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Denitrification, a significant pathway of reactive N-loss from

terrestrial soils, impacts on agricultural production and the

environment. Net production and emission of the denitrification

product nitrous oxide (N2O) is readily quantifiable, but measuring

denitrification’s final product, dinitrogen (N2), against a high

atmospheric background remains challenging. This review

examines methods quantifying both N2 and N2O emissions,

based on inhibitors, helium/O2 atmosphere exchange, and

isotopes. These methods are evaluated regarding their capability

to account for pathways of N2 and N2O production and we

suggest quality parameters for measuring denitrification from

controlled environments to the field scale. Our appraisal shows

that method combinations, together with real-time monitoring

and soil-gas diffusivity modelling, have the potential to

significantly improve our quantitative understanding for

denitrification from upland soils. Requirements for

instrumentation and experimental setups however highlight the

need to develop more mobile and easily accessible field methods

to constrain denitrification from terrestrial soils across scales.
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Introduction
Denitrification, the sequential reduction of nitrate

(NO3
�) and nitrite (NO2

�) to gaseous emissions of nitric

oxide (NO), nitrous oxide (N2O) and dinitrogen (N2) is a

key process within the nitrogen (N) cycle, directly

impacting agricultural production and the environment.

Denitrification research usually focusses on N2 and N2O,

assuming NO to account for only a small fraction of

overall denitrification. Advances in measuring N2O as a

trace gas have improved N2O estimates at both spatial

and temporal scales. However, measuring N2 emissions

against the high atmospheric N2 background remains

challenging, making the magnitude of total denitrification

losses, defined here as N2 + N2O, and N2:N2O partition-

ing a major uncertainty for N-budgets from terrestrial

ecosystems. This uncertainty is further aggravated by i)

the use of methods associated with bias,ii) low method

sensitivity, precluding measurements beyond peak emis-

sions and iii), the use of methods/experimental setups

which change substrate availability and soil conditions

different from those found in situ [1��]. These short-

comings preclude the use of some of the available meth-

ods listed in Table 1 to obtain realistic and unbiased

measurements of N2 and N2O: For example, the widely

used Acetylene Inhibition Technique (AIT) creates a

systematic and irreproducible underestimation of deni-

trification [2–5], resulting in biased estimates of denitrifi-

cation across scales [6]. The low sensitivity of the N2/Ar

method precludes its use for denitrification measure-

ments from upland soils. The denitrification potential

(DP), also acetylene based, is quantified in a soil slurry

after the addition of glucose and non-limiting NO3
�,

severely altering substrate availability for denitrification.

Even some 15N denitrification methods such as the mod-

ified isotope pairing technique (IPT) require soil slurries

and anaerobic (pre-) incubations. These approaches have

been used to obtain ‘potential’ denitrification rates or

served as a proof of concept. The present choice of

methods however enables researchers to move past the

quantification of potential denitrification rates if condi-

tions are kept similar to those found in situ, allowing

realistic estimates of N2 and N2O to be obtained.

The Helium/Oxygen atmosphere method (He/O2

method) [7,8,9�,10] and the 15N gas flux method
in this publication are the sole responsibility of the authors and do not

er countries.
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Table 1

Comparison of different methods for measuring N2 and N2O emissions from terrestrial soils. Method development stage, the suitability of the method to quantify actual denitrification

rates (N2 and N2O) and relative differences between treatments and/or soils as well as instrument requirements are rated from low (*) to high (*****). Italicised methods are in the early

development stage and ratings are only indicative due to the small number of published studies using this method

Method Principle Method

development

stage

Soil manipulation/

added Substrate

Field

studies

Suitability to quantify Source partitioning

Instrument requirements Reference

Actual

denitrification

rates

relative

differences

N2 N2O

Potential denitrification assay Inhibition of N2O reduction to N2 ***** Slurry, non-limiting

C and NO3
�

* * * [4]

Acetylene inhibition technique Inhibition of N2O reduction to N2 ***** Introduction of

Acetylene

U * * * [3]

