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ABSTRACT Recently, individual electric mobility gains significance due to legislation and social dis-
cussion. Customers demand longer battery ranges. Advanced planning is a different and more sustainable
approach. Potentially, they assist drivers in exploiting the installed range on long journeys. Earlier research
of the authors showed that an optimal combination of speed, charging choice and amount potentially
reduces overall traveling time on long trips. In this work, a dynamic programming algorithm controls
this strategy set time-optimally on an all-electric route from Munich to Verona. For this, location-specific
fleet-based data of over 600 000 km are used to improve the reliability of the strategy set in two ways.
Firstly, the data provide more realistic location- and time-specific velocity bounds for speed control.
Secondly, they provide fleet-sourced dynamics to a traceable analytical consumption model. These addi-
tional dynamics lead to 1.8 - 2.3% more energy demand in the strategy planning compared to a less
accurate consumption map-based approach. Here, the incorporation of dynamics increases the optimiza-
tions’ reliability. Also, the time-dependent fleet-data allows finding an optimal departure time for the
given route. In total, the incorporation of fleet information enhances the robustness of the optimization.
This enables a more seamless experience of electric mobility on long trips.

INDEX TERMS Electric vehicles, smart mobility, dynamic programming, fleet data, consumption
modeling.

NOMENCLATURE
LATIN SYMBOLS
A Frontal area
a Acceleration
cx Drag coefficient
E Energy
e Specific consumption
erot Rotational mass factor
F Force
frel Relative frequency
ft Rolling resistance
g Gravitational acceleration
H Upper velocity bound
L Lower velocity bound
m Number of segments
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mveh Vehicle mass
n Number of charging events
P Power
pvec Parameter vector
r Charging load
rvec Route vector
s Distance
t Time
v Vehicle speed

GREEK SYMBOLS
α Slope
γ Charge gradient
ηDT Drive train efficiency
τ Travel time
ρ Air density
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SUBSCRIPTS
DT Drivetrain
End End
HVB High voltage battery
i Index i
M Modified fleet-distribution for given velocity
max Maximum
min Minimum
nom Nominal
O Original fleet-distribution for median velocity

SUPERSCRIPTS
k Grid index state variable energy
l Grid index control variable charging load
w Grid index control variable velocity

ACRONYMS
BEV Battery electric vehicle
CM Charging model
DI Dynamic interval of percentiles to derive veloc-

ity windows from fleet
DP Dynamic program
DPMA Driving profile map attribute
DPMAD Driving profile map attribute distribution
EC Energy consumption
ECM Energy consumption map
EPF Fleet data-based EC prediction framework
HVB High voltage battery
IA Integral acceleration
ID Identification number of map link
IAP IA while propulsion, one DPMA
IAR IA while recuperation, one DPMA
ISV Integral squared velocity
ISVP ISV while propulsion, one DPMA
ISVR ISV while recuperation, one DPMA
MINLP Mixed-integer non-linear program
P Propulsion
R Recuperation
RSME Root mean square error
SOC State of charge
VW Velocity window.

I. INTRODUCTION

PERSONAL vehicle-based mobility is subject to a
paradigm shift. Among other aspects, the aim of reduc-

ing carbon dioxide and rising regulations for fossil fuel-based
vehicles push the share of (fully) electric transport. For per-
sonal transportation, battery electric vehicles (BEVs) mostly
come along with limited driving ranges in comparison to
conventional vehicles. Although, the mean daily mileage of
a vehicle in Germany is 37 km [1], there is a customer’s
demand for higher ranges. This desire is mainly addressed
by enlarging the batteries’ capacity. However, their produc-
tion is neither economically nor ecologically sustainable,
e.g., due to battery cost of at least 100 USD per kWh [2]

and to use of scarce resources. In turn, when keeping battery
sizes small, especially long trips become time consuming due
to more frequent charging events. The minimization of total
travel time thus becomes more complex. For this, an optimal
strategy planning algorithm can be applied for a given long-
distance driving task. In this article, long-distance driving
are defined by at least one recharging event along the route.
For providing a time-optimal journey to the driver of a

BEV, planning must incorporate vehicle-specific sensitivities
adequately. Apart from the charger selection along a given
route, an appropriate choice of the vehicle speed enables
the additional potential to minimize total traveling time.
For instance, it is then possible to minimize or optimize
necessary charging stops by adapting speed. To the current
knowledge, conventional routing algorithms do not include
these levers. Also, for the application of optimal strategies
to real driving use cases, prediction models for energy con-
sumption (EC) and charging time have to be sufficiently
exact and reliable.
The optimal planning of a charging strategy is exten-

sively examined in the literature. However, conventional
routing problems need adaptions for a BEV implementa-
tion. Artmeier et al. were the first formulating appropriate
changes by using an energy graph network [3]. Based on
that, preprocessing reduces query times significantly in [4].
Mainly, the optimal choice of charging stations is modeled
as a shortest path problem (SPP) in [5]–[8]. Except [7] using
a more elaborated model including recurring accelerations,
all these shortest path problem approaches are based on a
physical model or a consumption map. Another approach
uses a mixed-integer non-linear program (MINLP) formu-
lation, that [9] and [10] use to optimize driving tasks in a
heterogenous charger network. There, vehicle consumption
relies on a single constant, only dependent on the segment
length, independent from speed and elevation.
All these optimization algorithms lack the vehicle speed

as a further control lever. A trade-off between energy
consumption and speed is firstly presented in [11] by
using pareto-optimal routes with homogeneous recharg-
ing nodes without the optimization of charging energies.
Additionally, [12] adds charging energy planning to the
charger and velocity selection using dynamic programming.
The basis for [11] is a physical vehicle consumption model
and for [12] a consumption map model.
For the input of consumption prediction, there are various

