
Accurate Cardinality Estimation of Co-occurring
Words Using Suffix Trees (Extended Version)

Jens Willkomm, Martin Schäler, and Klemens Böhm

Karlsruhe Institute of Technology (KIT), Germany
{jens.willkomm,martin.schaeler,klemens.boehm}@kit.edu

Abstract. Estimating the cost of a query plan is one of the hardest
problems in query optimization. This includes cardinality estimates of
string search patterns, of multi-word strings like phrases or text snippets
in particular. At first sight, suffix trees address this problem. To curb
the memory usage of a suffix tree, one often prunes the tree to a certain
depth. But this pruning method “takes away” more information from
long strings than from short ones. This problem is particularly severe
with sets of long strings, the setting studied here. In this article, we pro-
pose respective pruning techniques. Our approaches remove characters
with low information value. The various variants determine a character’s
information value in different ways, e.g., by using conditional entropy
with respect to previous characters in the string. Our experiments show
that, in contrast to the well-known pruned suffix tree, our technique
provides significantly better estimations when the tree size is reduced by
60% or less. Due to the redundancy of natural language, our pruning
techniques yield hardly any error for tree-size reductions of up to 50%.

Keywords: Query optimization · cardinality estimation · suffix tree.

1 Introduction

Query optimization and accurate cost estimation in particular continue to be
fundamentally important features of modern database technology [43, 27]. While
cardinality estimation for numerical attributes is relatively well understood [34],
estimating the cardinality of textual attributes remains challenging [23, 9, 40].
This is particularly true when the query (1) contains regular expressions, e.g.,
aims to find the singular of a word and the plural, (2) searches for word chains,
e.g., high noon, or (3) a combination of both, i.e., a regular expression involving
several words. One application where this is necessary is text mining. Various
text mining tasks query co-occurring words (co-occurrences), i.e., words along-
side each other in a certain order [29, 30]. Such queries are dubbed co-occurrence
queries. Co-occurrence queries are important because, in linguistic contexts, co-
occurrences indicate semantic proximity or idiomatic expressions [24]. Optimiz-
ing such queries requires estimates of the cardinality of co-occurrences.

Problem Statement. To query co-occurrences, one uses search patterns like
the emancipation of * or emancipation * Catholics. A particularity of co-
occurrences is that they only exist in chains of several words (word chain), like



2 Jens Willkomm, Martin Schäler, and Klemens Böhm

phrases or text snippets. This calls for cardinality estimates on a set of word
chains. Compared to individual words, word chains form significantly longer
strings, with a higher variance in their lengths. Our focus in this article is on the
accuracy of such estimates with little memory consumption at the same time.

State-of-the-Art. One approach to index string attributes is to split the strings
into trigrams, i.e., break them up into sequences of three characters [1, 23, 9]. This
seems to work well to index individual words. However, the trigram approach will
not reflect the connection between words that are part of a word chain. Another
method to index string attributes is the suffix tree [23, 28]. Since suffix trees
tend to be large, respective pruning techniques have been proposed. A common
technique is to prune the tree to a maximal depth [23]. Since the size of a suffix
tree depends on the length of the strings [37], other pruning methods work
similarly. We refer to approaches that limit the depth of the tree as horizontal
pruning. With horizontal pruning however, all branches are shortened to the
same length. So horizontal pruning “takes away” more information from long
strings than from short ones. This leads to poor estimation accuracy for long
strings and more uncertainty compared to short ones.

Challenges. Designing a pruning approach for long strings faces the follow-
ing challenges: First, the reduction of the tree size should be independent of
the length of the strings. Second, one needs to prune, i.e., remove information,
from both short and long strings to the same extent rather than only trimming
long strings. Third, the pruning approach should provide a way to quantify the
information loss or, even better, provide a method to correct estimation errors.

Contribution. In this work, we propose what we call vertical pruning. In con-
trast to horizontal pruning that reduces any tree branch to the same maximal
height, vertical pruning aims at reducing the number of branches, rather than
their length. The idea is to map several strings to the same branch of the tree, to
reduce the number of branches and nodes. This reduction of tree branches makes
the tree thinner. So we dub the result of pruning with our approach thin suffix
tree (TST). A TST removes characters from words based on the information
content of the characters. We propose different ways to determine the informa-
tion content of a character based on empirical entropy and conditional entropy.
Our evaluation shows that our pruning approach reduces the size of the suffix
tree depending on the character distribution in natural language (rather than
depending on the length of the strings). TST prunes both short and long strings
to the same extent. Our evaluation also shows that TST provides significantly
better cardinality estimations than a pruned suffix tree when the tree size is
reduced by 60% or less. Due to the redundancy of natural language, TST yields
hardly any error for tree-size reductions of up to 50%.

Paper Outline. Section 2 features related work. We introduce the thin suffix
tree in Section 3. We say how to correct estimation errors in Section 4. We
describe the procedures insert and query in Section 5. Our evaluation is in
Section 6.



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 3

2 Related Work

This section is split into three parts. First, we summarize lossless methods to
compress strings and suffix trees. These methods reduce the memory consump-
tion without loss of quality. Such methods allow for a perfect reconstruction of
the data and provide exact results. Second, we turn to pruning methods for suf-
fix trees. Pruning is a lossy compression method that approximates the original
data. Finally, we review empirical entropy in string applications.

String Compression Methods. There exist various methods to compress strings.
One is statistical compression, like Huffman coding [20] and Hu-Tucker cod-
ing [19]. Second, there are compressed text self-indexes, like FM-index [13].
Third, there is dictionary-based compression, like the Lempel and Ziv (LZ) com-
pression family [44, 42, 3]. Fourth, there are grammar-based compression meth-
ods, like Re-Pair [26]. However, these compression methods are either incompat-
ible with pattern matching or orthogonal to our work.

