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Abstract. This study investigates the role and value of dis-
tributed rainfall for the runoff generation of a mesoscale
catchment (20 km2). We compare four hydrological model
setups and show that a distributed model setup driven by dis-
tributed rainfall only improves the model performances dur-
ing certain periods. These periods are dominated by convec-
tive summer storms that are typically characterized by higher
spatiotemporal variabilities compared to stratiform precip-
itation events that dominate rainfall generation in winter.
Motivated by these findings, we develop a spatially adap-
tive model that is capable of dynamically adjusting its spa-
tial structure during model execution. This spatially adap-
tive model allows the varying relevance of distributed rain-
fall to be represented within a hydrological model without
losing predictive performance compared to a fully distributed
model. Our results highlight that spatially adaptive modeling
has the potential to reduce computational times as well as
improve our understanding of the varying role and value of
distributed precipitation data for hydrological models.

1 Introduction

“How important are spatial patterns of precipitation for the
runoff generation at the catchment scale?” This is a key
question for the application of hydrological models that
has been addressed in several studies over the past decades
(e.g., Beven and Hornberger, 1982; Smith et al., 2004; Lobli-
geois et al., 2014). A frequently drawn conclusion is that
semi-distributed or even lumped models driven by a single
precipitation time series often outperform distributed models
with respect to their ability to reproduce observed stream-

flow at the outlet of a catchment (e.g., Das et al., 2008). Al-
though the generality of such findings is surely limited by the
fact that distributed models have more parameters that need
to be identified, which makes model calibration much more
challenging (Beven and Binley, 1992; Huang et al., 2019),
they highlight the ability of the hydrological system to dis-
sipate spatial gradients efficiently (e.g., Obled et al., 1994).
This is the case as hydrological processes are strongly dis-
sipative but exhibit, despite the nonlinearity of surface and
subsurface flow processes, no chaotic behavior (Berkowitz
and Zehe, 2020).

In contrast to the above-mentioned finding that hydrologi-
cal systems can efficiently dissipate spatial gradients, several
other studies showed that information about the spatial vari-
ability of precipitation can significantly improve the predic-
tive performance of hydrological models. For instance, Euser
et al. (2015) highlighted that distributed models driven by
distributed rainfall could reproduce the observed hydrograph
of a 1600 km2 large catchment in Belgium with higher ac-
curacy compared to spatially lumped model structures. Fur-
thermore, Woods and Sivapalan (1999) showed that the in-
terplay between spatial patterns of rainfall and soil saturation
can substantially impact the runoff generation of a catchment
when they analyzed the dependence of average runoff rates
on the spatial and temporal variability of the meteorologi-
cal forcing and the catchment state. The relevance of these
spatial patterns is thereby particularly high if the system is
close to a threshold where different localized preferential
flow processes start to dominate (e.g., cracking soils: drying
of soil; macropores: occurrence of earthworms) as discussed
by Zehe et al. (2007). Spatial averaging of the system state or
the meteorological forcing can hence lead to a misrepresen-
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tation of relevant spatial patterns, especially at more extreme
conditions.

Given the partly contradictory findings present in the lit-
erature, it appears reasonable to assume that the relevance
of distributed rainfall is changing dynamically over time and
depends on the interplay of the prevailing (i) system state
(e.g., catchment wetness); (ii) the system functional struc-
ture, determined by patterns of topography, land use, and
geology; and well as (iii) the strength and spatial organiza-
tion of the rainfall forcing. In consequence, it seems further-
more rational to hypothesize that also hydrological models
should dynamically adapt their spatial structure to the pre-
vailing context, thereby reflecting the inherently dynamic na-
ture of hydrological similarity (Loritz et al., 2018).

The idea that hydrological models should dynamically al-
locate their spatial resolution, as well as the associated rep-
resentation of natural heterogeneity in time, is motivated by
our previous work (Loritz et al., 2018). In that study, we high-
lighted that simulations of a distributed model consisting of
105 independent hillslopes were highly redundant to repro-
duce discharge or catchment storage changes of a mesoscale
catchment within 1 hydrological year. Based on the Shannon
entropy as a metric, we identified periods in which a rather
small number of representative hillslopes was sufficient be-
cause most of them functioned largely similarly within the
chosen margin of error. However, during other periods, up to
32 independent representations of hillslopes were required,
which underlines that spatial variability of system proper-
ties, such as surface topography or soil types among the hill-
slopes, can exert a stronger influence on the runoff genera-
tion at certain times, as expected given the findings reported
by other studies conducted in the same research environment
(e.g., Fenicia et al., 2016; Loritz et al., 2017). It can, there-
fore, be argued that distributed rainfall and corresponding
distributed model structures are also only important during
specific periods, while during other periods a compressed,
spatially aggregated model structure may be sufficient. An
implementation of such an adaptive spatial model resolu-
tion would ensure an appropriate spatial model complexity,
defined based on the least number of details about the sys-
tem structure (e.g., the variability of topographic gradients)
and catchment states that are sufficient to capture the rele-
vant interactions with the spatial pattern of precipitation. Yet
it would be as parsimonious as possible to avoid redundant
computations, which again could be used to minimize com-
putational costs (Clark et al., 2017).

Moving to the event timescale instead of running continu-
ous simulations is surely one way to achieve such a dynam-
ical allocation of the model space and means to use differ-
ent model setups with different spatiotemporal resolutions
at different times. This would entail running a set of mod-
els that differ with respect to their resolutions in space and
time, depending on the prevailing structure of the meteoro-
logical forcing and current state of a hydrological landscape
(e.g., the soil moisture or energy state). Yet, this introduces

multiple new problems, for instance, how to infer the ini-
tial conditions of a catchment prior to a rainfall event given
the degrees of freedom distributed models can offer (Beven,
2001). The latter is of considerable importance, particularly
during extremes resulting from high-intensity rainfall-runoff
events, which can be strongly sensitive to the actual state of
the system such as the spatial patterns of macropores (Zehe
et al., 2005) or of the antecedent soil water content (Zehe and
Blöschl, 2004).

A different avenue to implement a dynamically changing
model resolution is adaptive clustering, as recently demon-
strated for a spatially distributed conceptual (top-down)
model by Ehret et al. (2020). This concept allows for con-
tinuous hydrological simulations, which use a higher spatial
model resolution only at those time steps when it is neces-
sary. The idea behind adaptive clustering is similar to adap-
tive time stepping (e.g., Minkoff and Kridler, 2006). How-
ever, instead of reducing the time steps during times when
large gradients prevail, adaptive clustering increases or de-
creases the number of independent spatial model elements
during times of low or high functional diversity. The gen-
eral concept behind adaptive clustering is thereby not entirely
new to environmental science and is already used for in-
stance in hydrogeology under the term “adaptive mesh”, with
the main focus to increase the resolution of gradients during
times of high dynamics by increasing or decreasing the num-
ber of nodes (grid elements) in a model (Berger and Oliger,
1984). The main difference between the adaptive mesh and
adaptive clustering approach is that instead of adjusting the
spatial resolution of the numerical grid during runtime, adap-
tive clustering changes the number of hydrological response
units (HRUs) that are used (needed) to represent a catchment.
This implies that also the degree of spatial heterogeneity of
the catchment state (e.g., the soil moisture or energy state)
that is covered by the model is dynamically changing.

While the idea of adaptive clustering is promising as it al-
lows a minimum adequate representation of the spatial vari-
ability of a hydrological landscape, it has, to the best of our
knowledge, so far only been tested within a simple top-down
model (Ehret et al., 2020). It is thus of interest whether such
a dynamic clustering is also feasible when using a physi-
cally based (bottom-up) model particularly as these mod-
els were specifically introduced to explore how distributed
system characteristics and driving gradients control hydro-
logical dynamics (Freeze and Harlan, 1969). Here we will
hence test and develop an adaptive clustering approach us-
ing straightforward physical reasoning and implement it into
a distributed bottom-up model. The overarching objective
of this study is thus to exploit the value of adaptive clus-
tering as a tool to better understand the temporal relevance
of distributed precipitation for the runoff generation of a
mesoscale catchment and, as a by-product, to reiterate that
adaptive clustering could potentially be used to reduce com-
putational times, as already discussed in detail by Ehret et
al. (2020). High computational times are thereby still one of
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the many reasons why bottom-up models are rarely used on
larger scales in an spatial explicit manner (Clark et al., 2017).
For instance, Hopp and McDonnell (2009) used the HY-
DRUS 3D model (e.g., latest version of HYDRUS; Šimunek
et al., 2016) and reported computational times ranging from
10 min up to 11 h when they simulated water fluxes and
state variables at the Panola hillslope (area= 0.001250 km2

(25 m× 50 m); maximal soil depths= 4 m) for a simulation
time of 15 d by changing slope angles, soil depths, storm
sizes, and bedrock permeability. A meaningful application
of bottom-up models at relevant management scales (around
250 km2 in south Germany; e.g., Loritz, 2019), without a vi-
olation of important physical constraints (e.g., 10−2–101 m
maximum vertical grid size for the Richards equation; Or et
al., 2015; Vogel and Ippisch, 2008), would thus imply long
computational times. This again strongly limits the number
of feasible model runs to examine, for instance, different pa-
rameter sets (Beven and Freer, 2001).

