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Abstract—In this work an approach for wide-area indoor
people detection with a network of depth sensors is presented.
We propose an end-to-end multi-view deep learning architecture
which takes three foreground segmented overlapping depth
images as input and predicts the marginal probability distribution
of people present in the scene. In contrast to classical data-
driven approaches our method does not make use of any real
image data for training but uses a randomized generative scene
model to generate synthetic depth images which are used to train
our proposed deep learning architecture. The evaluation shows
promising results on a publicly available data set.

Index Terms—multi-view person detection; network of depth
cameras; top-view people detection; synthetic depth images;
multi-view CNN architecture

I. INTRODUCTION

Wide-area people detection is an important prerequisite for
various indoor applications, e.g. people counting, customer
behavior analysis, public security or smart homes. In this work
we address the problem of indoor people detection with a
network of depth sensors. Typically, the depth sensors capture
the scene from the vertical top-view to reduce occlusions
in crowded scenes. As a consequence of the top-view, the
appearances of pedestrians varies drastically, making it very
challenging for off-the-shelf data-driven pedestrian detectors
without a domain-specific large scale data set. To overcome the
lack of a large-scale data-set for depth image people detection
we present a randomized generative scene model to generate
a synthetic training data set of arbitrary size. Moreover, we
propose a multi-view CNN architecture which is only trained
by the randomized synthetic depth images to predict the
marginal probability distribution of people present in the scene
(see Fig. 1). In the evaluation we compare our method with
state-of-the-art multi-view people detection methods.

While the related task of multi-view people detection and
tracking with monocular video cameras has been studied in
great detail [1]–[4] only a few approaches in the literature rely
on a network of depth sensors for people detection. In the
following we discuss existing approaches based on multiple
depth images and refer to [5] for a broader discussion on
related single-view or monocular multi-camera methods.

The authors would like to thank the German Federal Ministry of Education
and Research (BMBF), for funding the presented research under grant
#13FH025IX6.

Tseng et al. [6] present an indoor people detection system
based on multiple active sensors in top-view. Their approach is
based on a fused virtual top-view depth image, back projected
from the 3D points obtained by each sensor. For the detection
they employ a hemiellipsoidal head model to take advantage
of the discriminative height difference around the head contour
of a human. Carraror et al. [7] propose an approach for
human body pose estimation and tracking in a network of
RGB-D sensors. To obtain a global 3D skeleton, CNN-based
pose estimation is applied to the RGB images of each single-
view. In previous work [8] we re-cast the problem of people
detection and tracking with multiple depth sensors as an
inverse problem, employing an approximately differentiable
scene model to detect people from arbitrary viewpoints. Fol-
lowing these ideas we introduced a probabilistic framework [5]
based on a discrete scene configuration space. For stochastic
inference a variational mean-field approximation is used to
jointly exploit the multi-view information in order to estimate
the marginal probability distribution of people present in the
scene.

For inference the mentioned probabilistic methods [5], [8]
perform iterative optimization, which is computationally inten-
sive and potentially prone to local minima in the optimization
objective. In contrast, we propose an end-to-end CNN architec-
ture, which is demanding at training time, but once the network
is trained, inference can be obtained by a single deterministic
forward pass. Due to the lack of a domain-specific large scale
data set we extend the generative scene model proposed in
[5] to generate randomized synthetic training data. In contrast
to classical data-driven approaches the proposed multi-view
CNN architecture is only trained with synthetic depth images
and does not rely on any real training data.

II. APPROACH

We propose an end-to-end CNN architecture which takes
three foreground segmented depth images as input and predicts
the marginal probabilities of people present in the scene
(see Fig. 1). For this work we assume that the common
ground floor plane is known from the initial calibration, hence
the presence of people in the scene is expressed in ground
floor world coordinates. We discretize the ground floor area
into a 15 × 12 grid of n = 180 locations. Each location
ui is assigned to a realization xi of a Bernoulli random
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Fig. 1. Overview of our proposed CNN multi-view architecture. Each input depth image serves as input for a CNN module. The output of the last fully
connected layer predicts the marginal probability distribution of people present in the scene.

variable Xi ∼ B(p), where p denotes the probability of a
person present at location ui. A scene configuration is given
as the vector ~x = (x1, . . . , xn)

T ∈ {0, 1}n. Let further
~o = (o1, . . . , oc)

T be the vector of foreground-segmented
depth observations at one time step. The objective of our end-
to-end approach is to approximate the distribution

p(~x|~o) =
n∏

i=1

p(xi|~o) (1)

with p(xi|~o) being the marginal probability of a person present
at ground floor location ui given the observations (see Fig.
1). To approximate (1) we propose a multi-view CNN ar-
chitecture which jointly exploits the depth observations from
three sensors (see Sect. II-A) by leveraging a generative scene
model (see Sect. II-B) for randomized synthetic training data
generation.

