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A B S T R A C T

Fatigue life estimations can be made by considering the -N or -N curves. Reliable estimations allow en-
gineers designing save stress levels in structures or machines. In this paper, the Weibull distribution is combined
with the Stüssi function to model the quantiles of the -N and -N curves and the Ramberg-Osgood re-
lationship. The nonlinear Stüssi function offers a good geometric approach to model the relationship -N or
-N and the Weibull distribution is the most adequate to handle lifetime magnitudes as load cycles N. To show

the application of the proposed model, simulated and experimental data of ASTM A969 steel are evaluated.

1. Introduction

In the behaviour of materials under cyclic loading three magnitudes
are mainly considered: the strain range, the stress range and the
number of load cycles. Several attempts have been done to describe the
relationships between these variables, either in a deterministic or a
probablistic way.
One the one hand, several models habe been proposed in [1–11] to

describe the relationship between the stress range and the number of
load cycles, see Table 1.
On the other hand, to describe the relationship between the strain

range and loading cycles, the models proposed by Coffin-Manson [12],
Smith-Watson-Topper [13], Walker [14] and Castillo-Fernández-Can-
teli [15] are usually applied, see Table 2. However, in few cases a
probablistic model has been proposed.
In [16] the author defines a general Cumulative Distribution

Function (CDF) for the lifetime. This CDF depends on a two-parameter
Weibull distribution whose parameters should be estimated. After-
wards, in the loglog scale, linear confidence intervals for the strain are
obtained. Because of its linearity, this model is not suitable to perform
estimations in Low Cycle Fatigue (LCF) or High Cycle Fatigue (HCF)
regime.
In [17,15] the authors proposed a model based on the Ramberg-

Osgood relationship and a three-parameter Weibull distribution. An
application of this model is presented in [18,19]. Unfortunately, this
model does not offer a suitable geometrical description of the strain in
LCF regime.
In [20], the authors present a three-dimensional model to describe

the relationship between stress, strain and load cycles. Since this de-
terministic model is based on the linear model of Basquin, its results are
not suitable for estimations neither in LCF or HCF regime.
In [21] a linear regression model for statistical analysis of strain-life

fatigue data is proposed. This model considers the LCF and the HCF
separately and it defines a transition fatigue life as the point where the
two linear regressions meet.
In [22] a strain-life curve based on the combination of HCF and LCF

damage is presented. In [11] the authors propose a general fatigue
model based on the Kohout-Věchet function. This model considers
several fatigue damage parameters and one of its applications allows to
depic strain-life curves.
At the present time, modelling the strain-life and stress-life curves is

still a very important research topic in steel structures. For instance,
several applications on riveted steel structures have been recently done
by considering the models mentioned above, see [23–26].
In this paper the authors propose a model which describes the

probabilistic relationships between strain range, stress range and
loading cycles. This model is built by considering the following com-
ponents:

-The nonlinear function proposed by Stüssi in [27,28] and applied
by the authors to model the Wöhler curves in [29]
-The three-parameter Weibull distributionW a b c( , , ), see [30]
-The Ramberg–Osgood relationship considered in [31]

This paper is organized as follows. In Section 2 the Ramberg–Osgood
relationship is presented and its inverse is calculated in order to express
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the stress range as function of the strain range. In Section 3 a function
type Stüssi to express the strain range as function of the loading cycles
is presented. Afterwards, a probabilistic model to express the quantile
of this function is defined. In Section 4 a probabilistic function of the
Ramberg–Osgood relationship is defined. In Section 5 the analytical
results from the previous sections are applied on experimental data
obtained from specimens made of ASTM A969 steel. Finally, in Section
6 the conclusions of this work are presented.

2. The Ramberg–Osgood relationship and its inversion

Before establishing the probabilistic realationship between strain
range and the number of load cycles up to failure, it is necessary to find
the inverse of the Ramberg–Osgood relationship.
According to Mostaghel [31], the Ramberg–Osgood relationship for

the elastic and plastic regions can be denoted by

= E elastic,a a (1)

= +
E K

plastic,a
a a n

1

(2)

where

• a:stress cyclic amplitude
• a:strain cyclic amplitude.

