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ABSTRACT Society relies on electric mobility to decrease the problems associated with local emissions and
global climate change. One key factor for the success of electric vehicles is their everyday usability. Today’s
users must deal with limited driving range in a sparse charging infrastructure. In this work, we investigate
central features influencing the everyday usability of electric vehicles, such as battery capacity, charging
infrastructure, range prediction accuracy and vehicle concepts. Since the influence of these aspects depend
on each other, they cannot be examined separately. Therefore, we created a stochastic simulation framework
with vehicle models and map data to calculate a large amount of different feature variations. One of our key
findings is that battery capacities beyond 100 kWh are not feasible. In addition, we stated the importance of an
accurate range estimation algorithm and a dense network of high-performance charging points for everyday
usability. Taking these results into consideration would help policy makers and automobile manufacturers
achieve worldwide acceptance of electric vehicles.

INDEX TERMS Range estimation, electric vehicles, charging infrastructure, stochastic simulation.

I. INTRODUCTION
In recent years, electric mobility has become more important
and present. Car manufacturers are launching more battery
electric vehicles (BEVs) and charging infrastructure is being
expanded both by government agencies as well as private
establishments. Policy makers want to increase the numbers
of BEVs by introducing subsidies or even by banning internal
combustion engine powered vehicles (ICEVs) from urban ar-
eas. However, due to the limited charging infrastructure and
the lower driving range of BEVs, drivers experience range
anxiety, which is the fear of stranding with an empty battery.

To achieve widespread acceptance of electric mobility,
range anxiety must be eliminated and the everyday usabil-
ity of the vehicles increased. Thus, an appropriate charging
infrastructure has to be available. A dense network of high-
performance charging points has to be installed such that a
user neither has to worry where a charging point is, nor has
to wait a long time while charging. In addition, the battery
capacity must be high enough to ensure sufficient driving

range. Thereby, technical, economical and environmental re-
strictions impact the dimensioning of the battery. Following
that, battery capacities must be large enough for public accep-
tance while minimizing negative technical, economical and
environmental effects. Lastly, the range estimation algorithm
within the vehicle must be reliable enough so the driver does
not end up being stranded with an empty battery, due to an
over-optimistic prediction.

We want to investigate how many and where the charging
points (CPs) should be, how accurate a range estimation al-
gorithm has to be and how big batteries need to be to ensure
everyday usability of BEVs. Previous work on this topic has
been done with limited granularity.

When looking at the everyday usability, the usual approach
is to compare the total ranges of BEVs with trip statistics
from mobility surveys or driving profiles collected with GPS
trackers [1], [2]. A significant drawback of this approach is the
variability in energy consumption and range between different
scenarios which is not included. Moreover, [3] found that
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mobility surveys alone are not enough to evaluate feasibility
and the everyday usability. A review of different studies using
driving profiles was recently given by [4].

In the majority of published results, charging stops are
either neglected or severely simplified with assumptions about
the availability of CPs [5]–[8]. Researchers rather tend to
assume that no charging should be necessary to make BEVs
feasible [9]–[14]. Driving profiles as well as simulations have
been used to determine optimal CP positioning [15]–[17],
CP power demand [18]–[23] as well as for battery lifetime
analysis [24].

In our paper, we introduce a detailed simulation framework
to analyze the everyday usability of battery electric vehicles
(BEVs). The framework includes current road and charging
infrastructure, in which a realistic range estimation, charge
planning as well as vehicle simulation is carried out. The
simulated vehicles are based on a powertrain model and can
be adapted to different vehicle concepts. One simulation in
the framework consists of a single trip which comprises driv-
ing and possible charging stops. Thereby, we can calculate
a multitude of realistic scenarios by random trip generation,
where total trip duration is our measure for the everyday us-
ability. The results provide indications for required advances
in charging infrastructure and battery capacity to optimize the
total trip duration.

This paper is organized as follows: Section II introduces
our overall methodology including the powertrain model used
to simulate energy consumption. Then, Section III shows the
range estimation model, which is the basis for our charge
planning algorithm. Section IV presents the actual trip simula-
tion framework and the analysis of the key factors concerning
everyday usability of BEVs. The results of the simulations
are shown subsequently in Section V before the paper is con-
cluded in Section VI.

II. METHODOLOGY
A. NOTATION
According to typical mathematical convention, bold letters
represent vectors, e.g. x, whereas x denotes a scalar. A tilde on
top of a value denotes a forecasted value x̃ and a bar denotes an
average x̄. If a variable is the result of an estimation process,
it is signified with a hat x̂. The expression Pr(x) stands for the
probability of x.

B. OVERVIEW
The overall approach of our work is schematically presented
in Fig. 1. Fundamentally, it consists of a simulation frame-
work, which first chooses a vehicle type with specific bat-
tery properties. Then, a random trip is drawn and the charge
planning is executed to find required charging stops on the
trip. Subsequently, the simulated vehicle drives the virtual trip
and results are generated, which, in turn, can be thoroughly
analyzed.

FIGURE 1. Overall approach of the simulation framework.

The factors investigated by the simulation are vehicle type,
battery properties, charging infrastructure and range predic-
tion accuracy. Among these factors, the range prediction accu-
racy receives comparatively less attention in related research.
However, this factor is of high importance, as charge planning
relies on the range estimation. Consequently, high errors in
range prediction accuracy could have a considerable effect
on the everyday usability of BEVs. Therefore, we want to
emphasize range estimation accuracy as one of the key factors
in Section III.

