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SUMMARY
This work is devoted to investigating the computational power of Quasi-Newton
methods in the context of fast Fourier transform (FFT)-based computational
micromechanics. We revisit FFT-based Newton-Krylov solvers as well as mod-
ern Quasi-Newton approaches such as the recently introduced Anderson accel-
erated basic scheme. In this context, we propose two algorithms based on the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, one of the most power-
ful Quasi-Newton schemes. To be specific, we use the BFGS update formula
to approximate the global Hessian or, alternatively, the local material tangent
stiffness. Both for Newton and Quasi-Newton methods, a globalization tech-
nique is necessary to ensure global convergence. Specific to the FFT-based
context, we promote a Dong-type line search, avoiding function evaluations alto-
gether. Furthermore, we investigate the influence of the forcing term, that is,
the accuracy for solving the linear system, on the overall performance of inex-
act (Quasi-)Newton methods. This work concludes with numerical experiments,
comparing the convergence characteristics and runtime of the proposed tech-
niques for complex microstructures with nonlinear material behavior and finite
as well as infinite material contrast.
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1 INTRODUCTION

Fast Fourier transform (FFT)-based solution schemes5,6 have become an established tool in computational microme-
chanics. Their popularity rests on their computational efficiency, the ability to treat nonlinear material behavior and
the compatibility to imaging techniques such as microcomputed tomography. Owing to these advantages, FFT-based
solvers have found widespread application in various fields, including the homogenization of polycrystals at small7

and finite strains,8 damage9 and fracture mechanics,10 fatigue prediction,11 electromechanically coupled materials,12

and concurrent multiscale simulations.13,14
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A considerable amount of research effort has been devoted to developing FFT-based solution algorithms. A limited set
of solvers needs to be identified, which are computationally efficient and versatile enough to cover a broad spectrum of
applications, for example, nonlinear material behavior and materials with high or infinite contrast. The original solver of
Moulinec and Suquet,6 the so-called basic scheme, was based on the Lippmann-Schwinger formulation of elasticity. It is
characterized by several favorable properties such as a small memory footprint and a tangent-free treatment of nonlinear
material behavior. However, its required iteration count is proportional to the material contrast. Thus, for certain prac-
tical applications such as the homogenization of plastifying or porous materials, the convergence behavior of the basic
scheme can be exceedingly slow. To accelerate the solution process, Eyre and Milton15 introduced a polarization-based
scheme by reformulating the Lippmann-Schwinger equation. Damped versions of the algorithm were proposed by Michel
et al16 and Monchiet and Bonnet.17 By interpreting the polarization-based schemes as versions of the Douglas-Rachford
splitting, their applicability was extended to the nonlinear case.18 Whereas these methods exhibit excellent performance
for finitely contrasted media, it was shown that they may converge slower than the basic scheme for porous materials,19

limiting their versatility. Zeman et al20 and Brisard and Dormieux21,22 applied Krylov-subspace solvers to FFT-based
homogenization. These methods are extremely fast, but they are restricted to linear problems. However, they may enter
inexact Newton-methods, constituting a powerful class of solvers with broad applications. In the context of FFT-based
computational homogenization, Newton's method was combined with the conjugate-gradient (CG) solver in the small-1

and finite-strain setting2 and exhibited excellent performance. Due to the small number of required function evalua-
tions, these schemes proved to be particularly powerful for problems with computationally expensive material laws,
such as single-crystal plasticity,3,11,23 whose evaluation dominates the overall runtime. In contrast to the aforementioned
schemes, the Newton-CG solver requires the evaluation of the material's tangent stiffness for each voxel. This procedure
can be computationally expensive for some material laws. Furthermore, the analytic derivation of the tangent can be
tedious and its implementation may require considerable programming effort, and is thus prone to errors. This gave rise
to applying Quasi-Newton methods in FFT-based micromechanics. Quasi-Newton schemes rely upon an approximation
of the Hessian by generalizing the one-dimensional secant method and are thereby tangent free.24 Schneider19 used the
Barzilai-Borwein method,25 which approximates the Hessian by a multiple of the identity, to accelerate Moulinec-Suquet's
basic scheme. Shantraj et al3 pioneered using Anderson acceleration26 in an FFT-based context. The algorithm is included
in the software DAMASK27 as the nonlinear GMRES method. More recently, Chen et al successfully adapted the Anderson
acceleration to simulate damage initiation28 and brittle fracture.10 Originally developed to accelerate general fixed-point
iterations, Anderson acceleration was linked to Quasi-Newton schemes by Fang and Saad.29 More precisely, it was identi-
fied as a generalized multisecant form of the second Broyden method (or “bad Broyden method”)30 which approximates
the Hessian in terms of a number m (called depth) of past iterates and gradients. Recently, Evans et al31 proved that Ander-
son acceleration improved the first-order convergence rate for fixed-point iterations. Pollock and Rebholz32 extended the
analysis to the noncontractive setting and provided sharper residual bounds.

Motivated by the mentioned work on Quasi-Newton methods, we focus our attention on the powerful and pop-
ular Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.33-36 We revisit its basics in the framework of (inexact)
Newton methods in Section 2. Both Newton and Quasi-Newton methods require appropriate globalization strategies
to ensure global convergence. Often, this is realized by a backtracking line search using appropriate conditions for
the acceptance of the step size. However, applying the classical Wolfe conditions37 to FFT-based micromechanics is
not feasible, as function evaluations are not available in this setting in general, as the condensed potential38 of the
material law carries no physical meaning and is therefore not computed. Hence, we propose using the line-search
conditions proposed by Dong,4 which solely rely upon gradient evaluations, cf. Section 2.3. Another aspect which
is of major importance for the overall performance of inexact (Quasi-)Newton methods is the choice of the forcing
term, that is, the accuracy to which the linear system is solved. To this end, we revisit the forcing-term strategies of
Eisenstat and Walker,39 cf. Section 2.4. In Section 3, we turn our attention to Newton and Quasi-Newton methods as
applied in the context of FFT-based micromechanics. After revisiting the Newton-CG method and Anderson accel-
eration, two possible uses of the BFGS update formula in the FFT-based setting are proposed. First, we investigate
the limited-memory version of the BFGS algorithm (L-BFGS) by Nocedal40 which only stores the m last differences
of iterates and gradients for its Hessian, similar to Anderson acceleration. A second algorithm is derived, using the
BFGS-update formula to approximate the local material tangent for every voxel instead of the Hessian of the global
system. In analogy to the Newton-CG method, the resulting linear system is solved using CGs. Hence, we refer to
the method as BFGS-CG. Last but not least, we compare the performance of the investigated solution algorithms
and the impact of the different forcing-term choices for nonlinear problems with finite and infinite material contrast,
cf. Section 4.
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2 NEWTON AND QUASI-NEWTON METHODS

2.1 Newton's method

Let V be a Hilbert space with an associated inner product V × V → R, (x, y) → ⟨x, y⟩V and the induced norm ||x||V =√⟨x, x⟩V . Suppose a twice continuously differentiable function f ∶ V → R is given. Its gradient ∇f ∶ V → V is defined by

Df (x)[v] = ⟨∇f (x), v⟩V , v ∈ V , (1)

where Df ∶ V → V′ denotes the differential of f and V′ is the continuous dual of V . For a minimization problem

f (x) → min
x∈V

, (2)

critical points of f are characterized by

∇f (x) = 0. (3)

Newton's method iteratively updates an initial guess x0 ∈ V by the formula

xn+1 = xn + 𝜉n, where 𝜉n ∈ V solves D∇f (xn)[𝜉n] = −∇f (xn), (4)

where D∇f ∶ V → L(V,V) denotes the Hessian of f and and L(V,V) denotes the space of linear mappings V → V. Let x∗ ∈ X
be a solution to Equation (3). Suppose that D∇f(x∗) is an isomorphism and D∇f is Lipschitz continuous in a neighborhood
of x∗. Then, if x0 is sufficiently close to x∗, the Newton iteration (4) converges, and if D∇f is locally Lipschitz, it does so
with quadratic rate.41

To obtain global convergence, the Newton iteration (4) has to be modified, for instance, by damping, that is, with
𝛼n ∈ (0, 1],

xn+1 = xn + 𝛼n𝜉n, where 𝜉n ∈ V solves D∇f (xn)[𝜉n] = −∇f (xn). (5)

The damping factor 𝛼n is chosen by a line-search procedure, for instance, by an approximate line search involving the
Wolfe conditions37

f (xn + 𝛼n𝜉n) ≤ f (xn) + c1 𝛼n⟨∇f (xn), 𝜉n⟩V , (6)

and

⟨∇f (xn + 𝛼n𝜉n), 𝜉n⟩V ≥ c2⟨∇f (xn), 𝜉n⟩V , (7)

for fixed constants 0 < c1 < c2 < 1.
For large-scale applications, the equation D∇f(xn)[𝜉n] = −∇f(xn) for the Newton increment can often only be solved

iteratively up to a prescribed precision, leading to an inexact, damped Newton method

xn+1 = xn + 𝛼n𝜉n, where 𝜉n ∈ V solves ||D∇f (xn)[𝜉n] + ∇f (xn)||V ≤ 𝛾n||∇f (xn)||V . (8)

The choice of 𝛾n is crucial, as its order of convergence (as n → ∞) is linked to the convergence of xn to x∗, see Dembo
et al.42 More precisely, if 𝛾n is uniformly less than one, xn converges to x∗ linearly. Furthermore, assuming Lipschitz con-
tinuity of D∇f(xn) in a neighborhood of x∗, 𝛾n ≤ C||xn − x∗||V is necessary to obtain quadratic convergence. However,
“asymptotic quadratic convergence is achievable, but only with effort on the part of the inner, linear iterative method,
which is usually unwarranted when overall time to solution is the metric,” cf. Knoll and Keyes.43 General-purpose
strategies for the choice of 𝛾n were proposed by Eisenstat and Walker39 and are discussed in Section 2.4.

Despite the computational power of Newton's method, there are several practical disadvantages.
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1. Programming the second derivatives of a function can be tedious, and doing it efficiently is often challenging. These
problems can be partly overcome by automatic differentiation techniques.44

2. If V is m-dimensional and the equation for the Newton increment is solved directly, O(m3) operations are required.
For large m, this can be excessive. If the Hessian is sparse, iterative solvers can be used to reduce the computational
complexity to O(m2).

