
Separation of Interfering Signals in an Ultrasonic
Flow Measurement System by Using Variable

Time-Delay Properties
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Abstract—The accuracy of ultrasonic flow measurements based
on the transit-time principle is highly influenced by the level of
superimposed interfering signals caused, among other things, by
a dispersive multipath propagation across the pipe wall. This
leads to an interference in the same frequency and time domain,
preventing the use of conventional filtering. To avoid expensive
constructive methods for suppressing the interfering signals, we
present a digital signal processing approach that uses the different
characteristics of the desired and the interfering signals. In this
work, the variable time-delay property of the fluid signal is used.
Thus, the temperature-dependent speed of sound and a varying
flow velocity are exploited. To this end, multiple measurements
with varying temperature and flow velocity are recorded and then
processed to estimate the static interfering signals. The results are
evaluated using the estimation error of the transit-time difference
in a simulated and an experimental flow measurement scenario,
respectively.

Index Terms—ultrasonic flow measurement, interfering signals,
B-Splines

I. INTRODUCTION

Ultrasonic flow measurements using the transit-time prin-
ciple are widespread in industrial applications due to their
advantages such as low energy consumption, low maintenance
cost and non-intrusiveness of the measurement [1], [2]. How-
ever, additive interfering signals, induced by crosstalk through
the pipe wall, can lead to a reduced accuracy, if they arise at
the same time as the desired signals [3]. Since the interfering
signals are caused by a multipath propagation, they are highly
correlated with the desired signals, and therefore hard to
separate by using signal characteristics such as frequency
range. While Lynnworth and Liu [1] report only mechanical
methods for crosstalk damping, Roosnek [4] and Jacobson
et al. [5] use the dynamics of the fluid signals to separate
them by post-processing. Nevertheless, Roosnek [4] needs
the flow statistics to create time-delays of the fluid signals
which uniformly cover one periodic time in order to use
the destructive interference for estimation of the non-varying
crosstalk. On the other hand, Jacobson et al. [5] realize the
suppression of the non-varying interfering signals by using
a high-pass along a set of consecutive measurements. This
in turn needs the dynamic properties of the fluid signals to

be sufficiently distinct. Thus, in our previous publication [6]
we proposed a method to use even small variations of the
time delays to get an interference-invariant measurement of
the transit-time. However, the assumption of a constant flow
velocity during the consecutive measurements was necessary.
In this work, this constraint will be alleviated to allow a robust
estimation, even if the flow velocity is varying during the
consecutive measurements.

II. METHODOLOGY

The separation of the additive interfering signals is realized
by estimating and then simply subtracting them. For this
purpose, we exploit the property that the interfering signals
are static and independent of the temperature T and the flow
velocity vF. To model these effects, the basic model

yu(t;T, v) = x(t− td(vF)/2− ta(T )) + e(t) + n1(t) (1a)
yd(t;T, v) = x(t+ td(vF)/2− ta(T )︸ ︷︷ ︸

τ

) + e(t) + n2(t) (1b)

is composed of the direct signals through the fluid x(t),
the interfering signals e(t) and the Additive White Gaussian
Noise (AWGN) n(t). These together build the upstream and
downstream measurement signals yu(t;T, v) and yd(t;T, v).
Here, the flow velocity vF influences the transit-time difference
td(vF) and the absolute time-delay ta(T ) is determined by the
temperature-dependent speed of sound cF(T ), if water is the
medium. These variable time-delay properties of the direct
signals can be used to formulate the following derivations.
For our algorithm, either the upstream or downstream signals
are necessary, which is why the following calculations only
consider the downstream signals, where the subscripts are
omitted.

Suppose there are M consecutive measurements with vary-
ing flow velocity vF,m and temperature Tm. These process
parameter variations result in a varying time delay τ , which
covers the interval τ ∈ [t, t]. Thus, at any two time steps tn and
tn+1, there exist sample points of the direct signals x(t) in the
intervals Γn = [tn+t , tn+t] and Γn+1 = [tn+1+t , tn+1+t],
respectively. If the sampling time is sufficiently small, the



intersection Γ = Γn ∩ Γn+1 is non-empty and for every
(τ1 + tn) ∈ Γ, there is exactly one (τ2 + tn+1) ∈ Γ such
that

ỹ(tn; τ1) + ∆ẽ(tn) + ∆ñ(tn) = ỹ(tn+1; τ2) , (2)

with

∆ẽ(tn) = ẽ(tn+1)− ẽ(tn) , (3)
∆ñ(tn) = ñ(tn+1)− ñ(tn) (4)

holds. In this paper, the notation (̃·) denotes the analytic signal
calculated by the sum of the signal itself and its complex-
valued Hilbert transform jH{·}. Note that in Eq. (2) the
parameters vF and T have been replaced by their resulting
time-delays τ1 and τ2.