C. ENERGY CONSUMPTION MODEL
An energy consumption model is necessary for both the range
estimation algorithm shown in Section III and for the trip
simulation in Section IV. This section introduces the model
used in this work. This model has previously been used in the
related works: [25]–[27].

To calculate tractive energy consumption Ec, first, the driv-
ing resistances Fr must be calculated according to the stan-
dard driving resistance model [28]. The following equation
explains this model, with vehicle mass m, gravitational accel-
eration g, rolling resistance coefficient fr, aerodynamic drag
coefficient cw, air density ρ, vehicle frontal area A, road gra-
dient angle α, vehicle velocity v and acceleration a.

Fr =
⎛
⎝ m fr

1/2 cwρA
m

⎞
⎠

�

︸ ︷︷ ︸
p

·
⎛
⎝ gcos α

v2

a + g sin α

⎞
⎠

︸ ︷︷ ︸
B

(1)

Note that the vehicle parameter vector p ∈ R3×1 concen-
trates the individual vehicle properties. These can be adjusted
to the specific test vehicle at hand with help of test bench
measurements. Also, they can be estimated e.g. with help of a
Kalman filter, as shown in [25].

After calculating the driving resistances Fr of the vehicle,
the powertrain efficiency has to be determined. The power-
train losses ηPT can be included using characteristic maps of
the powertrain components. These comprise wheels, gearbox
(GB), electric motor (EM) and power electronics (PE), as
shown in Fig. 2. The model requires Fr and vehicle speed v

as inputs to obtain energy consumption Ec, thus the degree of
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FIGURE 2. Powertrain model with input variables Fr, v and output variable
Ec. The red arrows indicate simulated component losses.

efficiency is also dependent on these values:

ηPT = f (Fr, v) . (2)

In the case of negative Fr , the regenerated energy is calcu-
lated based on the combined efficiency map of the electric mo-
tors and power electronics at nominal battery voltage, without
consideration of other influences, e.g. additional mechanical
braking for high deceleration phases. We use vehicle parame-
ters from test bench measurements with an electric PORSCHE

BOXSTER. This model was already validated using real test
drives in [27] and is applied without changes.

III. RANGE ESTIMATION
The apparent task of range estimation is the indication of the
distance-to-empty to the driver. This is known even from inter-
nal combustion engine powered vehicles (ICEVs). In addition,
when planning a long distance trip with an electric vehicle,
range estimation helps to calculate the optimal charging stop
by predicting the energy demand on a chosen route Ẽc. Com-
paring Ẽc with the battery’s energy Êb results in the attain-
ability of a specific destination. Among the attainable charg-
ing stops, the navigation software is able to choose the best
option, e.g. the CP with highest charging power. However,
most drivers feel that their range estimation is not reliable
and reserve a part of the capacity as safety margin �bE , e.g.
20% in [29]. Therefore, a destination such as a CP is deemed
attainable if

Ẽc ≤ (1 − �bE ) Êb . (3)

Thus, with a more accurate and reliable range estimation
algorithm, drivers will use more of the installed capacity and
therefore, more of their range between charging stops. Higher
utilization of capacity translates into higher everyday usabil-
ity of the vehicle, a key issue for electric vehicles. In the
following section, we introduce the process of obtaining Ẽc.
The value for Êb is obtained from the vehicle’s measurement
system.

A. DATA ACQUISITION
Some of the algorithms used for range estimation learn from
driving data to generate forecasts, e.g. of the future driving
speed ṽ. The driving data used here comes from real test drives
in various locations and with various drivers. However, they

FIGURE 3. Data acquisition method.

TABLE 1. Details About the Datasets

also have been executed with a multitude of different vehicles
and configurations (e.g. powertrain topology, number of pas-
sengers). Therefore, the energy consumption differs within the
test set. To make it comparable, we used the original driving
data ic as an input for a validated simulation model, which
subsequently outputs the equivalent energy consumption Ec.
The simulation model has a specific vehicle configuration,
and thus, the energy consumption values are comparable. In
addition, the test set is enriched with information from a traffic
and routing database (TRDB) it . Such databases are known to
users from GOOGLE MAPS or HERE MAPS. In these databases,
a route comprises several segments k with a list of properties
such as gradient αk , street class �k , mean traffic speed ūk , road
curvature κk , legal speed limit vlim,k , segment length lk etc. In
this work, the traffic and routing database (TRDB) of HERE is
used, see [30] for a documentation. For each test drive, traffic
speed is obtained from the TRDB matching the exact time and
date of departure of the real test-drive. An illustration of the
data acquisition approach can be seen in Fig. 3.

We use two different datasets in this work. One is called
anonymous and comprises test drive data of unknown drivers
in Germany, France, Austria and Belgium. The other dataset
is called driver-specific, where the drivers are known. This
allows the algorithms to be trained for individual drivers,
yielding personalized parameters. The driver-specific data was
collected in Germany. More details can be found in Table 1.
The data was collected with the goal of covering different
drivers, road infrastructure as well as traffic situations, but the
statistical representativeness of the dataset can never be fully
verified.
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B. TRACTIVE ENERGY DEMAND PREDICTION
The central part of range estimation is the energy demand
prediction (EDP) which is presented in this section. In this
section, we focus on the tractive energy, which is the amount
of energy needed for the vehicle’s forward motion and does
not include auxiliary equipment (HVAC, infotainment etc.).
Tractive energy is the biggest part of the total energy con-
sumption and depends on physical influences e.g. elevation
profile and rolling resistance as well as non-deterministic in-
fluences e.g. traffic and driver behavior.