In this study, we therefore test the specific hypothesis
that adaptive clustering is a feasible approach to represent
the spatial variability of rainfall in a hydrological bottom-
up model at the lowest sufficient level of detail without los-
ing predictive performance compared to a fully distributed
model. We test this hypothesis by introducing a clustering
approach for the example of the model CATFLOW applied to
the 19.4 km2 Colpach catchment using a gridded radar-based
quantitative rainfall estimate by addressing the two following
research questions:

1. Does the model performance of a spatially aggregated
model improve when it is distributed in space and driven
by distributed rainfall?

2. Can adaptive clustering be used to distribute a bottom-
up model in space that it is able to represent relevant
spatial differences in the system state and precipitation
forcing at the least sufficient resolution to avoid being
highly redundant as a fully distributed model?

2 Study area, hydrological model, and meteorological
data

2.1 The Colpach catchment

The 19.4 km2 Colpach catchment is located in northern Lux-
embourg and is a headwater catchment of the 256 km2 large
Attert experimental basin (Fig. 1). The prevailing geology of
both catchments is Devonian schists of the Ardennes mas-
sif which are characterized by coarse-grained and highly
permeable soils (> 1 m; e.g., Jackisch et al., 2017; Juilleret
et al., 2011). The steep hills of the Colpach are primar-
ily forested, and the elevation of the Colpach ranges from
265 to 512 m a.s.l. Annual runoff coefficients varied around
50 %± 7 % for the 2011–2017 period. Precipitation is rather
evenly distributed across the seasons (vegetation and win-

Figure 1. (a) Map of the Colpach catchment (location northern Lux-
embourg), (b) picture of a typical forested hillslope within the Col-
pach catchment, and (c) the Colpach River around 4 km north of the
gauging station.

ter season), while the runoff generation has a distinct sea-
sonal pattern as around 80 % of the annual discharge is re-
leased between October and March (Seibert et al., 2017). The
Colpach and its sub-catchments (e.g., Weierbach) have been
used as study area in a series of scientific publications. We
refer here to Pfister et al. (2018), Jackisch (2015) or Loritz
et al. (2017) for a more detailed system description (mean
annual precipitation: 900–1000 mm yr−1; mean annual evap-
otranspiration: 450–550 mm yr−1; mean annual discharge:
450–550 mm yr−1; land use: 65 % forest, 23 % agriculture,
2 % others; mean annual temperature: 9.1 ◦C).

2.2 The CATFLOW model

The key elements of the CATFLOW model (Maurer, 1997;
Zehe et al., 2001) are 2D hillslopes which are discretized
along a two-dimensional cross section using curvilinear or-
thogonal coordinates. Evapotranspiration is represented us-
ing an advanced SVAT (soil–vegetation–atmosphere trans-
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fer) approach based on the Penman–Monteith equation,
which accounts for tabulated vegetation dynamics, albedo as
a function of soil moisture, and the impact of local topog-
raphy on wind speed and radiation. Soil water dynamics are
simulated based on the Darcy–Richards equation (solved im-
plicitly, modified Picard iteration; Celia et al., 1990), and sur-
face runoff is represented by a diffusion wave approximation
of the Saint-Venant equations using adaptive time stepping
(solved explicitly, Euler forward starting downslope). Verti-
cal and lateral preferential flow paths are represented as con-
nected pathways containing an artificial porous medium with
high hydraulic conductivity and very low retention. The hills-
lope module is designed to simulate infiltration excess runoff,
saturation excess runoff, re-infiltration of surface runoff, lat-
eral water flow in the subsurface, and return flow but can-
not handle snowfall or snow accumulation. The latter means
that CATFLOW should not be applied if snow is a domi-
nant control, which is not the case in the Colpach catch-
ment. The model core is written entirely in FORTRAN77,
and the individual hillslopes can be run in parallel on differ-
ent CPUs to assure low computation times and high perfor-
mance of the numerical scheme. Up-to-date model descrip-
tions can be found in Wienhöfer and Zehe (2014) or in Loritz
et al. (2017).

2.3 Meteorological forcing and observed discharge

Meteorological input data used here are recorded at a tem-
poral resolution of 1 h at two official meteorological sta-
tions by the “Administration des Services Techniques de
l’Agriculture Luxembourg” at the locations Roodt and Usel-
dange. The meteorological station Roodt measures rainfall
within the catchment border (Fig. 2a) and provided the pre-
cipitation input to the model of Loritz et al. (2017). The sec-
ond station Useldange, located outside the catchment around
8 km west of the Colpach outlet, measures air temperature,
relative humidity, wind speed, and global radiation. These
data are used as meteorological input (except for precipita-
tion) in all model setups in this study. In other words, this
means that all model setups in this study are forced by iden-
tical meteorological inputs, except for the precipitation data
(see Sect. 3.1). Therefore, we cannot account for variations of
the wind speed or the temperature within the Colpach catch-
ment. A detailed description and analysis of the meteorolog-
ical data can be found in Loritz et al. (2017).

Discharge observations of the Colpach are provided
by the Luxembourg Institute of Science and Technol-
ogy (LIST) in a 15 min temporal resolution for the hydro-
logical year 2013/14. The data were aggregated to an hourly
temporal resolution and to specific discharge given the catch-
ment area of 19.4 km2.

2.4 Spatially resolved precipitation data

Besides the precipitation data from the ground station lo-
cated in Roodt, we use a gridded quantitative precipitation
estimate, which is a merged product of two weather radars,
rain gauges, micro rain radars, and disdrometer observations
(location of the ground measurements in the Supplement
and in more detail in Neuper and Ehret, 2019). The two
radar stations used are located 40 to 70 km and 24 to 44 km
away, respectively, from the borders of the Attert catchment
(Neuheilenbach, Germany; Wideumont, Belgium) and are
operated by the German Weather Service (DWD) as well
as by the Royal Meteorological Institute of Belgium (RMI).
Both distances are within a range that the data can be used
at a high resolution of 1× 1 km as the signal is neither de-
graded by beam spreading nor impacted by partial blindness
through cone of silence issues (Neuper and Ehret, 2019). The
raw data, 10 min reflectivity data from single polarimetric C-
Band Doppler radar, were aggregated to hourly averages and
filtered by static, Doppler clutter filters and bright-band cor-
rection following Hannesen (1998). Second trip echoes and
obvious anomalous propagation echoes were manually re-
moved, and the corrected data were used to create a pseudo
plan position indicator data set at 1500 m above the ground.
A more detailed description of how the reflectivity data were
transformed to rainfall data and calibrated as well as vali-
dated against rain gauges, micro rain radars, and disdrom-
eters can be found in the Supplement and in Neuper and
Ehret (2019).

The chosen precipitation time series starts on 1 Octo-
ber 2013 and ends on 30 September 2014. 42 grid cells
(1× 1 km) of the precipitation field intersect with more than
50 % of their area with the Colpach catchment and are used
in this study (Fig. 2a). The weather radar measured an area-
weighted mean of around 900 mm yr−1 in the Colpach catch-
ment for the selected period. This is in accordance with the
reported climatic averages (900–1000 mm yr−1) of this re-
gion (Pfister et al., 2017). The maximum hourly precipita-
tion difference between the grid cells in the study period is
14 mm h−1 (August 2014), and the maximum annual pre-
cipitation difference between the grid cells is 95 mm yr−1

(Fig. 2b). Temporally, the precipitation distributes evenly
over the year, with around 50 % of rainfall in winter and 50 %
of rainfall in summer with a short dry spell from mid-March
to the end of April. There is a weak correlation between the
mean elevation of the grid cells and the annual precipita-
tion sums of 0.43. This implies that precipitation tends to
be slightly higher in the northern parts of the catchment that
are also characterized by higher altitudes (Fig. 2a). The mea-
sured precipitation time series from the ground station lo-
cated in Roodt differs from the mean precipitation of the spa-
tial rainfall field about 30 mm yr−1 and around 60 mm yr−1

from the exact location in the precipitation grid measured by
the weather radar, with a tendency of higher rainfall values
especially in the winter season. Why exactly the precipitation
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Figure 2. Annual sums of the gridded precipitation field over the Colpach catchment for the hydrological year 2013/14 as well as the
location of the rainfall station Roodt, which is used as precipitation input for the reference model (spatial resolution: 1 km2; coord. sys-
tem WGS84) (a). Cumulated precipitation for each grid cell for the hydrological year 2013/14 of the precipitation field (blue lines), the
corresponding mean of the precipitation field (dashed red line) and the precipitation data from the station in Roodt (b, dashed orange lines).

observations of the ground station in Roodt differ in this mag-
nitude from the merged product of the weather radar is an
interesting research question, however, not within the scope
of this study.