types of approaches. So-called direct methods use recorded
ECs for prediction either road-segment specific [13] or
clustered by road class [14]. Still, EC is not only location-
specific. For the incorporation of varying influences like
velocity, [12] use a consumption map and [15]–[17] use
machine learning. However, all of them lack physical trace-
ability and need to be trained for each vehicle separately. In
turn, analytical EC models can provide both based on the
driving resistance equation [18]–[20]. Thus, most beneficial
is an analytical approach. It is physically traceable and
adaptable, and can correctly incorporate varying influences.
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Apart from their type, the models above differ in their
input origin. Two input classes exist. Firstly, map-based
models use segment-specific information like speed limits
and road type [17], [19], [21]. Secondly, there are spa-
tially limited models only using ego-vehicle data [16] and
other approaches consider fleets [15]. The latter enlarge the
prediction area spatially. The broader the vehicle-based data,
the better these models can consider location-specific influ-
ences on EC. Accordingly, there is no need to reconstruct
vehicle behavior from map information. Thus, additional
uncertainties are avoided. Consequently, an analytical EC
prediction model by [20] using fleet data is the most
favorable.
The present paper firstly combines a driving and charging

strategy optimization algorithm first published in [12] with
a fleet-based analytical EC model firstly presented in [20],
called energy prediction framework (EPF). The optimization
combines the selection of charging stations and energies
with a dynamic speed adaption along a given route in a het-
erogenous charger network [12]. The DP-based algorithm is
extended and further assessed. This includes four novelties.
Firstly, a sensitivity analysis in terms of spatial discretiza-
tion and its effects on performance and solution quality is
investigated. Secondly, static velocity bounds for route seg-
ments are replaced with dynamic, time- and location-specific
velocity constraints based on fleet-data. This also includes
a variation in the width of the resulting velocity window
per route segment. Fleet-based velocity bounds guarantee
a more realistic and applicable strategy planning. Thirdly,
the impact of time dependency in the velocity bounds is
investigated by varying the time of departure for one rep-
resentative day. This is possible because fleet information
reflects daytime dependent changes in traffic. Fourthly, in
addition to a previously examined energy consumption map
(ECM) model in [12], the energy consumption is analyti-
cally modeled using a fleet-sourced data basis [20] and thus
including dynamics. Moreover, this work presents a novel
method to adapt the fleet-based energetic information for a
velocity selected by the optimizer. To the authors’ knowl-
edge, this is the first time in literature, that a fleet-based EPF
provides realistic velocity bounds to the optimization algo-
rithm and energy consumption information, which includes
location-specific dynamics for a given long-distance journey
scenario.

II. METHODS & MATERIALS
The optimization of charger choice, charged energy and vehi-
cle speed adaption for a given route is fed with charging
time by a charging model and consumption information by
two different EC models. In the present chapter, the over-
all method approach including the optimization algorithm,
the two EC models and a charging model, are presented.
Both the optimization and consumption models are then
illustrated in detail. Finally, an exemplary route scenario is
presented.

FIGURE 1. Method approach in driving strategy optimization via DP with two input
models (white): energy prediction and charging time.

A. METHOD OVERVIEW
The calculation of an optimal strategy set for a given driving
task bases on fleet-sourced input models. Fig. 1 illustrates
this process.
After the driving task is set, the route’s course is calculated

with the help of a programming interface of a routing ser-
vice provider. For further information, see [22]. This route is
then matched to a more detailed map. This is owned by the
research partner BMW Group and its suppliers. Therefore
it is assumed as a validated and given input. The fleet-
based energy prediction approach rests on this detailed data.
The matching on this map is built on a Hidden Markov
model, as outlined by [23]. This map can describe the route
by the sum of its smallest bits, the links. Each link has a
specific identification number (ID). Based on this ID, the
presented approach uses each link’s length, speed limit and
a mean slope. For each link’s specific energy prediction, the
link IDs and their properties are firstly processed in order
to determine fleet-based velocity windows (VWs). Here, a
fleet-based energy prediction framework (EPF) identifies a
lower and upper-velocity border for every link. Then, the
link IDs and VWs are transferred to an energy consumption
(EC) model. Two different models are then implemented
and compared. These are an energetic consumption map
(ECM) and the fleet-based EPF. This comparison examines
differences in the models’ impact on the optimal strategy
calculation. Before the information on vehicle speed and
energy consumption is fed into the optimizer, the individual
links and their information are aggregated to larger segments
with a nominal maximal length �snom (see Section II-E).
These segments can consist of multiple links. The EC’s
output are segment-individual VWs with segment-specific
minimal (Li) and a maximum (Hi) thresholds. Based on
these velocity thresholds, corresponding energy consumption
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values E
i
per aggregated segment i are given to the optimizer.

Double underline indicates the state variable of the following
optimization problem in Section II-B. For charging events
within the optimization, the given charging model (CM) cal-
culates the necessary charging time tcharge for the energy
amount that is demanded by the optimizer. The optimization
takes this EC and CM information for each segment to cal-
culate a set of time-optimal speeds vi, energy consumption
E
i
, charging decisions bcharge,i and charging energies ri. This

is done for all segments i ∈ M. A single underline marks the
two control variables of the following optimization problem.

B. TIME-OPTIMAL STRATEGY CALCULATION
The optimization of the driving task is based on a dynamic
programming algorithm. This originates from work of [24].
For more in-depth information on the topic see [25]. The
present considerations for optimization of driving and charg-
ing strategies mainly base on [12]. There and also in
the present paper, a way based optimization via dynamic
programming using [26] is executed to guarantee a mini-
mal total travel time. The underlying problem is modeled
with a singular state variable, two control variables and a
fixed final state. Double underline marks the state variable,
single underline the control variables and the wave the non-
linear input models. The optimization problem can thus be
formulated as

min
vi,i+1,ri, i∈M

m∑

i=1

τi,i+1(vi,i+1) + riγi� (1)

subject to

E
i+1

= f (E
i
, ri, vi,i+1) (2)

γi
�

= f (E
i
, ri,Pi) (3)

�E
i
= Ek

i
− Ek−1

i
(4)

�ri = rli − rl−1
i (5)

�vi = vwi − vw−1
i (6)

E
i
∈ [Emin,Emin + �E

i
, . . . ,Emax] (7)

Em ∈ [EEnd,EEnd + �E
i
] (8)

ri ∈ [0, 0 + �ri, . . . ,Emax − Emin] (9)

vi ∈ [Li,i+1,Li,i+1 + �vi, . . . ,

Hi,i+1 − �vi,Hi,i+1] (10)

E1 given, r1 = rm = 0 (11)

