 𝛾2∕𝛾1 = 0.01 remain below 400, whereas for 𝛾2∕𝛾1 = 0.1 they are much larger, with a peak for 643 voxels.

In general, if 𝛾2∕𝛾1 ≫ 1, the inclusions act as obstacles for the minimal surfaces, and the algorithm needs
to account for these hindrances. In contrast, for 𝛾2∕𝛾1 ≪ 1, traversing the inclusions is “free,” simplifying the
problem.

Last but not least, we investigate the computed effective crack resistances, listed in Table 4. The discretizations induce
only differences in the fourth significant digit for fixed resolution. Also, the resolution dependence is negligible.

For 𝛾2∕𝛾1 < 1, the effective crack resistance is reduced compared to the “matrix” 𝛾1, whereas, for 𝛾2∕𝛾1 ≥ 10, cracks
run entirely through the matrix, resulting in 𝛾eff = 𝛾1. Thus, in terms of effective quantities, using 𝛾2 = 10𝛾1 or 𝛾2 = 100𝛾1
does not matter. However, the iteration counts for 𝛾2 = 100𝛾1 are higher.
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4.3 Continuously fiber-reinforced composites

In this section, we investigate the effective transverse crack resistance of continuously fiber-reinforced composites.
We consider unidirectional microstructures with up to 50% fiber-volume content, which were generated by the adap-

tive shrinking-cell algorithm of Torquato and Jiao68 modified to not shear the cell. We fix the crack resistance 𝛾matrix of
the matrix and set 𝛾fiber = 10𝛾matrix for the fibers.

First, we investigate the size of a representative volume element,3,14 and subsequently discuss the effective transverse
crack resistance as a function of the fiber-volume fraction.

4.3.1 Representativity study

Due to the transverse isotropy of continuously fiber-reinforced composite microstructures, the effective transverse crack
resistance has to be isotropic. The rectangular shape of the computational cell Y and the finiteness of the number of fibers
breaks this symmetry and induces artifacts we wish to quantify in this section.

We fix the x-axis to coincide with the fibers' principal axis and consider an average crack normal 𝜉 in the y-z-plane,
that is, perpendicular to the fibers. We consider different angles for the crack normal, that is, 𝜉 = cos 𝜗 ey + sin𝜗 ez for
angles 𝜗 ranging from 0o to 90o in 15o-steps. The procedure is shown in Figure 4 for a reference microstructure with 50%
fiber-volume fraction, 100 fibers and a resolution of 2562. We see that, for varying angle 𝜗, the crack paths are chang-
ing. Consistently for all angles, several crack paths with roughly identical lengths emerge. We wish to determine the
unit-cell size for which the computed effective transverse crack resistance is representative. Keeping the investigation of
the fiber-volume fraction influence of Section 4.3.2 in mind, we consider a fiber-volume fraction𝜙 = 50%, as the statistical
fluctuation should be smaller for smaller fiber-volume fractions, as well.

Based on the reference cell with 100 = 102 fibers and a resolution of 2562 pixels, we successively increase both
the fiber count and the resolution, maintaining the accuracy level of the results. More precisely, we consider (10k)2

(A) (B) (C) (D)

(E) (F) (G) (H)

F I G U R E 4 Influence of the average crack normal 𝜉 = cos 𝜗 ey + sin𝜗 ez on the crack behavior of continuously reinforced composites,
showing ||𝜉|| for 50% fiber content, 100 fibers and a resolution of 2562, clipped to 0 ≤ ||𝜉|| ≤ 10
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(A) k = 1 (B) k = 2 (C) k = 4

F I G U R E 5 Differently sized unit cells for the representative volume element study for 50% filler content and 𝜉 = ey, including (10k)2

fibers discretized by (256k)2 pixels. We show ||𝜉||, clipped to [0, 10], with axes and scale as in Fig. 4 (A) [Colour figure can be viewed at
wileyonlinelibrary.com]

# Fibers/resolution

Angle 𝝑 102∕2562 202∕5122 302∕7682 402∕10242

0o 1.022 1.028 1.024 1.026

15o 1.037 1.026 1.029 1.029

30o 1.041 1.029 1.035 1.029

45o 1.031 1.031 1.029 1.030

60o 1.022 1.033 1.029 1.028

75o 1.045 1.023 1.030 1.031

90o 1.041 1.023 1.028 1.025

1.034±0.0087 1.027±0.0035 1.029±0.0030 1.028±0.0020

T A B L E 5 𝛾eff𝜉∕𝛾matrix, depending on
the angle 𝜗 of the crack normal, for 50%
fiber-volume fraction and (10k)2 fibers
resolved by (256k)2 pixels for k = 1, 2, 3, 4,
together with mean ± standard deviation