3 Modeling approach

In Sect. 3.1 to 3.3, we introduce three non-adaptive model se-
tups (reference model, model a, and model b) and a spatially
adaptive model setup (model c). Details on how the model
setups are tested are provided in Sect. 3.4 and 3.5. A sum-
mary of the different model setups can be found in Table 1.

3.1 The reference model of Loritz et al. (2017)

All model setups in this study are based on a spatially ag-
gregated model structure (reference model), developed and
extensively tested in the Colpach catchment in a previous
study (Loritz et al., 2017). The general idea behind the pro-
posed model concept (representative hillslope) is that a sin-
gle bottom-up hillslope model reflects a meaningful com-
promise between classical top-down and bottom-up models
(Hrachowitz and Clark, 2017; Loritz, 2019). This is because
a representative hillslope resolves the effective gradient and
resistance controlling water storage and release and allows
macroscopic model parameters to be derived from available
point measurements. The parameters of the model of Loritz
et al. (2017) were, for the most part, derived directly from
a large amount of field data, and the model was only man-
ually fine-tuned afterwards by further exclusively adjusting
the spatial macropore density within a few trial and error
runs to simulate the seasonal water balance of the Colpach
catchment. The model simulations were tested against hourly
discharge observations on an annual and seasonal timescale,

against discharge observations from a sub-basin of the Col-
pach, in a different hydrological year, against hourly soil
moisture observations (38 sensors in 10 and 50 cm depth),
and with hourly normalized sap flow velocities (proxy for
transpiration; 30 sensors). The developed model structure
agreed well with the dynamics of the observables and showed
higher model performances as reported in other studies work-
ing with different top-down model setups in the same envi-
ronment (Wrede et al., 2015).

To summarize, the reference model serves as a benchmark
here to (a) evaluate the other models and (b) provide the
structural basis for them. None of the other model setups are
further calibrated or manually tuned, and the only difference
between the different model setups is the precipitation data
they are driven with and their model resolution. For further
details on how the reference model was set up and tuned, we
refer to the study of Loritz et al. (2017).

3.2 Non-adaptive models a and b

Despite the acceptable annual model performance of the ref-
erence model, it showed deficits in simulated runoff response
to a series of summer rainfall-runoff events. As discussed in
Loritz et al. (2017), one possible explanation for the unsat-
isfying performance is that summer precipitation in the Col-
pach catchment is mainly driven by convective atmospheric
conditions. These convective precipitation events are charac-
terized by a much smaller spatial extent as well as by higher
rainfall intensities compared to the stratiform and frontal pre-
cipitation events that dominate during winter (Neuper and
Ehret, 2019). The insufficient model performance in summer
could therefore likely be a consequence of the larger spatial
gradients of the rainfall field compared to the winter season
that cannot be accounted for in the original model of Loritz et
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Table 1. Summary of the four different model setups.

Reference model Spatially aggregated Spatially distributed Spatially adaptive
model a model b model c

Spatially no no yes yes
distributed:

Precipitation single precip. single precip. distributed binned distri.
forcing: time series time series precip. precip.

(ground station) (weather radar) (weather radar) (weather radar)

Spatially no no no yes
adaptive:

Testing hydro. year hydro. year hydro. year rainfall event
period: 2013/14, summer 2013/14, summer 2013/14, summer I and II

season, rainfall season, rainfall season, rainfall
event I and II event I and II event I and II

al. (2017). In other words, this necessitates that a hydrologi-
cal model, distributed at a sufficiently high spatial resolution,
is required to capture the spatial variability of the precipita-
tion field to achieve improved simulations of the runoff gen-
eration of the Colpach. One goal of this study (first research
question) is hence to test the hypothesis as to whether the per-
formance deficiencies of the representative hillslope model,
the reference model, in summer are mainly caused by the in-
ability of the setup to account for the spatial variability of the
precipitation field.

To address the first research questions of this study (“Does
the model performance of a spatially aggregated model im-
prove if it is distributed in space and driven by distributed
rainfall”), we analyze simulations of two alternative model
setups (model a and model b), additional to the reference
model from Loritz et al. (2017). Both model setups are de-
scribed in detail below.

3.2.1 Spatially aggregated model a

Model a is structurally identical to the reference model; how-
ever, it is driven by the area-weighted mean of the spatially
resolved precipitation data described in Sect. 2.4 and plotted
in Fig. 2b. We used the area-weighted mean as not all raster
cells of the distributed precipitation data are entirely within
the borders of the Colpach catchment. This means that the
weight of a grid cell which is not entirely located within the
catchment is reduced when we calculate the average accord-
ing to the percentage areal overlap.

We added model a to test if the performance difference
between the reference model and our distributed model b is
merely a result of quantitative differences between the differ-
ent precipitation products measured either by a single ground
station or by a weather radar in combination with different
ground stations.

3.2.2 Spatially distributed model b

Model b is a spatially distributed version of the reference
model. More specifically, here all model parameters of the
representative hillslope (reference model), as well as all other
meteorological variables such as temperature or wind speed,
are identical to the reference model. However, model b is
spatially distributed as well as driven by distributed rainfall
data. This model setup is distributed on the spatial resolution
of the precipitation field similarity, as done for instance by
Prenner et al. (2018) and not following the traditional spatial
discretization strategy of CATFOW based on a fixed number
of hillslopes, inferred from surface topography or land use.
Model b thus represents the Colpach with 42 spatial grids
(1× 1 km). In each of these grids, we run a model identical
to the reference model, however, driven with the specific pre-
cipitation data measured at this location.

We justify this assumption based on the model validation
in Loritz et al. (2017) and on a study conducted in the same
research environment (Loritz et al., 2019), where we showed
that different sub-basins of the Attert catchment (the Colpach
is a headwater catchment of the Attert catchment) have simi-
lar specific discharges as long as they are located in the same
geological setting and are driven by a similar meteorological
forcing (see also Sect. 4.2).

3.3 Spatially adaptive model c

To address the second and main research question of this
study (“Can adaptive clustering be used to distribute a
bottom-up model in space that it is able to represent rel-
evant spatial differences in the system state and precipita-
tion forcing at the least sufficient resolution to avoid being
highly redundant as a fully distributed model?”), we develop
a third adaptive model setup (model c). This spatially adap-
tive model setup is based on the distributed model b, how-
ever, is able to dynamically adjust its spatial structure in time
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based on the precipitation forcing, as detailed in Sect. 4.1
to 4.3.

3.4 Model testing – non-adaptive models a and b

We analyze the simulation performances of model a (spa-
tially aggregated) and b (spatially distributed) by calculating
the Kling–Gupta efficiency (KGE; Kling and Gupta, 2009)
and analyze its three components (see Supplement) between
the hourly discharge simulations of the individual model se-
tups against hourly observed discharge at different timescales
(annual, seasonal, event scale). Model a and b are run for the
hydrological year 2013–2014 with hourly printout times and
differ only concerning the precipitation data they are driven
with:

– model a: driven by an area-weighted mean of the spa-
tially resolved precipitation data;

– model b: driven by 42 precipitation time series, each
reflecting a grid cell of the precipitation field shown in
Fig. 2.

To be able to compare the discharge of the spatially aggre-
gated model a and the distributed model b with the observed
discharge of the Colpach catchment and to account for the
routing of the water from a specific location to the outlet, we
added a simple lag function acting as the channel network.
The latter is based on the average flow length along the sur-
face topography of each precipitation grid to the outlet of
the catchment assuming a constant flow velocity of 1 m s−1

(e.g., Leopold, 1953). The flow length of each grid is esti-
mated based on a 10 m resolved digital elevation model. For
the spatially aggregated model a, we average all flow dis-
tances to the outlet and shift the single discharge simulation
accordingly.

3.5 Model testing – adaptive model c

We test the spatially adaptive model c for two selected
rainfall-runoff events, which are characterized by distinctly
different precipitation properties. We chose event I as it has
the highest intensity and third-highest spatial variability in
summer and event II because it is the event with the longest
continuous precipitation in the time series. Both events were
picked to represent the spectrum of rainfall events in the
summer season. We focus exclusively on the summer sea-
son as the distributed model b only outperforms the refer-
ence model in this period, indicating that spatially distributed
rainfall provides no performance-relevant information during
winter. A full automation of the proposed adaptive clustering
approach is beyond the scope of this study, and we focus here
on the introduction as well as the physical underpinning of
the approach.