To obtain a prediction of the tractive energy demand on a
given route, (1) can be used. Assuming the vehicle properties
will not change, only a forecast of the driving data B̃ is re-
quired. The necessary information about gradient and vehicle
speed on the selected route is part of the traffic and routing
database (TRDB).

Looking at B̃, the values for α̃, ṽ and ã must be obtained.
Technically, the gradient angle α̃ is not a predicted value,
as it is a geometrical constant that can be obtained from the
map. In contrast, the forecast for ṽ and ã translates to future
driving behavior on the given route and is, therefore, difficult
to predict. A common approach is to use the mean traffic speed
ūk as an approximation for ṽ. This approach assumes future
driving behavior of a specific vehicle is similar to the driving
behavior of all vehicles on the road. The future acceleration ã
is not included in the TRDB data, which only contains speed
values. A possible approach would be to assume constant
acceleration between map segments k and then calculate ã
from the speed difference between ūk and ūk+1. However, in
this work we use the method of [27] and calculate the change
in kinetic energy �Ekin between the segments. As a result, the
predicted energy on a segment Ẽc,k is the sum of the energy
prediction, not including acceleration Ẽc|a=0 and the kinetic
energy change Ẽc,k :

Ẽc,k =
∫

F̃r,k

ηstat (F̃r,k, ṽk )
ds

︸ ︷︷ ︸
Ẽc|a=0

+ m

2ηdyn
[
(
ṽk+1

)2 − (ṽk )2

︸ ︷︷ ︸
�Ekin

] . (4)

A dynamic degree of efficiency ηdyn is introduced, as oth-
erwise, the model would assume that a kinetic energy change
is free of losses. However, since the powertrain losses are
already included in ηstat, this paper assumes a mild loss factor
of approximately 0.9 for ηdyn.

In summary, the only value that needs to be predicted is
the velocity ṽ. The algorithms for velocity prediction (VP)
are introduced in Section III-C. After that, the model is able
to calculate Ẽc. The complete approach is illustrated in Algo-
rithm 1.

C. VELOCITY PREDICTION
While the assumption of ṽ = ū is common in modern systems,
research suggests using data-based learning models to pre-
dict future driving speed. There are many different candidate
algorithms of different complexity. In this work, a selection
of algorithms is investigated and their results are compared

against the initial assumption of future driving speed being
equal to mean traffic speed.

1) LINEAR REGRESSION
A simple model among candidate algorithms is the linear
regression. It assumes a linear relationship between features
and output variable v̄. Using this linear model for multi-
dimensional inputs requires multi-linear regression (MLR),
which is the straight-forward extension of the scalar model
to a vector model [31], [32]. The connection, or pattern, de-
scribing the dependency of v̄ on the features is expressed with
the hypothesis vector h. After the pattern has been identified
using training data, the forecast can be made with help of the
predicted features for the selected route. Finding the hypothe-
sis vector gives the following minimization problem:

min
h

n∑
k=1

�
(
v̄k − h · [

ūk vlim,k κk �k ᾱk
]�)

. (5)

Obtaining optimal h, which results in the smallest overall
deviation from the measured speed v̄ on all segments n of the
training data, is dependent on the loss function �. The stan-
dard least-squares (LS) loss function would have the weight
function � = (·)2. However, least-squares (LS) is not robust,
therefore in the multi-linear regression (MLR) implementa-
tion in this work, the Huber loss function is used for � to
limit outlier weights [33]. In addition, the observations are lin-
early weighted according to segment length lk , hence longer
segments are more important for the regression than shorter
segments. To generate a forecast, the hypothesis h from the
training data and the features from the future trip are required.
Thereby the forecast ṽ is the result of the direct computation
h [·]�.

2) SUPPORT VECTOR REGRESSION
Previously, a linear model was used for velocity prediction
(VP). Since driving behavior comes down to human behavior,
the system could also be non-linear, which could lead to inad-
equate representation by the multi-linear regression (MLR).
Therefore, a more complex model should be implemented for
comparison. Among candidate algorithms for pattern analysis,
support vector regression (SVM) has been demonstrated as a
suitable candidate for travel time prediction by [34], which is a
similar application. In a traffic speed forecast project [35], the
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FIGURE 4. EDP example from the anonymous dataset.

performance of an support vector regression (SVM) was com-
pared to a neural network, which is one of the most common
machine learning algorithms nowadays. It was shown that
SVM produced more accurate results, especially when dealing
with limited training data quality and quantity. Based on these
assessments, where the features were limited to probe data,
we choose SVM as the candidate machine learning algorithm
for the velocity prediction (VP) algorithm implemented in this
work. The SVM implementation of [36] was used with a poly-
nomial kernel with the same features as the MLR, therefore
the reader is referred to the literature for more details about
the algorithm itself.