In the case of considering the stress range and strain range, the
Ramberg–Osgood relationship can be described by

= =E 2
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where

• E:modulus of elasticity
• K :cyclic strength coefficient
• n :cyclic strain hardening exponent
• o:interface strain range
• , :geometrical parameters
• RO:Ramberg–Osgood relationshipFig. 1 shows the Ramberg–Osgood
relationship according to Eqs. (3) and (4).

Manipulating the Eq. (4) leads to
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The power series of the last part in Eq. (5) is given by
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Taking only the terms up to 3rd order and replacing them in Eq. (5)
leads to the 3rd degree polynomial

= +P A B C D( ) ,3 2 3 (7)

where

Table 1
Some models to represent S-N curves.

Model S-N curves equation

Basquin (1910) =N A Blog log ;
Stromeyer (1914) =N A Blog log( )
Palmgreen (1924) = + +b N B( ) a

Bastenaire (1972) =N C E Bexp[ ( )]A
E

Ling & Pan (1997)
= += { }F Sln ( )i

n
i
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+( )( )log log N N
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b1
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b

c(log )(log )

Table 2
Some models to represent -N curves.

Model -N curves equation

Coffin-Manson (1954) = +( ) N S N2 (2 ) (2 )Se
E

be p bp

Smith-Watson-Topper (1970) = +A N A Nmax a a a1 1 2 2

Walker (1970)
= +N N( ) (2 ) ( ) (2 )a

f
E

R b
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b
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Fig. 1. Ramberg-Osgood relationship. The transition between the elastic and the plastic regions is given by the interface point ( , )o o . The upper limit of the
plastic region is given by the supreme point ( , )s s .
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Solving analytically the polynomial given in Eq. (7) leads to the
Ramberg–Osgood relationship RO ( )pl given by
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For simplicity, this solution will be denoted by

= RO ( ) if .pl o (8)

Thus, the Ramberg–Osgood relationship is defined explicitily by
Eqs. (3) and (8).
From now on, if no difference between the elastic and plastic region

should be remarked, the general and explicit Ramberg–Osgood re-
lationship will be denoted as

= RO( ). (9)

Within this paper, the authors consider the 3rd order aproximation is
enough for the purpose of this work. A 4th order approximation is
presented in [31], and an alternative method to invert the Ramber-
g–Osgood relationship can be found in [32].

2.1. Finding the interface point ( , )o o

In order to establish the strain range domains of Eqs. (3) and (8), it
is necessary to find the interface point ( , )o o , which separates the
elastic and the plastic regions, see Fig. 1.
Since the interface point lies in the intersection of lines L1 and L2,

the task is done if the equations of the lines are established, see Fig. 1.
It is well known that the equation of line L1 is given by

= E . (10)

From now on, it is assumed that a large enough strain range s
known as supreme strain range is given. Then, by applying Eq. (8) its
corresponding supreme stress range s can be calculated by

= RO ( ).s pl s (11)

Afterwards, it is necessary to calculate the slope Es of line L2. For
this purpose, the derivative of Eq. (4)
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has to be considered.
From elementary calculus, the condition =( )s E

d
d

1
s
has to be

satisfied. Then, the slope Es of line L2 is given by
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Thus, equation of line L2 is defined by

= +E E .s s s s (14)

As mentioned before, considering the intersection of the two lines
given by Eqs. (10) and (14) leads to the interface strain range

= E
E E

,o
s s s

s (15)

and then by applying the equation ROpl, its corresponding interface
stress range is obtained by

= RO ( ).o pl o (16)

2.2. Calculating the geometrical parameters and

The parameters and define the Ramberg–Osgood relationship in
the elastic region, see Eq. (3). These parameters can be calculated by
the following considerations.
First, it is necessary to calculate the slope Eo of line L3. In other

words, the condition =( )o E
d
d

1
o
, has to be satisfied. Then the slope

of line L3 is given by

=
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Since, the interface point ( , )o o belongs also to the curve ROel
given by Eq. (3), it leads to