3. For inexact Newton methods, the optimal choice of the Newton forcing term {𝛾n} in Equation (8) is difficult.
Although general-purpose strategies have been developed,39 the following problem remains. Suppose you wish to
find a 𝛿-critical point, that is, to find a solution to the inequality

||∇f (x)||V ≤ 𝛿,

and your current iterate xn almost satisfies the inequality. How accurate do you have to solve for the increment to
ensure that xn+1 is 𝛿-critical?

Points 1 and 3 motivated the development of Quasi-Newton methods which we shall discuss next.

2.2 From Newton to BFGS

Quasi-Newton methods replace the Hessian D∇f(xn) in the linear equation

D∇f (xn)[𝜉n] = −∇f (xn), (9)

by an approximation Bn which is required to fulfill the secant condition

yn = Bn+1sn, where sn = xn+1 − xn, and yn = ∇f (xn+1) − ∇f (xn). (10)

Among the most powerful Quasi-Newton methods is the BFGS algorithm,33-36 which recursively updates an approx-
imation of the Hessian

Bn+1 = Bn +
yn ⊗ ⟨yn, ⋅⟩V⟨yn, sn⟩V −

Bnsn ⊗ ⟨Bnsn, ⋅⟩V⟨sn,Bnsn⟩V , (11)

for a given B0 ∈ L(V,V). If the operator B0 is self-adjoint and positive definite, the subsequent Bn ∈ L(V,V) will inherit the
symmetry and positive definiteness property. Alternatively, an update formula corresponding to Equation (11) is available
for the inverse of the Hessian Hn = B−1

n

Hn+1 =
(

Id −
yn ⊗ ⟨sn, ⋅⟩V⟨yn, sn⟩V

)
Hn

(
Id −

sn ⊗ ⟨yn, ⋅⟩V⟨yn, sn⟩V
)
+

sn ⊗ ⟨sn, ⋅⟩V⟨yn, sn⟩V . (12)

With this formula at hand, 𝜉n = −Hn∇f(xn) can be computed without solving the linear system (9). Thus, the damped
BFGS method may be rewritten

xn+1 = xn − 𝛼nHn∇f (xn). (13)

Global superlinear convergence of the BFGS method (13) with inexact line search respecting the Wolfe conditions
(6) and (7) and uniformly convex and Lipschitz-continuous objective functions in finite dimensions has been established
by Powell.45 In the general Hilbert space setting, only linear convergence46,47 can be expected, see Griewank47 for coun-
terexamples. If the Hessian at the critical point x∗ and the inverse H−1

0 of the initial approximation of the Hessian differ
by a compact linear operator, superlinear convergence can be established.47 More generally, superlinear convergence is
characterized by Dennis and Moré.48 However, their criterion is difficult to verify for a particular problem at hand.

The BFGS method still keeps the Hessian (or its inverse) in memory. In particular, due to the rank-two update, Bn
quickly becomes fully populated, restricting the method's utility for large-scale applications. Nocedal40 introduced a
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limited-memory version of BFGS (L-BFGS) depending on a positive integer m, such that only the last m differences of iter-
ates sn and gradients yn are kept in storage for updating the inverse Hessian. More precisely, for any n, and l = 0,… ,m − 1,
Nocedal proposed the formula

Hm−l
n =

(
Id −

yn−l ⊗ ⟨sn−l, ⋅⟩V⟨yn−l, sn−l⟩V
)

Hm−l−1
n

(
Id −

sn−l ⊗ ⟨yn−l, ⋅⟩V⟨yn−l, sn−l⟩V
)
+

sn−l ⊗ ⟨sn−l, ⋅⟩V⟨yn−l, sn−l⟩V , (14)

for some initial approximation H0
n, and where we formally set yn and sn to zero for n < 0. Typically, the initial

approximation is chosen as a multiple of the identity H0
n = 𝜃nId. A common choice for the scaling factor is given by

𝜃n = ⟨sn−1, yn−1⟩V∕⟨yn−1, yn−1⟩V , cf. Shanno and Puah49 and Liu and Nocedal,50 corresponding to the Barzilai-Borwein
stepsize.25 The damped L-BFGS iteration reads

xn+1 = xn − 𝛼nHm
n ∇f (xn). (15)

How to implement the update (15) in the context of FFT-based micromechanics is discussed in Section 3.3. For
strongly convex and Lipschitz-continuous objective functions, convergence of L-BFGS under the Wolfe conditions (6) and
(7) in finite dimensions V was established by Liu and Nocedal.50 In contrast to BFGS, the convergence to x∗ is only linear.

2.3 The line-search procedure of Dong

Global convergence of Newton's method and (L-)BFGS depends on a flexible line-search procedure. Exact line search is
typically infeasible in practice, because evaluating the gradient of the objective function involves nonlinear, and often
quite costly, operations. Thus, approximate line-search procedures ensuring sufficient decrease per iteration are manda-
tory, involving, for instance, the Wolfe conditions (6) and (7). In particular, using the Wolfe conditions as criterion for the
line search is crucial for ensuring global convergence of the (L-)BFGS method. Satisfying the Wolfe conditions guarantees
that the curvature condition

⟨yn, sn⟩V > 0,

holds, which is necessary for the positive definiteness of the iterates Bn, cf. Section 6.1 in Nocedal and Wright.24

For FFT-based micromechanics (to be discussed in Section 3), function evaluations are not available, in general. The
reason is that, in contrast to the stress, the Helmholtz free energy or the dissipation potential, the condensed poten-
tial f for the nonlinear material law, relating strains and stresses, has no physical meaning (because it depends on the
time discretization and mixes the Helmholtz free energy and the dissipation potential). In particular, the Wolfe condi-
tion (6) cannot be evaluated per se. As a workaround, Dong4 proposed to replace the first Wolfe condition (6) by the
inequality

⟨∇f (xn + 𝛼ndn), dn⟩V ≤ c1⟨∇f (xn), dn⟩V , (16)

which implies Equation (6) if the gradient ∇f ∶ X → X is monotone, that is, it satisfies

⟨∇f (x) − ∇f (y), x − y⟩V ≥ 0, x, y ∈ V .

In mechanics, the latter is equivalent to the monotonicity of the stress, considered as a function of the strain.

2.4 Strategies for choosing the forcing term

For inexact Newton-methods, the choice of the forcing term {𝛾n} in Equation (8) is crucial for the overall efficiency of
the scheme. At iterates {xn} far away from the solution, ∇f and its linear approximation may disagree significantly. Thus,
solving the linear system (9) to a high accuracy may waste computational effort without substantially improving the
overall convergence behavior.39 This is commonly called oversolving. Setting 𝛾n to a moderate constant value, for example,
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𝛾n = 0.1 as suggested by Kelly,51 can be reasonable but may not be optimal for all problems. Eisenstat and Walker39 propose
more involved strategies, taking ∇f into account. Their first strategy, named choice 1, reads

𝛾n =
|||| ||∇f (xn)||V − ||D∇f (xn−1)[𝜉n−1] + ∇f (xn−1)||V||∇f (xn−1)||V |||| , (17)

with an initial value 𝛾0 ∈ [0, 1). This choice directly measures the disagreement between the gradient and its linear approx-
imation. Thus, the value of 𝛾n decreases, as the Newton iterates {xn} approach the solution of the system. Eisenstat and
Walker's39 alternative choice 2 is given by

𝛾n = 𝜆

( ||∇f (xn)||V||∇f (xn−1)||V
)𝛼

, (18)

with parameters 𝜆 ∈ [0, 1] and 𝛼 ∈ (1, 2]. The ratio of consecutive residua provides a measure for the convergence rate
between the current and last iteration. Hence, close to the solution, where a faster convergence behavior is expected, 𝛾n

decreases. Setting the parameter 𝛼 = 1+
√

5
2

results in a comparable convergence order for choices 1 and 2. In addition,
Eisenstat and Walker suggest a safeguard for each choice to prevent a premature decrease of 𝛾n far away from the solution.
This is achieved by limiting the decrease of 𝛾n by a factor of 𝛾n−1 above a certain threshold. The safeguard for choice 1
reads

𝛾safe
n =

⎧⎪⎨⎪⎩
max
(
𝛾n, 𝛾

(1+
√

5)∕2
n−1

)
, if 𝛾

(1+
√

5)∕2
n−1 > 0.1,

𝛾n, otherwise,
(19)

and the safeguard for choice 2 is given by

𝛾safe
n =

{
max
(
𝛾n, 𝜆𝛾

𝛼
n−1
)
, if 𝜆𝛾𝛼n−1 > 0.1,

𝛾n, otherwise.
(20)

Even with the presented forcing-term choices and safeguards in place, oversolving may occur in the final Newton
iteration. Indeed, suppose we want to solve Equation (3) up to a certain accuracy

||∇f (x)||V ≤ 𝛿, (21)

and the current iterate xn almost satisfies Equation (21). With a small value for 𝛾n, the final Newton iteration may reduce||∇f(x)||V far below the desired accuracy 𝛿. To prevent this type of oversolving, the following safeguard

𝛾 final
n = min(𝛾max,max(𝛾safe

n , 0.5 𝛿∕||∇f (x)||V )) (22)

with 𝛾max ∈ [0, 1) is suggested in Section 6.3 in Kelley's book.52

3 NEWTON AND QUASI-NEWTON METHODS IN FFT-BASED
MICROMECHANICS

3.1 Newton's method

We consider periodic homogenization problems53 in the context of small-strain continuum mechanics. Let Y be a
rectangular cell in Rd (d = 2, 3). The Hilbert space under consideration is

H1
#(Y ;Rd) =

{
u ∈ H1(Y ;Rd) | u periodic, 𝜕nu antiperiodic on 𝜕Y , ⟨u⟩Y = 0

}
,
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where the mean of any integrable scalar or vector valued function q on Y is defined by

⟨q⟩Y = 1|Y |∫Y
q(x) dx,

together with the inner product induced by the quadratic form

||u||2H1
# (Y ;Rd) =

1|Y |∫Y
||∇su||2 dx,

where ∇s denotes the symmetrized gradient and the quadratic form in the integrand corresponds to the Frobenian inner
product on square matrices, ||S||2 = tr(STS).