D. PERFORMANCE EVALUATION
With help of the velocity prediction (VP) introduced in the
previous section, the energy demand prediction (EDP) can be
calculated. In consequence, there are three possibilities: (1)
energy demand prediction (EDP) with mean traffic speed ū,
(2) EDP with ṽ from SVM and (3) EDP with ṽ from MLR.
Theoretically, the performance of the algorithms should fol-
low their order of complexity. However, even if this would
be the case, the question remains whether the performance
improvement is worth the increased complexity. As the pre-
diction error must be obtained, consideration of its calculation
also falls within the scope of this paper. An exemplary predic-
tion with all three approaches using the anonymous dataset
is illustrated in Fig. 4. The correct energy consumption along
the trip is depicted in black, originating from the real test drive
data.

In this example, SVM shows the best performance. To in-
vestigate whether this is true for all the test data, the following
performance evaluation is executed using cross-validation.
For the anonymous dataset, five trips are used as learning data
and one trip as test data. For the driver-specific dataset, there
are always two trips per driver. One trip is used for training,
the other for testing and vice versa. The error measure used
to express the overall prediction error is the weighted absolute
error (WAE):

WAE =
∑

i |Ẽc,i − Ec,i| · li∑
i li

. (6)

TABLE 2. Performance of the EDP on the Anonymous Dataset

FIGURE 5. Error of the energy demand prediction (EDP). Fig. 5 a illustrates
the result on the driver-specific dataset and Fig. 5 a shows the result for
the anonymous dataset.

The WAE results for EDP as well as mean value μ and
standard deviation σ are shown in Table 2 for the anonymous
dataset. Upon first glance, the result is surprising: the order of
WAE results is inverse compared to the algorithm complexity.
The best result comes from simply using mean traffic speed
ū followed by the linear regression ṽmlr and the worst result
is obtained by the support vector regression ṽsvm. The same
order holds for mean value and standard deviation.

However, when looking at the same error measures for the
algorithms on the driver-specific dataset, the resulting order
fits better to the expectation. The worst WAE result is ob-
tained when no forecast algorithm is used and future velocity
equals mean traffic speed ū. Still, MLR is superior to the more
complex algorithm of SVM. This means that an increase in
prediction accuracy is gained by learning driving behavior,
however even a simple algorithm, such as MLR, is sufficient
to realize this advantage.

Fig. 5 illustrates the overall error on all trips with help
of Kernel density estimations in terms of Whm−1. It can
be seen once again that for driver-specific data, MLR is the
best option. For anonymous data, the algorithms show simi-
lar performance, and thus a complex algorithm is not worth
implementing. In the following section, the resulting range
estimation accuracy is examined on whether it influences the
everyday usability of electric vehicles.

IV. DRIVE SIMULATION FRAMEWORK WITH CHARGING
INFRASTRUCTURE
In this section, the investigation of the interaction between
range estimation, vehicle properties, road network and charg-
ing infrastructure is presented. To investigate this, a simula-
tion framework is developed, where these parameters can be
varied. The basis of the simulation model is a road network
with charging infrastructure and a BEV powertrain model.
The individual steps performed are shown in Algorithm 2.
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TABLE 3. Performance of the EDP on the Driver-Specific Dataset

First, a vehicle is chosen with specific vehicle properties such
as mass m. Then, the state of charge (SoC) at the beginning of
the trip is selected, which defines the battery energy content
Êb. The SoC at the beginning of a trip is drawn from a uniform
distribution ranging from 40% to 100%. Thereby, distinct
charging opportunities at the start locations are represented.
Subsequently, the desired length of the trip is set, random start
and endpoints on the map are selected and the fastest route
between them is calculated. Predicting Ẽc with the EDP model
presented in the previous section, indicates whether charging
is required during the trip. If necessary, charging stops are
added to the trip. Lastly, the trip is simulated, generating
virtual test drive data. To obtain insights into key influences
for trip duration, we simulate hundreds of thousands of trips
with different vehicles, vehicle parameters and charging in-
frastructure combinations. In the remainder of this section, the
individual steps in the simulation framework are explained in
detail.

A. VEHICLES AND THEIR PROPERTIES
To increase the level of detail of the analysis, the framework
includes three types of general, synthetic vehicles:
� small vehicle
� mid-size vehicle
� large vehicle / SUV
The vehicles are all based on the topology shown in Fig. 2,

but have different characteristic parameters, leading to dif-
ferent energy consumption behavior. These parameters are
vehicle mass m, aerodynamic drag area cd A, tire rolling re-
sistance fr and a loss factor CL . The loss factor describes the
component losses in relation to a mid-size vehicle’s power-
train, which serves as a benchmark. An overview of these
parameters and the corresponding mean consumption is given
in Table 4 .

For each vehicle, the battery capacity is variable. This
means that the total vehicle mass m is also variable and is a

TABLE 4. Vehicle Data

FIGURE 6. Characteristic battery charging power curves as a function of
battery state of charge q, for three different levels of pre-conditioning.

function of battery capacity:

m = mV + mB(Q) , (7)

where mB is the battery mass as a function of capacity Q and
mV is the mass of the rest of the vehicle.