A. End-to-End CNN Architecture

The proposed architecture is depicted in Fig. 1. We observed
only a slight drop in performance when the input depth images
are down scaled by a factor of 0.5, thus we use input depth
images of size 188 × 120 for each individual CNN-head. To
generalize over the visual features, weights are shared across
the input CNN-heads. The resulting feature maps of each
CNN-head are concatenated and fed into a fully connected
layer in order to learn correlations between the individual
views. Each CNN-head is built of five blocks sharing the same
structure. After each block a dropout layer with pCNN = 0.25
is applied. The parameters of the CNN layers are given in Tab.
I. The three resulting feature vectors are concatenated and used
as input for the first fully connected layer FC1. After the first
two fully connected layers, dropout with pFC = 0.5 is used
to prevent over-fitting. The final fully connected layer FC3
is followed by a sigmoid function and predicts the desired

CNN block Layer type Filters Kernel Size
1 Conv (1,*) 32 5× 5
2 Conv (2,*) 64 3× 3
3 Conv (3,*) 128 3× 3
4 Conv (4,*) 256 3× 3
5 Conv (5,*) 512 3× 3
1-5 Max Pool * 2× 2

TABLE I
PARAMETERS OF CNN HEADS.

marginal probabilities of people present in the scene (1). To
train the network we formulated the estimation of the desired
marginal probabilities as a binary classification problem, thus
using the binary cross-entropy loss

lbce = −
1

n

n∑
i=1

yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)), (2)

with ~y = (y1, . . . , yn)
T ∈ {0, 1}n being the ground truth

scene configuration and p̂(xi) being the predicted probability
of a person present at cell ui.

B. Randomized Generative Scene Model

The generative scene model used in this work is based on
the model proposed in previous work [5]. The basic model
is built on a static rotationally symmetric 3D person model,
consisting of a cylinder for the body and a sphere for the
head, see Fig. 2(a). To generate synthetic samples the person
model is placed accordingly to the scene configuration ~x
on the world ground floor and synthetic depth images are
rendered in the perspective of each sensor. We extend the
static person model by introducing a parameterized person
model to express different shapes of persons in the scene.
To achieve randomization we treat the parameters as random
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Fig. 2. Synthethic depth images generated from our scene model for one specific scene configuration ~x in sensor view one. Fig (a) shows the synthetic depth
image based on our static person model as used in [5]. Fig. (b)-(e) shows four independently drawn samples from our proposed randomized person model
for the same scene configuration ~x.

variables. Each person model is defined by a set of vertices
V = {~v1, . . . , ~vm} with ~v = (x, y, z)T and a set of faces
F where each face is given by a triple of vertices. We split
the set of vertices of one person in two subsets, one for the
sphere and one for the cylinder, thus V = Vcyl ∪ Vsph, to
be able to apply transformations independently on the two
geometric primitives. As world coordinate system we define
the z-axis perpendicular to the ground plane (xy-plane with
z = 0), representing the height over ground. It is assumed
that a person mesh is initially centered in the xy-plane with
the foot point at z = 0. To take variants in pose and shape
into account, we suggest three principle degrees of freedom: (i)
deforming the body of a person (circular cylinder) to an elliptic
cylinder to get a variety of rotationally asymmetric shapes; (ii)
rotating the person model around the z-axis to model the body
orientation; (iii) resize the height of a person. To apply these
variants, we define the parameterized transformation

f(~v; sx, sy, sz, α) = R(α) ·

sx 0 0
0 sy 0
0 0 sz

 · ~v, (3)

which applies non-uniform scaling followed by a rota-
tion around the z-axis with angle α on a single ver-
tex. To generate a single instance we apply the transfor-
mation f(~v;Sc

x, S
c
y, S

c
z, α) to all vertices in set Vcyl and

f(~v; 1, 1, Ss
z , 0) to all vertices in the set Vsph respectively.

The parameters Sc
x, S

c
y, S

c
z, S

s
z , α are considered to be uni-

formly distributed random variables (see. Algorithm 1). To
get more variations in shape we add independent Gaussian
noise to the x, y, z-components of each vertex ~v ∈ V . A
detailed description of the sampling process and the assumed
parameter distributions are given in Algorithm 1. Fig. 2(b)-
2(e) show exemplary sampled synthetic depth images for a
scene configuration ~x.

