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Abstract—The analytic wavelet packet transform, based on
the dual-tree approach, represents a complex-valued extension
of the wavelet packet transform. A generalization to multiple
dimensions can be realized using fully separable wavelet trees,
but this restricts the possible subband combinations. To overcome
these limitations, we present a flexible framework to calculate
N-D analytic wavelet packets with configurable decomposition
structures and filter types. By introducing a new subband nota-
tion for the nodes of the N-D wavelet binary tree, both anisotropic
and isotropic decomposition structures can be realized. Based on
this subband notation, a full frame in N dimensions is defined and
combined with an optimal basis selection, which we generalized
to arbitrary dimensions, to find signal-adapted decomposition
structures. As a multi-dimensional example, the framework is
applied to the compression and denoising of a 4D light field.
The results are evaluated in terms of the PSNR and SSIM and
compared with the discrete cosine transform.

Index Terms—analytic wavelet packets, signal-adapted filter-
ing, signal compression, signal denoising

I. INTRODUCTION

The Discrete Wavelet Transform (DWT) is well known to
sparsely represent structured, piecewise continuous signals and
has been a powerful tool in signal processing for decades.
Extensions of the transform to two-dimensional signals (most
importantly, images) have been studied since the late 80’s [1]
and succesfully applied to various tasks, ranging from signal
analysis [2] to compression [3] and denoising [4], to name a
few. However, with recent advances in sensor technology, com-
putational power and data storage capacities, high-dimensional
data has become more available and feasible to process and
analyse. For example, 3D tomography data (computer tomog-
raphy, magnetic resonance tomography, and others) are widely
used in medical imaging. In the computer vision community,
high-dimensional data such as 3D hyperspectral images [5],
4D light fields [6], and 5D hyperspectral light fields [7] have
been attracting attention. For these high-dimensional signals,
sparse or signal-adapted bases become increasingly important
for data analysis, processing and storage.

While the Wavelet Packet Transform (WPT) [13] allows a
more flexible signal representation than the DWT, the trans-
form is also not shift-invariant, due to the downsampling in the
filter bank. Therefore, the Analytic Wavelet Packet Transform
(AWPT) was introduced simultaneously by Selesnick [8] and

Weickert et al. [9], combining the dual-tree approach, pre-
sented by Kingsbury [10] and Selesnick et al. [11], with the
real-valued WPT. Using the dual-tree extension, the resulting
basis functions are designed to be nearly analytic, resulting in
an improved shift-invariance. However, a detailed formulation
of an N-D extension of the AWPT has not yet been discussed.

To this end, we present a framework and reference im-
plementation for the N-D AWPT with fully configurable de-
composition structures and dimension-specific filter types. The
source code of our implementation is made publicly available
[12]. Because different kind of data has its own inherent
characteristics, we generalize the decomposition structure and
the dual-tree approach such that the filter types and frequency
subbands can be chosen independently for each dimension.
Furthermore, a frame is calculated by the new decomposition
method, which is used to determine a signal-adapted basis
employing the search principle introduced by Coifman and
Wickerhausen [13]. Finally, the framework is applied to the
compression and denoising of 4D light field data.

II. N-D ANALYTIC WAVELET PACKETS

One-dimensional wavelet packets are based on a cascaded
filter bank and can be represented by a binary tree, where
every node stands for a different frequency subband. Every
intermediate node is split by a lowpass and a bandpass
filter, with subsequent downsampling by a factor 2, into its
two children. If only the lowpass signal is further split, the
resulting structure is called the DWT. When the bandpass
signal is also split, the DWT is extended to the more general
WPT. The complex extensions of the DWT and the WPT are
called the Dual-Tree Complex Wavelet Transform (DT-CWT)
and the AWPT, respectively. The presented framework allows
arbitrary decomposition structures based on an N-D binary tree
representation of the wavelet packets. In the following section,
the necessary definitions of the N-D binary tree, the nodes
and their relationships are introduced. Furthermore, a detailed
description of the algorithm that performs the decomposition
based on an N-D recursive depth-first search is given.

A. Decomposition structure notation

To uniquely define a binary tree, a set of leaves and a parent-
child relationship is needed. Therefore, a unique identifier for



fx

fy

1.)

2.)

3.)

4.)5.)

6.)7.)

8.)
9.)

10.)