Another important battery specification is the charging
power, which is dependent on various factors such as charg-
ing strategy and thermal conditions [37]. Modern BEVs are
equipped with systems that pre-condition the battery before
charging, to maximize the possible charging power at a charg-
ing stop [38]. Dependent on driving profile and ambient tem-
perature, optimal conditions may not be reached at all times.
Furthermore, the SoC at the beginning of the charging session
is important. Based on data published by TESLA drivers [39]
and our experiences with PORSCHE BOXSTER and PORSCHE

TAYCAN BEVs, we define three characteristic charging power
curves for different levels of pre-conditioning and initial SoC.
Fig. 6 shows the characteristic curves for the charging power
dependent on SoC q. Each of the charging curves includes
an uncertainty margin, to account for variability in driving
profile, environment conditions and CP performance. The
three levels of pre-conditioning are optimal, near-optimal and
sub-optimal. The optimal charging curve can be assumed if
the initial SoC is low and battery temperature is within optimal
range. In case of higher initial SoC or battery temperatures
below the optimal range, near-optimal or sub-optimal pre-
conditioning levels can be assumed. In the simulation frame-
work, a random variable following a multinomial distribution
indicates the level of pre-condition attained at a given charg-
ing stop. For a higher SoC at the beginning of the charging,
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the probability of a less-optimal charging curve is higher.
Nevertheless, if a CP’s available charging power is lower than
the characteristic charging curve, then the CP is the limiting
factor. The most powerful public high-performance CPs can
deliver a charging power of up to 350kW [40]. Nonetheless,
the vast majority of CPs can only charge with 50kW or less
[41].

The maximum charging power is dependent on the electri-
cal current flowing in each battery module. A battery’s peak
C-Rate is defined as the ratio:

C−Rate = Pmax

Q
, (8)

where Pmax is peak charging power and Q is battery ca-
pacity. The PORSCHE TAYCAN has a peak C-Rate of about
270kW/93.4kWh = 2.89h−1 [40] and the TESLA MODEL 3
250kW/75kWh = 3.33h−1 [38].

When battery modules are removed from a battery pack to
reduce total capacity, the maximum charging power is reduced
to keep a constant C-Rate. However, if package space is not
a limitation, Pmax could theoretically be kept constant with
reduced capacity, by re-designing the battery pack with a new
nominal capacity [42]. To scale the characteristic charging
curves for different capacities, i.e. for a different number of
battery modules, the following relation can be used:

P(q, Q) = P(nom)(q)
C−Ratemax

P(nom)
max /Q

, (9)

where P(nom)(q) is the charging power at SoC q and P(nom)
max is

the maximum charging speed of the battery pack at nominal
capacity. In this work, we choose a maximum C-Rate of 3h−1,
and Pmax of 270kW.

B. TRIP SAMPLING
To achieve an accurate analysis of BEV driving, the trips
should be chosen so that they resemble typical mobility pat-
terns and driver behavior. The trips in this work are restricted
to the region in which our test-drives were carried out. We
define the region by parallels 47◦N and 54.5◦N and meridians
4◦E and 14◦E, as shown in Fig. 8. The region includes parts
of Germany, the Netherlands, Belgium, Luxembourg, France,
Switzerland, Liechtenstein, Austria and the Czech Republic
and shows diversity in road and charging infrastructure as well
as in population density.

To generate realistic mobility patterns, empirical probabil-
ity distributions are used to draw samples for
� route length
� time of departure
� start and destination positions
In real life, a driver’s daily milage is usually shorter than

72km [43]. According to the US National Household Travel
Survey, only 9.8% of trips are 21 miles (33.8km) or longer
[44]. A European survey (France, Germany, Italy) showed that
an average personal trip distance is approximately 16km and
an average business trip approximately 20km. The average

FIGURE 7. Trip length and departure time distributions for the trip
sampling.

daily driven distance is approximately 55km and approxi-
mately 70% of daily driving does not exceed 50km [45].

In this work, the main goal is to analyze the everyday us-
ability of BEVs. A primary concern regarding BEV usability
is their suitability for longer trips. Therefore, we choose a total
distribution of trip distances with a significant bias toward
long-distance trips longer than 100km, when compared to
mobility surveys. Fig. 7 a shows a histogram of the distances
of the sampled routes. The median distance is 154km. The
time of departure is relevant for the traffic state in the trip data.
The traffic state influences the driving speed which has a direct
influence on the vehicle’s energy consumption. For departure
time, we chose a uniform distribution for the day of the week
and a two modal normal distribution for the time of day, with
modes at 8:00 in the morning and 17:00 in the afternoon as
shown in Fig. 7 b.

For each trip, the start and destination point samples are
drawn from population data that include estimates of popu-
lation count for 30 arc-second grid cells [46]. Fig. 8 shows
a countour plot of the population data in the chosen geo-
graphical region. We use this population count as an empirical
probability distribution Pr(φ, λ|�), where � is population
count and φ, λ are the geographic coordinates of a grid cell.
Thereby, highly traveled roads and routes, where population
is high, are favored over routes in remote and less populated
regions. The procedure is described in Algorithm 3. In the
algorithm, we utilize the Haversine formula to calculate the
air-line distance dair, or “as-the-crow-flies” distance, between
the start point and a potential destination as a first estimate of
the route length [47].

Using the TRDB, the fastest route π is calculated from
the start point to the destination based on the speed profile
u derived from mean traffic speed. Using the geographic co-
ordinates of the route (φk, λk ), nearby CPs can be found. In
this work, we use an open database to collect information
such as CP location and charging power of the current day
charging infrastructure [41]. The CPs and the start and des-
tination constitute the vertices of the trip’s directed graph G.
The weights of the edges between the vertices represent the
travel time for each edge, which again is determined using the
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FIGURE 8. Contour plot of the population data used as a probability
distribution for start and destination points.