The system’s behavior in the underlying problem of opti-
mizing a given driving task is described through the state
variable E

i
in (2). It describes the high voltage battery’s

(HVB’s) energy. For the driving task, the battery’s energy at
the beginning and the end of the task is set in (8) and (11).
By that, running out of energy is prevented through a thresh-
old. In the present case, these thresholds are 100% SOC for
E1 in (11) and 20% for Eend in (8). Both control variables

FIGURE 2. Course of vehicle charger power with an infrastructural nominal peak of
120 kW (solid) and the course of the state of charge (dashed).

ri and vi,i+1 determine the desired minimization of the over-
all driving time in (1) per step i. The controls represent
the amount of energy ri being charged at a charging sta-
tion and the driving velocity vi,i+1 from vertex i to i + 1.
Both are limited through further constraints in (9) and (10)
respectively. The charging energy ri can range from zero
(no charging) to full charge. The latter is the difference of
the battery’s total energy Emax and a minimal amount of
energy Emin that is never to be undercut in (7). The con-
straints for the realized speeds in (10) are determined through
energetic fleet data. The charger specific power characteris-
tic is modeled through γi

�
and is a non-linear function (3)

of ri and E
i
(see Fig. 2). The wave indicates this non-

linearity, same with the system’s model equation (2). Due
to the discrete character of dynamic programming, the state
variable as well as both controls are evaluated on an indi-
vidually scaled discrete grid. The grids’ sizes for the state of
charge (SOC), the charged SOC and the vehicle speed are
�E

i
= 0.5% SOC, �ri = 0.5% SOC and �vi = 1 km/h,

respectively. The position of a value at index i within these
multidimensional and discrete grids is described by indices k,
l and w. They are defined in (4), (5) and (6). Overall, the cost
function (1) minimizes the overall traveling time within the
given boundaries according to this works objective. Further
optimization objectives such as battery aging, e.g., battery
currents, could be included in the cost function (1) in future
work.

C. CHARGING MODEL
Charging a vehicle at high powers with direct current results
in a non-linear function tcharge = riγi� due to thermal lim-

itations and physical behavior of the high voltage battery
system [27]. For the calculation of the charging time in (1),
the non-linear charging functions γi

�
in (3) for different power

levels are defined. For a charging process of 120 kW, Fig. 2
shows the course of the charging power and the battery’s
SOC. The degressive behavior of the SOC for higher values
is visible. Also, the time versus SOC curve is, especially
for higher charging powers, non-linear. The relevant charg-
ers in Section II-G have nominal power levels from 50 to
120 kW. The corresponding charging curves come from a
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given total vehicle simulation environment, implemented in
Modelica. They are approximated by a polynomial of fourth
order for (1) whose accuracy is expressed by an RMSEs
(Root Mean Square Error) of 0.47% SOC.

D. ENERGY CONSUMPTION PREDICTION MODELS
In the present paper, two EC models are used as input for
optimization. Fig. 1 depicts these. The fleet-sourced EPF
always provides the link-specific realized VWs, whereas two
different approaches model the EC input for the optimizer.
Firstly, the speed-dependent ECM uses the velocity data from
the EPF to calculate ECs. In the second approach, to compare
the impact of energetic fleet information, the EPF predicts
the ECs within the set VWs.
The ECM models the consumption as a function of speed

and slope, i.e., ei(vi, αi). It is based on the simulated con-
sumption output of the same Modelica-based total vehicle
simulation that is used for the charging model. A polyno-
mial of sixth-degree approximates the simulated consumed
energy as a function of vehicle speed. This results in an
accuracy of an RMSE of 0.7 % SOC

100km . The resulting ECM is
dependent on a constant vehicle speed vij and the slope αij
of a road segment. Here, no dynamics due to acceleration
effects are considered.
In turn, the EPF bases on [20] with adaptions due to

optimizer requirements which the following and Section II-F
describe.
Equation (12) describes a route’s EC E HVB,m at the con-

nector of the HVB. E HVB,m is the sum of the EC of the
drive train and auxiliary consumers for the entire route. For
the drive train’s EC, the wheel force FW is integrated over
distance s, whereby the operating point dependent drivetrain
efficiency ηDT needs to be set according to the energy’s flow.
Here, the flow determines the sign of FW . It is either positive
for an energy demand by the drive train, i.e., propulsion (P),
or negative in case of recuperation (R). The calculation of FW
is described in (13). It represents the sum of the vehicle’s
driving resistance forces. Under the assumption of quasi-
static states within each segment, (13) separately depicts the
mainly vehicle-related parameters in the parameter vector
�p. These are aerodynamic drag coefficient cx, air density
ρ, frontal area A, gravity’s acceleration g, rotational mass
factor erot, tire rolling resistance coefficient ft and vehicle
mass m : veh. Additionally the route vector �r contains the
inclination α and the driving profile represented by velocity
v and acceleration a.

Similar to the drive train’s EC, the auxiliary consumers are
also assumed quasi-statically. This means that their power
demand PAux,i in (12) is constant along a segment. This
power demand is also influenced by the surrounding tem-
perature. In this work it is set constant. Prospectively, a
weather forecast based model can predict this demand more
detailed. The length of segment �si is part of the map
information, and the average speed v̄i (AV) is also known

TABLE 1. Energetic driving profile map attributes (DPMAs) from [20].

FIGURE 3. Fleet data-based energy consumption prediction framework (EPF)
adapted from [20].

for the calculation of the expected duration on a segment.

E HVB,m =
m∑

i=1

i+1∫

i

FW(s)

η
sgn(FW(s))
DT

ds+ PAux,i · �si
v̄i

(12)

FW(s) = �pTvec · �rvec =
(mveh·erot

ρ
2 ·cx·A
ft·m·g
m·g

)T

·
(

a(s)
v2(s)

cos(α)
sin(α)

)
(13)