Suffix Tree Compression Methods. A suffix tree (or trie) is a data structure to in-
dex text. It efficiently implements many important string operations, e.g., match-
ing regular expressions. To reduce the memory requirements of the suffix tree,
there exist approaches to compress the tree based on its structure [35]. Earlier
approaches are path compression [22, 21] and level compression [2]. More recent
compression methods and trie transformations are path decompositions [17], top
trees [4], and hash tables [36]. Our approach in turn works on the input strings
rather than on the tree structure.

In addition to structure-based compression, there exist alphabet-based com-
pression techniques. Examples are the compressed suffix tree [18], the sparse
suffix tree [25] and the idea of alphabet sampling [10, 16]. These methods reduce
the tree size at the expense of the query time. All these methods provide exact
results, i.e., are lossless compression methods. Lossless tree compression is ap-
plicable in addition to tree pruning, i.e., such methods work orthogonal to our
approach.

Suffix Tree Pruning. Suffix trees allow to estimate the cardinality of string pred-
icates, i.e., the number of occurrences of strings of arbitrary length [41]. With
large string databases in particular, a drawback of suffix trees is their mem-
ory requirement [12, 41]. To reduce the memory requirements of the suffix tree,
variants of it save space by removing some information from the tree [23].

We are aware of three approaches to select the information to be removed:
A first category is data-insensitive, application-independent approaches. This
includes shortening suffixes to a maximum length [23]. Second, there are data-
sensitive, application-independent pruning approaches that exploit statistics and
features of the data, like removing infrequent suffixes [15]. Third, there are data-
sensitive, application-dependent approaches. They make assumptions on the suf-
fixes which are important or of interest for a specific application. Based on the
application, less useful suffixes are removed [38]. For example, suffixes with typos



4 Jens Willkomm, Martin Schäler, and Klemens Böhm

or optical character recognition errors are less useful for most linguistic applica-
tions. It is also possible to combine different pruning approaches. In this work,
we focus on data-sensitive and application-independent pruning.

Horizontal Pruning Approaches. Existing pruning techniques usually reduce the
height of the tree, by pruning nodes that are deeper than a threshold depth [23].
Another perspective is that all nodes deeper than the threshold are merged into
one node. We in turn propose a pruning technique that reduces the width of the
tree rather than the depth.

Empirical Entropy in String Applications. The usage frequency of characters
in natural language is unevenly distributed [39]. For this reason, the empirical
entropy is an essential tool in text and string compression. It is used in optimal
statistical coding [20] and many data compression methods [14, 3].

3 The Thin Suffix Tree

To store word chains as long strings in a suffix tree efficiently, we propose the
thin suffix tree (TST). In contrast to horizontal pruning approaches, it aims at
reducing the number of branches in the tree, rather than their length. We refer
to this as vertical pruning. The idea is to conflate branches of the tree to reduce
its memory consumption. This means that one branch stands for more than one
suffix. As usual, the degree of conflation is a trade-off between memory usage
and accuracy. In this section, we (1) present the specifics of TST and (2) define
interesting map functions that specify which branches to conflate.

3.1 Our Vertical Pruning Approach

To realize the tree pruning, we propose a map function that discerns the input
words from the strings inserted into the tree. For every input word (preimage)
that one adds to the tree, the map function returns the string (image) that is
actually inserted. TST stores the image of every suffix. This map function is
the same for the entire tree, i.e., we apply the same function to any suffix to be
inserted (or to queries). Thinning occurs when the function maps several words
to the same string. The map function is surjective.

Fixing a map function affects the search conditions of the suffix tree. A suffix
tree and suffix tree approximation techniques usually search for exactly the given
suffix, i.e., all characters in the given order. Our approximation approach relaxes
this condition to words that contain the given characters in the given order, but
may additionally contain characters that the map function has removed. For
example, instead of querying for the number of words that contain the exact
suffix mnt, one queries the number of words that contain the characters m, n, and t

in this order, i.e., a more general pattern. We implement this by using a map
function that removes characters from the input strings. We see the following
two advantages of such a map functions: (1) Branches of similar suffixes conflate.
This reduces the number of nodes. (2) The suffix string gets shorter. This reduces
the number of characters. Both features save memory usage.



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 5

(a) A full suffix tree for the words kitten, sitten, and
sittin.

(b) The tree when using a map function that re-
moves i.

(c) The tree when using
a map function that re-
moves i and e.

Fig. 1. The impact of character-removing map functions on a suffix tree.

3.2 Character-removing Map Functions

A character-removing map function removes characters from a given string.

Definition 1. A character-removing map function is a function that maps a
preimage string to an image string by removing a selection of specific characters.

To remove characters systematically, we consider the information value of the
characters. According to Shannon’s information theory, common characters carry
less information than rare ones [8, 33]. This is known as Shannon entropy of the
alphabet. The occurrence probability P (c) of a character c is its occurrence
frequency relative to the one of all characters of the alphabet Σ.

P (c) =
frequency(c)∑
σ∈Σ frequency(σ)

(1)

The information content of a character c is inversely proportional to its occur-
rence probability P (c).

I(c) =
1

P (c)
(2)

According to Zipf’s law, the occurrence probability of each c is inversely propor-
tional to its rank in the frequency table [39].

P (c) ∼ 1

rank(c)
(3)

Thus, the information content of character c is proportional to its rank.

I(c) ∼ rank(c) (4)



6 Jens Willkomm, Martin Schäler, and Klemens Böhm

To create an tree of approximation level n, a map function removes the n most
frequent characters in descending order of their frequency.