FIGURE 9. Example route with charging points. Map data (c)
OpenStreetMap contributors.

S S

TRDB. Additionally, for each directed edge, the road segment
information is extracted from the TRDB. This information
is necessary for the powertrain simulation model. The route
sampling is independent from the chosen vehicle, as the routes
π and speed profiles u do not exceed the limitations of our
vehicle models. An exemplary route with CPs can be seen in
Fig. 9.

C. ENERGY CONSUMPTION ESTIMATION AND CHARGING
PLAN
For each trip and vehicle-battery combination, the energy con-
sumption is simulated with the model introduced in Section II-
C. The velocity acquired from the TRDB is assumed to be the
exact speed of the vehicle. As information about acceleration
is missing, we use the change in kinetic energy between road
segments to compensate for the missing acceleration data. The
energy consumed on segment k is:

Ec,k =
∫

Fr,k

ηstat (Fr,k, uk )
ds

︸ ︷︷ ︸
Ẽc|a=0

+ m

2ηdyn
[
(
uk+1

)2 − (uk )2

︸ ︷︷ ︸
�Ekin

]

+ lkPaux,k

uk
, (10)

which directly follows from (4) when using traffic speed u.
The last term encompasses the additional energy consumed
by auxiliary equipment, such as infotainment and HVAC
systems, which together draw power Paux. The total energy
needed for a trip is thus

Ec =
∑
i∈π

∑
k∈i

Ec,k =
∑
i∈π

Ec,i , (11)

where π is the given route, consisting of edges i, which consist
of segments k.

Paux is constant in all simulations and is based on mean tem-
perature in our chosen geographical region. The total power
drawn by auxiliary equipment is estimated to be 1.5kW. In
very hot or very cold weather conditions, the power demand
of the auxiliaries can be significantly higher, however we do
not consider these corner cases in our model.

At the beginning of each simulation, an energy consump-
tion prediction is calculated. Instead of calculating this predic-
tion explicitly as done in Section III-B, an implicit prediction
is done. Using the energies required for the graph’s edges
Ec,i and the known error distribution from Section III-D, we
implicitly calculate an EDP for each edge i of the graph, i.e.
for each leg of the route:

Ec,i = Ẽc,i + e · li , (12)

where li is the edge length and e is the error in the EDP
drawn from the known error distribution. Alternatively, e can
be drawn from other distributions, such as

e ∼ N (
μ, σ 2) , (13)

to simulate the error distributions of other algorithms. In this
way, the impact of better or worse performing range estima-
tion algoritms can be examined. The predicted total energy
consumed on the route is thus:

Ẽc =
∑
i∈π

Ẽc,i . (14)

As discussed in Section III, an EDP is always subject to un-
certainty. Therefore, a certain part of available battery energy
needs to be reserved at CPs and other destinations. This safety
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margin �bE is based on the error distribution of the EDP. The
maximum length of traversable edges is limited by the specific
maximum range Rmax of the vehicle:

Rmax = (1 − �bE )
Q

dEc/ds
. (15)

To determine a suitable �bE , the following condition must
be satisfied:

emax Rmax ≤ �bE Q , (16)

with emax being the maximum probable error in terms of
energy per distance. This leads to

�bE ≥
(

dEc/ds

emax
+ 1

)−1

. (17)

If the sum of Ẽc and �bE Êb is larger than the available battery
energy corresponding to the current SoC, Êb, charging stops
need to be planned.

Charge planning has been studied extensively to enable
time- or energy-optimal routing for electric vehicles [48]–
[51]. To prepare the planning of charging stops, the amount of
electrical energy needed to charge at each possible charging
stop is determined and the corresponding charging time τ is
then calculated using the relation

τ =
∫ Êb,end

Êb,start

dE

min(P(E ), PV)
. (18)

Here, Êb,start and Êb,end are the battery states of energy (SoEs)
at beginning and end of charging, respectively, PV is the avail-
able CP power at vertex V and P(E ) is the possible charging
power at SoE Êb = q Q. The charging times τ are then used to
pre-process the travel time graph G and the fastest path from
start to destination can be calculated with Dijkstra’s algorithm
[52]. The procedure is shown in Algorithm 4.

D. TRIP SIMULATION
Ultimately, the trip simulation is carried out as shown in
Algorithm 5. Results obtained by varying the parameters are
analyzed in Section V.

V. SIMULATION RESULTS
In this section, the simulation runs are executed with the
parameter variation presented in Section IV. The investiga-
tion aims at examining effects of range estimation accuracy,

vehicle concepts and charging infrastructure. We use the per-
formance indicator travel time to represent the results, as well
as the proportion of travel time spent charging. The travel time
comprises driving time, charging time and time overhead for
authentication and handling at the CP. Since the total travel
time is the sum of driving time and charging time, travel time
and charging time can be visualized in one diagram where
total driving time is a constant. The driving time is calculated
using the speed profile u derived from mean traffic speed. The
charging time is calculated with (18), where the characteristic
charging curves are modeled from real data. Based on our
measurements, the time overhead at a CP is 2.5min on aver-
age. Since the terms in the calculation of total travel time are
independently valid, we assume that the travel time is valid as
well. Furthermore, numerous conclusions can be drawn from
the characteristics of the results irrespective of their absolute
numerical values.