When extracting only the driving profile’s influence
from (12) and (13), this results in the energetic driving pro-
file map attributes (DPMAs) shown in Table 1. Note that
the integral DPMAs have to be split corresponding to the
direction of the energy’s flow. This separation in propulsion
and recuperation is necessary in order to consider ηDT cor-
rectly. Just the average velocity (AV), as the auxiliary EC is
independent of ηDT.
Fig. 3 shows the procedure of the EPF to collect the

inferred DPMA in steps A) until I), which differs in the
last steps from the one presented in [20] according to the
requirements of the optimizer. Two boxes propose different
computation locations on a backend server and in the vehicle.
The fleet vehicles record A) anonymized fragments of traces
of geo-positions and timestamps. The fleet consists of hetero-
geneous vehicles as the resulting data-set provides more data
on a given route. The vehicle sends B) them to a backend
server. The server matches the traces of multiple vehicles to a
map C) and reconstructs their driving profile D). From these
driving profiles and for each traversed segment, the backend
obtains the energetic DPMAs E). These segments are limited
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to 50m length. In F) the backend groups the DPMAs for
each segment and similar recording daytime and weekdays to
obtain driving profile map attribute distributions (DPMADs).
The overall set of DPMADs constitutes an energetic map
of the behavior variance regarding the EC of all recording
vehicles. This energetic map includes the driving profile’s
influence on the EC regarding realized velocities and dynam-
ics. This influence includes local factors like junctions and
the visibility of curves as well as traffic, which cannot be fur-
ther distinguished. The traffic information includes daytime
and weekday dependent changes. Prospectively, a further
adaption based on real time traffic information can be con-
sidered. This would enable the incorporation of short-term
and unforeseeable events. Still, there are regular patterns in
traffic flow and achievable speeds that reoccur. They can be
seen in the data that is provided by the EPF. In this article,
we aim to focus on the modeling of these effects during a
long distance trip the traffic can significantly change along
the route. Consequently, historical traffic information can be
more reliable for initial planning of route sections passed
several hours later.
For a given and segmented route H), the time- and

segment-specific DPMADs I) are sent G) to the vehicle.
However, some DPMADs might not be available for the
required time or segment or both due to missing suitable fleet
data recordings. In these cases, a multilevel backup applies.
The levels are suitable sublink and time (no backup), suitable
sublink, nearby sublink, and no data. In the suitable sublink
case, there is just a lack of the needed time-specific record-
ings. Then the backup-DPMADs aggregate all recorded
DPMAs at any time on the required segment. If there are fur-
thermore no recordings on the required segment, the nearby
sublink backup-DPMADs incorporate recordings of any time
of 10 neighboring segments with the same speed limit and
road type. In the rare event no data with no recordings found,
the backup constructs DPMADs, which represent a constant
driving at speed limit velocity. The models described in
Section II-E and Section II-F select from the DPMADs the
DPMAs for each segment of the route, to perform the EC
prediction K), and provide it to the optimizer, as Fig. 1
depicts.
The prediction uses the DPMAs to predict the EC

for defined boundary conditions. These conditions include
besides vehicle properties also the road slope taken from
digital maps and surrounding parameters like weather. The
parameter vector �pvec defines the vehicle’s driving resis-
tance parameters for the vehicle. Here, a prospective weather
model can modify air density ρ and rolling resistance ft.
Additionally, such a weather model can incorporate the influ-
ence of wind in the route vector �rvec by modifying the ISVP
an ISVR for each segment according to wind speed and
direction taken from weather forecast. Another influence of
the weather on EC is a varying power consumed by auxiliary
consumers PAux,i, namely the tempering of the vehicle. A
segment specific PAux,i adaption based on a tempering model
including a weather forecast. The weather model will be part

FIGURE 4. Principle of fleet-sourced velocity bounds and speed limit restriction.

of future work, as this article focuses on the collaboration
and interrelations of the optimizer and the EC prediction
model.

E. VELOCITY BOUNDS BASED ON FLEET DATA
The optimization algorithm in Fig. 1 is fed with two different
information by the EC. These are the velocity bounds Li
and Hi on one hand, and the corresponding energies for the
given segment and velocity on the other hand. The energy
consumption is provided by two different models: the ECM
and the EPF. In turn, the velocity bounds itself are the basis
for the EC calculation and only the EPF provides them.
Each segment’s distribution of average velocity (DPMAD

of AV) is the basis to select achievable speeds as optimization
limits. Given that DPMADs are often non-Gaussian or
bimodal, this selection utilizes percentile values and not
statistical measures like standard deviation. For different sce-
narios, the selection uses a dynamic interval (DI) represented
by the percentiles P(Hi) and P(Li) to get the respective upper
Hi and lower Li velocity bounds.
As some drivers of the fleet might exceed the speed limit

slightly, the EPF limits the upper bound by the segment-
specific speed limit before providing it to the optimizer. This
limitation prevents a suggestion non-legal speeds already on
the level of strategy calculation.
Fig. 4 describes the resulting bounds for the EPF’s �snom

of 50m and a rougher value of 10 000m. It depicts the typical
effects on the derived bounds Li and Hi and their distance-
weighted mean values L̄ and H̄. For the lower bound, the
EPF returns them with a finer spatial resolution, which
gets averaged by the DPMAD’s aggregation for the rougher
�snom. However, the mean L̄ of all Li stays approximately
the same for both �snom. For the upper bound, the speed
limit affects H̄. For the EPF’s �snom, the location-specific
finer Hi exceeds the speed limit more often, which is then
limited which the grayed out graph indicates. Still, it also
shows a variation to lower speeds. Consequently, the speed
limitation lowers H̄, due to higher weighted lower speed
variations, which the overlaying triangle indicates colored
like the �snom of 50m line and framed like the speed limit
line. In turn, the Hi with a rougher �snom is already on
the level of DPMADs averaged, which lowers H̄ less due to
speed limitation than for the finer EPF �snom. In summary,
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the incorporation of speed limits leads to lower H̄ values for
finer �snom.

Moreover, this one-sided effect on the mean velocity
bounds L̄ and H̄ limits the decision space to set wider
bounds by P(Hi) and P(Li). Accordingly, if the same amount
increases the P(Hi) as it lowers the P(Li), the value of L̄
drops more than the value of H̄ increases.

The second input of the EPF for the optimizer is the
EC prediction itself. The EPF is designed to incorporate
a percentile-based driver-classification for each DPMAD,
which enables a customized EC prediction by using char-
acteristics from a driver behavior as model input. However,
this article aims to show a general idea of an optimal charg-
ing and driving strategy based on fleet data. Therefore, the
driver-classification for the EC prediction uses the estimate
for the most common driver, which relates to the median.
The medians of each DPMA out of the DPMAPs are the
basis for the EC prediction based on (12) and (13). This
prediction of the most likely EC is the basis for the input
to the optimizer. The next section details this collaboration.