Example 1. The characters e, t, and a (in this order) are the three most frequent
characters in English text. At approximation degree 3, a map function maps the
input word requirements to the string rquirmns.

Example 2. Figure 1a shows the full suffix tree for the words kitten, sitten,
and sittin. Its size is 288 bytes. The exact result of the regular expression
*itten is 2 counts. For illustrative purposes, we first show the impact of a map
function that removes character i and of a second function that removes i and e.
Figure 1b shows the first approximation level, i.e., character i removed. The tree
is of size 224 bytes, i.e., it saves 22% of memory used. When we query this tree
for the regular expression *itten, the result is 2 counts. The tree still estimates
correctly. Figure 1c shows a tree with character e removed additionally. It has
a size of 192 bytes and, thus, saves 33% of memory usage. When we query the
regular expression *itten, the result is 3 counts. So it now overestimates the
cardinality.

3.3 More Complex Map Functions

When removing characters of the input words, one can also think of more com-
plex map functions. We see two directions to develop such more complex func-
tions: (1) Consider character chains instead of single characters or (2) respect
previous characters. We will discuss both directions in the following.

Removing Character Chains. The map function considers the information con-
tent of combinations of several consecutive characters, i.e., character chains. Take
a string s = c1c2c3 that consists of characters c1, c2, and c3. We consider char-
acter chains of length o and create a frequency table of character chains of this
length. The information content of a character chain c1 . . . co is proportional to
its rank.

I(c1 . . . co) ∼ rank(c1 . . . co) (5)

Our character-chain-removing map function is a character-removing map func-
tion that removes every occurrence of the n most frequent character chains of
the English language of length o.

Example 3. A character-chain-removing map function removing the chain re

maps the input requirements to quiments.

Using Conditional Entropy. We define a character-removing map function that
respects one or more previous characters to determine the information content
of a character c1. Given a string s = c0c1c2, instead of using the character’s
occurrence probability P (c1), a conditional-character removing map function



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 7

considers the conditional probability P (c1|c0). Using Bayes’ theorem, we can
express the conditional probability as follows.

P (c1|c0) =
frequency(c0c1)

frequency(c0)
(6)

Since the frequencies for single characters and character chains are roughly
known (for the English language for instance), we compute all possible con-
ditional probabilities beforehand. So we can identify the n most probable char-
acters with respect to previous characters to arrive at a tree approximation
level n.

Example 4. A map function removes e if it follows r. Thus, the function maps
the input word requirements to rquirments.

3.4 A General Character-removing Map Function

In this section, we develop a general representation of the map functions proposed
so far, in Sections 3.2 and 3.3. All map functions have in common that they
remove characters from a string based on a condition. Our generalized map
function has two parameters:

Observe The length of the character chain to observe, i.e., the characters we use
to determine the entropy. We refer to this as o. Each map function requires
a character chain of at least one character, i.e., o > 0.

Remove The length of the character chain to remove. We refer to this as r with
0 < r ≤ o. For r < o, we always remove the characters from the right of
the chain observed. In more detail, when observing a character chain c0c1,
we determine the conditional occurrence probability of character c1 using
P (c1|c0). Therefore, we remove character c1, i.e., the rightmost character in
the chain observed.

Our generalized map function allows to simulate all character-removing map
functions as follows. We parameterize our generalized map function to observe
a single character and, if necessary, remove a single character, i.e., o = r = 1.
To simulate a character-chain-removing function, we observe and if necessary
remove the same number of characters, i.e., o > 1 and r = o. We simulate a
character-removing map function that respects one or more previous characters
by observing more characters than we potentially remove, i.e., o > r. To remove
a single character depending on the two previous characters, we use o = 3 and
r = 1.

Example 5. To remove character t if it occurs after the characters m, e, and n (in
this order), we specify a map function that observes character chains of length
four (o = 4) and removes individual characters (r = 1). So this function takes
the previous 4 − 1 = 3 characters into account to decide whether to remove
character t or not. Technically, the map function searches for the four-digit
character chain ment and replaces it with the chain men.



8 Jens Willkomm, Martin Schäler, and Klemens Böhm

We refer to a map function that observes and removes single characters as o1r1,
to ones that additionally observe one previous character and remove one char-
acter as o2r1, and so on. The map function in Example 5 is o4r1.

3.5 Cases of Approximation Errors

Character-removing map functions may lead to two sources of approximation
error, by (1) conflating tree branches and (2) by the character reduction itself.

Case 1: Branch Conflation. In most cases, when removing characters, words still
map to different strings and, thus, are represented differently in the tree. But in
some cases, different words map to the same string and these words correspond
to the same node. For example, when removing the characters e and t, the map
function maps water and war to the same string war. The occurrences of the
two words are counted in the same node, the one of war. Thus, the tree node
of war stores the sum of the numbers of occurrences of war and water. So TST
estimates the same cardinality for both words.

Case 2: Character Reduction. A character-removing map function shortens most
words. But since it removes the most frequent characters/character chains first,
it tends to keep characters with high information value. However, with a very
high approximation degree, a word may be mapped to the empty string. Our
estimation in this case is the count of the root node, i.e., the total number of
strings in the tree.

4 Our Approach for Error Correction

Since we investigate the causes of estimation errors, we now develop an approach
to correct them. Our approach is to count the number of different input strings
that conflate to a tree node. Put differently, we count the number of different
preimages of a node. To estimate the string cardinality, we use the multiplica-
tive inverse of the number of different input strings as a correction factor. For
example, think of a map function that maps two words to one node., i.e., the
node counts the cardinality of both strings. TST estimates half of the node’s
count for both words.