1.) {(1, 1), (1, 0)}
2.) {(2, 3), (1, 1)}
3.) {(2, 2), (1, 1)}
4.) {(1, 0), (2, 3)}
5.) {(1, 0), (2, 2)}
6.) {(2, 1), (2, 1)}
7.) {(2, 1), (2, 0)}
8.) {(2, 0), (2, 0)}
9.) {(3, 1), (2, 1)}

10.) {(3, 0)︸ ︷︷ ︸
fx

, (2, 1)︸ ︷︷ ︸
fy

}

Figure 1. Distribution of the frequency domain of a 2D signal with its
associated node identifiers.

the leaves has to be introduced. In the one-dimensional case,
a node is uniquely identified by the tuple

b = (s, k) ∈ N2 , with s ≥ 0 , k ∈ [0, 2s − 1] , (1)

where s denotes the level of the node and k denotes the
subband within this level. Throughout this paper, [·, ·] denotes
a subset of N. For a signal to be reconstructible, only full
binary trees are admissible, i.e. binary trees where every node
has exactly zero or two children. Given a parent node (s, k),
its two children are naturally identified as

(s+ 1 , 2k) , lowpass child, (2a)
(s+ 1 , 2k + 1) , bandpass child. (2b)

This describes that the children are one level deeper than their
parent and that a higher subband number represents a higher
center frequency in the associated level. This naturally leads
to the subband center frequency fc(s, k) = kfN/2

s, where
fN denotes the Nyquist frequency. An extension of the node
identifier to N dimensions is now realized using the set

B =
{
bi, i ∈ [1, N ]

}
, (3)

consisting of N tuples bi, which each describe a level and
subband per dimension, as defined in (1). In this N-D ex-
tension, a node B̄ is called a child of B, if for at least one
dimension i, b̄i is a child of bi and for all remaining j 6= i,
bj = b̄j . An example of this notation, using an arbitrary
frequency resolution of a 2D signal, is shown in Fig. 1.

Using the node identifier and the parent-child relationship,
the decomposition structure of the N-D WPT can be described
by a binary tree, which is uniquely identified by the set

T =
{
Bm, m ∈ [1,M ]

}
, (4)

where the nodes Bm identify the M leaves of the tree. A
decomposition containing redundant nodes can be associated
with an extension of T by additional intermediate nodes,
which will be discussed in detail in Section III.

B. Decomposition algorithm

The decomposition algorithm is recursively designed, start-
ing its execution with the root of the binary tree. Each
recursive call consists of mainly four steps:

1) Check if the current node B̃ is a leaf of the binary tree.
If so, stop the recursion.

2) Determine in which dimension the data has to be filtered
in the current recursive call.

3) Filter the input data of the current recursive call along
the determined dimension.

4) Start two new recursive calls for the lowpass and band-
pass child which resulted from the filtering step.

By testing every element of T for its accessibility from the
current node B̃, it can be decided whether B̃ is a leaf or not.
For this purpose, an ancestor-descendant relationship between
two nodes has to be defined. The node B̃ is a leaf if T does not
contain any descendants of B̃. Two nodes B and B̄, containing
the tuples bi = (si, ki) and b̄i = (s̄i, k̄i), respectively, are
defined to have an ancestor-descendant relationship

B � B̄ , B is ancestor of B̄, (5)

if all of the relations

∀i∈[1,N ] : s̄i ≥ si , (6a)
∃i∈[1,N ] : s̄i > si , (6b)

∀i∈[1,N ] : ki = bk̄i · 2si−s̄ic (6c)

hold. Whereas the first two conditions can be derived from the
fact that only deeper levels can be reached by splitting a node,
the third condition reflects that the descendant subband k̄i is
consistent with the subband ki of the ancestor node. To this
end, we use the inverse of the parent-child relationship (2),
which has been extended to cover multiple generations. In the
following, the set of all descendants of B̃ in T is denoted by
T̃d =

{
B ∈ T | B̃ � B

}
⊂ T .

In the second step, the dimension in which the data has to
be filtered is determined. It is then tested for all descendants
B ∈ T̃d in which dimension i their level si is deeper than the
ancestor level s̃i. Similarly, for the filtering in dimension i
to be allowed, all descendants need to have a deeper level
si > s̃i. Otherwise, at least one descendant would not be
reachable from the current node’s children anymore. Summa-
rized, the sets of the necessary and allowed dimensions

Inec =
{
i ∈ [1, N ]

∣∣ ∃B∈T̃d
: si > s̃i

}
, (7a)

Iallow =
{
i ∈ [1, N ]

∣∣ ∀B∈T̃d
: si > s̃i

}
, (7b)

are defined. Consequently, the next dimension to filter is
chosen from the intersection of the necessary and allowed
dimensions

I = Inec ∩ Iallow . (8)

If there are no redundant nodes in T , the intersection I
contains at leasts one element. In case I contains multiple
elements, simply the first element is chosen, due to the
convolution being commutative.