F. MERGING VELOCITY AND FLEET-BASED
CONSUMPTION PREDICTION
The information in Section II-D and Section II-E on con-
sumption prediction and velocity bounds is now merged in
segment-specific and speed-dependent ECs. Within segment-
specific velocity bounds, the optimizer needs the EC for
discrete points of possible mean velocities. For the EC, more
than just the average segment speed (i.e., AV) derived as
a median value from the fleet data has to be considered.
ISVP (integral squared velocity while propulsion) and ISVR
(integral squared velocity during recuperation) as well as
IAP (integral acceleration while propulsion), and IAR (inte-
gral acceleration while recuperation) are the other DPMAs
(energetic driving profile map attributes) for the calculation
of an EC or energy demand with the EPF. For the most
probable EC calculation, the EPF derives these DPMAs as
the median out of the fleets’ distribution. This is just valid
together with a median fleet sourced speed AV. To resolve
this, the DPMAs need to be modified for given AVs within
the velocity bounds on a segment. This section investigates
to what extent these DPMAs are a function of AV.
The acceleration-dependent IAP and IAR represent the

dynamics’ impact on EC on a specific segment. The
speed-adaption of IAP and IAR is disregarded, as no speed-
dependency of dynamics is noticeable. An analysis of the
fleet-sourced IAP and IAR over AV showed a negligible
dependency with a smaller than 2.5 · 10−3 R-squared coeffi-
cient of determination. Thus, the fleet-derived median value
for IAP and IAR is assumed for all AVs on a segment. This
assumption is supported by the fact that velocity sugges-
tions only should be made within velocity bounds higher
than 70 km/h. For these higher velocities, the aerodynamic
influence dominates the EC, which the quadratic velocity
parameters ISVP and ISVR represent. As a consequence,
only ISVP and ISVR need adaptions for given AVs.

The ISVP and ISVR are according to their definition in
Tab. 1 speed dependent. These two DPMAs represent the
velocity’s influence on EC due to aerodynamic resistance.
Therefore, the adaption of ISVP and ISVR to a given velocity
needs to consider the quadratic behavior of the aerodynamic
resistance regarding speed changes.
The following derivation and notation in (14) until (19)

depicts only the ISVP modification for a given AV in
the propulsion case. These equations equivalently apply in
the recuperation case for ISVR speed-modification. The
subscript “O” refers to the original fleet-distribution-based
median ISVP referring to the fleet-median velocity, which
step I) of the EPF provides. In turn, the subscript "M" refers
to the ISVP values modified for a given velocity. If an equa-
tion is applicable for both the original and modified, there
is no subscript as in (15) and (17).
For the modification of the velocity related DPMAs to a

given AV, some assumptions are necessary and explained in
the following. For the velocity-modification the assumption
is that the same proportions of these phases apply for a
modestly modified velocity. Subsequently, (14) describes this
assumption for the original and modified values.

ISVPO
ISVO

≈ :
ISVPM
ISVM

(14)

Here, (14) defines the ratios as the proportion of ISVP to the
overall integral squared velocity ISV. This is approximately
the sum of both, as (15) depicts.

ISV ≈ :ISVP + ISVR (15)

When (14) and (15) are transposed to ISVPM, this results
in (16) for the desired estimates ̂ISVPM of ISVPM.

̂ISVPM = ISVPO · ISVPM + ISVRM

ISVPO + ISVRO
(16)

As the ISVM as defined by (15) is not available, the velocity-
modification needs an estimated ÎSVM. Since the velocity-
modification suggests an AV, according to (17) AV can help
to get this estimate ÎSVM.

ÎSV =
∫

AV2ds = AV2 · �s (17)

For the verification of this assumption, the original data can
serve as a test of (17) using (15). However, (15) is not
entirely valid. This is due to the required interpolation while
extracting the median DPMA and the quadratic nature of the
variables. Nevertheless, it can be assumed that the ratio of
this estimate ÎSVM to the real sum of ISVPM and ISVRM
is not varying substantially for a modest velocity adaption,
as (18) depicts.

ÎSVO

ISVPO + ISVRO
≈ :

ÎSVM

ISVPM + ISVRM
(18)

̂ISVPM = ISVPO · AV
2
M · �s

AV2
O · �s

(19)

Eq. (18) is rearranged for ISVM and inserted into (16).
Then, (18) simplifies the estimate calculation of ̂ISVPM
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FIGURE 5. Provider-based Route from Munich to Verona incl. 39 chargers.

to (19). Overall, the DPMA modifications from an initial
median estimate to a different given velocity described in this
section, allow the EPF to provide a fleet-based and route-
specific EC lookup-table over a velocity band. This table
enables the optimizer to incorporate the speed-consumption
trade-off for strategy planning.

G. ROUTE SCENARIO
As pointed out in Fig. 1, the underlying driving task is a
fastest route provided by [22] from Munich in Germany to
Verona in Italy. It is assumed that the charging infrastructure
is sufficient so that the route choice still is time-optimal for
fully electric vehicles. During this crossing of the European
Alps, higher slopes and an alternation of national speed
limits makes the task more versatile. It is 425 km long and
provides a total of 39 charging stations along the way. These
charging stations have nominal powers ranging from 50 to
120 kW. The latter is a hard-set limit, since it is the maximum
charging power of the used charging model. The properties
of the chargers originate to [28]. Possible detours from the
given route are calculated through [22] and added to the cost
function in (1) if a charging event is planned at a set charger.
The charging time as well as the energy consumption of the
vehicle, i.e., energy for driving and auxiliaries, depend on the
ambient temperature. For the entire route task, environmental
conditions are set to 20◦C and applied to all models. The
route consists of 1937 individual IDs and is then structured
into sublinks, i.e., segments, with a maximal length of 50m.
However, there can be shorter segments, if there are changes
in map data such as the speed limit, or the end of an ID.
This results in a total number of 8992 segments, according
to the finest discretization available from the EPF. For these
segments, the EPF uses 601 639 km of driving data recorded
from April and May 2018 to provide their information to the
optimizer. Depending on the optimization scenario, they can
be aggregated to longer segments. In the present case, this
happens for a maximum nominal length of 10 000m. The

optimizer then uses this segment specific data and discretely
controls speed and charging decisions (if possible) at the
beginning of every new segment. Here, it is ensured that
a set lower energy threshold Emin for the energy Ei in (7)
is never undercut. It is set to 20% SOC of the HVB. The
optimization problem in (1) defines for every vertex i a
possible charging event by defining the interval for ri in (9).
In the given route problem, for the majority of vertices i
there is no charger. This has no impact on the optimization
algorithm except that ri is automatically set to zero if no
charger is present.