The main goal of testing the spatially adaptive model c is
to show that we can achieve similar simulation results com-
pared to the fully distributed model b, however, with a re-

duced number of hillslopes (coarser resolution). We therefore
calculate not only the KGE between the simulated discharge
of model c with the observed discharge at event I and II but
also the KGE between the simulated discharge of model c
and the simulated discharge of model b on an hourly basis. A
full automation of the proposed adaptive clustering approach
and a test on a longer timescale are beyond the scope of this
study, and we point towards the study of Ehret et al. (2020),
who have shown the potential of adaptive clustering using a
conceptual model, also for longer periods.

4 Spatially adaptive modeling

Spatially adaptive modeling or adaptive clustering is an ap-
proach to dynamically adjust the spatial structure of a hy-
drological model in time, offering the possibility to reduce
computational times as well as to find an appropriate, time-
varying spatial model resolution (Ehret et al., 2020). The ba-
sic idea of adaptive clustering has been motivated within the
work of Zehe et al. (2014), who stated that functional similar-
ity in a catchment (or in a model) can only emerge if different
sub-units are structurally similar (e.g., topography, geology,
land use), are driven by a similar forcing, and are at a simi-
lar state. The latter implies that the concept of hydrological
similarity, frequently used as the basis to discretize a catch-
ment in space (e.g., Sivapalan et al., 1987), cannot be time-
invariant but needs to dynamically change in time (Loritz et
al., 2018). This is the case as the relevance of different spa-
tial controls like the topography or pedology of a catchment
depends on the prevailing state and forcing (Woods and Siva-
palan, 1999). A suitable discretization of a catchment into
similar functional units needs hence to be time-variant, and
one way to achieve such a dynamic model resolution is spa-
tially adaptive modeling.

Implementing adaptive clustering into a distributed model
requires specific decision thresholds that define whether spa-
tial differences in the structure, forcing, and state of sub-
units (e.g., hillslopes, sub-basins) are so large that they need
a distributed representation. This means that if differences
between the structure, forcing, or state of two or more dis-
tributed model elements (here gridded models) are below
these thresholds they are by definition similar, which means
that they can represent each other’s hydrological function.
The concept that certain spatial model elements can repre-
sent other model elements is not new and has been used fre-
quently in hydrology since at least Sivapalan et al. (1987),
who introduced the concept of representative elementary ar-
eas. The novelty of adaptive clustering is that hydrological
similar model elements are dynamically grouped and split in
the runtime of the model instead of running a constant num-
ber of model elements for the entire simulation period (Ehret
et al., 2020).
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4.1 Spatially adaptive modeling – similarity
assumption

Identifying periods when a model element can represent an-
other one because it functions hydrologically similarly is the
main challenge of adaptive clustering. For this purpose, we
subdivide the precipitation field and the model states at each
time step into equally distant bins (bins= groups) and clas-
sify those as similar that occupy the same bin. If two or more
observations or models are hence in the same bin, they are
by our definition functionally similar and can represent each
other. To give an example, imagine if 50 % of the catchment
area receives precipitation of around 1 mm h−1 and 50 %
around 2 mm h−1. In this specific case, we would have two
occupied forcing bins (precipitation groups; PB). In the fol-
lowing, we explain how we have chosen the decision thresh-
olds for the system structure, the precipitation forcing, and
the model states.

4.1.1 Time invariant similarity of the system structure

The first step of our adaptive clustering approach requires the
identification of hydrological response units (HRUs) that po-
tentially behave similarly. These similar units are typically
identified based on structural properties such as the geologi-
cal setting, the land use, or the topography. The general idea
is that HRUs are grouped together which share the same con-
trols on gradients and resistances controlling flows of water
as long as they are in the same state (Zehe et al., 2014). As
already mentioned in Sect. 3.2, our previous studies showed
that different sub-units of the Colpach catchment are charac-
terized by similar spatially organized surface and subsurface
characteristics (integral filter properties). This entails a po-
tential similar rainfall-runoff transformation when they are in
a similar state. The latter is supported by our previous work
(Loritz et al., 2017, 2019), which revealed that a sub-basin of
the Colpach catchment (0.45 km2) and a neighboring catch-
ment (30 km2) located in the same geological setting have
almost identical specific discharges as long as they are at
similar states and forced by comparable amounts of precip-
itation. We hence assume that all grid cells of the precipi-
tation field can thus be represented by the same model with
the same model parameters as long as they are in the same
state and driven by the same forcing. This necessitates, how-
ever, also that if we extend our research area to a catchment
that is divided, for instance, into two or more geological set-
tings and different dominant land use or soil types that func-
tion hydrologically differently (regarding their integral filter
properties), we need to run two or more structurally different
models. Each of these models represents thereby a unique
structural setting. The latter might limit the possibilities to
apply this approach on larger scales or in areas with complex
structural settings.

4.1.2 Time-variant similarity of the precipitation
forcing

The second decision threshold we need to identify defines
the minimum difference at which we consider differences in
the precipitation field as relevant for the runoff generation.
Simply speaking, two structurally similar hydrological units
that are in the same state will only respond differently to an
external forcing if the variability in the forcing has exceeded
this threshold. Here, we picked a threshold of 1 mm h−1 upon
which we consider differences between precipitation obser-
vations (grid cells) as relevant. We chose this threshold as a
reasonable value for which we expect differences in hydro-
logic behavior in this humid catchment and based on our col-
lective understanding of the Colpach catchment. This means
that only if the spatial differences in the precipitation field are
above 1 mm h−1 do we drive the spatially adaptive model c
with different precipitation inputs. The choice of this thresh-
old is important, as it is one of two main controls or param-
eters of the model resolution of the spatially adaptive model
(see Supplement B).

4.1.3 Time-variant similarity of the catchment state

The third assumption is to identify a decision threshold upon
which we consider that two model elements are in the same
state. This means that we need to select a point in time after
a spatially variable rainfall event (> 1 mm h−1) when two or
more model elements in the individual grid cells have dissi-
pated the differences between them introduced by the previ-
ous precipitation input with drainage and evapotranspiration
dynamics. Here, we use the change in discharge over time
(dQ dt−1; slope of the simulated hydrograph) and the dis-
charge (Q) at a time step to infer similar model states. By
that, we expect that two or more gridded models are again
in the same state if the individual models estimate runoff and
the slope of the runoff within a 0.05 mm h−1 margin. As soon
as this is the case and two or more gridded models are in
the same state, we average their states (average saturation of
each grid cell of the CATFLOW hillslope grid) and, by that,
aggregate the models back again into a one hillslope. The
value of 0.05 mm h−1 for Q and dQ dt−1 was picked as it
reflects the desired precision of the adaptive model c. Similar
to the case of the decision threshold, this value needs to be
picked carefully. Furthermore, it is important to choose simi-
larity metrics (here dQ dt−1 and Q) that adequately describe
the model states during the simulation time.

4.2 Spatially adaptive modeling – model
implementation

As stated in Sect. 3.1, we classified the entire Colpach catch-
ment as hydrologically similar with respect to the runoff gen-
eration as long as the different hydrological sub-units of the
catchment are in the same state and receive a comparable
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Figure 3. Sketch of the spatial adaptive modeling described in
Sect. 4.2. The upper panel shows the precipitation forcing (blue)
and the lower panel the model states (red). The numbers below the
figures indicate how many precipitation (PB) and model state (S)
bins (groups) are occupied and how many models (M) are running
at the given time step.

forcing. This means that we start the simulation with one
gridded hillslope to represent the entire catchment and con-
tinue in this mode as long as we have not detected a spatial
difference in the precipitation field above the selected thresh-
old of 1 mm h−1 (Fig. 3, t = 0). At each time step, we bin
the precipitation input of the next time step and determine
the number of allocated bins (PB is the number of precipi-
tation bins). If more than one precipitation bin is occupied
(PB > 1), we increase the number of gridded models (M is
the number of running gridded models) by running the same
model in the same initial state, however, driven by different
precipitation inputs.