Example 6. Imagine a suffix tree containing the words water and war. water
occurs 4 times and war occurs 2 times in the database. Figure 2a shows the full
suffix tree. We now build a thin suffix tree by removing characters e and t. Both
words map to the string war. Its node holds a count of 4 + 2 = 6, and the tree
will answer both queries, i.e., for water and for war with 6. Figure 2b shows the
corresponding tree. When we query the cardinality of the two words, the relative
error is 6

4 = 1.5 for water and 6
2 = 3 for war. Since we know that this node is

reached by 2 different input words, we can answer a query with a cardinality of
6 · 12 = 3. Using the correction factor 1

2 reduces the relative error to 3
4 = 0.75 for

water and 3
2 = 1.5 for war.



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 9

(a) A complete suffix tree for the words
water (4 times) and war (2 times).

(b) The tree when using a map
function that removes charac-
ters e and t.

Fig. 2. Each node of the thin suffix tree includes a suffix count and, additionally to
calculate the correction factor, a Bloom filter.

4.1 Counting the Branch Conflations

To compute the correction factor, we need the number of different input words
that map to a node. To prevent the tree from double counting input words,
each node has to record words already counted. A first idea to do this may
be to use a hash table. However, this would store the full strings in the tree
nodes and increase the memory usage by much. The directed acyclic word graph
(DAWG) [6] seems to be an alternative. It is a deterministic acyclic finite state
automaton that represents a set of strings. However, even a DAWG becomes
unreasonably large, to be stored in every node [7]. There also are approximate
methods to store a set of strings. In the end, we choose the Bloom filter [5]
for the following reasons: Firstly, it needs significantly less memory than exact
alternatives. Its memory usage is independent of the number as well as of the
length of the strings. Secondly, the only errors are false positives. In our case,
this means that we may miss to count a preimage. This can lead to a slightly
higher correcting factor, e.g., 1

3 instead of 1
4 or 1

38 instead of 1
40 . As a result, the

approximate correction factor is always larger than or equal to the true factor.
This means that our correction factor only affects the estimation in one direction,
i.e., it only corrects an overestimated count.

To sum up, our approach to bring down estimation errors has the following
features: For ambiguous suffixes, i.e., ones that collide, it yields a correction fac-
tor in the range (0, 1). This improves the estimation compared to no correction.
For unambiguous suffixes, i.e., no collision, the correction factor is exactly 1.
This means that error correction does not falsify the estimate.

4.2 Counting Fewer Input Strings

TST stores image strings, while our error correction relies on preimage strings.
Since the preimage and the image often have different numbers of suffixes (they
differ by the number of removed characters), our error correction may count
too many different suffixes mapped to a node. For example, take the preimage
water. A map function that removes characters a and t returns the image war.
The preimage water consists of 5 suffixes, while the image war consists of 3. This
renders the correction factor too small and may result in an underestimation.
Example 7 illustrates how to avoid counting too many preimage strings.



10 Jens Willkomm, Martin Schäler, and Klemens Böhm

Example 7. Think of the input word water and its suffixes ater, ter, er, and r.
We use a map function that removes the characters e and t. This will create
a thin suffix tree with nodes that represent war, ar, and r. See Figure 2b. The
preimage suffixes ter, er, and r are mapped to the same node. Since ter and
er are mapped to the same string as their next shorter suffix, i.e., er and r

respectively, we do not count these suffixes for the correction factor. The only
suffix we count in Node r is suffix r. All this yields a thin tree with three nodes
and a correction factor of 1

1 in every node.

We count too many preimages iff a preimage suffix maps to the same image as
its next shorter suffix. This is the case for every preimage suffix that starts with
a character that is removed by the map function. We call the set of characters a
map function removes trim characters. This lets us discern between two cases:
First, the map function removes the first character of the suffix (and maybe
others). Second, the map function keeps the first character of the suffix and
removes none, exactly one or several characters within it. To distinguish between
the two cases, we check whether the first character of the preimage suffix is a
trim character. This differentiation also applies to complex map functions that
reduce multiple characters from the beginning of the suffix. To solve the issue of
counting too many different preimages, our error correction only counts preimage
strings which do not start with a trim character.

5 Insert and Query

After describing the details of TST, we now turn to the implementation. We
first cover the map function and then describe our realization of the functions
insert and query.

5.1 Map Function

Algorithm 1 shows an implementation of our generalized character-removing
map function. The function is parametrized by a dictionary that defines which
characters to observe and which ones to remove. For example, it contains the
three most frequent chains of a length of two characters. For English words,
these are th, he, and in. To this end, it removes character h if it occurs after
character t, e if it occurs after h, and n if it occurs after i. The map function
manipulates only strings that include one of these chains.

5.2 Insert Function

Algorithm 2 inserts a new word into the TST. It consists of the following steps:
(1) map the string from the input alphabet to the tree alphabet (Line 3), (2)
insert all its suffixes into the tree (Line 4), and (3) add the associated suffix in
input alphabet to the Bloom filter of the respective end node of the tree (Line 9).



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 11

Algorithm 1: Function to map words from an input alphabet to a
string in tree alphabet.

1 Function map(inputstring):
Data: String in input alphabet
Result: String in tree alphabet

2 dict ←− getGlobalDictionary()

/* E.g., {’th’ : ’t’, ’he’ : ’h’, ’in’ : ’i’} */

3 imagestring ←− inputstring
4 foreach (k, v) ∈ dict do
5 imagestring ←− imagestring.replace (k, v)

6 return imagestring

Algorithm 2: Function to insert a string.