III. SIMULATION & RESULTS
The previous chapter outlined the approach to derive a time-
optimal strategy for a BEV on a given route. Firstly, the
following sections illustrate the effects of a fine and a rough
nominal route segmentation �snom and of different velocity
bounds based on a set moderate and very wide DI. Then,
a comparison depicts the differences in these effects for
the two described energy prediction inputs ECM and EPF.
Only the latter incorporates fleet-based and segment-specific
dynamics. Finally, the impact of different departure times
on optimizer inputs and resulting strategies concludes the
evaluations.

A. CONSUMPTION AND VELOCITY INPUT FOR
OPTIMIZATION
For the driving task in Section II-G, the fleet-sourced veloc-
ity data and energy consumption data are generated for 08.30
a.m. on a weekday. They are then given to the optimizer, as
shown in Fig. 1. For the analysis, two energetic scenarios
are optimized, basing on ECM and the fleet-sourced EPF.
However, both approaches use the same velocity data with
a lower Li, upper Hi and median value per segment that
are derived by the EPF. The corresponding input data for a
�snom = 50m can be seen in Fig. 6. Fig. 6(a) shows the
distribution of the specific energy consumption per segment
over the corresponding median velocity per segment as a
boxplot for both energetic models. The median consumption
values for ECM scatter less than the EPF data. Generally,
the EPF based energy consumption is slightly higher in
its median value than the ECM median for a given veloc-
ity. This is due to the additional segment-specific dynamics
imposed in the EPF. Fig. 6(b) shows the occurrences as rel-
ative frequencies of median velocities in all segments. It can
be seen that the higher the relative frequency for a given
speed, the less the corresponding consumption data scatter.
The most frequent median velocities that are realized are

100, 110 and 130 km/h. This is because of speed limits in
Germany, Austria and Italy. Also, the upper limit of speeds
for the optimization of strategy is 130 km/h which refers to
the speed German legislation recommends for sections with
no speed limit. The velocities different from the ones named
above are transition phases featuring more dynamics. Also,
effects due to traffic are possible but cannot be quantified, as
pointed out in Section II-D. In contrast, the more frequent
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FIGURE 6. (a) Boxplot for the energy demand for fleet-based median velocities (only
inter-quartile range and median depicted) and (b) its frequency.

velocities refer to almost constant driving. This results in
lower dynamics and thus less scatter in energy consumption.
The next section investigates how the speed choice of the
strategy calculation compares to the median speed values of
the input data set.

B. STRATEGY OPTIMIZATION WITH THE CONSUMPTION
MAP MODEL
The effect of fleet-based VWs around median speeds
on the optimization is investigated. For energy consump-
tion prediction, the ECM from Section II-D is used. The
ECM provides energy consumption based on slope and
velocity. For the distribution of vehicle speeds, the data
from Section II-E is assumed as input.
The optimization is applied to the route scenario from

Section II-G. To assess the effect of fleet-based VWs, two
different segmentations (50m and 10 000m) as well as two
DI scenarios ([10%, 90%] and [30%, 70%]) are optimized.
The segmentation levels correspond to the highest resolution
the EPF can provide, namely 50m segments, and a compa-
rably rough 10 000m segmentation. In turn, the DI scenarios
include a smaller, thus, conservative and wider characteris-
tic. The latter provides more decision flexibility for the sake
of less probability to be realizable while driving the route.
Fig. 7 shows the way-based speed adaption shares of the

optimizer’s velocity for the route task. The speed choice
vDP,i is compared to the median velocity vmedian,i on every
vertex i. The shares of covered distance where the opti-
mizer’s decision vDP,i is greater, equal or less than the
median vmedian,i are shown in light gray, gray and black.

FIGURE 7. Way-based ratios of speed adaption in segmentation scenarios of 50 m
and 10 000 m and two DIs of [10%, 90%] and [30%, 70%].

By that, the effects of segmentation and DI on strategy cal-
culation can be shown. The mean optimizer speeds v̄DP,i

higher than the mean median v̄median,i are colored in light
gray. They remain roughly constant, apart from the case for
a distance segmentation of �snom = 50m and a dynamic
interval of [30%, 70%]. Here, slightly less than 50% of
the entire driving task cover a higher mean speed than the
median value. Consequently, the share of v̄DP,i < v̄median,i
in black decreases significantly to slightly more than 10%
in comparison to the other scenarios. The share of identical
speeds in mid-gray also differs case-sensitively. The share is
slightly higher when the discrete segmentation is finer. This
is due to rounding effects discussed in Section II-E.
However, the higher ratio of speeds bigger than the median

for the aforementioned left case makes sense when consid-
ering Tab. 2. For the results in this Section III-B that base
on ECM, consider only the non-bold results. Here, only
for the �snom = 50m and [30%, 70%] case, two charging
stops I and II are planned. Also, the mean optimizer veloc-
ity v̄DP is comparably higher than for the other cases. Two
factors cause the occurrence of two charging events. The
discrete segmentation level of 50m offers a detailed strat-
egy optimization. Eq. (1) minimizes overall traveling time by
continuously lowering the speed. However, the fine resolu-
tion for �snom = 50m and the resulting lower speed border
of the 30% percentile is not sufficient enough, to lower
the speed that much, that the energy consumption does not
demand the second charging stop II.
For the broader DI [10%, 90%], and a lower L̄ of

89.1 km/h rather than 101.7 km/h, the second charging stop
can be prevented. For a rougher segmentation of 10 000m,
the effect described in Fig. 4 steps in: especially the slightly
lower L̄ prevents a second charging stop II. Due to aggrega-
tion, the upper and lower mean limits H̄ and L̄ differ. Apart
from the �snom = 50m and [30%, 70%], the charging strate-
gies with a single stop in the other driving scenarios remain
identical. The fewer segments, the broader the mean speed
window, and consequently, the higher the mean optimizer
speed v̄ and the lower the overall traveling time

∑
τi.