Consider a scenario in which the Colpach catchment
is represented by one hillslope (S = 1), and we observe
a precipitation event in which 50 % of the catchment re-
ceives no precipitation, 20 % 7 mm h−1 and 30 % 8 mm h−1,
as displayed in an illustrative example in Fig. 3 at t = 1.
This would mean that three precipitation bins are allocated
(PB= 3), and we need to increase the number of running
models to three (M = 3). After running these three models
for one time step with the different precipitation inputs, we
bin the model states (dQ dt−1; Q). Let us assume we would
identify two occupied model state bins, which means that
two different model states (S = 2) are needed to represent the
spatial variability of catchment states. This could happen if
the differences between the 7 and 8 mm h−1 rainfall intensity
did not result in a significant difference in the discharge sim-
ulation of the two corresponding models. Following our ap-
proach, we aggregate the two models that are driven by 7 and
8 mm h−1 by averaging their states. We do this by averaging
the relative saturation of the corresponding CATFLOW hill-
slope grids. The latter is straightforward in our study as they
have the same width as well as lateral and vertical dimen-

sions. In the case that the hillslopes are not structurally simi-
lar, this requires a weighted averaging of soil water contents
to avoid a violation of mass conservation. After the aggrega-
tion of the two models, we have two model states left (S = 2),
each representing 50 % of the catchment area.

If no further rainfall occurs, we wait until the gradients in
system states are depleted and the two running models have
“forgotten” the difference in the past forcing, and both pre-
dict similar dQ dt−1 and Q values and eventually aggregate
the two models to one hillslope model. If rainfall is continu-
ous in the next time step (PB > 1), we need to check which
model states (S) receive which forcing. For instance, given
our hypothetical example, we know that after the last simu-
lation step we needed two model states (S = 2) to represent
our catchment. Each of these two states represents 50 % of
the area of the catchment. Imagine that at the next time step
we observe a precipitation event, in which 50 % of the catch-
ment receives 8 mm h−1 and the other 50 % 3 mm h−1 (Fig. 3,
t = 2). In this case, we have to check if the two model states
(S = 2) receive both precipitation inputs of 8 and 3 mm h−1.
Let us assume that one model state receives 80 % of the
8 mm h−1 and 20 % of 3 mm h−1 rainfall and the other model
20 % of the 8 mm h−1 and 80 % 3 mm h−1. In this specific
setting, we would need to run four models (M = 4) to ac-
count for the spatial variability of the model states and pre-
cipitation input, while each of those reflect a different com-
bination of the model state and forcing in different parts of
the catchment. At this stage, we again either wait until the
internal differences have been dissipated to reduce the num-
ber of models, or we increase the number of models in the
case that the precipitation with larger spatial variability of
PB= 1 continues (Fig. 3, t = n). The maximum number of
models we could require in our adaptive clustering approach
depends on the maximum number of precipitation grid cells
(42 in this study). The highest resolution that the spatially
adaptive model c can reach in this study is reflected by the
spatially distributed model b.

4.3 Spatially adaptive modeling – model analysis

To test our spatially adaptive model c against the observed
discharge of the catchment, we route the simulated runoff
contributions according to their location to the outlet by as-
suming a mean flow velocity of water within the channel
network of 1 m s−1. However, as the same model can rep-
resent different grids with different locations, we addition-
ally need to calculate the average flow distances to the outlet
of all grids a model is representing and shift the simulation
by the average distance accordingly. We then take the area-
weighted mean of every simulation at each time step. The
performance of the adaptive model c is then quantified by the
KGE against the observed discharge and the area-weighted
average of the distributed model b. The latter addresses our
second research question and follows the logic that a suitable
adaptive modeling approach should lead to similar simula-
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tions as a fully distributed model, however, with fewer model
elements. While we use CATFLOW as a model here, the pro-
posed approach is not restricted to this model and can be
used in any hydrological model framework that distributes
a catchment into independent spatial units. One advantage of
CATFLOW (or similar type of models) is that it also uses an
adaptive time step procedure, making the final model adap-
tive in space and time. However, if a model represents a land-
scape in an entirely continuous manner without a delineation
of the landscape into independent sub-units like several 2D
surface runoff models, an adaptive mesh (numerical grid) is
required in case the spatial resolution should adapt itself dur-
ing runtime.

5 Results

In the following section, we investigate the precipitation field
and compare the performance of the discharge simulations
of the reference model, the spatially aggregated model a,
and distributed model b at the annual, seasonal, and event
scale by comparing hourly simulations against hourly ob-
served discharge. We furthermore present the simulation re-
sults of the adaptive model c for two selected rainfall events,
including the spatial distribution of the precipitation and the
model states. Finally, we show the soil moisture distribution
of two hillslope models at different time steps that have re-
ceived a significant dissimilar precipitation forcing to high-
light the importance of the dissipation timescale for adaptive
modeling.

5.1 Precipitation characteristics

While rainfall sums are equally distributed between the
winter (October–March) and vegetation season (April–
September) in the selected hydrological year 2013/14
(Fig. 2b), the rainfall intensities and the associated standard
deviation (here used to measure the spatial variability of the
precipitation field) of the precipitation field are in general
higher in summer (Fig. 4a and b). For instance, the five rain-
fall events with the highest rainfall intensities and the highest
standard deviation in space were all observed in the summer
season. Rainfall intensity and spatial variability are strongly
linked to each other, which is reflected in their correlation
of 0.82. The latter is no surprise as convective storms, which
dominate the precipitation generation in summer, are typi-
cally characterized by higher spatiotemporal variabilities and
higher rainfall intensities. This finding is neither surprising
nor limited to the chosen research environment (e.g., Hra-
chowitz and Weiler, 2011; Wilson et al., 1979), but it con-
firms one of our initial assumptions that rainfall is spatially
more diverse in the summer season compared to the winter
months in the Colpach catchment.

We selected two rainfall-runoff events to test the adaptive
model c (Fig. 4). We chose the first event as it has the highest

rainfall intensity of 19 mm h−1 and the third-highest spatial
variability estimated by the standard deviation of 3.8 mm h−1

in the time series as well as a distinct runoff reaction. Rainfall
event I was observed at the beginning of August and lasted
for about 5 h, and the highest spatial differences between the
grid cells of 14 mm h−1 was reached right at the beginning
of the event (Figs. 5 and 6). The rainfall event I moved from
west to east over the catchment and reached its maximum
rainfall intensity after 3 h. No rainfall had occurred before
the event for a period of 102 h. It can hence be assumed that
the catchment was in a moderately dry state before the event,
also indicated by soil moisture measurements presented in
Loritz et al. (2017).

The second rainfall event was selected as it has distinctly
different properties (low spatial variability, low intensity,
longer duration) as compared to the first event. Event II has
a maximum rainfall intensity of 5.8 mm h−1 and a maximum
spatial difference between the grid cells of 4 mm h−1. The
event lasted for around 15 h, making it the longest continu-
ing rainfall in the summer season, and there was no rainfall
observed 20 h before the event but more than 36 mm of rain-
fall over the preceding 3 d. It seems hence reasonable to as-
sume that the soils in the catchment were rather wet, which is
again supported by the soil moisture measurements presented
in Loritz et al. (2017).

5.2 Temporal dependency of the model performance

The performances of the four model setups (reference model
and model a, b, and c) to simulate the observed discharge of
the Colpach catchment estimated by means of the KGE are
shown in Table 2. Comparing the two spatially aggregated
models that differ only with respect to their rainfall forcing,
the reference model outperforms model a during the win-
ter season and on the annual timescale, while model a has
a higher performance during the vegetation season (April–
September). Both models are characterized by KGE values
higher than 0.8 in the winter season and for the entire hydro-
logical year, while the predictive performance drops in sum-
mer and is particularly low for the two rainfall-runoff events,
even resulting in negative KGE values. The differences be-
tween the KGE values (1KGE) between the two spatially
aggregated models (reference model and model a) are low
in winter, increase in summer, and are the highest for the
convective rainfall event I. Here model a only has a slightly
improved predictive performance as the average discharge of
the event, indicated by a KGE value of −0.16 (please note
that the performance of the mean of the observation is not
zero as in the case when using the Nash–Sutcliffe efficiency,
as shown by Knoben et al., 2019).

The observed discharge of the Colpach catchment and the
discharge simulations of the reference model, as well as the
discharge simulation of the distributed model b, are presented
in Fig. 4c. Visual comparison of the two models shows that
the reference model has lower runoff production during sum-
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Figure 4. (a) Average rainfall intensity of the precipitation field (mm h−1), (b) corresponding standard deviation of the precipitation
field (mm h−1), (c) observed discharge of the Colpach catchment and the discharge simulation of the reference model as well as of the
distributed model b. The two red bars display the location of the two selected rainfall-runoff events used to test the adaptive clustering
approach.

Table 2. Model performances of the four model setups to simulate the observed discharge of the Colpach catchment measured using the
Kling–Gupta efficiency (KGE), based on hourly simulation and observation time steps. Performances are shown for the entire hydrological
year (2013/2014), for the winter (October–March) and summer season (April–September), and for two selected summer rainfall-runoff events
in July and August. The three components of the KGE can be found in the Supplement.

