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Quenching friction-induced oscillations in multibody-systems by the use
of high-frequency excitation
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Dry friction can be a cause of undesired self-excited oscillations. One way to suppress this underlying mechanism is the
superposition of high-frequency vibrations whereby the effective friction characteristics is changed and a quasi-equilibrium
can be stabilized. This damping effect is analyzed in detail for single-degree-of-freedom systems [1] and experiments and
simulations show a good accordance [2]. In this work, the analytical approach from [1] is used to analyze the stabilizing effect
of superposed oscillations for a two-degree-of-freedom system subject to friction.
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1 Introduction

Friction-induced oscillations are often investigated by an elastically mounted mass on a moving belt. The discontinuous
friction function and the decay of the friction force at small relative velocities can cause a destabilization of the equilibrium
point and self-excited oscillations can occur. High-frequency excitation influences the system dynamics in such way, that the
effective friction characteristic is no longer discontinuous and has a positive slope at small relative velocities [1]. This has a
damping effect on the system, which is why a new, stable quasi-equilibrium can exist.

2 Investigated system

To investigate the suppression of friction-induced oscillations in multibody-systems, the system in figure 1 is considered. It
consists of two masses, which are linked by linear springs. The first mass is additionally linked to the environment. Both
masses lie on a revolving belt, which moves at a constant velocity v0. The normal forces FN1 and FN2 act vertically on
the masses and the friction coefficient between mass and belt is assumed as a function of the relative velocity in the contact,
respectively. The first mass is excited by the force F1(t) = AΩ2 sin Ωt.

Fig. 1: Model of tow masses on a moving belt.
Fig. 2: Friction coefficient as a function of the relative
velocity: discontinuous (- -) and averaged (–)

The dimensionless equations of motion in matrix form are given by
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aω = O(1) . The friction force is given by ri(vrel,i) = fNiµ(vrel,i), where the friction coefficient is given by the function
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which is shown in figure 2. The function is discontinuous at vrel = 0, has a negative slope at |vrel| < vm where the absolute
value has a local minimum at (vm, µm). To investigate the system dynamics, the method of multiple scales is applied. The
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2 of 3 Section 5: Nonlinear oscillations

time is separated in a slow time τ and a fast time θ = ωτ , the coordinates are separated in a big, slow motion and a fast, small
motion: x

˜
(τ) = z
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(τ) + 1

ωϕ˜
(τ, θ) . Executing the derivatives and applying equation 1 yields
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The order O(ω1) in equation 3 delivers the equation for the fast motion
∂2ϕ
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ω sin θ which leads to
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has zero mean and is bounded in the fast time. The order O(ω0) yields the equation for the slow motion, which is averaged
over one period of the fast time θ
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macroscopic relative velocity Vrel,i = ∂zi

∂τ − ν0 , which is shown in figure 2 . Following this, equation 4 can be linearized
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while µ̄′i describes the slope of the effective friction characteristics of mass i at the quasi-equilibrium. Using an exponential
ansatz for equation 5 leads to the characteristic polynomial of order 4, which allows statements concerning the stability of z

˜0

using HURWITZ-criteria.

3 Results

In figure 2, the effective friction characteristics of excited mass 1 (–) and not excited mass 2 (- -) is displayed. For small relative
velocities, the friction force at mass 1 has a positive slope, while mass 2 has a negative slope. Figure 3 shows the values of
the slopes, for which the quasi-equilibrium z

˜0 is stable. In fact, the excitation of only mass 1 can suppress friction-induced
vibrations in the whole system. Figure 4 shows the values of excitation frequency ω and belt velocity ν0, for which the system
is stable. For this map, the values of the discontinuous friction coefficient in equation 2 and its analytically averaged values
for high-frequency excitation are inserted.

Fig. 3: Stable area (gray) in dependence of friction coefficient slopes.
Fig. 4: Stable area (gray) using equation 2 in dependence of ω and ν0.
Parameters: µs = 0.4, µm = 0.25, vm = 0.5, a = 0.01 .

4 Conclusions

The influence of high-frequency excitation on a simple two-body-system subjected to friction is analyzed using multiple
scales. It is shown that friction-induced oscillations can be suppressed by exciting only one mass. Caused by the excitation, a
quasi-equilibrium exists, where the system oscillates at a high frequency at small amplitudes, while the velocity of the slow,
big coordinate is zero. This equilibrium can be stable, in dependence of the slopes of the effective friction characteristics.
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