Furthermore, let a (heterogeneous) strain energy potential

w ∶ Y × Sym(d) → R, (x, 𝜀) → w(x, 𝜀),

be given, measurable in Y and C2 in Sym(d), where Sym(d) denotes the linear space of symmetric d × d-matrices. Denote
by 𝜎 = 𝜕w

𝜕𝜀
the associated stress function, and by 𝜕2w

𝜕𝜀2 its Hessian. For prescribed strain E, we seek a minimizer of the
function

H1
#(Y ;Rd) ∋ u → f (u) = ⟨w(⋅,E + ∇su)⟩Y . (23)

To conform to the framework of the previous section, we compute the differential of f

Df (u) = −div 𝜎(⋅,E + ∇su),

and its gradient

∇f (u) = G div 𝜎(⋅,E + ∇su),

where G is the Green's operator G = (div∇s)−1, which corresponds to the negative of the Riesz map on H1
#(Y ;Rd).

In this context, the equation for the nth Newton increment 𝜉n ∈ H1
#(Y ;Rd), corresponding to Equation (9), is given by

Gdiv
[
𝜕2w
𝜕𝜀2 (𝜀n) ∶ ∇s𝜉n

]
= −Gdiv 𝜎(𝜀n), (24)

where 𝜀n = E + ∇sun. For any 𝛽0 > 0, Equation (24) is equivalent to the Lippmann-Schwinger equation

Ξn + Γ0 ∶
[
𝜕2w
𝜕𝜀2 (𝜀n) − C

0
]
∶ Ξn = −Γ0 ∶ 𝜎(𝜀n), (25)

where C0 = 𝛽0Id, Γ0 = (𝛽0)−1∇sGdiv, via the identification Ξn = ∇s𝜉n. Note, if a strain-based iterative scheme is used
to solve Equation (25), only the converged solution Ξ∗ is compatible, in general, whereas this may be false for the
iterates {Ξn}. This is the case, for instance, for polarization-based schemes as the Eyre-Milton method used by Kabel
et al.2 Typically, Equation (25) is solved using Krylov-subspace methods, such as CG or MINRES,20-22 due to their
excellent performance for linear problems. In addition, these schemes operate on compatible strain-fields, permitting
a memory efficient implementation.2 With these formulae at hand, we may formulate a damped Newton scheme,
depending on Dong's version of the Wolfe conditions, Equations (16) and (7). The resulting algorithm is summarized in
Algorithm 1.
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Algorithm 1 Newton’s method with backtracking by Dong (E, C0, c1,0, c2, maxiter)4

1: 𝜀 ← E
2: 𝜀 ← MSiterate (𝜀,E,C0)
3: repeat

4: Ξ ← −
(

Id+Γ0 ∶
[
𝜕2w
𝜕𝜀2 (𝜀) −C0

])−1
∶Γ0 ∶ 𝜎(𝜀) ⊳ Solving Equation (25), cf. Kabel et al2

5: 𝜇 ← 0
6: 𝜈 ← +∞
7: 𝛼 ← 1
8: k ← 0
9: while k < maxiter do

10: k ← k + 1
11: c1 ← c1,0(1 − (c2)k) − (c2)k ⊳ Typical parameters for Equations (16) and (7):

c1,0 = 10−4, c2 = 0.9, cf. Dong4

12: if ⟨Γ0 ∶ 𝜎(𝜀 + 𝛼Ξ),Ξ⟩L2 > c1⟨Γ0 ∶ 𝜎(𝜀),Ξ⟩L2 then
13: 𝜈 ← 𝛼

14: 𝛼 ← 0.5(𝜇 + 𝜈)
15: else if ⟨Γ0 ∶ 𝜎(𝜀 + 𝛼Ξ),Ξ⟩L2 < c2⟨Γ0 ∶ 𝜎(𝜀),Ξ⟩L2 then
16: 𝜇 ← 𝛼

17: 𝛼 ← 2𝜇
18: else
19: break
20: end if
21: end while
22: 𝜀 ← 𝜀 + 𝛼Ξ
23: until Convergence ⊳ Criterion (26)
24: return 𝜀

MSiterate (𝜀, E, C0)
1: 𝜀 ← 𝜎(𝜀) −C0 ∶ 𝜀

2: 𝜀 ← FFT(𝜀)
3: 𝜀 ← −Γ0 ∶ 𝜀, 𝜀(0) = E
4: 𝜀 ← FFT−1(𝜀)
5: return 𝜀

The convergence criterion reads

𝛽0 ||Γ0 ∶ 𝜎k||L2||⟨𝜎k
⟩

Y || ≡ ||div (𝜎k)||H−1||⟨𝜎k
⟩

Y || ≤ 𝛿, (26)

with a prescribed tolerance 𝛿. This choice was introduced and discussed in Schneider et al.18 Both, the convergence
criterion (26) and the convergence behavior of the linear Krylov-subspace solver are independent of 𝛽0, cf. Zeman et al.20

As we start with a single iteration of the basic scheme, we use the associated reference material 𝛽0 = (𝛽+ + 𝛽−)∕2 with the
extremal eigenvalues 𝛽+ and 𝛽− of the material tangent evaluated over all voxels. For the parameters of the line-search
procedure, we choose c1,0 = 10−4 and c2 = 0.9, cf. Dong.4

A few remarks on the practical implementation are in order.

1. The storage requirements for Newton-CG read: one current strain, and four strains for solving the linear system by
CG. Furthermore, the symmetric material tangent needs to be stored. In three spatial dimensions, this corresponds to
21 scalar components for every voxel, the equivalent of 3.5 strain fields. In total, the storage requirements amount to
8.5 strain-like fields. Using the line-search procedure by Dong4 involves storing another strain field, as gradient and
Newton step have to be kept in memory separately. If affine-linear extrapolation is needed, an additional strain needs
to be stored.
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2. We have found out that storing the Hessian in single precision does not influence the performance of Newton's method
significantly. In contrast, the current strain, and the vectors needed for CG need to be stored in double precision to
avoid numerical problems (in particular, in connection to the FFT).

3. Similar to the previous comment, the last converged strain can be stored in single precision, as it solely serves as the
initial condition. This remark holds true for other solution methods in FFT-based micromechanics, as well.

4. For finite-difference and finite-element discretizations,54-57 both the CG method and the Newton update can be
implemented on displacement instead of strain,2,58 saving 50% of memory for the corresponding fields.

5. Combining all three previous memory optimizations, only nine displacement fields need to be stored. For a microstruc-
ture with 5123 voxels, 27 GBs RAM are needed, not taking into account internal variables.

3.2 Anderson acceleration

The BFGS method as outlined in Section 2.2 requires the Hessian Bn (or its inverse) to be kept in memory. Thereby, the
algorithm cannot be directly applied in the context of FFT-based micromechanics, as the Hessian is usually not assembled
in this setting due to memory limitations. To circumvent this problem, limited-memory Quasi-Newton methods were
developed, which implicitly update the Hessian by storing a limited number m of recent iterates and gradients, with m
commonly called the depth of the scheme.

One such algorithm is Anderson acceleration26 which was recently applied by Shantraj et al3 and Chen et al.10,28

in the context of FFT-based micromechanics. A general discussion of the scheme and its implementation is found, for
example, in Walker and Ni59 or Kelley.51 Eyert60 and Fang and Saad29 pointed out the relation of Anderson acceleration
to Quasi-Newton schemes and identified it as a generalized form of Broyden's second method. Recently, Evans et al31

provided a proof that Anderson acceleration improves the convergence rate of linearly converging fixed-point methods.
For an integer depth m ≥ 1, Anderson acceleration requires the last m + 1 iterates 𝜀k and gradients gk = Γ0 ∶ 𝜎(𝜀k) to

be kept in memory, resulting in a memory footprint of 2m + 2 strain-like fields. The algorithm is outlined in Algorithm 2
for the convenience of the reader. Note that for the given algorithm Anderson acceleration is applied for every iteration.
In contrast, Chen et al10,28 only accelerate every third iteration and apply Moulinec-Suquet's basic scheme6 otherwise.

Algorithm 2 Anderson acceleration (E, C0)

1: 𝜀0 ← E
2: 𝜀1 ← MSiterate (𝜀0,E,C0)
3: k ← 0
4: repeat
5: k ← k + 1
6: mk ← min(m, k)
7: gk ← 𝜎(𝜀k)
8: gk ← FFT(gk)
9: gk ← Γ0 ∶ gk, gk(0) = 0

10: gk ← FFT−1(gk)
11: (𝛼0,… , 𝛼mk ) ← min ‖∑mk

j=0 𝛼jgk−mk+j‖L2 s.t.
∑mk

j=0 𝛼j = 1 ⊳ cf. Solving Equation (29)
12: 𝜀k+1 =

∑mk
j=0 𝛼j(𝜀k−mk+j − gk−mk+j)

13: Delete 𝜀k−mk , gk−mk

14: until Convergence ⊳ Criterion (26)
15: return 𝜀k+1

Determining the coefficients 𝛼 = (𝛼0,… , 𝛼mk ) by solving the minimization problem

min
𝛼

‖‖‖‖‖‖
mk∑
j=0

𝛼jgk−mk+j

‖‖‖‖‖‖L2

s.t.
mk∑
j=0

𝛼j = 1, (27)
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is the key step in one iteration of the Anderson acceleration. To solve this problem, we reformulate Problem (27) in terms
of the Lagrangian function

mk∑
i=0

mk∑
j=0

1
2
𝛼i𝛼j⟨gk−mk+i, gk−mk+j⟩L2 + 𝜆

( mk∑
j=0

𝛼j − 1

)
→ min

𝛼
max
𝜆

, (28)

by squaring the objective function and introducing the Lagrangian multiplier 𝜆. The associated KKT-conditions

mk∑
j=0

𝛼j⟨gk−mk , gk−mk+j⟩L2 + 𝜆 = 0,

⋮
mk∑
j=0

𝛼j⟨gk, gk−mk+j⟩L2 + 𝜆 = 0,

mk∑
j=0

𝛼j − 1 = 0, (29)

constitute a system of mk + 2 linear equations, which are solved for 𝛼 and 𝜆.

3.3 Limited-memory BFGS

As another limited-memory Quasi-Newton scheme, we propose to apply of Nocedal's L-BFGS method, cf. Section 2.2,
to FFT-based micromechanics. The L-BFGS method can be implemented with a memory-footprint of 2m + 4 strain-like
fields. More precisely, the last m differences of iterates sk = 𝜀k+1 − 𝜀k, differences of gradients yk = Γ0 ∶ 𝜎(𝜀k+1) − Γ0 ∶
𝜎(𝜀k) and inner products 𝜌k = 1∕⟨yk, sk⟩L2 have to be kept in memory. In addition, the current strain 𝜀 and gradient Γ0 ∶
𝜎(𝜀) and the last strain 𝜀n and gradient Γ0 ∶ 𝜎(𝜀n) need to be stored.