Annual Winter Summer Rainfall Rainfall
performance performance performance event I event II

(KGE) (KGE) (KGE) (KGE) (KGE)

Reference model 0.88 0.88 0.52 0.1 −0.2
from Loritz et al. (2017)

Model a 0.85 0.84 0.65 −0.16 −0.05
(spatially aggregated)

Model b 0.91 0.89 0.73 0.29 0.1
(distributed model)

Model c – – – 0.29 0.1
(adaptive model)
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Figure 5. Binned precipitation field (blue) and binned model states (orange) of the adaptive model (t = 0; 3 August 2014 15:00 CET). PB is
the no. of allocated precipitation bins, S the no. of allocated model space bins, and M the no. of running models at the given time step. The
spatial distribution of the precipitation and the model states for event I are displayed in Fig. 6.

Figure 6. Spatial and temporal distribution of the precipitation field (upper panel) and the corresponding states of the actual model grids used
by the adaptive model c (lower panel). The model state is estimated by the slope of the simulated discharge. The corresponding bins (groups)
of the precipitation and model states are shown in Fig. 5.

mer, which is particularly visible in August and September.
Interestingly, the latter cannot be explained by the annual or
seasonal precipitation sums as both models are driven on av-
erage by similar precipitation sums of around 900 mm yr−1

for the entire year and around 450 mm per 6 months in the

summer season. Overall, model b has the highest predic-
tive performance as indicated by the KGE in all five test
periods (annual, winter, summer, and the two selected rain-
fall events) when compared to the two spatially aggregated
models (reference model and model a). The absolute differ-
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Figure 7. (a) Rainfall-runoff event I and (b) rainfall-runoff event II. Blue bars in the upper panel show the average precipitation of the
precipitation field for each time step (mm h−1). The green curves in the lower panel represent a single gridded model of the distributed
model b, the red line the area-weighted mean of the distributed model, the dashed purple line the area-weighted mean of the adaptive model,
and the dashed blue line the observed specific discharge of the Colpach.

ences between the model performances depend again on the
selected period. For instance, for the entire simulation pe-
riod, the reference model and model b have close to equal
KGE values around 0.9, while the differences between the
KGE values are 1KGE= 0.21 in summer and for the rain-
fall event II around 1KGE= 0.3.

Although model b has the highest KGE values for the
two selected rainfall-runoff events, the general model per-
formance is, given the KGE values of 0.29 and 0.1, still rel-
atively low for both runoff events. The low performance can
be explained by a general underestimation of the total runoff
volume at both events (Fig. 7), while it seems that the shape
of the simulated hydrograph is simulated acceptably under-
pinned by a correlation of 0.72 and 0.86 between the sim-
ulation and observation (see Supplement for the three com-
ponents of the KGE). The latter is supported by the fact that
distributed model b is able to simulate the observed double
peak at event I. We furthermore tested the addition of a direct
runoff component by assuming that 10 % of the rainfall is di-
rectly added to the channel network instead of falling on the
hillslopes. This model extension could be justified by sealed
areas within the catchment or by precipitation that directly
falls into the stream or on saturated areas like the riparian
zone. This rather simple model extension increases the KGE
of model b from 0.29 to 0.48 at event I. However, we do not
update our model here as the main goal of this study is not to
perform the best possible rainfall-runoff simulation but to in-
vestigate the role of the spatiotemporal patterns of rainfall in
the runoff generation of a mesoscale catchment by introduc-
ing the concept of a spatially adaptive hydrological model.

5.3 Spatially adaptive modeling – simulation results

The upper panel of Fig. 5 shows the binned precipitation field
of rainfall event I. The precipitation field was binned based

on the chosen bin width of 1 mm h−1. The rainfall field allo-
cates 0 bins (precipitation groups) at t = 0 (PB= 0), 12 bins
at t = 1 (PB= 12), 13 bins at t = 2 (PB= 13), 3 bins at t = 3
(PB= 3), and 2 bins at t = 4 (PB= 2). The number of oc-
cupied bins indicates the spatial variability of the rainfall
event at a given time step and would reach maximum spa-
tial complexity if PB equals 42. This means that if a high
number of bins is allocated, the forcing is spatially variable
and therefore a higher number of models is needed to repre-
sent the spatial variability of the precipitation. The number
of bins does, however, not specify how large the gradients
are within the spatial precipitation field. For instance, if 50 %
of a precipitation field is characterized by a rainfall amount
of 20 mm h−1 and the other 50 % by 1 mm h−1, the number
of allocated bins is two, although the absolute difference be-
tween the bins is large.

The lower panels of Figs. 5 and 6 display the binning of
the model states (S) of the adaptive model for each time step
of event I for the similarity measure dQ dt−1. We do not plot
the similarity measure Q here as in our specific case, Q and
dQ dt−1 lead to the same classification at both events. How-
ever, this does not mean that Q is less relevant as in theory
two models could simulate identical dQ dt−1 values but very
different absolute Q values. This shows that the set of simi-
larity measures should be picked carefully and depend very
much on the given modeling task and the research environ-
ment.

At t = 0, we run a single model representing the entire
catchment with a single model state. At t = 1, the precipi-
tation starts, and the spatial field is classified into 12 bins
(PB= 12). Following our approach, this necessitates that we
need to run 12 models (M = 12) at t = 1 to account for the
spatial variability of the rainfall. After one simulation step,
we estimate the number of model states by binning the abso-
lute values (Q) and slope (dQ dt−1) of the discharge simula-
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tions of the 12 models, resulting in two different model states
(two model state bins are occupied). Each of these states rep-
resents now a different part of the catchment with a different
area (Fig. 6, lower panel). For instance, at t = 1 around 76 %
of the catchment area is represented by a model in a state
where discharge changes below 0.05 mm h−1 and 14 % be-
tween 0.05 and 0.1 mm h−1. At t = 2, the precipitation field
has been classified into 13 bins, but at this time step, the
catchment is represented by two model states from the time
step before. This means we need to check which combina-
tions of states and precipitation input occur, in other words,
which grids are represented by which state and are forced by
which precipitation input. In this specific setting, we need to
run 16 models, which is lower than the theoretical maximum
(2 model states S×13 precipitation bins (PB=maximum of
26 running models M) as not all model states are driven by all
binned precipitation inputs. Afterward, we again group the
model states (S = 4) and continue until t = 4 after which no
rainfall occurs, and we again represent the entire catchment
by a single hillslope model. In total, we were able to reduce
the maximum number of gridded models from 42 to a maxi-
mum of 16 at rainfall event I and at the second event from 42
to 4 without a predictive performance loss in comparison to
the distributed model b (Table 2). The latter is shown by the
KGE values between the distributed model b and the adaptive
model c of around 0.98 at both events.

5.4 Spatially adaptive modeling – dissipation of
differences

The dissipation timescale (memory timescale) for both
events until the different hillslope models have “forgotten”
the last forcing and are again in the same “runoff genera-
tion state” is relatively short. Specifically, already after 1 h of
no precipitation at event I and II, the difference between the
hillslope models in model c is below the selected threshold
of 0.05 mm h−1 for Q and dQ dt−1. The same is true for the
soil moisture distributions at 10–20 and 60–100 cm depth,
which is negligibly small at the time step t = 4 at event I
when the four hillslope models are aggregated. This means
that the entire catchment can again be represented by a sin-
gle hillslope model already shortly after the last rainfall at
both events until new rainfall (PB > 1) occurs. The latter is
supported as the single hillslope from model c and the spa-
tially aggregated model a are also in a similar state regarding
their runoff generation after t = 5 at event.

This picture might, however, be different in certain simu-
lation scenarios. For instance, Fig. 8 displays the soil mois-
ture distribution of two hillslope models at 10–20 and 60–
100 cm depth at three time steps during event I (t = 3, t = 24,
and t = 48) that either have received the highest amount of
rainfall measured at a grid cell (30 mm, 5 h−1) or the low-
est (15 mm, 5 h−1). Both hillslope models started in the same
initial model state, and the dissipation time of the topsoil cor-
relates well with the runoff generation. The largest deviation

between the “wettest” model, which has received the high-
est amount of rainfall, and the “driest” model, which has re-
ceived the lowest amount of rainfall, is at t = 3 shortly af-
ter the highest rainfall intensity (see Fig. 5). After 24 h, this
difference persists but slowly dissipates and has almost com-
pletely disappeared after 48 h. In the deeper soil layer, the
picture is different. During the event, we see no reaction to
the rainfall forcing in the deeper soil layers. However, 24 h
after the first rainfall, the two models deviate also in deeper
layers, and the deviation is in a similar range as in the top
soil, although there was no further rainfall. The difference
in both layers disappears again after 48 h of no rainfall, and
the wettest and driest model are again in a similar state, also
regarding their soil moisture distributions.