Modified slurry Isotope pairing

technique

Isotope pairing **** Slurry, anoxic

preincubation

* *** U **** [58,59]+

N2/Ar technique N2/Ar ratio ** – U * * **** [60]
15N gas flux method Non-random distribution of 15N2

isotopologues

**** Addition of fertiliser

and water

U ***** ***** U U **** [37,42]

He/O2 method Measuring soil borne N2 in a He/O2

atmosphere

**** – **** ***** **** [10]

Reduced N2 atmosphere combined

with 15N tracer application

Improved detection of 15N2 against a

reduced N2 atmosphere

*** Addition of fertiliser

and water

**** ***** U U **** [48]

Improved 15N gas flux method Improved detection of 15N2 against a

reduced N2 atmosphere

** Addition of fertiliser

and water

U ***** ***** U U ***** [36��]

Isotopic mapping approach Isotopocules of N2O * – U ** *** U **** [54�,55�]
Naturally occurring 15N15N isotopes Naturally occurring clumped isotope

tracer D30

* – U ***** ***** U ***** [56]

Raman multi-gas sensing Interaction of photons with of NO,

N2O and N2

* – * * **** [57]

+ ratings are given for upland soils; the method is originally used for sediments and is therefore better suited to measure denitrification from saturated soils.
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Measuring denitrification from terrestrial soils Friedl et al. 63
(15NGF) [11] avoid most of the shortcomings of the

methods mentioned above, and are considered suitable

for the direct quantification of N2 and N2O from

upland soils. Both methods require extensive instrumen-

tation and in-depth knowledge for sound application.

‘Methodsfor measuring denitrification’ from 2006 [1��],
describes development and application of both methods

and a recent meta-analysis discusses their use in compar-

ison to other methods in denitrification studies up to

2015 [12�]. Furthermore, the authors suggest a framework

for standardised reporting of denitrification metadata to

provide better information for biogeochemical models,

limited by the current lack and/or bias of denitrification

data. Building on these studies, this review provides a

concise technical overview on the He/O2 method and the
15NGF to guide researchers regarding method choice,

method evaluation, and quality assessment of denitrifica-

tion data. We

� revisit the principles of the He/O2 method and 15NGF

for the direct quantification of N2 and N2O emissions

from upland soils,

� discuss instrument requirements, applicability, and

detection limits (DL),

� investigate their ability to account for different path-

ways of N2 and N2O production,

� highlight recent advances in method development and

propose minimum requirements for quality control and

reporting for each method,

�

Figure 1

(a) 

Manual chambers Headspace samples IRMS analysis

Automated chamber system Real-time IRMS ana

(a) Sampling procedure for the 15N gas flux method using manual static cha

chamber system coupled to a mobile ‘Field-isotope ratio mass spectromete

Oxygen atmosphere method, showing the flushing of the soil column and th

www.sciencedirect.com 
and, finally, explore the potential of new approaches to

measure N2 and N2O emissions highlighting research

needs to further advance denitrification studies.

The He/O2 atmosphere method
This method avoids the problem of the high N2 back-

ground during N2 measurements by replacing the soil-

headspace atmosphere inside the closed incubation sys-

tem with a He/O2 mixture. Increases in headspace N2

concentrations due to soil emissions can be directly

measured in the artificial He/O2 headspace atmosphere

by gas chromatography at high precision, and with

DLs for N2 fluxes <10 mg N2 m
�2 hour�1 achievable

[1��,13��]. This setup requires extremely gas-tight

incubation systems to minimise intrusion of atmospheric

N2 into the incubation vessel and the sampling units.

This requires extensive engineering efforts such as

double He-flushed O-ring seals, submerging of the

incubation vessels and tubing connections underwater

(Figure 1), and/or placing the system or its potential leaky

components such as tubing connections, valves and sam-

ple loops in a He-purged chamber [10,13��]. Despite

these efforts, small N2 leakage rates remain and must

be corrected for by measuring empty vessels or vessels

with containers of similar form and volume as soil cores,

referred to as ‘dummies’. The lower the measured N2

emissions, the higher are the requirements for gas-tight-

ness of the system. To establish an N2-free atmosphere,

the soil columns are purged with a He/O2 mixture in a

dynamic flow-through mode (Figure 1), which may
(b)

lysis
Flushing of the

soil column
Flushing of the

headspace

Incubation vessels

Current Opinion in Environmental Sustainability

mbers with subsequent IRMS analysis or an automated static

r’ [46��] and (b) setup of the incubation vessels used for the Helium/

e headspace for subsequent N2 analysis with a GC [13��].