1 Function insert(inputstring):
Data: String to add to the tree

2 foreach suffix of inputstring do
3 imagestring ←− map(suffix)
4 insertionpath ←− Go down the tree path according to imagestring
5 foreach node n on insertionpath do
6 n.count ←− n.count + 1
7 if suffix[0] equals imagestring[0] then
8 if not suffix in n.bloomFilter then
9 n.bloomFilter.add(suffix)

10 n.nbDiffSuffixes ←− n.nbDiffSuffixes + 1

5.3 Query Function

Algorithm 3 is the implementation of how to query the TST. It contains the fol-
lowing three steps: (1) map the given string from input alphabet to tree alphabet
(Line 2), (2) search the tree node for this string using the same map function as
for function insert (Line 3), and (3) estimate the frequency of the string by tak-
ing the number of node visits during insertion divided by the number of different
suffixes corresponding this node (Line 6).

6 Experimental Evaluation

In this section, we evaluate our thin suffix tree approach. We (1) define the
objectives of our evaluation, (2) describe the experimental setup, and (3) present
and discuss the results.

6.1 Objectives

The important points of our experiments are as follows.



12 Jens Willkomm, Martin Schäler, and Klemens Böhm

Algorithm 3: Function to query the cardinality of a string pattern.

1 Function query(inputstring):
Data: String or regular expression
Result: Cardinality estimation for inputstring

2 imagestring ←− map(inputstring)
3 node n ←− Go down the tree path according to imagestring
4 if n not exists then
5 return 0

6 return n.count/ n.nbDiffSuffixes

Memory Usage We examine the impact of our map functions on the size of
the suffix tree.

Map Function We study the effects of our map functions on the estimation
accuracy and analyze the source of estimation errors.

Accuracy We investigate the estimation accuracy as function of the tree size.
Query Run Time We evaluate the query run times, i.e., the average and the

distribution.

We rely on two performance indicators: memory usage, i.e., the total tree size,
and the accuracy of the estimations. To quantify the accuracy, we use the q-
error, a maximum multiplicative error commonly used to properly measure the
cardinality estimation accuracy [11, 31]. The q-error is the preferred error metric
for cardinality estimation, since it is directly connected to costs and optimality
of query plans [32]. Given the true cardinality f̂ and the estimated cardinality f ,
the q-error is defined as follows.

q-error := max

(
f

f̂
,
f̂

f

)
(7)

6.2 Setup

Our intent is to benchmark the approaches in a real-world scenario. In addition,
we inspect and evaluate the impact of different character-removing map func-
tions on the tree. We now describe the database and the queries used in the
experiments.

Database. For pattern search on word chains, we use the 5-grams from the
English part of the Google Books Ngram corpus.1 We filter all words that contain
a special character, like a digit.2 At the end, we randomly sample the data set
to contain 1 million 5-grams.

1 The Google Books Ngram corpus is available at
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.

2 We use Java’s definition of special characters. See function isLetter() of class
Java.lang.Character for the full definition.



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 13

Queries. Users may be interested in querying the number of 5-grams that start
with a specific word or a specific word chain. Others may want to query for
the number of different words that are used together with a specific word or
word chain. The answer to both types of question is the cardinality of a search
pattern. For our evaluation, we create 1000 queries requesting the cardinality of
the 1000 most common nouns in the English language. For example, we query
the number of 5-grams containing words like way, people, or information.

Parametrization. Each TST uses a single character-removing map function. The
indicators o and r specify the character-removing map function, i.e., how a
map function works. Each function has a character frequency list that stores
all characters in descending order of their frequency. Hence, we use the list pro-
vided by Peter Norvig in English Letter Frequency Counts: Mayzner Revisited
or ETAOIN SRHLDCU 3. To specify the approximation level of the suffix tree,
we parametrize the chosen character-removing map function with the number of
characters x that are removed by it. This means that the function takes the first
x characters from the character frequency list to specify the set of characters
removed by the map function. The competitor has the level of approximation as
parameter. The parameter specifies the maximal length of the suffixes to store in
the tree. Depending on the string lengths of the database, reasonable parameter
values lie between 50 and 1 [39].

Technical Details. Our implementation makes use of SeqAn4, a fast and robust
C++ library. It includes an efficient implementation of the suffix tree and of the
suffix array together with state-of-the-art optimizations. We run our experiments
on a AMD EPYC 7551 32-Core Processor with 125 GB of RAM. The machine’s
operating system is an Ubuntu 18.04.4 LTS on a Linux 4.15.0-99-generic kernel.
We use the C++ compiler and linker from the GNU Compiler Collection in
version 5.4.0.

6.3 Experiments

We now present and discuss the results of our experiments.

Experiment 1: Memory Usage In Experiment 1, we investigate how a
character-removing map functions affects the memory consumption of a TST.
We also look at the memory needs of a pruned suffix tree (PST) and compare
the two. In our evaluation, we inspect chains of lengths up to 3 (o = {1, 2, 3})
and in each case remove 1 to o characters. Figure 3 shows the memory usage
of the TST for various map functions and approximation levels. The figure con-
tains four plots. The first three (from the left) show the memory usage for map
functions that observe character chains of length 1, 2, or 3. The right plot shows
the memory usage of the pruned suffix tree contingent on the maximal length of

3 The article and the list are available at https://norvig.com/mayzner.html
4 The SeqAn library is available at https://www.seqan.de.



14 Jens Willkomm, Martin Schäler, and Klemens Böhm

0 5 10 15 20 25
Removed characters

0

100

200

300

400

Su
ffi

x 
tre

e 
siz

e 
[M

B]

Observe single characters
o1r1

0 50 100 150 200 250
Removed chains

Observe two-digit chains
o2r1
o2r2

0 500 1000 1500 2000 2500
Removed chains

Observe three-digit chains
o3r1
o3r2
o3r3

161116212631364146
Max string length

Prune tree to a max depth
PST

Fig. 3. TST’s memory usage for various map functions and approximation levels.

the suffixes. Note that there are different scales on the x-axis. The database we
use in this evaluation includes 179 different characters, 3,889 different character
chains of length two, and 44,198 different chains of length three.