6 Discussion

6.1 The role and value of distributed rainfall in
hydrological models

While the three non-adaptive model setups (reference model,
model a, and b) perform equally well simulating the dis-
charge of the Colpach catchment in the winter season, this
is not the case in the summer season, when the distributed
model b has higher KGE values than both spatially aggre-
gated models. This corroborates one of our hypotheses stat-
ing that the predictive performance of the representative hill-
slope (reference model) introduced by Loritz et al. (2017) in-
creases if the model is distributed in space and driven by dis-
tributed rainfall. Nevertheless, model b still has several defi-
ciencies, especially for the two selected rainfall events when
it does underestimate the total observed runoff volume, re-
sulting in high correlation values but overall low KGE values.
The latter shows that there is potential to improve the pre-
dictive performance of the model beyond only changing the
precipitation input, for instance by accounting for the sealed
areas and forest roads in the catchment.

Although the model comparison in this study is rather
heuristic (e.g., we discuss mainly along a single integrat-
ing performance metric), the findings in this study show that
the use of distributed rainfall is at least recommended dur-
ing the summer season in this catchment. This contradicts
the results of, for instance, Obled et al. (1994), who argued
that the precipitation over a 71 km2 large catchment is not
sufficiently organized to be relevant for the runoff genera-
tion. It is also not in line with the findings of Nicótina et
al. (2008), who recommended the use of distributed rain-
fall only in specific scenarios (e.g., infiltration excess) or
in catchments above 8000 km2. Given the improved perfor-
mance of the distributed model b and the rather small size of
the Colpach catchment of less than 20 km2, it seems reason-
able to conclude that catchment size alone might not be the
best indicator to decide if a distributed hydrological model
driven by distributed rainfall is needed or not.
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Figure 8. Relative soil moisture distributions for two gridded hillslope models that received the lowest (orange curve) and the highest (blue
curve) amount of rainfall during event I (15 mm 5 h−1 and 30 mm 5 h−1). Presented for time step t = 3 (during the event), t = 24 (after the
event), and t = 48 (after the event).

As the dominant rainfall generation mechanisms change
during the hydrological year in many catchments from
frontal to convective, it does not come, from a physical per-
spective, as a surprise that the increased relevance of dis-
tributed rainfall in summer can be linked to the changing
meteorological properties. Ogden and Julien (1993) argued
along these lines when they showed that the spatial distri-
bution of rainfall is only a dominant control in the case
that rainfall events have a shorter duration than the aver-
age runoff concentration time of a catchment. Similarly, Zhu
et al. (2018) reasoned that the spatial patterns of precipita-
tion are less relevant compared to the temporal distribution
if the drainage area and therefore typically the concentration
time is decreasing. The question as to whether a structurally
similar catchment needs to be represented in a spatially dis-
tributed manner depends hence on the spatial and temporal
structure of the precipitation as well as on the average con-
centration time as a first proxy for the catchment size.

The changing model performances during the two events
highlight that the required model and precipitation resolu-
tion does not only change between seasons but can vary from
rainfall event to rainfall event. This has also been argued by
Watts and Calver (1991), who stated that “the finest avail-
able definition of rainfall may be desirable for modeling . . . ”
of convective rainfall events, while lower spatial model reso-
lutions are sufficient during spatially and temporal more ho-
mogenous often stratiform rainfall events. In contrast, Lobli-
geois et al. (2014) reported that the distribution of rainfall is
in general of higher relevance in certain regions of France
when they analyzed 3620 rainfall-runoff events in 181 dif-

ferent mesoscale catchments. However, they also argued that
a substantial number of rainfall-runoff events do not match
this general pattern, showing that the distribution of rainfall
can be of high importance, even if the spatial precipitation
patterns are usually not a dominant control on the runoff
formation in a region. As such “rare” events are frequently
linked to extremes that are in turn beyond the realms of expe-
rience of what these landscapes have adapted to, they are of
considerable importance despite their low occurrence in time
(e.g., Loritz, 2019). This point is underpinned by the work
of Zhu et al. (2018) and Peleg et al. (2017), who both ques-
tioned the common practice to use spatially uniform rainfall
based on a single or a few rain gauges for performing flood
risk assessments, especially for higher return periods in ru-
ral and urban catchments, respectively. The proposed spa-
tially adaptive modeling approach could thereby be one way
to tackle this issue as it enables continuous physically based
simulations with model structures that adapt to the precipita-
tion forcing.

6.2 Spatially adaptive modeling – as a tool to reduce
redundant computations

The first results of the adaptive modeling approach seem
promising as the spatial adaptive model c performed sim-
ilarly as the distributed model b, however, using a smaller
number of hillslopes. Similar findings were reported, for in-
stance, by Chaney et al. (2016). They applied their HRU-
based model called “HydroBlocks” in a 610 km2 large catch-
ment and showed that a compressed, semi-distributed model
consisting of 1000 HRUs performed similarly compared to a
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gridded fully distributed model while being 2 orders of mag-
nitude faster than the distributed model and requiring only
0.5 GB instead of 250. They concluded that “. . . the spatial
patterns of the fully distributed model can be reproduced
with a fraction of the computational expense”, highlighting
the potential of approaches like HydroBlocks as tools to im-
prove the representation of hydrological processes in large-
scale land surface models without drastically increasing the
computational times and model complexity.

The main difference between models like HydroBlocks
and our approach is that HRUs are dynamically reassigned
during model execution based on the spatial properties of the
precipitation forcing. By that, we try to avoid redundant cal-
culations to reduce computational times similar to Chaney et
al. (2016) but also try to avoid situations in which we under-
estimate the spatial variability of the meteorological forcing
or the system state in the case that the test period is not rep-
resentative for certain spatial constellations. The latter can
thereby significantly impact hydrological simulations during
extreme conditions (e.g., Zehe et al., 2005; Zhu et al., 2018).
Our results show that the maximum number of gridded mod-
els necessary to represent the variability of the catchment
states and precipitation elements can be reduced by a factor
of 2.5. The total gain in computational efficiency is however
larger as the majority of the time, fewer than 16 models are
required to represent the catchments’ runoff generation. For
instance, during low flow conditions the spatially aggregated
model a, all hillslopes of the spatially distributed model b,
and the spatially adaptive model c are in a similar state and
hence produce similar results. In addition, the fact that dur-
ing the winter season a single representative hillslope (ref-
erence models) performs close to similarly to the distributed
model b indicates that the possibility to save computational
times by dynamically adapting the model structure is higher
than the factor of 2.5 suggests.

Clark et al. (2017) recognized computational times as a
major obstacle when using physically based models for prac-
tical applications, as proposed in the landmark publication of
Freeze and Harlan (1969). The discussion about saving com-
putational times with adaptive clustering is, however, chal-
lenging as the gain depends on the model approach chosen
(e.g., numerical scheme), the hardware used, the program-
ming language, the compiler, or the number of printout times
to the hard drive (Ehret et al., 2020). The relevance of saving
computational times of, for instance, 10 % depends further-
more on the absolute calculation time of a model and whether
a model run needs 100 min or 100 d to be completed. A fair
comparison would mean setting up a virtual environment and
working under similar conditions, e.g., using a virtual ma-
chine as well as using a fully automated adaptive cluster-
ing approach and running the adaptive model c on longer
timescales, at which it will most likely be the most useful.
Both are, however, beyond the scope of this study, and we
point toward the study of Ehret et al. (2020), which discusses

the potential of adaptive clustering with respect to saving
computational times in detail.

6.3 Spatially adaptive modeling – as a learning tool to
better understand the dissipative nature of a
hydrology

In this study, we focus on the potential of adaptive model-
ing to examine when interactions between a variable precip-
itation forcing and a variable catchment state cause a vari-
able runoff response and when these differences get “forgot-
ten” due to the dissipative nature of hydrological systems.
Our results illustrate that the relevance of distributed rainfall
for hydrological modeling is dynamically changing in space
and time. One way to account for this dynamically chang-
ing importance is to run distributed models driven by dis-
tributed rainfall the entire time at the highest possible reso-
lution. Such an approach would avoid cases in which we un-
necessarily underestimate the needed (spatial) model com-
plexity of a hydrological model, which again could lead to
limited predictive performances (e.g., Fenicia et al., 2011;
Höge et al., 2019; Schoups et al., 2008). However, this pro-
cedure may result in a strong increase of uncertainty due
to an increased number of model parameters (e.g., Beven,
1989), frequently by an unchanged amount of data for vali-
dation (Melsen et al., 2016), lead to a general overestimation
of the simulated spatial variability due to error propagations
and can drastically increase the number of redundant compu-
tations (Clark et al., 2017; Loritz et al., 2018). The issue of
increasing computational times due to redundant calculations
is thereby reinforced by the fact that physically based simu-
lations of hydrological fluxes rely on relatively short natu-
ral length scales in time and space. For instance, the water
flow in the critical zone, which is frequently simulated us-
ing the Darcy–Richards equation, should not exceed a lateral
grid size of 10 m and a vertical grid size below 1 m in homo-
geneous soils (Vogel and Ippisch, 2008). The same is true,
although on other scales, for simulating surface runoff with
derivatives of the Saint-Venant equation but also for concep-
tual models for which the assumption that a few macroscopic
water tables can represent the heterogeneity of driving po-
tentials in a landscape is rarely questioned. Even the grid-
ded spatial resolution of 100 m proposed in the comment by
Wood et al. (2011) for hyper-resolution models seems from a
purely physical perspective on hydrological processes ques-
tionable given the importance of hillslopes as key building
blocks in a hydrological landscape (Fan et al., 2019). This
is underpinned by the fact that hillslopes in the upper part
of the Colpach are barely longer than 100 m, but different
segments of these hillslopes can vary substantially in their
wetness and connections to the river (e.g., Martínez-Carreras
et al., 2016). Hydrological physically based modeling with
top-down or bottom-up models without a delineation of the
underlying system in smaller sub-units is hence up-to-date
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constrained to rather short length scales, at least if applica-
tions do not compromise the underlying physics.