For evaluating the L-BFGS increment Ξ = −Hm
n ∇f (xn), the two-loop recursion of Matthies and Strang61 proves useful.

A pseudo code is given in Algorithm 3, where we use the initial Hessian H0
n = ⟨sn−1,yn−1⟩L2⟨yn−1,yn−1⟩L2

Id, as suggested by Shanno and
Puah49 and Nocedal and Liu.50 The algorithm takes the current gradient Γ0 ∶ 𝜎(𝜀k) as input and overwrites it by the
increment Ξk.

Algorithm 3 Two-loop recursion for the evaluation of Hm
n q for given q40,61

1: for k = m − 1,m − 2,… , 0 do
2: ak ← 𝜌k⟨sk, q⟩L2

3: q ← q − akyk
4: end for
5: q ←

⟨sn−1,yn−1⟩L2⟨yn−1,yn−1⟩L2
q

6: for k = 0, 1… ,m − 1 do
7: bk ← 𝜌k⟨yk, q⟩L2

8: q ← q + (ak − bk)sk
9: end for

10: return q

The L-BFGS method is implemented analogously to Algorithm 1, where the two-loop recursion replaces the solution
of the linear system (25) for obtaining Ξ.
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3.4 BFGS update of the material tangent

As an alternative to the limited-memory Quasi-Newton scheme, we propose using the BFGS update to approximate the
local material tangent 𝜕2w

𝜕𝜀2 in Equation (25) instead of the global Hessian of f in Equation (23). In this context, the BFGS
update reads

C
BFGS
n+1 = C

BFGS
n + Δ𝜎n ⊗ Δ𝜎n

Δ𝜎n ∶ Δ𝜀n
−

(CBFGS
n ∶ Δ𝜀n)⊗ (CBFGS

n ∶ Δ𝜀n)
Δ𝜀n ∶ C

BFGS
n ∶ Δ𝜀n

, (30)

where

Δ𝜀n = 𝜀n+1 − 𝜀n and Δ𝜎n = 𝜎(𝜀n+1) − 𝜎(𝜀n).

We found that the material's linear elastic stiffness serves as a decent initial guess for C
BFGS
0 . Consequently, Algorithm 1

may be applied with C
BFGS
n replacing 𝜕2w

𝜕𝜀2 (𝜀n) in (25). Note that, in contrast to the limited-memory schemes in Sections 3.2
and 3.3, the linear system (25) still needs to be solved with an iterative solver. In comparison to the Newton-CG method,
two additional strain-like fields need to be kept in memory to compute Δ𝜎n.

4 NUMERICAL DEMONSTRATIONS

4.1 General setup

The solution schemes were implemented in Python 2.7. Computationally expensive operations such as the applica-
tion of Γ0 and the evaluation of the material law were written as Cython extensions and parallelized using OpenMP.
For the FFT, we relied on the FFTW library.62 The computations ran on six threads on a desktop computer with
32 GB RAM and an Intel i7-8700K CPU with six cores and a clock rate of 3.7 GHz. An affine-linear extrapolation6

was used as initial guess for the strain field in case of multiple load steps. For the convergence criterion, we use
inequality (26)

𝛽0 ||Γ0 ∶ 𝜎k||L2||⟨𝜎k
⟩

Y || ≤ 𝛿,

where 𝛽0 is the scaling factor of the reference material C0 = 𝛽0Id. As Γ0 = (𝛽0)−1∇sGdiv, this convergence criterion is
actually independent of 𝛽0. For this study, we use the reference material of the basic scheme 𝛽0 = (𝛽+ + 𝛽−)∕2. The tol-
erance is set to 𝛿 = 10−5 in Section 4.2 and 𝛿 = 10−4 in Sections 4.3 and 4.4. Throughout, we utilize the staggered grid
discretization.55

4.2 Continuous glass-fiber reinforced polyamide

In the following, we investigate the performance of the L-BFGS method and Anderson acceleration as discussed in
Sections 3.2 and 3.3 with respect to the chosen depth m. As microstructure we consider a polyamide matrix, reinforced by
continuous glass fibers with a volume fraction of 15%, and a resolution of 2562 pixels, cf. Figure 1. Using a two-dimensional
structure enables investigating large values of the depth m, without memory becoming a limiting factor. Following Doghri
et al,63 we assume that the mechanical behavior of the polyamide matrix is governed by J2-elastoplasticity, cf. Section
3.3 in Simo and Hughes64. For the sake of simplicity, the rate-dependent behavior of the material is neglected in this
approach. A more involved material model, accounting for viscoelastic and viscoplastic effects was proposed, for example,
by Krairi et al.65 The relation between the yield stress 𝜎Y and the equivalent plastic strain p = ∫ t

0

√
2
3
||𝜀̇p|| dt̂ is modelled

by a linear-exponential hardening function

𝜎Y (p) = 𝜎0 + k1p + k2(1 − exp(−mp)),
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(A) Microstructure (2562 pixels) (B) Equivalent plastic strain at 5%
uniaxial extension

F I G U R E 1 Continuous
glass-fiber reinforced polyamide. (A)
Microstructure (2562 pixels) and (B)
equivalent plastic strain at 5% uniaxial
extension

where 𝜎0 denotes the initial yield strength, k1 denotes the asymptotic hardening modulus, and k2 = 𝜎0 − 𝜎∞ denotes
the difference between the initial and saturated yield strength for k1 = 0. The prefactor in the exponential func-
tion is given by m = Θ∕k2, where Θ denotes the initial hardening modulus. The glass fibers are modelled as lin-
ear elastic. The material parameters according to Doghri et al63 are given in Table 1. We apply mixed boundary
conditions,66 corresponding to a uniaxial extension of 5% perpendicular to the fiber direction, in a single load
step.

The L-BFGS scheme and Anderson acceleration are investigated for depths from 1 to 200. In addition,
Moulinec-Suquet's basic scheme,6 the basic scheme with Barzilai-Borwein step-size control,19,25 the Newton-CG method
and the BFGS-CG method are included as benchmarks. For the Newton-CG method and the BFGS-CG method, we use
forcing-term choice 2 of Eisenstat and Walker Equation (18), cf. Section 4.3.1. The resulting iteration counts and the
computational runtimes are given, depending on the depth, in Figure 2 and Table 2.

For Anderson acceleration, we observe that the required number of iterations drops significantly up to a depth of 5
and stagnates for depths larger than 50. Between the minimum depth of 1 and a depth of 200, that is, keeping all iterates
in memory, the iteration count decreases by 85%. In contrast, the convergence behavior of L-BFGS is much less affected
by the chosen depth. From the onset, it requires much fewer iterations than Anderson acceleration and exhibits a faster
convergence behavior up to depths of 20. For depths larger than 5, the iteration counts of L-BFGS remain approximately
constant with a decrease of about 20% compared with a depth of 1.

Considering the overall computational effort, depths around 2 to 5 appear to be optimal for both schemes. Taking
more iterates into account increases the computational effort for each iteration, which offsets a further decrease in iter-
ation counts. For this range of depths, L-BFGS and Anderson acceleration have memory footprints of 8 to 14 and 6 to
12 strain fields, respectively, compared with 8.5 for the Newton-CG method, 10.5 for the BFGS-CG method, 2 for the
Barzilai-Borwein scheme, and 1 for the basic scheme.

With the optimal depth choice, L-BFGS is the faster of the two limited-memory schemes. However, it performs
worse than the (Quasi-)Newton-Krylov methods and the Barzilai-Borwein scheme which exhibit similar runtimes. Even
though L-BFGS converges in fewer iterations than the Barzilai-Borwein method, it is slower overall, due to the higher
computational cost per iteration. In particular, the parallelization of the inner products in the two-loop recursion of
Algorithm 3 was not effective, introducing a significant overhead, cf. Chen et al.67 The basic scheme is the slowest of
the investigated solvers, taking about an order of magnitude longer to converge. Whereas its computational cost per
iteration is similar to the Barzilai-Borwein scheme, the required iteration count is significantly higher, due to the pro-
nounced material contrast of the composite during plastification. In conclusion, we observe that the Barzilai-Borwein

T A B L E 1 Glass-fiber reinforced polyamide: material parameters of fibers and matrix

Fibers E = 72 GPa, 𝜈 = 0.22

Matrix E = 2.1 GPa, 𝜈 = 0.3, 𝜎Y = 29 MPa, k1 = 139 MPa, k2 = 32.7 MPa, m = 319.4
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F I G U R E 2 Continuous
glass-fiber reinforced polyamide:
iteration count (left) and
computation time (right) with
respect to the chosen depth [Colour
figure can be viewed at
wileyonlinelibrary.com]
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T A B L E 2 Continuous glass-fiber reinforced
polyamide: iteration counts and computational runtime
with respect to the depth used in the algorithm

Depth
Iteration
count

Computational
time (s)

Anderson acceleration 1 915 8.7

2 426 4.2

5 251 3.2

10 306 5.5

20 213 5.5

50 140 6.5

100 139 9.5

200 139 10.4

L-BFGS 1 214 2.4

2 184 2.3

5 171 2.8

10 171 3.7

20 166 5.4

50 166 10.9

100 166 19.9

200 170 38.4

Newton CG – 9 (N) 1.6

233 (CG)

BFGS CG – 14 (N) 2.0

281 (CG)

Barzilai-Borwein scheme – 229 1.7

Basic scheme – 3897 27.2

Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient; N,
Newton.

scheme outclasses the investigated limited-memory methods both in performance and memory footprint. Therefore,
we do not include the latter algorithms in the remaining numerical examples. The performance comparison of the
remaining algorithms is expanded in Sections 4.3.3 and 4.4.2 for more complex microstructures and material laws,
respectively.

http://wileyonlinelibrary.com
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4.3 Porous short glass-fiber reinforced polyamide

We consider a porous polyamide matrix with short glass-fiber reinforcements, cf. Figure 3, which is resolved by 2563

voxels. The glass fibers are unidirectionally aligned in x-direction with a volume fraction of 15%. The volume fraction of
the pores is 1%. The material models and parameters correspond to those in Section 4.2, cf. Table 1. The given example
constitutes a challenging nonlinear test problem for the investigated micromechanical solvers. Due to the high stiffness
of the glass fibers in comparison to the softer polymer matrix, the material contrast between the two phases is large. Dur-
ing plastification, the contrast increases even further as the minimum eigenvalue of the polyamides tangential stiffness
approaches 0, owing to the exponential hardening law. In combination with the unidirectional short fiber structure, this
results in strong localization of the strain fields around the fibers, cf. Figure 3. Last but not least, due to the presence of
pores, the material contrast of the overall microstructure is infinite.

