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Abstract:We present a novel method to reconstruct multi-
spectral images of flat objects from spectrally coded light
fields as taken by an unfocused light field camera with a
spectrally coded microlens array. In this sense, the spec-
trally coded light field camera is used as a multispectral
snapshot imager, acquiring a multispectral datacube in
a single exposure. The multispectral image, correspond-
ing to the light field’s central view, is reconstructed by
shifting the spectrally coded subapertures onto the central
view according to their respective disparity. We assume
that the disparity of the scene is approximately constant
and non-zero. Since the spectral mask is identical for all
subapertures, themissing spectral data of the central view
will be filled up from the shifted spectrally coded subaper-
tures. We investigate the reconstruction quality for differ-
ent spectral masks and camera parameter sets optimized
for real life applications such as in-line production mon-
itoring for which the constant disparity constraint nat-
urally holds. For synthesized reference scenes, using 16
color channels, we achieve a reconstruction PSNR of up
to 51 dB.

Keywords:Multispectral imaging, light fields.

Zusammenfassung: Wir präsentieren eine neuartige Me-
thode zur Rekonstruktion vonmultispektralen Bildern fla-
cher Objekte aus spektral codierten Lichtfeldern, wie sie
mit einer Lichtfeldkamera mit spektral kodiertem Mikro-
linsenarray aufgenommen werden. In diesem Sinne ent-
spricht die spektral codierte Lichtfeldkamera einer mul-
tispektralen Snapshot Kamera. Das der Zentralansicht des
Lichtfelds entsprechende multispektrale Bild wird rekon-
struiert, indem die spektral codierten Subapertur-Bilder,
abhängig von der jeweiligen Disparität, auf die Zentral-
ansicht transformiert werden. Wir nehmen an, dass die
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Disparität der Szenen konstant und ungleich null ist. Da
die spektrale Kodierung für alle Subapertur-Bilder iden-
tisch ist, wird die fehlende spektrale Information jedes Pi-
xels der Zentralansicht von den transformierten spektral
kodierten Subapertur-Bildern aufgefüllt. Wir untersuchen
die Qualität der Rekonstruktion für verschiedene Masken
der spektralen Kodierung und Kameraparameter, welche
für echte Anwendungen, wie beispielsweise der Produk-
tionsüberwachung, welche die Auflage einer konstanten
Disparität auf natürliche Art erfüllen, angepasst sind. Mit-
hilfe synthetischer Referenzdaten, im Falle von 16 Farbka-
nälen, erreichen wir eine Rekonstruktionsqualität von bis
zu 51 dB.

Schlagwörter:Multispektrale Bildgebung, Lichtfelder.

1 Introduction

In recent years, multispectral snapshot as well as light
field imaging systems have gained a lot of attention in
both scientific research and industrial applications. Multi-
spectral cameras capture a spatially resolved spectrum of
a scene using several spectral bands (typically up to 30).
Multispectral images can then for example be used to
enhance image-based classification in sorting tasks [12,
16], medical diagnostics [11] or to estimate material abun-
dances [10, 2]. As opposed to scanning techniques, snap-
shot cameras are able to record non-static scenes. Light
field cameras, on the other hand, capture a multi-angle
viewof a scene, usually onlyutilizing three color channels.
Light fields then provide depth information [18] which can
for example be used for 3-D shape reconstruction [17]. As a
compact monocular camera, microlens array (MLA) based
light field cameras [1] are themost practical light field cam-
eras in non-lab scenarios. Not only do they offer a compact
and robust way for depth estimation, but due to their opti-
cal design make it possible to obtain a high depth-of-field
with small f-numbers, i. e. they are good candidates for low
light and non-static scenes.

Recently, some effort has been made to record multi-
or hyperspectral light fields. The spectral 4D light field
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L(u, v, s, t; λ) describes the optical radiance along a ray pa-
rameterized by (u, v, s, t) at wavelength λ at a given mo-
ment in time (here, we consider only the static case and
do not specifically denote a time variable). In the case
of monocular computational cameras, one usually uses
the plane-plane ray parametrization, i. e. a ray inside a
camera is uniquely defined by the intersection points of
two parallel planes: the (u, v)- and the (s, t)-plane (usually,
the main lens and MLA plane). While the (s, t)-coordinate
indexes the spatial dependency of the light field, the
(u, v)-coordinate represents the angular dependency.