Physical constraints, which result in small grid sizes and
calculation time steps, must however not be a dead-end for
physically based modeling on larger scales. This is because
it is frequently found that different catchments in the same
hydrological landscape function similarly despite the over-
whelming small-scale variability we frequently observe on
the plot scale (e.g., Mälicke et al., 2020; Sternagel et al.,
2019). This phenomenon sometimes referred to as spatial
organization entails a large potential for hydrological mod-
eling as it allows information about functional relationships
and catchment states to be transferred from one catchment
to another (e.g., Hrachowitz et al., 2013) as well as offer-
ing the possibility to aggregate structurally similar sub-units
and simulate their function by a representative model ele-
ment (e.g., Sivapalan et al., 1987; Zehe et al., 2014). The fact
that hydrological systems are highly dissipative (Loritz et al.,
2019) but constrained by their structural setting is thereby the
key to explain the feasibility of this aggregation as the unique
characteristics of the forcing over an area do not prevail but
are depleted or “forgotten” in a relatively short time, at least
if the focus is on the runoff generation. Specifically, we found
during both tested events that already after 1 h of no rainfall
the spatially adaptive model c required only a single hills-
lope model to represent the runoff generation of the Colpach.
While this finding is surely constrained by the chosen thresh-
olds of the two selected similar metrics (dQ dt−1 and Q) and
the chosen time frame, the picture is underpinned by the soil
moisture distributions of the model elements of the spatially
adaptive model c that are also close to similar at the time step
when they are aggregated.

Nonetheless, another virtual experiment showed that there
are clear limitations to the proposed approach and the chosen
parameters. We could demonstrate that two hillslope models
that received significant dissimilar precipitation amounts (>
15 mm 5 h−1) showed differences regarding their soil mois-
ture distributions in 60–100 cm 24 h after the last rainfall,
although the runoff generation at this time step was close
to similar. The latter means that there could be specific cir-
cumstances when we aggregate hillslope models using the
chosen similarity measures dQ dt−1 and Q and thereby re-
move relevant information about the different model states
from our ensemble. This is the case as we can simulate the
same flux by combining different combinations of driving
potentials with integral resistance terms, a phenomenon that
is inherent to all our governing equations and sometimes re-
ferred to as equifinality in hydrological modeling (Beven,
1993; Loritz et al., 2019; Zehe et al., 2014). This highlights
that the similarity metrics that are used to group similar mod-
els by their state should be chosen with care and need to be
adapted to the given research environment and process un-
der study. For instance, in a snow-dominated area we need
to group model states not only based on their runoff pro-
duction but also based on their snow cover. The choice of

dQ dt−1 and Q in this study seems, however, to be sufficient
to identify similar model elements, at least as long as we fo-
cus on the summer season. This is the case as our hillslope
models are all structurally identical and only simulate shal-
low subsurface storm flow during the entire summer season.
We can hence assume that we do have a rather unique rela-
tionship between our model states and the chosen similarity
metrics dQ dt−1 and Q. This is underpinned by the fact that
the individual hillslope models of the distributed model b,
which reflect the highest spatial resolution of the spatially
adaptive model c, do not drift apart in the chosen summer
season. Conversely, they mainly produce redundant simula-
tions already shortly after each rainfall event, at least as long
as we focus on the summer season (see Supplement). The lat-
ter means, however, also that the conclusions drawn are not
necessarily true for the winter season for which we have not
tested the adaptive model as the distributed model b and spa-
tially aggregated reference model perform close to similarly.
Nevertheless, a test of the proposed spatially adaptive mod-
eling approach on a longer timescale is an interesting task for
further research.

While the structure of a catchment constraints its state
space, its actual position therein is controlled by the mete-
orological forcing and by an attracting local thermodynamic
equilibrium, a point where all driving gradients are depleted.
As larger gradients dissipate faster than smaller ones, as long
as they are controlled by the same integral resistance prop-
erties, structurally similar parts of a landscape will converge
to the same state and thereby “forget” differences between
their past forcing and current state. This convergence leads
to the emergence of hydrological similarity in time (Loritz
et al., 2018) and explains the changing relevance of dis-
tributed rainfall within hydrological models. This again is
the theoretical foundation that explains why adaptive mod-
eling works in hydrological systems and not necessarily in
meteorological systems as their chaotic nature can amplify
state differences on longer timescales, instead of dissipating
those (e.g., Lorenz, 1963). Our developed adaptive model-
ing approach uses this straightforward physical reasoning of
the causal and dissipative interplay between the precipitation
forcing and the catchment state to dynamically allocate its
model structure during model execution. It is built upon a
well-established concept in hydrology, which assumes that
individual observations or model states can represent each
other if they are allocated to the same group (e.g., Wood
et al., 1990). The related bin widths (grouping) can be se-
lected either based on our physical understanding (Loritz et
al., 2018) or identified based on a statistical analysis of the
underlying distribution (of for instance the precipitation data;
e.g., Gong et al., 2014; Scott, 1979). The general approach is
strongly motivated by the idea that a spatially homogeneous
field can be compressed to a single time series without los-
ing information about the spatial pattern of rainfall. This is,
however, not the case if the spatial field is highly variable,
where a compression to a single observation reduces the in-
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formation provided to a hydrological model and hence can
average out extremes and potentially relevant spatial constel-
lations (e.g., Loritz et al., 2018; Weijs et al., 2013). Spatially
adaptive modeling can, therefore, be used not only as a tool
to reduce computational times but also to analyze the rele-
vance of certain spatial detail in a hydrological model and
therefore as a tool to better understand the dissipative nature
of hydrology.

7 Conclusions

In this study, we investigate the role and value of distributed
precipitation data in the runoff generation of a mesoscale
catchment. We therefore compare the model performances
of four model setups at different periods and show that a dis-
tributed model driven by distributed rainfall yields improved
performances only during certain periods. We then step be-
yond this finding and develop a spatially adaptive model that
is able to dynamically adjust its spatial model structure in
time. This model is capable of representing the varying im-
portance of distributed rainfall within a hydrological model
without losing predictive performance compared to a spa-
tially distributed, gridded model. Our results confirm that
spatially adaptive modeling might be one way to reduce com-
putational times in physically based hydrological simulations
as well as being used as a tool to better understand the causal
and dissipative interplay between a catchment’s state and its
meteorological forcing.

The main findings of this study are as follows:

1. The importance of distributed rainfall in hydrological
modeling is given by the natural variability of rainfall
dynamically changing in time. In consequence, there
cannot be a time-invariant answer to the question –
“how important are spatial patterns of precipitation for
the runoff generation at the catchment scale?” – nor to
any related question which deals with an “optimal” spa-
tial discretization of a hydrological landscape within a
model.

2. Spatially adaptive modeling is a feasible way to ac-
count for the changing importance of distributed rainfall
within a hydrological model and at the same time can be
used as a tool to improve our understanding of the inter-
play between rainfall forcing, catchment structure, and
its state.

3. Hydrological landscapes are organized in a manner that
spatial differences within the precipitation forcing are
“forgotten” or smoothed out in often surprisingly short
period when rainfall becomes runoff. This means that
gradients that drive runoff are effectively dissipated,
which happens frequently under the influence of various
forms of preferential flow (e.g., Berkowitz and Zehe,
2020). The dissipative nature of hydrological processes

combined with the observation that structural similar
hydrological landscapes are also functionally organized
similarly explains thereby why hydrological similar-
ity must be a time-invariant concept and why spatially
adaptive modeling is a physically reasonable way to rep-
resent hydrological systems within a model.
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