First, we investigate the different forcing-term choices from Section 2.4 in the FFT-based setting to identify a suitable
general-purpose strategy for the Newton-CG and BFGS-CG method. Next, we compare the performance of the solvers
with the given forcing-term choice for studying the material behavior under uniaxial extension.

4.3.1 Influence of the forcing term on convergence and runtime

In their study on forcing-term strategies, Eisenstat and Walker39 considered numerical examples with up to 104 degrees of
freedom. In the context of FFT-based micromechanics, much larger problem sizes are commonly considered, as it takes
high voxel counts to finely discretize complex microstructures. Thus, we are interested whether the results of Eisenstat
and Walker carry over to the FFT-based setting for our current example with 6 × 2563 ≈ 108 degrees of freedom. Further-
more, we investigate how the BFGS-CG scheme is affected by the different forcing-term strategies in comparison to the
Newton-CG scheme. The following choices are considered:

1. Choice 1 corresponds to the first adaptive strategy of Eisenstat and Walker39 (17)

𝛾n =

|||||||||
||Γ0 ∶ 𝜎(𝜀n)||L2 −

‖‖‖‖(Id + Γ0 ∶
[
𝜕2w
𝜕𝜀2 (𝜀n) − C0

])
∶ Ξn−1 + Γ0 ∶ 𝜎(𝜀n−1)

‖‖‖‖L2||Γ0 ∶ 𝜎(𝜀n−1)||L2

|||||||||
,

with the associated safequard (19) and Kelley's safeguard against oversolving (22) in place. For this choice, the
forcing term is proportional to the disagreement between the gradient and its linear approximation. Thus, 𝛾n
decreases in the vicinity of the solution, and the linear system is solved with increasing accuracy. We start with

(A) Microstructure (2563 voxels) (B) Von Mises equivalent strain at 1% uniaxial
extension (J2-elastoplasticity)

F I G U R E 3 Porous glass-fiber
reinforced polyamide. (A)
Microstructure (2563 voxels) and (B)
Von Mises equivalent strain at 1%
uniaxial extension (J2-elastoplasticity)
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a high value, that is, low accuracy, of 𝛾0 = 𝛾max = 0.75, which also serves as the upper bound for the forcing
term.

2. Choice 2 corresponds to the second forcing-term strategy (18) by Eisenstat and Walker39

𝛾n = 𝜆

( ||Γ0 ∶ 𝜎(𝜀n)||L2||Γ0 ∶ 𝜎(𝜀n−1)||L2

)𝛼

,

with safeguards (20) and (22) preventing oversolving. Like choice 1, this represents an adaptive strategy. In this case,
the ratio of recent residuals serves as a measure of the convergence rate. The latter is expected to decrease close to the
solution, leading to smaller values of 𝛾n. For the algorithmic parameters, we chose 𝜆 = 1 and 𝛼 = 1+

√
5

2
, resulting in a

convergence behavior similar to choice 1. The initial value and upper bound for the forcing term are set to 𝛾0 = 𝛾max =
0.75.

3. Choice 3 is given by 𝛾n = 0.1, that is, the forcing term is set to a constant value, corresponding to a modest accuracy for
solving the linear system. Kelley51 suggests this choice as a simple forcing-term strategy which works well in practice.

4. Choice 4 sets the forcing term to a low constant value of 𝛾n = 5 × 10−5, corresponding to a high accuracy. The accuracy
is chosen so that the Newton-CG scheme converges in one step for the linear elastic case.

The boundary conditions for the problem correspond to uniaxial extension up to 1% tensile strain in fiber direction,
parallel to the x-axis. The load is applied in a single step.

Two scenarios are considered. In the first case, the polyamide matrix is assumed to behave in a purely elastic way,
resulting in a linear problem. For this example, the Newton-CG scheme and the BFGS-CG scheme are equivalent. In
particular, this allows us to investigate the characteristic convergence behavior of the adaptive forcing-term choices 1 and
2 and the modest accuracy choice 3. Furthermore, we are interested how the computational runtimes of choices 1 to 3
compare with that of choice 4, which is expected to converge in a single Newton step.

In the second case, the matrix behavior is governed by J2-elastoplasticity, constituting a nonlinear problem. For the
Newton-CG scheme, we compare the convergence behavior of the high accuracy choice 4 to the other options and evaluate
whether quadratic convergence can be reached. Furthermore, we discuss how the convergence behavior for the different
strategies changes when the approximated tangent stiffness of the BFGS-CG scheme is used. We conclude the investiga-
tion by evaluating the computational performance of the forcing-term choices for both solvers and evaluate whether a
strategy of choice can be identified.

To evaluate the impact of the different forcing-term choices, the residual is plotted as a function of the number of
Newton iterations in Figure 4, and as a function of the computation time in Figure 5. The final iteration counts and
computation times are listed in Table 3.

First, we take a look at the linear elastic case. As expected, the Newton scheme converges in a single step for the high
accuracy choice 4. Choice 3 requires five iterations and converges at a linear rate. For choices 1 and 2, the convergence
behavior is similar. Both start with a low accuracy and a comparatively slow convergence rate. As the residual becomes
smaller, the value of 𝛾n decreases and the linear system is solved to higher accuracy. Consequently, the convergence
rate increases for the last iterations. For the linear elastic case, we observe that the overall number of iterations, that is,
the sum of CG and Newton iterations, is similar for all forcing-term strategies, cf. Table 3. The computational effort of
solving the linear system to high accuracy is comparable to taking a larger number of Newton steps with modest accuracy.
Hence, despite the differences in Newton iteration counts, the different forcing-term choices exhibit similar computation
times, cf. Figure 5. Notably, choice 4 is not the fastest even, though it led to convergence in a single step. The remaining
difference in runtimes between the choices is explained by the wasted computational effort of solving to a smaller residual
than required. Fortuitously, the final residual for choice 3 is the closest to the chosen tolerance, leading to the lowest
computation time.

Next, we consider the nonlinear case solved by the Newton-CG scheme. For choices 1 to 3, the convergence behavior
is similar to the linear elastic case. Choice 4, however, requires five iterations and does not converge much faster than
choice 3, even though a much higher accuracy is used. Note that for the current example, the Newton-CG scheme with
forcing-term choice 4 does not exhibit a quadratic convergence rate within the chosen tolerance. For a preliminary com-
putation on the small microstructure of Section 4.2, we could confirm a quadratic convergence rate for the Newton-CG
method using very low tolerances 𝛿 = 10−8 and 𝛾n = 10−9 and thereby validate our implementation. However, the com-
putational effort wasted by oversolving was even more excessive for such a setup. With respect to computation time,
choices 1 and 2 are the fastest for the current example, converging after just over 300 seconds. Choice 3 takes roughly 30%
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(A) Linear elastic matrix behavior: Newton-CG solver
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(B) J2-elastoplastic matrix behavior: Newton-CG solver (left) and BFGS-CG solver (right)

F I G U R E 4 Porous glass-fiber reinforced polyamide: residual vs number of Newton iterations. (A) Linear elastic matrix behavior:
Newton-CG solver and (B) J2-elastoplastic matrix behavior: Newton-CG solver (left) and BFGS-CG solver (right). BFGS,
Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient [Colour figure can be viewed at wileyonlinelibrary.com]
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(A) Linear elastic matrix behavior: Newton-CG solver (B) J2-elastoplastic matrix behavior: Newton-CG solver (left) and BFGS-CG solver (right)
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F I G U R E 5 Porous glass-fiber reinforced polyamide: residual vs computation time. (A) Linear elastic matrix behavior: Newton-CG
solver and (B) J2-elastoplastic matrix behavior: Newton-CG solver (left) and BFGS-CG solver (right). BFGS,
Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient

longer. Taking a look at the overall runtime of choice 4 reveals the computational cost of oversolving. For this example,
the advantage of Kelley's safeguard (22) becomes apparent. For all forcing-term strategies, we arrive at a residual slightly
above the desired accuracy in the second to last iteration. For the adaptive choices 1 and 2, safeguard (22) is active and,
consequently, the linear system is solved to low accuracy in short time. In case of the constant choices 3 and 4, where the
safeguard is not used, we arrive at residuals much smaller than the desired accuracy, wasting computational effort.

To conclude the investigation, we take a look at the BFGS-CG scheme. For this solver, choices 3 and 4 lead to roughly
the same linear rate of convergence. After few initial steps with a low accuracy, an identical convergence rate is approached
for choices 1 and 2, as well. Apparently, higher accuracy than for choice 3 does not improve the convergence rate for the
BFGS tangent approximation (30). With respect to the overall runtime, choices 1 and 2 are fastest, with choice 3 being
only marginally slower. Choice 4 is the slowest option by far.

To summarize, we observe that for nonlinear material behavior, the forcing-term choices 1 and 2 by Eisenstat and
Walker lead to the shortest runtime. However, choice 3 with a constant forcing term of 𝛾n = 0.1 is not much slower and
serves as an easy-to-implement alternative. Based on the performance of choice 4, we come to the same conclusion as

http://wileyonlinelibrary.com
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T A B L E 3 Porous glass-fiber
reinforced polyamide: iteration
counts and computation times for
different forcing-term choices

Linear elastic matrix

Choice 1 Choice 2 Choice 3 Choice 4

Computation time (s) 264.0 281.8 219.6 246.3

Newton iteration count 7 8 5 2

CG iteration count 126 132 107 119

Matrix governed by J2 plasticity

Choice 1 Choice 2 Choice 3 Choice 4

Newton-CG Computation time (s) 321.0 306.1 391.2 1524.0

Newton iteration count 8 8 6 5

CG iteration count 154 147 193 770

BFGS-CG Computation time (s) 389.7 373.5 434.3 2109.9

Newton iteration count 9 9 7 7

CG iteration count 179 174 207 1053

Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient.