The Effect of Character-Removing Map Functions. For a deeper insight into
our pruning approach, we now study the effect of character-removing map func-
tions on the memory consumption of a suffix tree in more detail. As discussed
in Section 3.5, there are two effects that reduce memory consumption: branch
conflation and character reduction. See Figure 3. All map functions yield a sim-
ilar curve: They decrease exponentially. Hence, removing the five most frequent
characters halves the memory usage of a TST with map function o1r1.

The frequency of characters and character chains in natural language follows
Zipf’s law, i.e., the Zeta distribution [39]. Zipf’s law describes a relation between
the frequency of a character and its rank. According to the distribution, the first
most frequent character nearly occurs twice as often as the second one and so on.
All character-removing map functions in Figure 3 show a similar behavior: Each
approximation level saves nearly half of the memory as the approximation level
before. For example, map function o1r1 saves nearly 65MB from approximation
level 0 to 1 and nearly 40MB from approximation level 1 to 2. This shows the
expected behavior, i.e., character reduction has more impact on the memory
usage of a TST than branch conflation.

The Effect of Horizontal Pruning. The right plot of Figure 3 shows the mem-
ory usage of a pruned suffix tree. The lengths of words in natural language are
Poisson distributed [39]. In our database, the strings have an average length
of 25.9 characters with a standard deviation of 4.7 characters. Since the prun-
ing only affects strings longer than the maximal length, the memory usage of
the pruned suffix tree follows the cumulative distribution function of a Poisson
distribution.

Summary. Experiment 1 reveals two points. First, the tree size of TST and of
the pruned suffix are markedly different for the various approximation levels.
Second, the memory reduction of a TST is independent of the length of the
strings in the database. Its memory reduction depends on the usage frequency



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 15

0 5 10 15
Removed characters

100

101

102
Q-

er
ro

r

Observe single characters
o1r1

0 50 100 150
Removed chains

Observe two-digit chains
o2r1
o2r2

0 500 1000 1500
Removed chains

Observe three-digit chains
o3r1
o3r2
o3r3

19141924
Max string length

Prune tree to a max depth
PST

Fig. 4. TST’s q-error for various map functions and approximation levels.

of characters in natural language. Third, the tree sizes for the different character-
removing map functions tend to be similar, except for one detail: The shorter
the chain of observed characters, i.e., the smaller o, the more linear the reduction
of the tree size over the approximation levels.

Experiment 2: Map Functions In Experiment 2, we investigate the impact of
map functions on estimation accuracy. We take the map functions from Exper-
iment 1 and measure the q-error at several approximation levels. See Figure 4.
The right plot is the q-error with the pruned suffix tree. The points are the me-
dian q-error of 1000 queries. The error bars show the 95% confidence interval of
the estimation. Note that Figure 4 shows the estimation performance as a func-
tion of the approximation level of the respective map function. So one cannot
compare the absolute performance of different map functions, but study their be-
havior. The plots show the following. First, the map functions behave differently.
At low approximation levels, the map function o1r1 has a very low q-error. The
q-error for this function begins to increase slower than for map functions consid-
ering three-digit character chains. At high approximation levels, the q-error of
map function o1r1 is significantly higher than for all the other map functions.
The other map functions, the ones that consider three-digit character chains in
particular, only show a small increase of the q-error for higher approximation
levels. Second, the sizes of the confidence interval differ. With map functions
that remove characters independently from previous characters, i.e., o1r1, o2r2,
and o3r3, the confidence interval becomes larger with a larger approximation
level. For map functions that remove characters depending of previous charac-
ters, i.e., o2r1, o3r1, or o3r2, the confidence interval is smaller. This means
that, for lower approximation levels and map functions that remove characters
depending on previous characters in particular, our experiments yield reliable
results. We expect results to be the same on other data. Third, the accuracy of
the pruned suffix tree increases nearly linear with increasing approximation lev-
els until it sharply increases for very short maximal strings lengths. This means
that every character that is removed from the back of the suffix contributes a
similar extent of error to an estimation.



16 Jens Willkomm, Martin Schäler, and Klemens Böhm

100200300400
Tree size [MB]

100

101

Q-
er

ro
r

o1r1
o2r2
o3r3
PST

100200300400
Tree size [MB]

o2r1
o3r1
o3r2
PST

Fig. 5. The estimation accuracy as function
of the tree size.

300 200
Tree size [MB]

0

2

4

6

8

10

Qu
er

y 
tim

e 
[m

s]

o1r1
o2r1

o2r2
o3r1

o3r2
o3r3

PST

Fig. 6. The query run time of the
TST.

Summary. None of our map functions dominates all the other ones. It seems to
work best to remove single characters dependent on either 0, 1, or 2 previous
characters, i.e., map functions o1r1, o2r1, or o3r1. For low approximation levels,
say up to a reduction of 50% of the tree size, map function o1r1 performs
well. For high approximation levels, say starting from a reduction of 50% of the
tree size, one should use a map function that removes characters dependent on
previous ones, i.e., map function o2r1 or o3r1.

The first five approximation levels of map function o1r1 are of particular
interest, as they show good performance in Experiments 1 and 2. In the first
approximation levels, this map function yields a very low q-error, see Figure 4,
while the tree size goes down very rapidly, see Figure 3. In Experiments 1 and 2,
we inspect (1) the tree size depending on the approximation and (2) the q-error
depending on the approximation level. In many applications, one is interested in
the q-error depending on the tree size rather than on the approximation level.
In our next experiment, we compare the q-error of our map functions for the
same tree sizes.