To record a spectral 4D light field, one could use a
monochromatic light field camera and a standard spectral
scanning approach: By placing narrow bandpass filters in
front of the camera, the spectral 4D light field is captured
channelwise. As a snapshot imaging system, besidemulti-
camera approaches [19, 23], there are basically only two
possibilities: either spectrally coding the (u, v)-coordinate
[8, 4] or the (s, t)-coordinate [21] of the spectral 4D light
field. In the presented approach,we consider coding of the
(s, t)-coordinates, i. e. spectrally coding the MLA of a light
field camera in the so-called unfocused design [14] (such
as Lytro cameras), as opposed to the focused plenoptic
camera [13] (such as Raytrix cameras). While in principle,
spectral coding of the MLA of a focused light field camera
is possible, it would lead to a mixed (u, v, s, t)-coding and
is not considered here. Hence, for the remainder, the term
light field camera is used synonymously to a MLA based
light field camera in the unfocused design. From the coded
light field, a reconstruction of a multispectral image corre-
sponding to the central view of the light field is performed.

2 Spectrally coded light fields
A light field camera with spectrally coded MLA (see Fig-
ure 1) captures a spectrally coded light field

L̂(u, v, s, t; λ) = M(s, t; λ) ⋅ L(u, v, s, t; λ) , (1)

where M(s, t; λ) corresponds to the spectral filter mask. In
the discrete case for a light field of size (U ,V , S,T ,Λ) ∈ ℕ5+,
M(s, t; λ) ∈ {0, 1}S×T×Λ is a binary mask where for every
lenslet (s, t) only rays with one specificwavelength index λ
can pass the filter, i. e. for every s ∈ [1, S] , t ∈ [1,T] it holds

Λ
∑
λ=1

M(s, t; λ) = 1 . (2)

Note that the mask is the same for all subapertures (u, v),
that is the spectral coding is independent of the incident

Figure 1: Light field camera with spectrally coded MLA, main lens of
focal length I and ML focal length f .

ray’s angle. For a single subaperture, the spectral domain
is severely undersampled (in case of 16 color channels,
only 1/16 ≈ 6% of the multispectral subaperture’s coef-
ficients are measured), but taking the full light field into
account, the spectral information of an object, if it has
non-zero disparity, passes multiple spectral filters across
the different subapertures. For example, if an object has a
disparity of exactly 1 px, it will show up in the subaper-
tures at locations (s, t) that differ by multiples of (0, 1),
(1,0). Since every (s, t) is coded by one specific filter, the
object is sampled, across all available subapertures (u, v),
at a wavelength index λ, depending on the filter mask
M(s, t; λ). Hence, the goal of the reconstruction is to make
use of the spectral information that is spread out across
the different subapertures of the coded light field. Here,
we do not reconstruct the full multispectral light field
L(u, v, s, t; λ) from the spectrally coded measurement (as
could be done e. g. by using methods from compressed
sensing), but a multispectral image corresponding to the
light field’s central view I(s, t; λ) = L(uc, vc, s, t; λ), where
uc, vc correspond to the central view’s angular indices. The
undersampled spectral information of the multispectral
central view can be severely enhanced by mapping the re-
maining subapertures of the spectrally coded light field
onto the central view. That is, we shift every coded sub-
aperture ̂Iuv(s, t; λ) = L̂(u, v, s, t; λ) onto the central view, de-
pending on each pixel’s disparity. In this case, the dispar-
ity of the scene has to be known. Unfortunately, with stan-
dard methods, such as depth-from-epipolar-plane-images
using the 2-D structure tensor [18] or slope fitting meth-
ods [22], disparity calculation is not directly possible on
the spectrally coded light fields. Therefore, we will con-
sider only scenes with (approximately) constant disparity,
which has to be known for the reconstruction. For exam-
ple, this is applicable in production line monitoring (flat
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objects placed on a conveyor belt or lab table). Knowing
the disparity, we can shift every subaperture by the dispar-
ity d and its relation to the central view of the light field:

̂Iuv,d(s, t; λ) = ̂Iuv(s + d(u − uc), t + d(v − vc); λ) . (3)

Finally, to obtain a reconstruction of the central view, we
sum up the shifted subapertures and normalize pixelwise:

Irec(s, t; λ) =
1

n(s, t; λ)
∑
u,v
̂Iuv,d(s, t; λ) , (4)

where n(s, t; λ) is the number of pixels that have been
shifted onto (s, t; λ). Depending on the filter mask and the
camera parameters, there still might be undetermined pix-
els in (4). Here, one could perform a full 3D, spatial 2D or
spectral 1D interpolation. For simplicity, and to preserve
edges in the spatial domain, we perform a 1D linear inter-
polation in the spectral domain.

When the disparity is integer valued, (3) does not per-
form any interpolation and can therefore easily be imple-
mented in a fashion capable of real timeprocessing.On the
other hand, if the disparity is zero (which is the case for the
focus plane of themain lens), the reconstruction following
the proposed method is not possible: the object will have
a fixed (s, t) position in all subapertures and hence only
one spectral sample of the object is given. Therefore,we fo-
cus the main lens of the camera to infinity. This moves the
d = 0-plane to infinity and all objects closer to the camera
will show a positive, non-zero disparity. This has the ad-
ditional advantage that the light field camera can equiva-
lently be viewed as an array of thin lens cameras with lens
radius given by the light field’s camera lens radius divided
by the number of subaperture views per dimension. The
disparity d in px between two neighboring subapertures
can then be calculated to

d = R ⋅ f
r ⋅ N ⋅ g

, (5)

where R is the radius and f the focal length of the main
lens, r is the microlens radius and N the number of sub-
aperture views per dimension, i. e. the number of pixels
underneath every microlens per spatial direction, and g is
the object distance. As usual, we assume f-number match-
ing of the microlenses and the main lens [14].

3 Camera parameter selection
In general, according to (5), there are many ways to con-
trol the disparity of a recorded light field using the param-
eters R, f , r,N and of course the object distance g. Unlike

the former, only g is mostly unconstrained in its range:
The main lens diameter, or, more accurately, the entrance
pupil of the lens, 2R of a commercially available lens can
only be set in well defined discrete steps given by the f-
number of the lens. The focal length, using a zoom lens,
can be varied but not with very high accuracy. Therefore,
we choose a prime lens with a fixed focal length of 50mm
and f-number F of 1.4 or 1.8 to obtain high light through-
put. The microlens radius r is ideally an integer multiple
of the sensor’s pixel pitch and directly related to the num-
ber N of subapertures per dimension. Hence, in practice,
themost accurateway to control thedisparity of a recorded
light field on a flat surface is the object distance. For a re-
alistic scenario, using a 50mm lens, we constrain the ob-
ject distance to the range from0.75m to 1.25m.We are then
searching for all possible parameter combinations satisfy-
ing (5) with an integer valued disparity between 1 px and
7 px andnumber of subapertures between 5 and 15 (to have
a well defined central subaperture view of the light field,
we consider only odd values). Finally, the sensor size and
pixel pitch are chosen according to an ON Semiconductor
Python 25K CMOS sensor of size 5120 × 5120 px and pixel
pitch of 4.5 µm. Within these constraints, we find a set of
15 possible camera parameters which are shown in detail
in Section 5.

4 Ground truth data and evaluation

To quantitatively evaluate the proposed method, suitable
reference data is needed. Unfortunately, there is no real
world data of full multispectral light fields available (even
without the constraint of a constant disparity). Therefore,
we will synthesize suitable data using a raytracer capa-
ble of rendering multispectral light fields. For this, we use
a self-developed fully spectral raytracer [15]. Overall, we
render five different scenes:CD, Colorchart, Concrete, Curry
andGraffiti, as shown in Figure 2. The scenes consist of real
world multispectral images (CD, lemons, colorcharts, con-
crete wall, graffiti) taken from publicly available datasets
[20, 3], self-made multispectral images (curry powder) as
well as RGB images (rubber surface), which in the ren-
dering process are converted to spectral images, and syn-
thetically defined objectswith arbitrarily chosen spectrum
(square, circle, triangle). Each scene is rendered as a full
multispectral light field for all possible parameter combi-
nations, as described in Section 3, for the ideal scenario of
fully flat layouts as well as the more realistic case with ob-
ject depth (and hence only approximately constant dispar-
ity), ranging from a few millimeters (CD, Lemons) to sev-
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Figure 2: The used scenes (central view) in RGB representation.