Knoll and Keyes43: Aiming for a high (possibly quadratic) convergence rate by solving the linear system to high accuracy is
inefficient with respect to the overall runtime of the scheme. These conclusions hold both for Newton-CG and BFGS-CG.
Comparing the two solution schemes, we find that for the fastest forcing-term choice 2 the BFGS-CG scheme is only
about 22% slower than the Newton-CG method, even though we applied a large nonlinear load step. For the material laws
considered in this example, we conclude that the BFGS update leads to a decent approximation of the tangent stiffness in
a limited number of iterations.

4.3.2 Discussion of the effective elastoplastic material properties

From a material-science viewpoint, the effective elastoplastic behavior of the composite material is of interest. In par-
ticular, this includes characterizing the anisotropy of the stress-strain relation in the elastic regime and the shape of the
yield-boundary. To this end, we simulate uniaxial tensile tests in various directions relative to the fiber direction, that is,
the x-axis. To be specific, the loading is applied at 0◦, 15◦, 45◦, and 90◦ relative to the x-axis in the xz- and xy-plane and at
0◦, 45◦, and 90◦ relative to the y-axis in the yz-plane. The tensile tests are performed up to 5% strain in load direction and
subdivided into 50 load steps to obtain finely resolved stress-strain curves. This gives us the opportunity to evaluate the
performance of the investigated solvers for a relevant practical application.

This paragraph focuses on the characterization of the material behavior, based on the results of the simulations. The
convergence behavior and runtimes of the solution schemes are subsequently discussed in Section 4.3.3. The linear elastic
behavior of the composite is characterized by the effective stiffness tensor C relating effective stress 𝜎 = ⟨𝜎⟩ and effective
strain 𝜀 = ⟨𝜀⟩ by Hooke's law

𝜎 = C ∶ 𝜀.

Using the elastic parameters in Table 1, the effective stiffness of the composite material, given in Voigt's notation, reads

C =

⎡⎢⎢⎢⎢⎢⎣

10.1 1.42 1.41 0.01 0.0 0.01
1.42 3.49 1.45 0.03 0.0 0.0
1.41 1.45 3.48 0.02 0.0 0.0
0.01 0.03 0.02 1.04 0.0 0.0
0.0 0.0 0.0 0.0 1.11 0.02

0.01 0.0 0.0 0.0 0.02 1.11

⎤⎥⎥⎥⎥⎥⎦
GPa,
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(A) Stress-strain curves for varying load angles in the
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(B) Offset yield strength Rp0.2% at varying load angles
in the xz-, xy- and yz-plane

F I G U R E 6 Elastoplastic
behavior of the porous glass-fiber
reinforced polyamide. The load
angles are measured relative to the
x-axis (fiber direction) in the xz and
xy-plane and relative to the y-axis in
the yz-plane. (A) Stress-strain curves
for varying load angles in the
xz-plane and (B) offset yield strength
Rp0.2% at varying load angles in the
xz-, xy-, and yz-plane

up to three significant digits, and was identified through six linear elastic computations. C may be well approximated by
a transversely isotropic stiffness tensor with engineering constants EL = 9.29 GPa, ET = 2.81 GPa, 𝜈TT = 0.38, 𝜈LT = 0.29,
and GLT = 1.11 GPa, with a relative error below 1%. As a measure of the elastic anisotropy, we consider Caniso defined as

C
aniso = C − C

iso with C
iso = (C ∶∶ P1)P1 +

1
5
(C ∶∶ P2)P2,

where P1 and P2 denote the projectors onto the spherical and deviatoric d × d matrices, respectively. The symbol ∶∶
denotes the quadruple tensor contraction, that is, a = B ∶∶ C is equivalent to a = BijklCijkl in index-notation, using
the summation convention. For the given material, ||Caniso||∕||C|| = 47% in Frobenian norm, signifying strong elastic
anisotropy.

The stress-strain curves for the simulated uniaxial tensile tests in the xz-plane are shown in Figure 6A. We observe
that, up to an angle of 45◦, the stiffness decreases and the onset of plastic behavior shifts to lower stresses and higher
strains. Between 45◦ and 90◦ offset of fiber to load direction, the observed behavior stays roughly identical. A common
measure to quantify the onset of plasticity is the offset yield point Rp0.2%, as the actual yield stress is difficult to determine
for smooth stress-strain diagrams. The offset yield point Rp0.2% is defined as the stress where the component of the effective
plastic strain 𝜀p = 𝜀 − C

−1
∶ 𝜎 in load direction reaches 0.2%. The results with respect to the load angle are shown in

Figure 6B. Due to the isotropic behavior in the yz-plane perpendicular to the fiber direction, as well as the similarity of
the curves in the xz- and xy-plane, the boundary of the effective yield surface is approximately transversely isotropic. The
yield strength in fiber direction is highest and decreases in a roughly linear way up to a relative angle of 45◦. Between 45◦
and 90◦, it stays approximately constant. Even though the yield strength perpendicular to the fiber direction is a factor
2.5 lower than in fiber direction, it is still 1.6 times higher than for the unreinforced matrix material, cf. Table 1.

4.3.3 Performance comparison for uniaxial extension

Due to the transversely isotropic material behavior, we restrict the performance comparison of the solution schemes to
the computations in the xz-plane. Figure 7 shows the computation time, the total number of iterations, and the number
of gradient evaluations for each load step. For the Newton-CG and BFGS-CG solvers, the total number of iterates denotes
the sum of CG and outer iterations, whereas only the latter are counted for the number of gradient evaluations. For the
basic scheme and the Barzilai-Borwein scheme, the gradient is evaluated in each iteration, leading to identical counts for
both values.

Qualitatively, the resulting plots for the computations at varying load angles are roughly similar. As the affine-linear
extrapolation takes effect, the iteration counts and runtimes significantly decrease from the first to the second iteration.
For the computations with relative load angles of 45◦ and 90◦, the second load step is still linear elastic and the solution
schemes converge within a single iteration. Subsequently, the iteration counts increase at the onset of plastification and
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(A) 0° load angle
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(B) 15° load angle

10 20 30 40 50
0

200

400

600

load step

ti
m

e 
[s

]

10 20 30 40 50
0

100

200

300

load step

to
ta

 l
it

er
at

io
n
s

10 20 30 40 50
0

100

200

300

load step

g
ra

d
ie

n
t 

ev
al

u
at

io
n
s

(C) 45°load angle
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(D) 90° load angle

F I G U R E 7 Porous glass-fiber reinforced polyamide: performance comparison of the solution schemes for uniaxial extension at various
load angles relative to the x-direction in the xz-plane. (A) 0◦ load angle, (B) 15◦ load angle, (C) 45◦ load angle, and (D) 90◦ load angle

decrease again after the material is fully plastified. Taking a closer look at the BFGS-CG method, we notice that its per-
formance closely matches that of the Newton-CG method. This observation holds for both the overall performance, cf.
Table 4, as well as for the iteration count and runtime within each load step, cf. Figure 7. The tangent stiffness tensor
for J2-elastoplasticity is merely a rank-one update of the elastic stiffness tensor, cf. Section 3.3.2 in Simo and Hughes.64

As the BFGS-CG method is initialized with the elastic stiffness, the analytic tangent is well approximated within a few
BFGS-updates.
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0◦ 15◦ 45◦ 90◦

Newton-CG Mean Newton iteration count 4.1 4.3 4.3 4.4

Mean CG iteration count 28.9 31.7 27.6 31.3

Mean computation time (s) 72.3 76.0 69.3 76.1

BFGS-CG Mean Newton iteration count 4.1 4.2 4.3 4.3

Mean CG iteration count 28.0 30.1 28.0 30.5

Mean computation time (s) 72.3 78.1 73.2 78.3

Barzilai-Borwein Mean iteration count 27.2 28.7 27.0 27.4

Mean computation time (s) 55.6 59.3 56.4 57.4

Basic scheme Mean iteration count 199.8 236.6 201.4 210.9

Mean computation time (s) 341.1 411.6 347.7 367.8

Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient.

T A B L E 4 Porous glass-fiber
reinforced polyamide: mean
computation times and iteration
counts for uniaxial extension at
various load angles in the xz-plane

Mean computation time
per application (ms)

Material law 653.0

Tangent 315.9

FFT 893.7

Γ0 operator 147.9

Abbreviation: CG, conjugate gradient.

T A B L E 5 Porous glass-fiber reinforced polyamide: computation time per
application of the most expensive operations for loading in x-direction and solved by
the Newton-CG method

Evaluating the material law of J2-elastoplasticity is comparatively cheap, cf. Simo and Hughes.64 More precisely, the
computation time spent on evaluating 𝜀 → 𝜎(𝜀) for all voxels is roughly of the same order of magnitude as the compu-
tation time for the application of Γ0 and the associated FFTs for typical cell sizes and resolutions. Usually, these are the
most expensive steps in an FFT-based solution algorithm. In Table 5, the average computation time per application of
these operations is given for the 0◦ load case solved by the Newton-CG method. For the given problem, we observe that
evaluating the material law is slightly faster than applying forward and backward FFT, and about twice as expensive as
applying the tangent Ξ → 𝜕2w

𝜕𝜀2 (𝜀n) ∶ Ξ, that is, a linear elastic material. The results for the other load cases and solution
schemes are roughly similar. Note that the tangent operator is only applied when using the Newton-CG and BFGS-CG
method. As a consequence, the computational cost of a gradient evaluation is similar to a CG iteration and the runtimes
of all solvers are roughly proportional to their total iteration count, cf. Figure 7. Thus, even though the Newton-CG and
BFGS-CG method require much less evaluations of the material law, the Barzilai-Borwein scheme converges faster. The
basic scheme is slower than the other investigated algorithms by a factor of 5 to 8. Due to the affine-linear extrapolation,
the difference in performance is not as pronounced as for our previous example in Section 4.2.

4.4 Directionally solidified NiAl-Cr(Mo) alloy

Due to its high melting point and corrosion-resistance, nickel-aluminum-chrome eutectics with minor additions of molyb-
denum (NiAl-Cr(Mo) alloys) are a promising class of structural high-temperature materials. The material behavior of the
components in this alloy is governed by single-crystal elastoviscoplasticity. Compared with the material laws of Section
4.3, linear elasticity and J2-elastoplasticity, evaluating the material law of a single-crystal elastoviscoplasticity model is
considerably more expensive and tends to dominate the overall computation time.68 Thus, NiAl-Cr(Mo) alloys represent a
valuable benchmark for the investigated solution schemes. It is expected that the number of required gradient evaluations
is more indicative of the overall performance in this case. This fact favors the use of (Quasi-)Newton-Krylov methods, as
the solution of the linear system is less relevant for the runtime.