Experiment 3: Accuracy In Experiment 3, we compare the map functions
from Experiment 1 against each other and against existing horizontal pruning.
Figure 5 shows the q-error as function of the tree size. For the sake of clarity,
there are two plots for this experiment: The plot on the left side shows the map
functions that remove characters independently from previous characters. The
plot on the right side is for the remaining map functions.

Vertical Pruning vs. Horizontal Pruning. Figure 5 shows the following: TST
produces a significantly lower q-error than the pruned suffix tree for all map
functions used and for tree sizes larger than 60% of the one of the full tree. For
smaller sizes, the accuracy of most map functions does not become much worse
than the one of the pruned suffix tree. The only exception is o1r1. At a tree size
of 50%, the q-error of o1r1 starts to increase exponentially with decreasing tree
size.



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 17

Summary. As Experiments 1 and 2 already indicate, map function o1r1 achieves
a very low q-error to tree size ratio, for tree size reductions of up to 60%. For this
map function, TST yields a significantly lower q-error than the pruned suffix tree
for comparable tree sizes. The intuition behind this result is that our vertical
pruning respects the redundancy of natural language. Due to this redundancy,
map function o1r1 keeps most input words unique. This results in almost no
errors for reductions of the tree size that are less than 50%. TST also shows
a higher degree of confidence, i.e., a smaller 95% confidence interval, than the
pruned suffix tree for reductions that are less than 40%.

Experiment 4: Query Run Time In Experiment 4, we compare the query
run time of the TST using different map functions with the one of a pruned
suffix tree. We consider sample tree sizes of 300 and 200MB. Figure 6 shows the
average and distribution of the run time for all queries. There is no significant
difference in the run time. TST potentially needs a slightly higher run time than
a pruned suffix tree. This is because TST is potentially deeper than a pruned
suffix tree and additionally executes a map function. To conclude, the additional
work of TST is of little importance for the query run time compared to a pruned
suffix tree.

7 Conclusions

Cardinality estimation for string attributes is challenging, for long strings in
particular. Suffix trees allow fast implementations of many important string
operations, including this estimation. But since they tend to use much memory,
they usually are pruned down to a certain size. In this work, we propose a novel
pruning technique for suffix trees for long strings. Existing pruning methods
mostly are horizontal, i.e., prune the tree to a maximum depth. Here we propose
what we call vertical pruning. It reduces the number of branches by merging
them. We define map functions that remove characters from the strings based
on the entropy or conditional entropy of characters in natural language. Our
experiments show that our thin suffix tree approach does result in almost no
error for tree size reductions of up to 50% and a lower error than horizontal
pruning for reductions of up to 60%.

References

1. Adams, E., Meltzer, A.: Trigrams as index element in full text retrieval:
Observations and experimental results. In: CSC. pp. 433–439. ACM (1993).
https://doi.org/10.1145/170791.170891

2. Andersson, A., Nilsson, S.: Improved behaviour of tries by adaptive branching.
Information Processing Letters pp. 295–300 (1993). https://doi.org/10.1016/0020-
0190(93)90068-k

3. Arz, J., Fischer, J.: LZ-compressed string dictionaries. In: DCC. IEEE (2014).
https://doi.org/10.1109/dcc.2014.36



18 Jens Willkomm, Martin Schäler, and Klemens Böhm

4. Bille, P., Fernstrøm, F., Gørtz, I.: Tight bounds for top tree compression.
In: String Processing and Information Retrieval, pp. 97–102. Springer (2017).
https://doi.org/10.1007/978-3-319-67428-5 9

5. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM pp. 422–426 (1970). https://doi.org/10.1145/362686.362692

6. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M., Seiferas, J.: The
smallest automation recognizing the subwords of a text. Theoretical Computer
Science pp. 31–55 (1985). https://doi.org/10.1016/0304-3975(85)90157-4

7. Blumer, A., Ehrenfeucht, A., Haussler, D.: Average sizes of suffix
trees and DAWGs. Discrete Applied Mathematics pp. 37–45 (1989).
https://doi.org/10.1016/0166-218x(92)90270-k

8. Brown, P., Della, V., Mercer, R., Pietra, S., Lai, J.: An estimate of an upper bound
for the entropy of english. Comput. Linguist. pp. 31–40 (1992)

9. Chaudhuri, S., Ganti, V., Gravano, L.: Selectivity estimation for string pred-
icates: Overcoming the underestimation problem. In: ICDE. IEEE (2004).
https://doi.org/10.1109/icde.2004.1319999

10. Claude, F., Navarro, G., Peltola, H., Salmela, L., Tarhio, J.: String match-
ing with alphabet sampling. Journal of Discrete Algorithms pp. 37–50 (2012).
https://doi.org/10.1016/j.jda.2010.09.004

11. Cormode, G., Garofalakis, M., Haas, P., Jermaine, C.: Synopses for massive data:
Samples, histograms, wavelets, sketches. Foundations and Trends in Databases pp.
1–294 (2011). https://doi.org/10.1561/1900000004

12. Dorohonceanu, B., Nevill-Manning, C.: Accelerating protein classification using
suffix trees. ISMB pp. 128–133 (2000)

13. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms p. 20 (2007).
https://doi.org/10.1145/1240233.1240243

14. Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Transactions
on Algorithms pp. 1–21 (2010). https://doi.org/10.1145/1868237.1868248

15. Gog, S., Moffat, A., Culpepper, S., Turpin, A., Wirth, A.: Large-scale pattern
search using reduced-space on-disk suffix arrays. TKDE pp. 1918–1931 (2014).
https://doi.org/10.1109/tkde.2013.129