= E2 .o o

o

( 1)

(18)

Now consider the derivative of Eq. (3) which is given by
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d 2

.
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Evaluating this derivative in the interface strain range o leads to the
slope Eo of line L3. It means, that the condition = E( )o o

d
d , has to be

satisfied.
Then
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Afterwards, equalizing Eqs. (18) and (20) leads to the parameter
by

= E E
E

( ) .o o

o o (21)

2.3. Application on simulated data

In order to prove the suitability of the inversion method of the
Ramberg–Osgood relationship, simulated data were generated.
The simulation was performed according to Eq. (2) and by con-

sidering a stress ratio =R 1 and the properties of ASTM A969 hot
dipped galvanized sheet steel given in Table 3.
ASTM A969 is a cold-rolled, low carbon, extra deep drawing steel

(EDDS), which usually is used in the automotive industry, see [16,33].
The calculations corresponding to the simulation were performed

with Mathematica 12.0.
The results corresponding to the coordinates of the interface point

Table 3
Material properties.

Material properties - ASTM A969

Modulus of elasticity E 206824 [MPa]
Cyclic strength coefficient K 800,57
Cyclic strain hardening exponent n 0,2261
Yield strength Rel 164 [MPa]
Tensile strength Rm 297 [MPa]
Elastic coefficient Se 669,32
Elastic exponent be −0,1174
Plastic coefficient Sp 0,299
Plastic exponent bp −0,4844
Fatigue limit 122,84 [MPa]



and to the values of the geometrical parameters of Eq. (3) are shown in
Table 4.
A plot of a simulated Ramberg–Osgood relationship and its corre-

sponding data are shown in Fig. 2.

3. Consideration of the strain range from the Ramberg–Osgood
relationship in the Stüssi model

The interest in fatigue design is obtaining a reliable probablistic
model to estimate the fatigue behaviour of a structure. For this purpose,
a suitable model has to be developed. This model has to consider: a). a
geometrical function which describes properly the relation between the
stress range and the applicable load cycles or between the strain range
and the load cycles and b). a statistical distribution for the lifetime. In
this paper, the model proposed by the authors in [29], which is based
on the Stüssi function [27,28] and a three-parameter Weibull dis-
tributionW a b c( , , ) is considered.

3.1. The Stüssi function for the strain range

Consider the Stüssi function for the stress range given by

= +
+

=R R N
N

N(1 )
1

S( ),m
(22)

where

• :stress range during the fatigue test
• N:number of load cycles up to failure or up to end of the test
• Rm:ultimate tensile strength
• :fatigue limit1

• , :geometrical parameters
• R:stress ratio
• S:Stüssi function.
The method to estimate the geometrical parameters is described in
[29]. Be aware that the geometrical parameters and from Eq. (22)
are different than the parameters from Eq. (3).
Combining the Stüssi function given by Eq. (22) with the inverse of

the Ramberg–Osgood relationship given by Eqs. (3) and (8), a new
Stüssi function for the strain range as function of the loading cycles
given by

= +
+

=R R N
N

NRO (1 )
1

RO (S( ))m1 1

(23)

is obtained.
Moreover, this function describes clearly the asymptotic behaviour

regarding the ultimate tensile strength Rm in the plastic region and the
fatigue limit in the elastic region by.

• = R Rlim RO ( (1 ))N m0
1

• =lim RO ( )N
1 .

Figs. 3 shows the -N curve given by the Stüssi function in the
log–log scale.

3.2. Probabilistic model

In [29] a probabilistic model based on the Stüssi function and the
Weibull distribution was proposed. For this model it was considered
that S N( ) is a random variable which follows a Weibull dis-
tributionW a b c( , , ). Under these considerations, and using the notation
of Eq. (23) the probabilistic model is defined by

=p N a
b

1 exp S( ) ,
c

(24)

where

• p:probability of failure
• a :Weibull location parameter
• >b 0:Weibull scale parameter
• >c 0:Weibull shape parameter

Replacing the general Ramberg–Osgood relationship given by Eq. (9) in
Eq. (24), leads to a Stüssi probabilistic function to model the -N
curves in the elastic and plastic regions given by

=p N a
b

1 exp RO( ) S( ) .
c

(25)

The model given by Eq. (25) depends on two geometrical parameters
, of Eq. (22) and on three Weibull parameters a b, and c. The geo-
metrical parameters can be estimated by a linear regression, see [29]
and the Weibull parameters can be estimated by applying the PWM
method, see [36].
Once all parameters have been estimated, the -N curves can be

depicted.