After a directional solidification process, NiAl-Cr(Mo) develops a cellular structure with NiAl and Cr(Mo) lamel-
lae parallel to the growth direction.69 Similar microstructures are observed for other intermetallics, for example,
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titanium-aluminides70 or iron-aluminides.71,72 To investigate mechanical behavior of a lamellar NiAl-Cr(Mo) alloy, a cel-
lular microstructure with 512 grains was generated using the Voronoi tessellation routine of the software Neper.73 Based
on findings by Whittenberger et al74 and Raj and Locci75 for moderate solidification rates, an aspect ratio of 4 along the
growth direction parallel to the y-axis was chosen for the grains. The microstructure is shown in Figure 8, resolved by 643

voxels.
Notice that we do not resolve the lamellar structure for each grain as this would require an excessively high voxel

count. Instead, we homogenize a two-phase laminate for each voxel using the algorithm presented in Kabel et al.76 The
orientation of the grains was chosen so that the normal direction of the laminate interface is uniformly distributed in the
xz-plane, that is, perpendicular to the growth direction. Cline and Walter69 investigated the crystallographic relationship
in the laminate and showed that all planes and directions of NiAl and Cr(Mo) are parallel. The laminate interface is
parallel to the (112) plane and the growth direction is parallel to the ⟨111⟩ direction.

For the two phases of the laminate, the material behavior is governed by a single-crystal elastoviscoplastic model. The
infinitesimal strain is additively decomposed

𝜀 = 𝜀e + 𝜀p,

into elastic 𝜀e and plastic 𝜀p parts. The stress-strain relationship follows Hooke's law

𝜎 = C ∶ 𝜀e = C ∶ (𝜀 − 𝜀p),

for the elastic strains. For single-crystal elastoviscoplasticity, the plastic strain is composed of simple shear deformations
of the individual crystallographic slip systems. The evolution of the plastic strain is governed by

𝜀̇p =
N∑
𝛼=1

𝛾̇𝛼d𝛼⊗
sn𝛼,

where 𝛾̇𝛼 , d𝛼 , and n𝛼 denote the slip rate, slip direction, and slip plane normal for the 𝛼th of N slip systems, respectively,
cf. Bishop.77 The operator ⊗s denotes the symmetrized dyadic product. For the flow rule of the slip rate, we chose the
power-law formulation of Hutchinson78

𝛾̇𝛼 = 𝛾̇0 sgn(𝜏𝛼)
|||| 𝜏𝛼𝜏F

||||m, with 𝜏𝛼 = 𝜎 ∶ (d𝛼⊗
sn𝛼),

and reference slip-rate 𝛾̇0, yield stress 𝜏F, and stress exponent m. For the reinforcing Cr(Mo) phase, the yield stress 𝜏F is
modeled following Albiez.79

𝜏F = 𝜏∞

d
√
𝜌 + 1

with 𝜌 = 𝜌s

[
1 − exp

(
−1

2
k2𝛾
)(

1 −
√

𝜌0

𝜌s

)]2

, (31)

F I G U R E 8 Directionally
solidified NiAl-Cr(Mo). (A) Grain
structure (643 voxels) and (B) Von Mises
equivalent strain after 100 seconds of
creep loading at 200 MPa in z-direction (A) Grain structure (643 voxels)

(B) Von Mises equivalent strain after 100 seconds of
creep loading at 200 MPa in z-direction
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Cr(Mo) NiAl

Volume fraction cNiAl = 0.54 cCr(Mo) = 0.46

Elastic moduli C11 = 350.0 GPa C12 = 67.8 GPa C11 = 182 GPa C12 = 120 GPa

C44 = 100.8 GPa C44 = 85.4 GPa

Flow rule 𝛾̇0 = 0.4 s−1 m = 4.6 𝛾̇0 = 10−3 s−1 m = 5.75

Hardening 𝜏∞ = 3256.7 MPa d = 0.409 𝜇m 𝜏F
0 = 37.25 MPa

𝜌0 = 103 mm−2 𝜌s = 2.9 × 107 mm−2

k2 = 13

Slip systems {110}⟨111⟩ {001}⟨100⟩
{112}⟨111⟩ {011}⟨100⟩
{123}⟨111⟩ {011}⟨110⟩

T A B L E 6 Directionally
solidified NiAl-Cr(Mo): material
parameters of Cr(Mo) lamellae
and NiAl matrix80

and maximum yield stress 𝜏∞, characteristic length d, recovery constant k2, dislocation density 𝜌 with its initial value
𝜌0 and its saturation value 𝜌s. NiAl is assumed to behave perfectly plastic, that is, 𝜏F = 𝜏F

0 . The material parameters and
volume fractions for NiAl-31Cr-3Mo are taken from Albiez et al,80 cf. Table 6.

Note that the single-crystal plasticity model with Hutchinson's flow rule is not a generalized standard material81 and
has a nonsymmetric tangent stiffness. As the tangent stiffness of the phases enters the homogenized tangent stiffness
of the laminate, cf. Glüge and Kalisch,82 this would usually prohibit using the CG method for solving Equation (25).
However, we found in another study83 that using the Newton-CG method and only the considering the symmetric part
of the tangent stiffness yielded decent results. Hence, we use the symmetrized tangent stiffness of the single phases for
the solution of the laminate and the computation of its tangent.

4.4.1 Discussion of the effective creep behavior

For high-temperature structural materials, the creep behavior, that is, the deformation of the material subjected to a
constant stress load, is an important mechanical characteristic. To investigate the anisotropic creep behavior of the
NiAl-Cr(Mo) microstructure, we simulate creep tests in various directions relative to the growth direction of the material,
that is, the y-axis. More specifically, we apply boundary conditions corresponding to uniaxial compression with a mag-
nitude of 200 MPa at 0◦, 15◦, 45◦, and 90◦ relative to the y-axis in the yz- and xy-plane and at 0◦, 45◦, and 90◦ relative to
the x-axis in the xz-plane. The load is applied in 1 second and a single load step and, afterward held constant for 50 load
steps for a specified creep time. The creep times for each angle are listed in Table 7 and were chosen to obtain a fine res-
olution of the creep rate in time. Note that, due to the prescribed softening behavior Equation (31), an excessively coarse
resolution of the load steps over time leads to divergence of the solution schemes for this material. Simulating such a
creep loading is a challenging problem for the investigated solution schemes, as a load transfer from the softer NiAl to
the more creep resistant Cr(Mo) occurs as a viscous effect after the initial loading, cf. Albiez et al.79,80 Thus, the loading
in the single phases is nonmonotone, especially in the first few load steps after the initial loading.

In the following, we discuss the creep behavior observed in the simulations. The performance of the solution schemes
for this example is compared in Section 4.4.2. For the characterization of the creep behavior, the creep rate 𝜀̇c, that is, the
strain component in load direction measured after the initial loading, and its minimum value 𝜀̇c

min are of interest.
In Figure 9A, the creep curves for the simulations in the yz-plane are shown. The curve for the load in growth direc-

tion agrees well with the computational and experimental results reported by Albiez et al.80 Up to a load angle of 45◦,

0◦ 15◦ 45◦ 90◦

yz-plane 10 000 s 2000 s 100 s 100 s

xy-plane 10 000 s 2000 s 100 s 100 s

xz-plane 100 s – 100 s 100 s

T A B L E 7 Directionally solidified NiAl-Cr(Mo): creep times with
respect to load angle for all simulated creep experiments
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F I G U R E 9 Effective creep behavior of directionally solidified NiAl-Cr(Mo) at different load angles for an applied load of 200 MPa. The
load angles are given with respect to the y-axis (growth direction) in the yz- and xy-plane and with respect to the x-axis in the xz-plane. (A) Creep
rate vs creep strain for varying load angles in the yz-plane and (B) minimum creep rates for varying load angles in the yz-, xy-, and xz-plane

we observe an increase in the overall creep rate and a less pronounced softening behavior, that is, an increase of the creep
rate at increasing strains. This signifies that, in case of aligned load and growth direction, a large amount of stress is carried
by the creep resistant Cr(Mo) lamellae which in turn activates their softening behavior. Figure 9B shows the minimum
creep rate for all computations as a function of the load angle. The good agreement of the results in the yz- and xy-plane
as well as the approximately isotropic behavior in the xz-plane indicate a transversely isotropic effective creep behavior
for NiAl-Cr(Mo). We observe that with increasing angle relative to the growth direction the logarithm of the minimum
creep rate increases linearly up to an angle of 45◦ and subsequently stagnates. The difference between the highest and
lowest value for 𝜀̇c

min is slightly over two orders of magnitude. This represents an improvement in robustness compared
with the similar directionally solidified molybdenum-reinforced nickel-aluminum alloys (NiAl-Mo) which form unidi-
rectionally aligned fiber structures instead of laminates. For NiAl-Mo, FFT-based computations predicted a decrease in
creep strength by roughly four orders of magnitude down to the level of pure NiAl in case of off-axis loading.83 Similarly,
Seemüller et al84 experimentally observed a considerable increase in creep rate for NiAl-Mo with a high content of mis-
aligned fibers. Thus, we conclude that the cellular laminate structure of NiAl-Cr(Mo) leads to a weaker anisotropy and a
larger robustness against misaligned loading compared to fibrous materials with a similar composition.

4.4.2 Performance comparison for creep loading

In analogy to Section 4.3.3, we take a closer look at the runtimes, total iteration counts and gradient evaluations of the
solvers for each load step, cf. Figure 10. Due to the material's transversely isotropic behavior, we restrict the discussion
to the computations in the yz-plane. During the first few load steps of the creep computations, we observe high iteration
counts and runtimes, due to the initial load application and the subsequent load transfer. This behavior is less pronounced
for the case where growth direction and loading direction are parallel. As the normal direction of the laminates are dis-
tributed in the xz-plane, all laminate planes are parallel to the y-direction. Thus, the resultant fields are less heterogenous
for a loading in this direction, leading to lower computational costs. As the fields stabilize and the affine-linear extrapo-
lation takes effect, computation times and the required number of material evaluations decrease to a lower level, roughly
between load step 5 and 15. For the 0◦ load angle and 15◦ load angle computations, the computation time per material
evaluation increases with the creep time, due to the softening of the material. In the former case, the required number of
iterations increases as well, as the softening is more pronounced and leads to a higher internal material contrast.