III. EVALUATION

We evaluate our approach on the data set introduced in
previous work [5]. The data set contains 2200 temporal frames,
recorded from three commodity stereo-vision-based depth
sensors. Each temporal frame consists of three foreground
segmented depth images. For the evaluation of our approach
we use the same discrete ground floor grid as proposed in [5],
resulting in a grid with 15× 12 grid points, corresponding to
horizontal and vertical distances of 33 cm cm between adjacent
grid points. As input of the proposed CNN architecture we

Algorithm 1. Randomized generation of synthetic depth images.

1: procedure SAMPLEFROMGENERATIVEMODEL
2: Vcyl,Vsph,F ← init() . init with default model
3: h ∼ U(2, 6) . drawn number of expected persons
4: ~x ∼ B(1/h) . draw scene configuration
5: for all xi = 1 do . iterate over cells with a person
6: Sc

x, S
c
y ∼ U(0.5, 1.5)

7: Sc
z ∼ U(0.85, 1.15)

8: Ss
z ∼ U(0.85, 1.15)

9: α ∼ U(0, π)
10: V ′cyl ← {f(~v;Sc

x, S
c
y, S

c
z, α)|~v ∈ Vcyl}

11: V ′sph ← {f(~v; 1, 1, Ss
z , 0)|~v ∈ Vsph}

12: tx, ty ∼ U(0, 0.1) . draw position offset
13: for all ~v ∈ V ′cyl ∪ V ′sph do
14: Nx, Ny, Nz ∼ N (0, 0.04) . draw AWGN
15: ~v ← ~v + (Nx, Ny, Nz)

T

16: ~v ← ~v + (li,x, li,y, 0)
T . move to grid pos. li

17: ~v ← ~v + (tx, ty, 0)
T . add position offset

18: end for
19: renderer.addMesh(V ′cyl ∪ V ′sph,F)
20: end for
21: return renderer.getDepthImages()
22: end procedure

used subsampled depth images with a resolution of 188×120
pixel.

For the quantitative evaluation we use the precision-recall
metric, where the precision is given by TP/(TP + FP ) and
the recall by TP/(TP+FN); TP , FP , FN are the counts of
true positives, false positives and false negatives, respectively.
The F1-Score is defined as the harmonic mean of precision and
recall, F1 = (2×precision× recall)/(precision+recall). For
the evaluation a detection is assumed to be a true positive if it
is within a radius of 30 cm of the ground truth. We compare
the precision-recall performance of the following methods:
• Randomized (ours) refers to the proposed CNN-

architecture trained on randomized synthetic depth im-
ages (see Fig. 2(b)-(e)).

• Static (ours) refers to the proposed method trained only
on synthetic depth images (see Fig. 2(a)) based on the
static person model as used by [5].

• MF-Inference [5] State-of-the-art probabilistic method
which uses the same static generative scene model. The



Fig. 3. Exemplary result of our approach (with training data randomization). The output of the proposed neural network is projected onto the ground floor,
where purple correspond to a probability of zero and yellow to one respectively.
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Fig. 4. Precision-Recall curves showing the performance of our approach
with and without domain randomization.

output occupancy map layout is identical to the method
proposed in this work.

• Deep Occlussion [4] is a state-of-the-art end-to-end
architecture for monocular multi-view person detection.
We use the available pre-trained model. As input, we
stack the given gray scale observations to a three channel
image to be compatible with the RGB architecture.

Fig. 4 shows the precision-recall performance of the evaluated
approaches for all frames. While the computationally intensive
stochastic optimization introduced in [5] outperforms all other
methods, our proposed method with randomization achieves
remarkable results with best F1-score of 0.88. Comparing the
two manifestations of the proposed architecture shows that the
performance could be significantly increased by randomizing
the scene model (F1-score of 0.76 for static person model vs.
F1-score of 0.88 for randomized person model). Notice that

the given data set is challenging for Deep Occlusion [4] since
the method operates on the intensity images and is not trained
with any data representing the specific top-view scenario. Fig.
3 shows a typical result of our method.

IV. CONCLUSION

In this work we have proposed a multi-view CNN archi-
tecture to detect people in multiple overlapping depth images
from the top-view. In contrast to prevalent methods in the
literature our CNN architecture is trained only on synthetic
depth images, sampled from a randomized generative scene
model. Future work will focus on more realistic scene models
as well as the combination of data-driven CNN architectures
with state-of-the-art probabilistic models.
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