A. RANGE ESTIMATION ACCURACY
To analyze the effect of EDP accuracy, we consider a mid-
size vehicle, as the error distribution was determined using
real data from this class of vehicles. The mid-size vehicle is
simulated with the six different EDP algorithm variants and
the necessary safety margin �bE , while other settings remain
constant. The corresponding safety margin values calculated
with (17) are shown in Table 5. There, we use the subscript a
to denote the error distribution of the anonymous dataset and
d for the driver-specific dataset. In addition, we introduce two
synthetic algorithms ST10% and ST5%.

It can be seen that the algorithms using driver-specific in-
formation lead to lower safety margins, between 13% and
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TABLE 5. Safety Margins

FIGURE 10. Travel time (left axis) and charging time as a percentage of
driving time (right axis) for different EDP algorithms for a mid-size vehicle
with different battery capacities in current charging infrastructure.

16%. Consequently, the standard algorithm using only traffic
data ud leads to the same safety margin as the most complex
algorithm SVMd. Using MLR, the safety margin can be 3%
lower. Using an algorithm which does not save driver-specific
information between trips leads to safety margins between
19% and 25%. Here, the standard algorithm using only traffic
data ua achieves the lowest safety margin.

Before the simulated test runs start, the SoC at the begin-
ning of each trip is set to 40%, thus a higher percentage of
routes include at least one charging stop. This means that the
resulting travel times could be somewhat longer than in the
best case, when each trip starts with a fully charged battery.
Nonetheless, a direct comparison between algorithms is pre-
sented.

The resulting travel and charging times for different range
estimation accuracy for a mid-sized vehicle are shown in
Fig. 10. The diagram shows the values with respect to total
travel time divided by total distance driven and with respect to
the amount of charging time divided by travel time. Travel and
charging times decrease with a decreasing safety margin. Ap-
parently, the 3% advantage in safety margin between MLRd
and ud does not lead to a significant decrease in travel time.
Here, we point out that comparisons between anonymous and
data-specific algorithms cannot be made correctly, since the
dataset is different.

However, to show the significance of accurate range esti-
mation algorithms, we included two synthetic results ST with
5% and 10% safety margin. It can be seen that a vehicle using

FIGURE 11. Travel time (left axis) and charging time as a percentage of
travel time (right axis) for different vehicle concepts and battery capacities
in current charging infrastructure.

ST5% achieves the same travel time with 90kWh as a vehicle
with MLRd and 120kWh. Thus, an 8% difference in safety
margin translates to a virtual battery capacity difference of
30kWh. It shows that high range estimation accuracy could
provide automobile manufacturers with a significant potential
for smaller batteries which saves weight, money and space.
Still, ST5% is a synthetic result and therefore, in the following
sections, we will use MLRd to analyze the influence of further
features and parameters.

B. VEHICLE CONCEPTS
In this section, we analyze the behavior of the three different
vehicle concepts presented in Table 4. From this simulation,
we can analyze the interaction of battery capacity, efficiency
and travel time in the current road and charging infrastructure.

The results for total travel time divided by total distance
driven are shown in Fig. 11, as well as total time spent
charging as a percentage of travel time. The total travel time
decreases with increasing battery capacities, as well as for a
vehicle concept with a higher efficiency. The rate of change
in travel time is quite high at smaller battery capacities but
with increasing capacity it reaches a certain saturation. Here,
most of the trips can be finished with short charging stops or
without any stops whatsoever. This suggests that batteries do
not need to exceed 100kWh. A vehicle with unlimited battery
capacity, i.e. without the necessity of charging stops, would
take 0.62min/km to drive all routes sampled. That value is
denoted optimum in Fig. 11.

Smaller and more efficient vehicles also need smaller bat-
teries to achieve the same travel time. For example, let us
specify that travel time should be less than 0.66min/km. Then,
the necessary battery capacity can be calculated for each of
the vehicle concepts. To achieve this travel time, the large
vehicle needs a 120kWh battery, the mid-size vehicle 90kWh
and the small vehicle a 70kWh battery. However, the travel
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FIGURE 12. Charging time for different vehicle concepts and route length
clusters in current charging infrastructure.

and charging time also depends on selected trip length. There-
fore, we cluster all the simulated trips with respect to their
length and compare charging times, as shown in Fig. 12. The
connected dots represent the median charging time in minutes
and the shaded areas demarcate the interval between the 5th
and 95th percentiles. Although all vehicle concepts have ap-
proximately the same total travel time, there are significant
differences in charging time when looking only at trips of
a certain length. An important factor in the overall usability
of BEVs is the long-distance capability, i.e. the capability
of covering the distance between charging points (CPs) on a
route. In sparse charging infrastructures, large battery capacity
and/or low energy consumption resulting in high total driving
range is necessary. In dense infrastructures, the total range is
only of secondary importance.

C. CHARGING POINT POWER
The current charging infrastructure is highly variable between
regions and is constantly growing, both in terms of CP num-
bers and power. To analyze the effects of CP power on travel
time, a simulation is executed where the power of current CPs
is varied. In the first variation, all CPs can output only a maxi-
mum of 50kW, in the second variation a maximum of 150kW,
the third variation is the current charging infrastructure and
in the fourth variation, all CPs can output 350kW. The total
number of CPs is held constant between the variations.