In the third step, the actual filtering of the data is carried
out. Given the input data c[n1, . . . , nN ] of the current recursive
call, the lowpass and the bandpass child are calculated via

cLP[. . . , ni, . . . ] =
(
c[n1, . . . , nN ] ∗i gLP[n]

)∣∣∣
n=2ni

, (9a)

cBP[. . . , ni, . . . ] =
(
c[n1, . . . , nN ] ∗i gBP[n]

)∣∣∣
n=2ni

, (9b)
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Figure 2. Flowchart of the decomposition algorithm.

where ∗i denotes a convolution in the i-th dimension. Equa-
tion (9) describes the filtering step as a convolution along the
i-th dimension using the finite impulse responses gLP, gBP and
a subsequent downsampling by a factor of 2. Consequently,
the number of samples of the data in the i-th dimension is
halved.

In the last step of the algorithm, the next recursive calls are
invoked using the children

B̃LP = {b̃1, . . . , ( s̃i + 1 , 2k̃i ), . . . , b̃N} , (10a)

B̃BP = {b̃1, . . . , ( s̃i + 1 , 2k̃i + 1 ), . . . , b̃N} (10b)

together with the filtered data (9), since each recursive call
requires both the input data and a (new) current node.

Figure 2 shows a summary of the proposed algorithm. After
evaluating the stopping criterion, the next filtering dimension
is determined, followed by the actual filtering step and the
new recursive calls for the child nodes.

C. Dual-tree extension to multiple dimensions

So far, the data is only filtered with real-valued finite
impulse response filters which suffer from a lacking shift-
invariance (due to the downsampling) and oscillations in the
time-frequency domain, even if the signal energy is constant
within a frequency subband. To overcome these drawbacks,
an additional tree, whose filters build a Hilbert pair with
the corresponding filters of the original WPT tree, has been
introduced by Kingsbury [14]. A generalization of the so-
called dual-tree approach to multiple dimensions leads to the
multi-dimensional complex wavelet functions

ψC[n1, . . . , nN ] = ψC
1 [n1] · · ·ψC

N [nN ] , (11)

with
ψC
i [ni] = ψRe

i [ni] + jψIm
i [ni] , (12)

where ψRe
i [ni] and ψIm

i [ni] denote the resulting wavelet func-
tions of the original and its dual tree of the i-th dimension,
respectively. For further reference on the filter design to obtain
the analytic basis functions ψC

i [ni], see [8], [10], [15]. Note
that Eq. (11) implies the usage of separable filter kernels

without limitation to isotropic decomposition structures. By
replacing some of the complex wavelets ψC

i [ni] with their
complex conjugates, the support of the wavelet in the cor-
responding frequency domain can be adjusted.

Equation (11) can be implemented using the multiplication
principle to calculate 2N WPT trees with all possible combina-
tions in {ψRe

1 , ψ
Im
1 }×{ψRe

2 , ψ
Im
2 }×· · ·×{ψRe

N , ψ
Im
N }. Depending

on the desired support of the complex wavelet ψC, the AWPT
of the input signal X is obtained by the linear combination

AWPT(X) =

2N−1∑
n=0

an ·WPTn(X) (13)

of the individual trees WPTn. To reduce the memory re-
quirements, only basis functions with support in the positive
frequency domain are used. For this, the coefficients an are
defined by the sequence (an)2N−1

n=0 through

a0 = 1 , an = j · anmodm[n] , (14)

where m[n] = 2bld nc and mod denotes the modulo operation.
For every dimension i individually, our framework offers the
possibility to choose if a real or complex-valued wavelet
should be used, i.e. whether the wavelet ψC

i [ni] = ψRe
i [ni]

or ψC
i [ni] = ψRe

i [ni] + jψIm
i [ni] is used. Using real-valued

wavelets reduces the number of necessary trees and the com-
putational complexity at the cost of a missing shift-invariance.