The dynamic intervals also affect strategy optimization. A
wider DI of [10%, 90%] leads to an increased v̄ and a lower
overall traveling time, whereby the L̄ mainly causes this
dependency. However, from a probabilistic view, strategy
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TABLE 2. Optimization results for consumption map based EPM input and differences for EPF based (bold).

planning gets more and more insecure due to the wider
VWs and a less precise prediction for the most probable
fleet behavior. The given results illustrate the importance
of the lower velocity bound for a time-minimal solution,
especially for wider intervals. It is yet to analyze, to which
extent additional fleet-sourced ECs due to the application of
the EPF’s energetic part enforce this effect.
Lastly, the fine spatial discretization in m = 8992 seg-

ments for �snom = 50m leads to what is commonly known
as the Curse of Dimensionality for DPs [25]. Due to the
highly detailed model and the matrix-based evaluation of
DP, calculation times tcalc for these use cases are compa-
rably high with a total of 2.8 h for [30%, 70%] and 3.06 h
for the broader dynamic interval [10%, 90%]. A wider DI
results in higher calculation times, as the optimizer evaluates
a broader velocity window and thus a higher number of dis-
crete decisions. Due to comparisons in terms of EC model,
the authors also had to re-calculate a fine spatial discretiza-
tion use-case of �snom = 50m and a DI of [10%, 90%]
with a finer state resolution. This resulted in an even higher
computation time of 3 days. However, for a spatial segmen-
tation of �snom = 10 000m, and thus m = 106 segments,
the computation times become significantly smaller. This
means 122.4 s and 134.8 s for [30%, 70%] and [10%, 90%],
respectively. All optimizations have been executed on con-
ventional hardware with an Intel i7 with 1.9GHz and a RAM
of 16GB. To reduce that number even more, backend-based
optimization for the rougher segmentation of m = 106 can
be a solution for real-time applications.

C. DIFFERENCES IN APPLICATION OF FLEET
CONSUMPTION MODEL
For illustrating the difference in both the ECM and EPF
approach, the optimization algorithm uses the fleet-based
energy consumption values that base on the EPF. In addition
to a dependency of energy consumption on segment length,
slope, and speed in the ECM, segment specific dynamics
from the fleet are added to the energy consumption in the
EPF case. This includes breaking, i.e., recuperating, as well
as accelerating locally.

FIGURE 8. Bar graph of share of realized vehicle speeds for the ECM (black) and
EPF (white) case for �snom = 50 m and [30%, 70%] and �emedian (vDP) for the
speed-dependent ECM and EPF consumption medians.

The optimization scenario is identical to the ECM case.
Again, two distance segmentation levels �snom = 50m and
10 000m and two DIs ([10%, 90%] and [30%, 70%]) are
applied. The numeric results are found in bold in Tab. 2.
Generally, an identical charging strategy setting is optimized,
excluding the strategy for the �snom = 50m and [10%, 90%]
case. Linearization errors in the calculation of control vari-
ables for the state space grid lead to a strategy deviation.
These effects have already been described in [12]. Thus,
for a better comparison of both ECM and EPF, a finer state
space grid discretization of �E

i
= 0.01% is chosen for more

comparable results. Generally, the additional energy in the
prediction model through dynamics provokes more conser-
vative planning. This leads to lower mean optimized speeds
v̄ and consequently to higher overall travel time. Also, a
higher charged SOC leads to pro-longed charging processes
in comparison to the ECM case. Additionally, both ECM
and EPF provoke different effects on strategy optimization.
For that, the realized speeds in the driving task and cor-
responding energies are analyzed in detail. Fig. 8 shows
the distribution of planned velocities with a black and gray
histogram for ECM and EPF, respectively.
This is done for a discrete segmentation of �snom = 50m

and a DI of [30%, 70%]. Correspondingly, the ECs are given
as medians relating to the realized speeds over the entire
driving task. For velocities with fewer occurrences, i.e., lower
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relative frequencies, the median energy values vary more.
This behavior can also be seen in Fig. 4 for low ratio speeds.
Three local maxima of realized speeds can be identified for
both prediction models: 99 km/h, 110 km/h and 130 km/h.
These velocities represent the optimizer’s handling of speed
limits along the given route task. The medians for the EPF
cases for these speeds are either slightly smaller (99 km/h,
110 km/h) or higher (130 km/h) than the equivalent ECM
value. Normally, when adding dynamics to a non-dynamic
energy value, the behavior of the latter is expected: an EPF-
median higher than the ECM value. The fact that the energy
medians for the EPF approach are smaller than the ECM
data for 99 km/h and 110 km/h originates to breaking or
additional recuperation due to slope. They are not taken into
account for the ECM case.
In total, the EPF is more precise, as it incorporates vehi-

cle dynamics. These lead to an additional consumed energy
of 1.8 - 2.3% compared to the ECM for the different
optimization settings. Therefore, the mean velocities are
lowered for the EPF case. Consequently, this results in an
elongation of 5.2min - 9.2min. Due to the more precise EPF,
the optimization result are more robust in real driving use
cases. The derived charging strategies are the same for EPF
and ECM input, as the optimizer can reduce EC enough to
compensate the additionally modeled dynamics by lowering
the mean velocity to reach the same chargers.

D. DEPENDENCY OF STRATEGY OPTIMIZATION ON
DEPARTURE TIME
The final evaluations vary the departure time of the driv-
ing task from Munich to Verona in increments of half an
hour from 06.00 a.m. to 10.00 p.m. This evaluation dis-
plays time-dependent changes in the velocity bounds and
its effect on strategy calculation. Therefore, the respective
fleet-sourced velocity bounds are derived using the moderate
DI of [30%, 70%] for each segment at the corresponding
time on it. Based on these bounds, an optimization fol-
lowing (1) calculates optimal velocities, charging stops and
charging energies. This is done for every departure time.
Here, the optimization with a nominal distance discretiza-
tion �snom = 10 000m utilizes the ECM. Fig. 9(a) depicts
the ratios of applied backup levels due to fleet data coverage
for each departure time, as described in Section II-D.
It shows that only seldom fleet data are unavailable. The

highest quality of fleet data is available for departures until
05.00 p.m. Due to four to five hours of traveling time, later
departures lead to arrivals in Verona at night-times. Less traf-
fic in the night leads to a relatively lower degree of available
fleet data. Consequently, a larger ratio of the derived velocity
bounds for these times gets replaced by neighboring data,
as depicted in Section II-D. More than the used fleet data
of two months, as Section II-G depicts, would be necessary
for a better resolution. Consequently, the interpretation of
the optimizer’s results needs to consider this averaging in
the night-time.