eral centimeters (colorcharts, geometric objects). In total,
135 multispectral light fields were rendered for the evalua-
tion, using 16 color channels in the visible spectrum. The
multispectral light fields are then spectrally coded in the
(s, t)-coordinate by applying the filter mask according to
(1). We perform the evaluation using a random and a regu-
larmask. Using a randommask, for everymicrolens (s, t) a
random wavelength index is independently drawn from a
discrete uniform distribution U(1,Λ). In the regular case,
the mask consists of a regular 4 × 4 px macropixel con-
taining every wavelength index exactly once. The recon-
structed multispectral image can then be quantitatively
evaluated: For every parameter set and scene, we calcu-
late the amount arec of reconstructed pixels and the re-
construction quality given by the peak signal-to-noise ra-
tio (PSNR) between the original light field’s central view
and the reconstructed multispectral image using either a
random or a regular filter mask. For the ideal case of com-
pletely flat scenes, we denote the reconstruction quality
by PSNRi whereas for the case with realistic object depth
PSNRr is used. Due to the different object distances, the
rendered scenes will show slightly different fields of view
(FOV). To perform a fair comparison, the PSNR of every re-
construction is calculated on the region of the image that
is shared by all scenes: For the smallest object distance g
across the different camera parameters, we calculate a ref-
erence FOV and, for scenes with larger g, the region in the
rendered image that corresponds to the narrower FOV by
simple geometric relations. In this way, every PSNR is cal-
culated on the same image content (but with varying im-
age resolution).

5 Results
First, we found that using multiple, different random
masks for the reconstruction of one specific scene only
showed a standard deviation of about 0.1 dB in the recon-
struction PSNR. Therefore, for the remaining evaluation,
we only consider one random mask per reconstructed im-
age. However, in order to increase the statistical signifi-
cance, we use a different random mask for every recon-
struction.

Second, from Figure 3, we observe that, using a reg-
ular mask, the reconstruction performs very well for even
integer valued disparities but poorly for odd ones. Since
the regular mask is of size 4 × 4 px, this is easily under-
stood: Every imaged point of the scene only passes every
d-th filter, for example, in the case where the disparity is
d = 2, the point passes every other and hence only 4 of
the total 16 color filters. Therefore, the performance of the
reconstruction for the regular mask depends on whether
the disparity is a true divisor of the size of the regular fil-
ter’s macropixel. This makes the regular mask unsuitable
for generalization andadaption todifferent disparities. For
this reason, we are only considering the random mask for
the remaining evaluation.

Figure 3: Average reconstruction quality across all scenes for differ-
ent coding masks and disparities.

In general, we find very high reconstruction quali-
ties, as shown in Figure 3 and in more detail in Table 1.
Overall, the smaller the disparity, the higher the recon-
struction quality. This, in fact, is not due to the dispar-
ity itself, but due to the number of possible subapertures
compatible with that disparity. In general, smaller dispar-
ity values correspond to a larger number of subapertures
under the constraints proposed in Section 3. With more
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Figure 4: Reconstruction of scene Colorchart with F = 1.4,d = 4 px,N = 7 and random filter mask. PSNRr = 38.96 dB.

Table 1: Average reconstruction quality across all scenes for all pa-
rameter combinations in case of a random filter mask.

F d/px N arec/% PSNRi/dB PSNRr/dB

1.4 2 13 99.93 51.70 47.92
1.4 2 11 99.70 50.10 47.13
1.8 2 11 99.69 50.66 47.25
1.4 3 11 99.63 43.44 42.29
1.8 3 9 98.18 47.02 43.37
1.4 3 9 98.17 46.55 43.41
1.4 4 9 98.07 46.68 42.60
1.4 4 7 91.86 41.67 38.96
1.8 4 7 91.85 41.82 39.15
1.8 5 7 91.72 37.36 36.37
1.4 5 7 91.71 41.80 38.88
1.4 6 7 91.55 41.88 38.86
1.8 6 5 73.54 35.43 33.57
1.8 7 5 73.45 35.66 33.59
1.4 7 5 73.44 35.50 33.72

available subapertures, the amount of reconstructed pix-
els, and therefore the reconstruction quality, naturally in-
creases.