Fig. 13 shows total travel and charging time for a mid-sized
vehicle with different battery capacities in the four infrastruc-
ture variations. We observe that the current charging infras-
tructure is clearly much better than if all CPs were limited to
50kW, especially with larger battery capacities that are not
limited by the maximal C-Rate of 3h−1. The improvement

FIGURE 13. Travel time (left axis) and charging time as a percentage of
travel time (right axis) for a mid-size vehicle with different battery
capacities in four charging power variations.

of increasing charging power of all CPs to 350kW also re-
duces travel and charging time significantly. This reduction
can especially be observed with smaller battery capacities,
since charging stop frequency is higher and a dense network
of CPs is required. Similarly, the time reduction for vehicles
with larger battery capacities is smaller partially because of
the lower frequency of charging stops. In the variation where
all CPs have a maximum charging power of 150kW, the travel
time improvement for smaller battery capacities is the same
or close to the improvement of the 350kW variation, as their
maximal C-Rate corresponds to maximum charging power
� 350kW . On the other hand, travel time in vehicles with
larger battery capacities is only slightly better than in the
current charging infrastructure.

D. CHARGING POINT DENSITY
In addition to CP power, CP density is variable and will
increase in the future. In order to analyze the effect of CP
density, we modify the data of the current, real charging
infrastructure in the chosen geographical region, by either
reducing or increasing the density of CPs along a route. Let
the density of current charging infrastructure be D = 1. In
addition, D = 1+ denotes current density where all CPs can
output 350kW. We reduce the density by randomly removing
a portion of the CPs in the database, resulting in densities such
as D = 0.75 and D = 0.5. Additionally, D = 0.75+ denotes a
variation where all CPs can output 350kW. Creating new CPs
would be tedious and difficult and instead we analyze the edge
case of a perfect infrastructure, where every point on the route
is a 350kW CP, resulting in a density of D → ∞+.

Fig. 14 shows total travel and charging time for a mid-sized
vehicle with different battery capacities in six infrastructure
variations. It can be seen that a higher density of CPs leads to
shorter travel and charging times for all battery capacities. The
variation D = 0.75+ shows an improvement in travel time as
well. The slope of the curves corresponds to the rate of change

358 VOLUME 1, 2020



FIGURE 14. Travel time (left axis) and charging time as a percentage of
travel time (right axis) for a mid-size vehicle with different battery
capacities in six CP density variations.

in travel time with increasing battery capacity. In sparse charg-
ing infrastructures, travel and charging times continue to de-
crease with increasing battery capacities beyond 100 kWh.
In more dense charging infrastructures, a saturation in travel
and charging time can be observed. Furthermore, robustness
against sparse infrastructure increases with increasing battery
capacity, i.e. a larger battery is less sensitive to sparse charging
infrastructures and travel and charging times are proportion-
ally closer to the times in a perfect infrastructure.

VI. CONCLUSION AND OUTLOOK
In this work, we investigated the everyday usability of electric
vehicles. We chose the amount of time consumed per trip as a
mathematical equivalent to the everyday usability, as this en-
compasses the ultimate goal of mobility: bringing people from
A to B as quickly as possible. The difference between electric
vehicles compared to conventional ones, lies in the limited
driving range and charging time and infrastructure. Therefore,
we concentrated on these aspects when executing a stochastic
trip simulation. We drew random trips with different vehicle
parameters as well as charging points to display the influence
of relevant features.

One central outcome was the feasibility limit of battery ca-
pacity. One would think increasing battery capacity endlessly
would solve the challenges of electric mobility and of course,
bigger batteries mean less trip duration. However, there is
a feasibility limit around 100kWh. Beyond this, increasing
battery capacity does not improve travel time significantly. At
this point, the impact of an improved charging point network
on the everyday usability is stronger. In our results, charging
times of around 5 - 20% are common in the current charging
infrastructure. This can be decreased to below 5% in a perfect
infrastructure.

In addition, smaller vehicles have less energy consumption
and that translates to less travel time. Of course, smaller vehi-
cles typically also have smaller batteries which increases their
travel time again. However, a smaller vehicle can achieve the

same travel time as a large vehicle with less battery capacity.
Therefore, their battery can be smaller since energy efficiency
is higher. Lastly, having more accurate range estimation al-
gorithms means less travel time and effectively increases the
usable battery capacity, as the safety margin is smaller. This
could be a more cost efficient choice than increasing total
battery capacity. Other drawbacks of larger batteries are pack-
aging, weight, and environmental effects, all of which do not
hold for range estimation software. However, the algorithms
tests in our framework did not achieve significant advantages.
Only the synthetic results could show the potential of lower
safety margins.

Finding more accurate range estimation algorithms and
quantifying the advantage in terms on trip duration is one
aspect for further research. Another aspect would be the in-
tegration of aging effects in battery as well as powertrain.
The availability of charging at home or at a workplace is an
interesting aspect that could be analyzed and integrated in
the framework. Including environmental effects such as wind,
precipitation etc. in the framework would enable the analysis
of more detailed scenarios. Additionally, more data from other
countries could be used for the stochastic model in the future.

Apart from that, the central outcome of this research can be
summarized as: Battery sizes of modern premium BEVs are
already large enough. We do not need to increase them much
further, however we have a long way ahead of us in terms of
charging infrastructure.
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