In contrast to our previous example in Section 4.3.3, solving the two-phase laminate and evaluating the single-crystal
elastoviscoplastic material laws dominates the overall computation time, cf. Table 8. This holds true for all solvers and
load cases. Hence, we observe that the runtime is approximately proportional to the number of gradient evaluations.
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(A) 0° load angle
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(B) 15° load angle
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(C) 45° load angle
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(D) 90° load angle

F I G U R E 10 Directionally solidified NiAl-Cr(Mo): performance comparison of the solution schemes for creep loading at various load
angles relative to the y-direction in the yz-plane. (A) 0◦ load angle, (B) 15◦ load angle, (C) 45◦ load angle, and (D) 90◦ load angle

We take a closer look at the convergence behavior of the BFGS-CG method. Roughly up to the fifth load step, the
BFGS-CG method requires a higher number of Newton iterations than the Newton-CG method. In comparison to the
example in Section 4.3.3, it takes more BFGS update iterations to achieve a good approximation of the tangent stiffness.
First, this can be traced back to the difference in loading. Whereas the first load steps of the uniaxial extension in Section
4.3.3 were in the linear elastic regime, the creep loading is rapidly applied in the first load step, immediately leading to
nonlinear material behavior. Second, the tangent stiffness for the single-crystalline phases and the resulting homogenized
tangent stiffness of the laminate is more complex than the one of J2-elastoplasticity. Thus, with the linear elastic stiffness
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T A B L E 8 Directionally solidified NiAl-Cr(Mo): computation time per
application of the most expensive operations for the case of loading in y-direction
solved by the Newton-CG method

Mean computation time
per application (ms)

Material law 9944.0

Tangent 5.0

FFT 6.7

Γ0 operator 2.4

Abbreviations: CG, conjugate gradient; FFT, fast Fourier
transform.

as starting point, more BFGS updates are necessary to approximate the material's tangent stiffness. After the slower initial
load steps, BFGS-CG and Newton-CG exhibit similar runtimes and Newton iteration counts. In fact, the BFGS-CG method
even converges in slightly fewer Newton iterations than the Newton-CG method for some load steps. This may be due to
a combination of two factors. First, we use the symmetrized tangent of the single phases to compute the tangent of the
laminate. Second, we do not achieve the highest possible convergence rate for Newton-CG, using the forcing-term choice
2, cf. Section 4.3.1. We further note that the BFGS-CG method requires more CG iterations than Newton-CG, cf. Table 9.
This indicates that the BFGS tangent approximation exhibits a higher internal material contrast than the analytic tangent
for this example. Comparing the mean computation times per load step, we see that this does not negatively impact the
method's overall performance. In conclusion, BFGS-CG and Newton-CG exhibit very similar computation times with
BFGS-CG being even slightly faster for the 15◦ to 90◦ load angle computations.

For the Barzilai-Borwein method, we note that the total number of iterations is similar to the Newton-CG method
for all computations. However, as the material law is evaluated for every iteration of the Barzilai-Borwein scheme, the
resulting computation times are 1.5 to 2.5 times higher than for Newton-CG and BFGS-CG.

The basic scheme is the most time-consuming algorithm, taking about 4 to 10 times longer to converge than the inexact
(Quasi-)Newton methods. Note that for all load cases except the 0◦ loading, the iteration counts of the basic scheme
fluctuate significantly between load steps, even after the strain field stabilizes and the creep rate reaches its minimum
value. This unexpected effect is a result of our choice of reference material 𝛽0 = (𝛽+ + 𝛽−)∕2, which is only theoretically
justified for materials whose tangent has a lower bound. For our given material, this cannot be assured globally, due to the
prescribed softening behavior. However, convergence of the basic scheme to a critical point can be shown for materials
with only an upper bound on the tangent if the reference material is chosen as 𝛽0 = 𝛽+, cf. Section 1.2.3 in Nesterov's
book.85 We compared the two choices for 𝛽0 for the 15◦ load case where the fluctuations were most pronounced, cf.
Figure 11. For the conservative choice 𝛽0 = 𝛽+, iteration counts and runtimes develop smoothly. However, the mean
iteration count and computation time per load step are about 30% higher for this choice. Hence, the results for 𝛽0 =
(𝛽+ + 𝛽−)∕2 were included in the performance comparison of the different solution schemes.

T A B L E 9 Directionally solidified
NiAl-Cr(Mo): mean computation times
and iteration counts for creep loading at
various angles in the yz-plane

0◦ 15◦ 45◦ 90◦

Newton-CG Mean Newton iteration count 4.8 5.4 5.1 4.8

Mean CG iteration count 6.8 12.3 10.9 11.2

Mean computation time (s) 68.4 114.2 78.5 73.8

BFGS-CG Mean Newton iteration count 4.9 4.9 4.9 4.3

Mean CG iteration count 35.1 38.2 33.2 32.8

Mean computation time (s) 68.9 107.2 77.6 69.4

Barzilai-Borwein Mean iteration count 9.1 15.7 14.9 14.0

Mean computation time (s) 100.6 258.7 166.4 161.2

Basic scheme Mean iteration count 22.7 55.5 46.0 57.8

Mean computation time (s) 259.6 939.8 611.7 793.2

Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient.
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F I G U R E 11 Directionally
solidified NiAl-Cr(Mo): performance
comparison of the two
reference-material choices for the
basic scheme for the 15◦ load case

5 SUMMARY AND CONCLUSION

Quasi-Newton methods, such as Anderson acceleration3,10,28 and the Barzilai-Borwein method,19 have attracted consid-
erable attention for FFT-based micromechanics. In contrast to the classical Newton method, these schemes do not require
computing the Hessian. In addition, they generally outperform gradient-descent methods which share this property.24 For
the current article, this motivated us to exploit the most popular Quasi-Newton algorithm, the BFGS method, in the con-
text of FFT-based micromechanics. First, we proposed an implementation of Nocedal's L-BFGS algorithm.40 Although,
this scheme proved to be faster than the similar Anderson acceleration, pioneered by Shantraj et al,3 L-BFGS performed
worse than the Barzilai-Borwein method which is nonmonotonic but has a smaller memory-footprint. This can be traced
back to the comparatively high computational cost per iteration of L-BFGS, due to the many inner product evaluations
in the classical two-loop algorithm, cf. Algorithm 3. It may be possible to reduce this computational overhead, using the
more involved L-BFGS implementation proposed by Chen et al,67 where the computation of all inner products can be
parallelized more effectively. However, for material laws which can be cheaply evaluated, the Barzilai-Borwein scheme
currently represents the general-purpose method of choice

For computationally expensive material laws, such as single-crystal plasticity, it has been shown that Newton-CG
is more efficient, due to the lower number of gradient (and thus material law) evaluations.83 This led us to our second
use of the BFGS update for approximating the material tangent stiffness in the Newton-CG scheme. With the resulting
BFGS-CG method, we arrived at a scheme which was competitive in performance to the classical Newton-CG method,
in particular for multistep loads. Although it can not be measured in performance benchmarks, time spent programming
is as much of a resource as time spent on computations. Thus, the main advantage of the BFGS-CG scheme is that it
enables the tangent-free implementation of complex and computationally demanding material laws while still being fast
enough to permit their efficient computational homogenization. The results of the performance comparison between the
investigated solution schemes are summarized in Table 10.

As a side product of our investigation of (Quasi-)Newton methods, we found a globalization strategy suitable
for FFT-based micromechanics in the line-search algorithm of Dong.4 Another aspect of major importance for the
overall performance of these schemes was the choice of the forcing term. Among the various strategies tested in
our numerical experiments, consistently solving the linear system to a high accuracy was by far the slowest option.
Whereas this increased the overall computation time by factors of 5 to 7 compared with the other choices, the
resulting convergence rate with respect to the required Newton iterations was barely improved within the given toler-
ance. The best overall performance was achieved by forcing-term choice 2 of Eisenstat and Walker and its associated
safeguards.39,52 However, similar performance was observed for a constant moderate forcing term of 0.1. Thus, the choice
between these two options can be seen as a matter of preference, that is, choosing optimal performance vs ease of
implementation.

As demonstrated in our numerical experiments, both Newton-CG and BFGS-CG can handle nonlinear materials
with infinite contrast. Consequently, they are among the most widely applicable algorithms currently available in the
FFT-based context. However, the robust handling of materials with negative tangent eigenvalues, for example, in case
of damage or strain-softening, is an open topic for further research. Dai86 demonstrated that the BFGS method does not
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T A B L E 10 Summary of the performance comparison between the investigated solution schemes

Solution scheme
Memory footprint
(strain-like fields) Summary and remarks

Basic scheme5,6 1 • Gradient descent method2

• Lowest memory requirements

• Slowest among the studied solvers

Anderson acceleration3,26 2m + 2 • Limited-memory Quasi-Newton method29

• Optimal depth m between 2 and 5

• Accelerates the basic scheme but slower than the remaining
algorithms

L-BFGS40 2m + 4 • Limited-memory Quasi-Newton method

• Optimal depth m between 2 and 5

• Outperformed by the more memory-efficient Barzilai-Borwein
method

Barzilai-Borwein19,25 2 • Gradient descent with step size based on Quasi-Newton methods

• Nonmonotonic convergence behavior

• Fastest choice for inexpensive material laws

Newton-CG2,42 8.5 • Inexact Newton method

• Highest efficiency in combination with Eisenstat and Walker's
forcing-term choice 239

• Requires computing the material tangent

• Fastest choice for expensive material laws

BFGS-CG 10.5 • Inexact Quasi-Newton method

• Uses the BFGS update to approximate the material tangent

• Matches performance of Newton-CG for small load steps, slightly
slower otherwise

Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; CG, conjugate gradient.

converge for general functions in four or higher dimensions. Damped versions of the BFGS update formula are avail-
able, cf. Procedure 18.2 in Nocedal and Wright,24 which stabilize the convergence behavior of the linear solver. Still, this
may result in overall divergence if the disagreement between the tangent and its approximation becomes too large. It
remains to be investigated, if a suitable approach such as the arc-length method as used for conventional finite-element
computations87 can be adapted for FFT-based micromechanics.
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