Equation (2) shows that the interfering signals can be es-
timated by finding all corresponding time-delays τ1, τ2 to
resolve the formula to ∆ẽ(tn). However, since the time-delays
contained in the data set of the M measurement signals are
only influenced by the process parameters vF,m, Tm, the
distribution in the interval Γ may be non-uniform or even
contain gaps. Therefore, some time-delays τ1 do not have a
corresponding time-delay τ2 in the data set. To circumvent
this issue and to be more robust against AWGN (see Eq. (4)),
we propose to use approximations of the analytic signals
ỹ(tn; τ1) and ỹ(tn+1; τ2) based on B-Splines. This results in
two trajectories p̂n(r) and p̂n+1(r). After the B-Spline based
approximation of the signals, the differential interfering signals
∆ẽ(tn) is estimated by calculating the misalignment between
the overlapping parts of the two trajectories p̂n(r), p̂n+1(r).
This part of the algorithm is called Partial Shape Matching.

In the first step of the approximation via B-Splines, a point
cloud

Pn = [pn,1, . . . ,pn,M ]T ∈ RM×2 , (5)

consisting of the 2D representation of the analytic measure-
ments signals at the time step tn

pn,m =

[
Re{ỹ(tn;Tm, vm)}
Im{ỹ(tn;Tm, vm)}

]
∈ R2×1 , (6)

is created, which results in M 2D points (for a detailed
description of the point cloud generation see [6]). A 2D
trajectory can be modeled by

p̂(r) =

F∑
i=1

bi(r) · ci , ci =

[
cx,i
cy,i

]
, (7)

where bi(r) denotes the B-Splines of order L and ci denotes
the coefficients of the F individual B-Splines. F represents
the degrees of freedom, which can be increased by using more
support knots or higher-order B-Splines, if the approximation
quality is insufficient. The approximation problem can then be
formulated as

Pn = B(r) ·C + nn , C = [c1, . . . , cF ]T ∈ RF×2 , (8)

with the corresponding support points

r = [r1, . . . , rM ]T , rm ∈ [0, 1] (9)
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Fig. 1. Example estimation of the interfering signals. Upper left: all point
clouds. Upper right: B-Spline approximation of a single point cloud. Lower
left: partial shape matching between two trajectories. Lower right: estimated
differential interfering signals ∆e(tn) and their offset corrected integration.

and the resulting B-Spline matrix

B(r) = [b1(r), . . . , bF (r)] ∈ RM×F . (10)

The scaling of the support points r can be arbitrarily chosen,
because the points to approximate are only given as 2D
vectors, but the scaling needs to be adapted to the interval
spanned by the support knots. For simplicity, we set the scaling
of the support points and correspondingly the support knots
to the interval [0, 1]. After the formulation of the problem, the
approximation can be performed by the iterative method of
Wang et al. [7]:

r(0) : initial support points

C(k+1) =
(
BT(r(k))B(r(k))

)−1
BT(r(k)) ·Pn

r(k+1) = arg min
r

∥∥∥B(r) ·C(k) −Pn

∥∥∥2
F
.

(11)

Finding the initial support points is realized by pre-ordering
the points pn,m using the Euclidean distance. Since the
trajectories do not have loops and are only slightly curved
(see Fig. 1), the two points with maximal distance between
each other represent the start and end points. The remaining
support points are determined by their distance to the start
point with subsequent normalization of all distances to the
interval [0, 1].

Subsequently to the B-Spline approximation, the misalign-
ment has to be estimated. For this purpose, both trajectories
p̂n(r), p̂n+1(r) are densely sampled and a quality measure
using the mean of squared distances is introduced. Because
only a partial overlap is expected, the sampled points of
the first trajectory are classified whether they have a corre-
sponding point in the other trajectory or not. All points with



corresponding counterparts are connected using the nearest
neighbor search and their squared distances are accumulated
in the quality measure. By simple minimization of the quality
measure, the misalignment ∆ẽ(tn) can then be determined.

However, an individual B-Spline approximation for every
time step tn leads to slight deviations in the shapes of the
trajectories due to the noise n, which induces further errors
when estimating the misalignment. A better approach is the
combined B-Spline and misalignment approximation, as it
integrates the knowledge that the shapes of the trajectories
at different time steps do not change. Furthermore, the com-
putational effort used for Partial Shape Matching is saved. The
combined estimation can be achieved by extending the signal
model (8) by the misalignment, which results in the adapted
formulation[

Pn
Pn+1

]
︸ ︷︷ ︸

P̂n

=

[
B(rn) 0

B(rn+1) I

]
︸ ︷︷ ︸

B̂(r̂)

·
[

C
∆eTn

]
+

[
nn

nn+1

]
, (12)

with the ones matrix

I = [1, . . . , 1]T ∈ RM×1 (13)

and the misalignment

∆en =

[
Re{ẽ(tn+1)− ẽ(tn)}
Im{ẽ(tn+1)− ẽ(tn)}

]
. (14)

This way, the iterative approach (11) can be reused with the
modified point cloud P̂n and the modified B-Spline matrix
B̂(r̂).

Finally, after the repeated estimation of ∆ẽ(tn) for all
relevant time steps tn, the differential interfering signal needs
to be integrated to separate it from the measurement signals.
The integration constant is determined by an offset correction,
which is justified by the band pass characteristics of the
interfering signals. An example overview over the different
algorithm steps, such as point cloud generation, B-Spline
approximation, misalignment estimation and integration can
be seen in Fig. 1.