16. Grabowski, S., Raniszewski, M.: Sampling the suffix array with minimizers.
In: String Processing and Information Retrieval, pp. 287–298. Springer (2015).
https://doi.org/10.1007/978-3-319-23826-5 28

17. Grossi, R., Ottaviano, G.: Fast compressed tries through path decom-
positions. Journal of Experimental Algorithmics pp. 11–120 (2015).
https://doi.org/10.1145/2656332

18. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing pp. 378–407
(2005). https://doi.org/10.1137/s0097539702402354

19. Hu, T., Tucker, A.: Optimal computer search trees and variable-length al-
phabetical codes. SIAM Journal on Applied Mathematics pp. 514–532 (1971).
https://doi.org/10.1137/0121057

20. Huffman, D.: A method for the construction of minimum-redundancy codes. IRE
pp. 1098–1101 (1952). https://doi.org/10.1109/jrproc.1952.273898

21. Kanda, S., Morita, K., Fuketa, M.: Practical implementation of space-efficient dy-
namic keyword dictionaries. In: String Processing and Information Retrieval, pp.
221–233. Springer (2017). https://doi.org/10.1007/978-3-319-67428-5 19



Accurate Cardinality Estimation of Co-occurring Words Using Suffix Trees 19

22. Kirschenhofer, P., Prodinger, H.: Some further results on digital search trees.
In: Automata, Languages and Programming, pp. 177–185. Springer (1986).
https://doi.org/10.1007/3-540-16761-7 67

23. Krishnan, P., Vitter, J., Iyer, B.: Estimating alphanumeric selectivity in
the presence of wildcards. ACM SIGMOD Record pp. 282–293 (1996).
https://doi.org/10.1145/235968.233341

24. Kroeger, P.: Analyzing Grammar: An Introduction. Cambridge University Press
(2015)

25. Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: Lecture Notes in Computer
Science, pp. 219–230. Springer (1996). https://doi.org/10.1007/3-540-61332-3 155

26. Larsson, N., Moffat, A.: Off-line dictionary-based compression. IEEE pp. 1722–
1732 (2000). https://doi.org/10.1109/5.892708

27. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.:
How good are query optimizers, really? VLDB Endowment pp. 204–215 (2015).
https://doi.org/10.14778/2850583.2850594

28. Li, D., Zhang, Q., Liang, X., Guan, J., Xu, Y.: Selectivity estimation for string
predicates based on modified pruned count-suffix tree. CJE pp. 76–82 (2015).
https://doi.org/10.1049/cje.2015.01.013

29. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
MIT Press (1999)

30. Miner, G., Elder, J., Fast, A., Hill, T., Nisbet, R., Delen, D.: Practical Text Min-
ing and Statistical Analysis for Non-structured Text Data Applications. Academic
(2012)

31. Moerkotte, G., DeHaan, D., May, N., Nica, A., Boehm, A.: Exploiting ordered
dictionaries to efficiently construct histograms with q-error guarantees in SAP
HANA. In: SIGMOD. ACM (2014). https://doi.org/10.1145/2588555.2595629

32. Moerkotte, G., Neumann, T., Steidl, G.: Preventing bad plans by bounding the
impact of cardinality estimation errors. VLDB Endowment pp. 982–993 (2009).
https://doi.org/10.14778/1687627.1687738

33. Moradi, H., Grzymala-Busse, J., Roberts, J.: Entropy of english text: Experiments
with humans and a machine learning system based on rough sets. Information
Sciences pp. 31–47 (1998). https://doi.org/10.1016/s0020-0255(97)00074-1

34. Müller, M., Moerkotte, G., Kolb, O.: Improved selectivity estimation by combining
knowledge from sampling and synopses. VLDB Endowment pp. 1016–1028 (2018).
https://doi.org/10.14778/3213880.3213882

35. Nilsson, S., Tikkanen, M.: An experimental study of compression methods for dy-
namic tries. Algorithmica pp. 19–33 (2002). https://doi.org/10.1007/s00453-001-
0102-y

36. Poyias, A., Raman, R.: Improved practical compact dynamic tries. In:
String Processing and Information Retrieval, pp. 324–336. Springer (2015).
https://doi.org/10.1007/978-3-319-23826-5 31

37. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems pp. 589–607 (2007). https://doi.org/10.1007/s00224-006-1198-x

38. Sautter, G., Abba, C., Böhm, K.: Improved count suffix trees for natural language
data. In: IDEAS. ACM (2008). https://doi.org/10.1145/1451940.1451972

39. Sigurd, B., Eeg-Olofsson, M., van Weijer, J.: Word length, sentence
length and frequency - zipf revisited. Studia Linguistica pp. 37–52 (2004).
https://doi.org/10.1111/j.0039-3193.2004.00109.x

40. Sun, J., Li, G.: An end-to-end learning-based cost estimator (2019)



20 Jens Willkomm, Martin Schäler, and Klemens Böhm

41. Vitale, L., Mart́ın, Á., Seroussi, G.: Space-efficient representation of truncated
suffix trees, with applications to markov order estimation. Theoretical Computer
Science pp. 34–45 (2015). https://doi.org/10.1016/j.tcs.2015.06.013

42. Welch, T.: A technique for high-performance data compression. Computer pp. 8–19
(1984). https://doi.org/10.1109/mc.1984.1659158

43. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.: Predicting
query execution time: Are optimizer cost models really unusable? In: ICDE. IEEE
(2013). https://doi.org/10.1109/icde.2013.6544899

44. Ziv, J., Lempel, A.: A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory pp. 337–343 (1977).
https://doi.org/10.1109/tit.1977.1055714