Changing from ideally flat to real scenes, we find an
average drop in the PSNR of about 2.7 dB as shown in Ta-
ble 1. A reconstruction of the scene Colorchart is shown in
more detail in Figure 4. Note that, since the camera is fo-
cused at infinity and due to the large f-number and small
number of subapertures, the effective aperture size is quite
large and the image is slightly blurry. Furthermore, we do

observe some artifacts in the reconstruction of the artifi-
cial geometric objects. These are specified using a narrow
spectral signature. Hence, the linear 1D interpolation that
is used to interpolate the remaining missing pixels is un-
suited in this case. Here, using a 2D spatial interpolation
should give better results.

Concluding, the reconstruction quality is very high,
but, as usual, there is a trade-off between many camera
parameters: choosing a smaller number of subapertures
leads to a higher subaperture resolution but a narrower
depth of field and a slightly worse reconstruction PSNR.
Since the camera is focused at infinity, this causes blur
in the recorded light field due to a large effective aperture
size. Choosing a larger number of subapertures leads to
very high reconstruction PSNR and a wider depth of field
but increases the redundancy of spectral information. Fur-
thermore, the reconstruction of course also depends on
the chosen number of color channels. Given a specific ap-
plication, the optimal parameter combination can be cho-
senaccording to self-defined criteria and the results shown
in Table 1. To perform the evaluation for a different specific
application,wemake the source code (parameter creation,
scene synthesis, evaluation) publicly available at [9].

The potential speed of the imaging system is presum-
ably very high. The reconstruction of themultispectral im-
age is performed using only a very basic pixel shifting (in
case of integer valued disparities) and could easily be im-
plemented in a real-time capable fashion. The bottleneck
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with respect to speed is the decoding of the coded light
field L̂(u, v, s, t; λ) from the 2-D sensor image. For this, mul-
tiple calibration and decoding schemes are presented in
the literature [6, 5]. Given the corresponding hardware and
optimized implementation, the decoding of the sensor im-
age should be possible with high frame rates, depending
on the sensor resolution. Raytrix light field cameras, ac-
cording to the vendor’s product sheets, can reach frame
rates from about 7Hz up to 330Hz using a GPU optimized
decoding, supporting the above claim.

6 Conclusion

Wehave proposed a newmethod to reconstructmultispec-
tral images from spectrally coded light fields for a camera
with spectrally coded microlens array and focused at in-
finity. For different camera parameter sets suited for real-
case scenarios such as in-line production monitoring, we
achieve reconstruction PSNRs of up to 51 dB. The shown
evaluation may help optimize a camera parameter set for
a given measurement task. For easy adaption, we provide
the source code of all necessary steps [9].

Furthermore, the proposed method is easily general-
ized to super-resolutionmethods: by choosing half-integer
valued disparities, shifting the subapertures onto a tar-
get with doubled resolution, a reconstruction of a super-
resolved multispectral image is possible. First evaluations
showed a reconstruction of up to 80% of the target’s pix-
els. This shall be addressed in future evaluations.

Finally, the presented methods might support the
reconstruction of the full underlying multispectral light
field, e. g. supporting methods from compressed sensing
and sparse representation.

As compared to othermultispectral snapshot imagers,
the spectrally coded light field camera can be build in
a compact, robust, monocular design. In this aspect, it
only competes with multispectral snapshot imagers us-
ing a spectrally coded sensor [7]. Since our approach ba-
sically corresponds to a miniaturized multi-camera setup,
the multispectral image’s quality, compared to spectrally
coded sensors, is expected to be higher. Essentially, our
approach is non-compressive and does not rely on inter-
polation. Hence, spatial discontinuities such as edges are
reconstructed with higher quality. A quantitative evalua-
tion of these claims is left for future work.

Acknowledgment: The authors acknowledge support by
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