III. SIMULATION AND EXPERIMENTAL RESULTS

For the detailed evaluation of the new method and its
dependencies, simulated signals were generated. The under-
lying simulation environment used the pipe geometry of our
experiment (diameter 8 cm and axial transducer distance 6 cm)
and considered effects such as temperature dependency of the
speed of sound in water and the flow velocity averaged over
the propagation path. The signals were generated according to
(1) and consisted of direct signals, additive interfering signals
and measurement noise. As direct signals a cosine modulated
Gaussian impulse with a center frequency of 700 kHz was
used. And as additive interfering signals, we recorded a typical
signal from an air-filled pipe using clamp-on transducers to
get realistic characteristics. Lastly, the measurement noise
was simulated by the MATLAB random numbers generator
and adjusted to test the effect of different Signal-to-Noise-
Ratios (SNR). Due to the interfering signals being known,
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Fig. 2. Evaluation of estimation quality using different simulated scenarios.
Upper left: Dependency on the number of measurements M (SNR = 46 dB,
∆T = 1 K). Upper right: Dependency on the noise level (M = 400). Lower
left: Dependency on the temperature dynamic range [20 , 20+∆T ]◦C. Lower
right: Limitation of the quality by non-static interfering signals.

the estimation quality can then be evaluated by the residual
Signal-to-correlated-Noise-Ratio

ScNR = 20 · log

(
max |x(tn)|

‖ê(tn)− e(tn)‖2

)
, (15)

where ê(tn) denotes the estimated interfering signal. Note that
the maximum of the direct signal was normalized to 1, which
simplifies the above equation.

Since the proposed method is based on the signal model (1)
and requires M consecutive measurements with variable time-
delay properties, different scenarios with varying numbers of
measurements M , temperature dynamic ranges ∆T over the
M measurements, SNR conditions and model errors were
simulated. Due to the assumption of static interfering signals,
we introduced a temperature-dependent time-delay te(T ) to
model different levels of model errors. For reasons of sim-
plicity, the linear relation te(T ) = cT,e (T − 20 ◦C) was used
to model the temperature dependency. In Fig. 2 the estimation
quality using the metric (15) is depicted for different scenarios.
It can be seen, that the estimation quality is impaired by
higher temperatures, worse SNR levels and the model error.
However, the number of measurements does not significantly
influence the quality, since the ScNR values are still above
40 dB, which is required to get an estimation of the transit-
time difference with an accuracy of ±1 % [6]. Furthermore,
a minimum temperature dynamic range of ∆T = 0.7 K is
necessary for the method to be robust against AWGN. Lastly,
Fig. 2 shows that the model error of non-static interfering
signals dominates the estimation quality, because even larger
temperature dynamic ranges can not improve the estimation.
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Fig. 3. Comparison of the transit-time difference errors if the original or
interference-compensated signals were used.

The experimental results were obtained from an ultrasonic
flow measurement experiment, which consisted of a water
cycle with a pump, a reference measurement device and
a heating element installed. Over a constantly increasing
temperature, 2261 measurements with varying flow velocity
were recorded and reordered in several signal packages, which
cover a temperature dynamic range of ∆T = 1 K each.
The packages were chosen to contain overlapping temperature
ranges, in order to visualize discontinuities if they exist.
Because the ground-truth for the interfering signals is not
known, the quality of the compensation is evaluated by the
resulting estimation quality of the transit-time difference.
Therefore, the transit-time estimation method introduced by
Kupnik et al. [8] is applied once to the original signals and
once to the compensated signals. Subsequently, the transit-time
differences are compared against the ground-truth resulting
from the reference measurement device and are represented
as a relative estimation error E(T ) in percent.

As every signal package contains a different arrangement
of the measurement signals, the estimated interfering signals
also differ for each signal package which leads to the results
depicted in Fig. 3. Note that the interfering signals were
only estimated in the time range where the direct signals
are supposed to be. The temperature-dependent relative error
E(T ) of the estimated flow velocity is obtained from the
transit-time estimation of the original signals. The relative
error is influenced by the level of interfering signals and
significantly reduced by our compensation, as it can be easily
seen. The residual error can be explained by the model error
of the non-static interfering signals as described above. An
example pair of the recorded measurement signals and the
different estimations of the interfering signals can be seen in
Fig. 4. The fact that the estimated interfering signals have a
slightly drifting time-delay also implies that only the static
part can be estimated while the non-static interfering signal
can not yet be separated.

IV. CONCLUSION

A new method to separate highly-correlated interfering
signals in ultrasonic flow measurements has been introduced
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Fig. 4. Measurement signals (top) and the estimated interference signals if
different temperature ranges were used as consecutive measurements (bottom).

and evaluated on simulated as well as experimental signals.
The simulation results showed that the estimation quality is
dependent of the noise level and the dynamics of the time-
delays. If the signal model holds, the quality is sufficient
to get a flow measurement accuracy better than ±1 %. The
experimental results underline these finding, even though the
accuracy is limited by the non-static interfering signals.
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[6] M. Bächle and F. Puente León, “Unterdrückung stationärer Interferen-
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