3.3. Application on simulated data

As in Section 2.3, simulated data corresponding to ASTM A969 hot
dipped galvanized sheet steel are considered. Moreover, the Stüssi
quantile will be compared with the well known Coffin-Manson equa-
tion (CM), which relates the strain range and the loading cycles and is
given by

= +S
E

N S N2 (2 ) (2 ) ,e b
p

be p
(26)

where

• Se:elastic coefficient
• E:modulus of elasticity
• be:elastic exponent
• Sp:plastic coefficient
• bp:plastic exponent.

The geometrical parameters of the Stüssi function given by Eq. (22)
are estimated by applying the method proposed in [29], see Table 5.
The Weibull parameters estimated by applying the method proposed

in [36] are shown in Table 6.
A graphical representation of the -N curves given by Eq. (25) is

shown in Fig. 4. In this Figure, it can be seen that the 50% quantile of
the -N curve and the curve given by the Coffin-Manson equation
have a very similar geometry between 104 and 107 load cycles. The
quantiles given by Eq. (25) seem to be a reliable probabilistic alter-
native to the Coffin-Manson equation.

Table 4
Parameters of the Ramberg–Osgood relationship.

Interface Point

o 0,00267525 [–]
o 302,033 [MPa]

Geometrical parameters
1, 27516·107

1,74218

1 The existence of the fatigue limit is still an open debate, see for example
[34,35].



4. Probablistic Ramberg–Osgood relationship

Based on the Stüssi probabilistic functions proposed in the previous
section, a probablistic formulation for the Ramberg–Osgood relation-
ship can be defined.

On the one hand, in the probabilistic Stüssi model given by the Eq.
(24), the considered random variable was NS( ).
On the other hand, from the Ramberg–Osgood relationship and

Stussi function, given by Eq. (9) and Eq. (22) respectively, it can be
established that =NS( ) RO( ).

Fig. 3. Stüssi function for the strain range.

Table 5
Parameters estimation from the Stüssi function.
Simulated data.

Geometrical parameters

0,03274
0,32457

Table 6
Weibull parameters estimation of the prob-
abilistic Stüssi function. Simulated data.

Weibull parameters

a −25,7662
b 28,8251
c 3,2157

Fig. 2. Ramberg–Osgood relationship and its corresponding simulated data. Supreme strain = 0, 06s . The stress ratio of the fatigue tests is =R 1.



For these reasons, it seems plausible to consider an equivalent
random variable given by RO( ). Since this variable is only
obtained by replacing equations, it should also follow the same three-
parameter Weibull distributionW a b c( , , ).

Under these considerations a probablistic function for the
Ramberg–Osgood relationship can be defined as follows.

=p a
b

1 exp RO( ) .
c

(27)

Fig. 4. -N curves based on the Stüssi model. The plotted curves correspond to a probability of 5%, 50% and 95%.

Fig. 5. Quantile of the Ramberg–Osgood relationship based on the Stüssi model. The plotted curves correspond to a probability of 5%, 50% and 95%.

Table 7
Parameters estimation from the Stüssi function.
Experimental data.

Geometrical parameters

0,02262
0,35543

Table 8
Weibull parameters estimation of the prob-
abilistic Stüssi function. Experimental data.

Weibull parameters

a −40,9495
b 45,3065
c 2,52388



4.1. Application on simulated data

As in the Sections 2.3 and 3.3, the same simulated data are con-
sidered to evaluate the model.
A graphical representation of the quantile of the Ramberg–Osgood

relationship given by Eq. (27) is shown in Fig. 5.