fibers resolved by (256k)2 pixels and k = 1, 2, 3, 4. To get an impression on the cell sizes, we refer to Figure 5, where
the results for 𝜉 = ey are shown. For increasing volume-element size, the number of pure “matrix islands” increases.
Otherwise, the structures appear statistically similar. For the four considered microstructures, the angle-dependent effec-
tive crack resistances are listed in Table 5. To arrive at an effective scalar quantity, taking into account the expected
isotropy, we computed the mean (and the standard deviation) of the results, as well. We see that the standard devia-
tion decreases roughly by a factor of two if the edge length of the microstructure is doubled. If only the absolute value
𝛾eff is of interest, the standard deviations are exceedingly small. Indeed, the standard deviation for the smallest cell
is already below 1%. However, if the relative increase 𝛾eff − 𝛾matrix serves as the reference quantity, the standard devi-
ation is at about 26% for the smallest microstructure. For the largest microstructure, the standard deviation is about
6%. This dependence is visualized in Figure 6A, where we also see that the effective transverse crack resistance is not

http://wileyonlinelibrary.com
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F I G U R E 6 Representative
volume element study and
dependence on volume fraction
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

monotonic with respect to increasing the cell size. Still, if the absolute value is of interest, a cell size with 202 fibers appears
sufficient.

4.3.2 Dependence on the volume fraction

In the previous section, a representative volume-element size with 202 fibers was determined, and we wish to investigate
the dependence of the effective transverse crack resistance on the fiber-volume fraction 𝜙. For this purpose, volume
elements with different fiber-volume fractions were generated, increasing in 5% steps up to 50% volume fraction. We fixed
the fiber count to 400 and the resolution to 5122 pixels. The resulting unit cells are shown in Figure 7, together with the
crack paths for 𝜉 = ey. As a general trend, the number of possible cracks decreases for increasing fiber-volume fraction.
Indeed, for low filler content, a variety of (almost) straight cracks is possible, whereas, for high filler content, due to the
close packing, only few shortest paths exist. With the same procedure as in the previous section, the mean and standard
deviation for the considered crack-normal angles were computed. The results comprise Figure 6B. The effective transverse
crack resistances increase with the fiber-volume fraction. Also, the standard deviation increases. To get an increase by
1% in transverse crack resistance, about 30% fibers (in volume) are necessary, whereas a 2% increase necessitates slightly
more than 40% fibers.

Overall, the increase in transverse crack resistance is not excessive.

4.4 Industrial-scale examples

In this section, we consider more realistic microstructures.

4.4.1 A porous microstructure

A sand-binder aggregate, a typical microstructure of a blown sand core used for foundry applications, is shown in
Figure 8A, discretized by 2563 voxels. The microstructure was generated by the mechanical-contraction method described
in Schneider et al,69 with a sand-volume fraction of 58.6%, held together by 1.28% anorganic binder. These microstructures
are modeled based on typical sieve lines of casting sands and microcomputed tomography images. For our investigation,
we fix the crack resistance of the sand and the binder phase to a value 𝛾 , and set the crack resistance of the pore space to
0.01𝛾 . For the described discretization methods, the PDHG method was used to solve the saddle point problem (18) with
𝜉 = ey up to a precision of 10−4. The iteration counts and effective crack resistances are listed in Table 6.

For both the Moulinec-Suquet and the rotated staggered grid discretization, the iteration counts are similar, approxi-
mately 2350. Also, the computed effective crack resistances are similar for the Moulinec-Suquet and the rotated staggered
grid discretization.

To gain a visual impression, we take a look at Figure 8, where the resulting crack paths are shown. More precisely, we
thresholded the norm of 𝜉 at a level of 10 to produce the images. As expected, on average, the crack paths are normal to

http://wileyonlinelibrary.com
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(A) ϕ = 5% (B) ϕ = 10% (C) ϕ = 15%

(D) ϕ = 20% (E) ϕ = 25% (F) ϕ = 30%

(G) ϕ = 35% (H) ϕ = 40% (I) ϕ = 45%

F I G U R E 7 Influence of increasing volume fraction 𝜙 for 400 fibers, 5122 pixels and 𝜉 = ey. We show ||𝜉||, clipped to [0, 10], with axes
and scale as in Figure 4A [Colour figure can be viewed at wileyonlinelibrary.com]

the prescribed average normal 𝜉 = ey. For the considered discretizations, cracking takes place almost exclusively in the
binder phase. This might be a result of the geometric necks induced by the binder. From a mechanical point of view, this
appears plausible, as stress concentrations are expected to appear in these necks. The predicted transverse crack paths
are identical for both considered discretizations.