FIGURE 9. (a) Fleet data coverage, (b) mean lower velocity bound from fleet data,
total travel duration, and number of charging events greater one subject to the time of
departure from Munich to Verona.

Subsequently, Fig. 9(b) shows the relevant fleet-sourced
velocity information and the optimizer results over depar-
ture time. It displays only the lower velocity bound L̄, as the
previous evaluations showed that it has the biggest influence
on the driving strategy. This is due to the fact that the upper
bound is varying less due to speed limitation (see Fig. 4).
The departure until midday from Munich tends to be more
influenced by rush hour traffic resulting in lower velocities.
In turn, the velocities of the arrival in Verona, which rush
hour traffic also could affect, are less lowered. This is poten-
tially due to the anti-cyclic arrival. As previously discussed,
late departures are neglected due to limited data quality.
For earlier departures, the differences in the lower velocity
bound force the optimizer to increase the number of charging
stops nĩ to two, as the previous evaluations showed. Thus,
for departures with higher accessible L̄ for the driver, the
optimizer needs to incorporate an additional charging stop,
which results in a longer overall duration of travel

∑
τi if

the driver cannot drive a lot faster. Due to off-peak traffic,
local minima in total travel time are reached for departures
at 11.30 a.m. and 06.30 p.m., whereas the latter might suffer
from insufficient data coverage. This effect has already been
mentioned above.
Lastly, the dashed-line of a constant total travel time

of 295min represents a benchmark based on the scenario
that has been described in [12]. There, instead of time-and
location specific velocity bounds from the fleet fixed speed
bounds were assumed. The upper limit Hi was modeled as the
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tempo limit on road segments. The lower limit Li was an off-
set of 50 km/h to the upper bound. In the present paper, this
way of defining velocity bounds is transferred to the given
driving use case and compared to fleet-based velocity bounds
throughout an entire day. This time-dependent comparison
of total driving times can be seen in Fig. 9(b). Obviously,
the adapted speed bounds from [12] stay identical. Since
fleet-based velocity bounds reflect time-dependent variation,
the derived strategies are less optimistic than the fixed one
from [12]. Additionally, they vary in total driving time and
necessity of charging stops, which cannot be reflected by the
less realistic tempo-limit-based bounds. The consequence in
real driving applications combined with tempo-limit bounds
would be an underestimation of constraints and deviations
of up to 11% in total driving time at 12.30 a.m.

IV. CONCLUSION
The goal of this article was to combine the optimization
of long distance trips for BEVs with a fleet-based energy
consumption model to derive realistic strategies minimiz-
ing overall traveling time. The focus was to compute a
strategy that is as realistic as possible. To guarantee that,
planning of charging stops and energies as well as vehicle
speed was enabled. Accordingly, a non-linear charging model
calculated charging time as a function of charged energy.
For viable speed suggestions by the optimizer, the fleet
data provided realistic location- and time-specific velocity
bounds. In order to evaluate these speed adaptions ener-
getically, two energy consumption models were used. A
conventional consumption map model and a fleet-sourced
energy consumption prediction. For the latter, the veloci-
ties and dynamics from the fleet were used. This included
601 639 km of recorded and processed vehicle data on the
given 425 km route scenario from Munich to Verona.
The present evaluations depicted the impact of different

algorithm settings and departure times for the driving task.
This included both a detailed and rougher spatial segmenta-
tion of the route, its corresponding calculation times as well
as different widths for the fleet-sourced velocity windows.
Due to legal speed limits, a broader velocity window mostly
leads to a decreased lower accessible velocity bound, while
the upper bound stays similar. As a result, the lower velocity
limit mainly influences the optimizer’s decision space and
the amount of charging stops. Ultimately, it strongly reduces
the overall driving time by up to 18min. Still, the broader the
velocity windows from the fleet, the less it tended to rep-
resent the most probable fleet behavior. The fleet-sourced
approach including dynamics is more precise in comparison
to the consumption map-based one. This led to higher energy
consumption in most of the cases and thus a more robust
prediction. Although the optimizer reacted to this additional
energy consumption by reducing the velocity on average, the
energy consumption increased by 1.8 - 2.3% . However, the
optimizer could keep the charger selection for both energy
consumption models and thus compensated additional con-
sumption by reducing speed resulting in a prolongation of

5.2min - 9.2min in total travel time. Finally, the effect of
the departure time on strategy optimization was evaluated
using time-dependent velocity windows. Here, the optimizer
tended to vary the number of charging stops. This was
caused by a limited decision space, mainly due to the lower
velocity bound. A local minimum in terms of time-optimal
departure time are at 11.30 a.m., resulting in about 297min
overall traveling time. A benchmark with a previous publica-
tion showed the importance of more realistic time-dependent
speed bounds in strategy calculation with deviations of up
to 11%.
Future work will include a driver-specific adaption for

more reliable velocity bounds including a real-time traffic
adaption. More specific bounds can reflect the individual
velocity selection habits of the driver within the overall fleet-
behavior. Moreover, prospective work on the energy demand
prediction will address the influences of weather (e.g., vehi-
cle tempering, wind) and usage (e.g., trailer, mass) factors
by incorporation of a weather forecast and driving resistance
estimation. Furthermore, an application of the optimizer’s
selected speeds for autonomous driving will be evaluated.
A suggestion of the appropriate speed will be crucial for
ego-vehicles. In terms of route choice, an alternative frame-
work that incorporates routing strategy in the optimization
process is currently being developed and assessed. In terms
of the optimization model itself, a benchmark to other algo-
rithmic approaches will be evaluated in order to assess the
performance and solution quality of the chosen DP approach.
Finally, the derived strategies based on the presented

model framework lead to one-sided usage of the charger
network and, consequently, the electricity supply system.
Apart from a model to predict the availability of and wait-
ing time for chargers, the interaction of the vehicle system
and the electricity supply will be part of prospective work
on the optimization algorithm.
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