5. Application on specimens made of ASTM A969 steel

The application presented in this section is based on the experi-
mental data considered in [16]. These data were provided by the Steel
Market Development Institute (SMDI)2.

5.1. Material and specimens

Sixty-nine specimens made of hot dipped galvanized sheet steel
ASTM A969 were tested. The main properties of the material are de-
scribed in Table 3.

5.2. Fatigue tests

The specimens were tested under a constant stress range with a
tringular wave form and a stress ratio =R 1. The tests were termi-
nated when the tensile load was dropped by 50% from the maximum
load or the test was a runout up to 107 loading cycles. The corre-
sponding experimental data provide the stress range, strain range and
loading cycles.

5.3. The Stüssi model for the strain range

In order to plot the corresponding -N quantile, some steps should
be done. First, it is necessary to find the inverse of the Ramberg–Osgood
relationship. This step is accomplished by estimating of the geometrical
parameters and from Eq. (3). Since the inversion of the Ramber-
g–Osgood relationship does not depend on the experimental data but

on the material properties shown in Table 3, this step is already done,
see Table 4.
Aftwerwards, the geometrical parameters of Eq. (22) are estimated

by applying the method proposed in [29]. The corresponding estima-
tions are shown in Table 7.
Once the geometrical parameters have been estimated, it is possible

to estimate the Weibull parameters of Eq. (25). The method of the
PWMs has been applied for this task, see [36]. For this case the esti-
mations of the Weibull parameters are shown in Table 8.
The -N curves corresponding to a probablity of 5%, 50% and

95% are shown in Fig. 6.

5.4. The Stüssi model for the Ramberg–Osgood relationship

As it was explained in Section 4, based on the experimental data and
applying Eq. (27), it is possible also to depict quantile of the Ramber-
g–Osgood relationship.
The quantiles of the Ramberg–Osgood relationship corresponding

to a probablity of 5%, 50% and 95% are shown in Fig. 7.

5.5. The Stüssi model for the stress range

Finally, by applying the Stüssi model for the stress range given by
Eq. (24) the corresponding -N quantile can be depicted.
The quantiles of the -N curve, corresponding to a probablity of

5%, 50% and 95% are shown in Fig. 8.

6. Conclusions and recommendations

As it has been shown in the previous sections, a new statistical
proposal for modelling the -N , -N curves and the
Ramberg–Osgood relationship has been made by combining the Stüssi
function and the three-parameter Weibull distribution W a b c( , , ).
Moreover, this proposal allows to obtain estimations of the fatigue
lifetime of a structure either in LCF and HCF. This fact represents an
advantage compared to the Basquin model which is considered in the
official standards.
On the one hand, the Stüssi function offers a good geometric

Fig. 6. Stüssi quantile for the strain range. The plotted curves correspond to a probability of 5%, 50% and 95%.

2 IF_DDQ_HDG70G_Strain_Life_Fatigue.xls



description of the -N and -N curves. In fact, it describes properly
their asymptotic characteristics given by the ultimate tensile strength
and by the fatigue limit.
In LCF this function is suitable to estimate the fatigue lifetime, since

it converges smoothly to the ultimate tensile strength, while in HCF it
converges to the fatigue limit.
On the other hand, since the number of load cycles can be con-

sidered as random lifetime variable, the three-parameter Weibull dis-
tributionW a b c( , , ) is the adequate one to describe this magnitude.
In order to obtain the best results applying the method proposed in

this work, the suggestions made in [29] can be taken into account for

the planning of fatigue tests.
Regarding the lifetime estimation there are still a lot of questions

and concerns, which have to be considered in future investigations. One
of them is making estimations in the ultra low cycle fatigue (ULCF)
regime where the plastic behaviour prevails.
The authors want to express their gratitude to the German Research

Foundation DFG3 for the funds granted to perform the research in fa-
tigue of steel structures.

Fig. 8. Stüssi quantile for the stress range. The plotted curves correspond to a probability of 5%, 50% and 95%.

Fig. 7. Quantile of the Ramberg–Osgood relationship. The plotted curves correspond to a probability of 5%, 50% and 95%.
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