4.4.2 A short-fiber reinforced composite

As our next example, we consider a short-fiber reinforced plastic featuring a brittle matrix. The structure we consider is
composed of 18% short fibers with a length of 275 𝜇m and a diameter of 10 𝜇m, dispersed in a cubic box with an edge

http://wileyonlinelibrary.com
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(A) Microstructure with grains
(blue) and binder (yellow)

(B) Moulinec-Suquet discretization (C) Rotated Staggered Grid discretization

F I G U R E 8 Final crack pattern ||𝜉|| ≥ 10 for the sand core microstructure and different discretizations. The cracks are highlighted in
yellow for (B) and (C)

T A B L E 6 𝛾eff∕𝛾 for the PDHG method with
𝛼0 = min𝛾 and the sand microstructure shown in
Figure 8A

Moulinec-Suquet Rotated staggered grid

Iteration count 2347 2368

𝛾eff∕𝛾 0.0956 0.0943

Abbreviation: PDHG, primal-dual hybrid gradient.

T A B L E 7 Results for the PDHG method
with 𝛼0 = min𝛾 and the fiber-filled
microstructure shown in Figure 9A

Moulinec-Suquet Rotated staggered grid

Iteration count 2563 1968 4149

5123 5964 4092

𝛾eff∕𝛾matrix 2563 1.6278 1.6145

5123 1.6264 1.6204

Abbreviation: PDHG, primal-dual hybrid gradient.

length of 512 𝜇m. The fiber orientation tensor is chosen as perfectly isotropic, and the structure is discretized by 2563 and
5123 voxels, corresponding to voxel resolutions of 2 𝜇m and 1 𝜇m, respectively. The microstructure was generated by the
Sequential Addition and Migration method,70 and contains 1119 fibers.

We set the crack resistance of the fibers to 10 times the crack resistance of the matrix, which we denote by 𝛾matrix. The
PDHG method was used to solve the saddle point problem (18) to a precision of 3 × 10−4.

The effective crack resistances computed using the two discretization methods are listed in Table 7. For a
resolution of 2563, the predicted effective crack resistances differ in the third significant digit. Thus, we have
rerun the computations on 5123 voxels. For this resolution, the computed effective crack resistances agree to
three significant digits for both discretization schemes, and predict an increase by about 62% in the effective
crack resistance compared with the pure matrix. In contrast to the transverse crack resistance of a continuously
fiber-reinforced composite, the influence of the reinforcing fibers clearly manifests for this isotropic short-fiber reinforced
example.

The iteration counts are listed in Table 7, as well. For 2563, Moulinec-Suquet's discretization requires about 2000
iterations, which is about 50% of the iterations required by the rotated staggered grid. In contrast, for 5123, the iteration
count for the Moulinec-Suquet discretization is roughly tripled, whereas, for the discretization on a rotated staggered
grid, the iteration count is almost the same as for the low resolution.

In Figure 9, both the original microstructure and the computed crack field is shown for the Moulinec-Suquet
discretization and a resolution of 2563. For the rotated staggered grid, the predicted crack field is similar.
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(A) Microstructure with short fibers (B) Crack (yellow) splitting the microstructure

F I G U R E 9 Final crack pattern ||𝜉|| ≥ 10 for the short-fiber reinforced plastics microstructure (2563), 𝜉 = ey, and the Moulinec-Suquet
discretization. The geometry on opposite sides of the crack is visually set apart

5 CONCLUSION

This work was devoted to studying FFT-based solvers for computing the effective crack resistance of a heterogeneous
microstructure, according to a variant of the cell formula of Braides et al.34 Based on ideas of Strang,38 we relied upon
a convex reformulation of the cell problem for determining the effective crack resistance. For the computational resolu-
tion, we proposed a PDHG method in an FFT-based context. The PDHG is striking in its simplicity, and may be readily
integrated into an existing FFT-based thermal homogenization code.

For Moulinec-Suquet's discretization and the discretization on a rotated staggered grid, we demonstrated the applica-
bility of the introduced solver on problems of academic interest and also of industrial scale.

A simple finite-volume type discretization66 was also investigated, but led to strong mesh artifacts, whence we decided
to not report on this discretization. These artifacts may be overcome by employing more sophisticated cut metrics.71,72

We leave this as future work.
For the industrial-size problems we investigated, the PDHG combined with the rotated staggered-grid discretization

performed best, and may—in the presented form—prove extremely valuable for applications to questions of materials
science.

The biggest limitation we see is the low convergence rate of the PDHG algorithm. However, extensive numerical
experiments with other solvers did not improve upon the simple-to-implement PDHG. This might be intrinsic, that is,
as a result of the nonsmoothness and degeneracy of the functional under consideration, or significantly improved by
dedicated solvers or formulations. For instance, connections to the limit-load problem73 could be exploited.
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