III. SIGNAL-ADAPTED FRAME REPRESENTATION

For the signal synthesis, only the leaves of the tree are
needed. If the intermediate nodes are also kept, a redundancy
is introduced, leading to a frame (instead of a basis). The frame
can then be used to determine an optimal, signal-adapted basis.
As mentioned in Section II, the frame can be defined using an
extended set TFrame ⊃ T that contains both the leaves and
all intermediate nodes. Each node in TFrame is calculated by
the decomposition algorithm and evaluated using the Shannon
entropy as the cost functional. Finally, by selecting the best
nodes in terms of entropy, we remove all redundant nodes
and find the decomposition structure TSA, which we call the
Signal-Adapted WPT (SA-WPT) in the real-valued case and
the SA-AWPT in the complex-valued case.

First, the frame is defined. For each dimension i, the deepest
level Li has to be specified, resulting in Mi = 2Li+1 − 2
tuples per dimension if all intermediate nodes are considered.
By combination of all these tuples, using the multiplication
principle, we obtain the frame

TFrame = {b1,1, . . . ,b1,M1
}×· · ·×{bN,1, . . . ,bN,MN

} , (15)

containing M = M1 ·M2 · · ·MN nodes.
Consequently, the set I, containing the next possible dimen-

sions to filter, may be empty, because for every dimension
i, there exists a descendant node that violates si > s̃i in
(7b). Hence, if I is empty, for every i ∈ Inec, an additional
recursion is started, i.e. the algorithm steps (9) and (10) are
repeated for all i. Since the additional recursions are being
executed independently and the same nodes may be accessible



by different recursions, many redundant calculations would be
performed. To avoid these calculations, a globally accessible
set, containing the nodes that have already been calculated,
is used in order to define an additional stopping criterion,
namely: stop the recursion if the current node has already been
calculated by another, independent recursion. Apart from that,
the decomposition is performed analogously to Section II-B.

After the decomposition of the signal, every node B ∈ TFrame
represents a subspace of the frequency domain and contains
the filtered data. By calculating the entropy

H(B, c) = −
K∑

k=1

|ck|2

E0
ln
|ck|2

E0
, (16)

the sparsity of the data in these subspaces can be evaluated
[13]. Here, c ∈ CK denotes the node’s vectorized filtered data
and E0 the energy of the input signal. In the one-dimensional
case, the optimal basis selection is performed by using a
recursion starting with the root of the tree. In each recursive
call, if the node is not a leaf, the cost is calculated as the
minimum of its entropy and the summed costs of its children.
In case the node is a leaf, its cost is equal to its entropy.
Generalizing this approach to arbitrary dimensions, there are
now 2N direct children, i.e. children with exactly one bi

fulfilling Eq. (2). The cost J(B) of a node B is therefore
calculated using its direct children Bi,BP,Bi,LP, via

J(B) = min {H(B), Jdesc} , with (17a)

Jdesc = min
i∈[1,N ]

{
J(BBP

i ) + J(BLP
i )
}
. (17b)

Similarly to the decomposition, redundant calculations are
avoided by using a set containing the nodes which have already
been calculated. In addition, the recursion is used to create the
set TSA. If the current node B̃ is a leaf or J(B̃) = H(B̃) in
(17a), a temporary set T̃ = {B̃}, which contains only the
current node, is returned by the recursive call. Otherwise, the
minimizer i∗ of (17b) is used to find the best direct children.
In this case, the returned temporary set T̃ is calculated as the
union T̃ LP

i∗ ∪T̃ BP
i∗ , with T̃ LP

i∗ and T̃ BP
i∗ being the temporary sets

returned by the lowpass and bandpass child of the best direct
children, respectively. Finally, the set TSA, defining the signal-
adapted decomposition, is obtained by the set T̃ returned by
the initial call of the root of the tree.

IV. LIGHT FIELD COMPRESSION AND DENOISING

As a high-dimensional example, we apply the proposed
framework to 4D light fields. In the so-called plane-plane
parametrization, a 4D light field L(u, v, s, t) is parametrized
by its angular and spatial coordinates (u, v) and (s, t), re-
spectively. In this parametrization, a light field can be thought
of as a multi-view collection of images: for fixed (u, v), the
subapertures Iuv(s, t) = L(u, v, s, t) are regular 2D images.

Using the proposed framework, we apply the 4D DWT, DT-
CWT, (A)WPT, and SA-(A)WPT to a light field compression
and denoising. For all wavelet-based transforms, Daubechies-3
and Daubechies-5 filters [15] are applied in the (u, v) and (s, t)
dimensions, respectively. These filters were chosen because

(a) Original. (b) Noisy (20 dB).

(c) DCT (28.65 dB). (d) SA-AWPT (28.61 dB).

Figure 3. Central views of the original, noisy and denoised light fields.

they show a good trade-off between filter length and possible
tree depth (which is determined by the size of the data and the
filter length). For the analytic transforms, starting from level
two, the Q-shift-2 filters [10] are applied in order to obtain
(approximately) analytic wavelet functions. As a reference,
we will compare these methods to the 4D Discrete Cosine
Transform (DCT). Since it would be out of the scope of this
paper, we do not perform a full-scale statistical analysis of
the compression and denoising performance but merely use
a single example light field to demonstrate the potential of
multi-dimensional analytical wavelet packets. To this end, we
use the Lego Knights light field of the well-known Stanford
Light Field Archive [16], which was converted to grayscale
and downsampled to a size of (16, 16, 512, 512). The central
view I8,8(s, t) of the original light field is shown in Fig. 3 (a).

A. Compression

Sparse representations are well suited for signal compres-
sion. Most straightforwardly, the transformed signal’s smallest
coefficients are thresholded to zero and the resulting signal
energy is measured. In a sparse representation, the signal
energy is concentrated in only a few large coefficients. To
investigate the sparsity of the different transforms, we apply
hard thresholding to the transformed light field for different
inverse compression ratios α = Nnz/N , where Nnz is the
number of non-zero elements and N is the total number
of elements of the light field. The results in terms of the
compressed signal’s Peak Signal-to-Noise Ratio (PSNR) for
the different transforms are shown in Fig. 4. Overall, the
SA-WPT performs best, while the DCT performs slightly
better for very high compression ratios. It can be observed
that the regular WPT performs worst for most compression
ratios, which is to be expected since most of the signal energy
is contained in low frequencies. Due to the low frequency
characteristic of the light field’s angular components, the
wavelet approach cannot unfold its full potential for high
compression ratios when compared to the DCT, which is well
suited for nearly constant signals.
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Figure 4. Compression results of the example light field for various bases.

B. Denoising

To investigate the denoising capabilities of the different
wavelet approaches, the original light field is superposed with
uncorrelated white Gaussian noise (PSNR = 20 dB), as shown
in Fig. 3 (b). Denoising is performed by applying a hard thresh-
old in the transformed domain, where the threshold value is
estimated using the commonly used VisuShrink estimator [17].
After thresholding, the signals are transformed back to the
original domain and the resulting PSNR values are calculated
by comparing the original light field and the denoised one. The
results are shown in Fig. 5. Except for the DCT, all transforms
were carried out using the proposed framework. While, again,
the DCT performs quite well in terms of the denoised PSNR,
the visual quality, measured using the Structural Similarity
Index Metric (SSIM) [18], is inferior to those of the signal
adapted and analytic wavelet approaches. This is in agreement
with the visual impression of the denoising results as shown in
Fig. 3 (c, d) for the DCT and SA-AWPT. While both denoising
results show an almost identical PSNR value, the visual quality
of the results is vastly different. It can be observed that
the DCT succesfully removes the high-frequency components
mostly associated with noise resulting in a high overall PSNR
value. However, due to the lack of high frequencies, the result
appears less sharp, while low and mid-frequency noise is still
clearly visible. On the other hand, the SA-AWPT is naturally
more adapted to the underlying data, preserving edges whilst
restoring homogenous areas of the light field nicely. However,
the SA-AWPT denoising introduces some visible wavelet-
related artefacts. Concluding, the potential of the (analytical)
wavelet and wavelet packet transform for light field data has
been demonstrated.

V. CONCLUSION

The presented framework for the N-D analytical wavelet
packet transform unifies the discrete wavelet transform, the
wavelet packet transform and their analytic counterparts. Due
to the novel notation of the decomposition structure, flexible
decompositions are possible, including isotropic, anisotropic
and redundant representations. Using the proposed framework,
a 4D light field compression and denoising was performed. In
both cases, the signal adapted and analytic transforms showed
promising results, improving the SSIM and/or PSNR over the
standard wavelet and discrete cosine transform.
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Figure 5. Denoising results of the example light field for various bases.
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