Current Opinion in Environmental Sustainability 2020, 47:61–71



64 Climate change, reactive nitrogen, food security and sustainable agriculture

Table 2

Challenges, solutions and improvements, and proposed quality criteria to be reported in denitrification studies measuring N2 and N2O

emissions from terrestrial soils using the Helium/Oxygen headspace method or the 15N gas flux method. Further details on reporting are

given in the Supplementary Material

Challenge Solution/Improvement Quality criteria to be reported References

Helium/Oxygen

Headspace

Method

Measurements compromised by

leakage of atmospheric N2

Improve tightness (see text);

Regular quantification of N2

intrusion with empty system or soil

core dummies; Subtract leakage

rates from measurements

� Leakage rate for each

incubation vessel. Temporal

stability of leakage rates during

measurement period, Leakage

rates << N2 emission rates

[10,13��]

Long time needed to replace soil

atmosphere with no N2

measurements possible during

that time

Repeated vacuum/purge cycles � Details on purging approach

(flow rate, time under pressure

and/or vacuum, actual

pressure/vacuum applied)

[10,13��]

Sufficiently purged to remove N2

from soil?

Experimental and/or

mathematical verification using

the mathematical framework of

Wu et al. [61] (supplementary

material) for a conservative

calculation of required flushing

time

� Report initial N2 concentration

in the system vs. flushing time

(once per soil is enough)

[61]

Biological production or physical

degassing from soil?

Ensure sufficient soil He-purging

time (see above) to avoid N2

gradients

Compare N2 production at 4�C vs

20�C as indication of biological N2

production

[13��]

Insufficient detection limit Reduced headspace height,

improved N2 detector
� Report SD of 10 calibration gas

measurements

Report precision of N2 analysis

Potential destruction of anaerobic

microsites by soil atmosphere

exchange

Allow for reestablishment through

soil respiration before start of N2

measurements – research need

for accurate O2 sensors

Including plants Setup including a light source

enabling photosynthesis,

controlling CO2 mixing ratios,

irrigation water free of N2 and

enough space for plant growth

15N gas flux

method

IRMS precision for 29R (29N2/
28N2)

and 30R (30N2/
28N2)

Improving the leak tightness of the

IRMS

Removal of O2 and H2O in the N2

sample stream

Optimising sample loop size and

Ionisation energy

Reduction of the N2 background in

the chamber headspace

� Overall SD for 29R and 30R of

ambient air samples included as

QC in each run (between batch

SD) or

� SD for 29R and 30R of ambient

air samples minimum

10 representative for the time of

the respective IRMS analysis

� Resulting DL and MDL

[36��,62]

Estimating the 15N enrichment of

the soil NO3
- pool undergoing

denitrification

Calculation of the 15NO3
-

enrichment based on N2 and N2O

Determination of the 15N

enrichment of soil NO3
- following

soil extraction via diffusion

technique

� Report a comparison of the
15NO3

- enrichment based on N2

vs. based on N2O

[45,46��]

Uniform distribution of 15N in the

soil

Application of a high rate of 15N

fertiliser as a solution waters the
15N label evenly into the soil.

Saturation of soil cores with 15N

labelled fertiliser solution.

Injection via syringe ensuring even

� Comparison of the 15NO3
-

enrichment based on N2 vs.

derived from N2O over time.

Distribution of the 15NO3
- label

in the soil

[35,42,63�]

Current Opinion in Environmental Sustainability 2020, 47:61–71 www.sciencedirect.com



Measuring denitrification from terrestrial soils Friedl et al. 65

Table 2 (Continued )

Challenge Solution/Improvement Quality criteria to be reported References

distribution across the plot and at

depth
� Comparison of the theoretical

vs. actual 15NO3
- enrichment via

pool mixing.

Achieving the target 15N

enrichment

Determination of soil NO3
- levels

prior fertilisation

Tests to account for the dilution of
15NO3

- due to increased

nitrification after 15N and water

addition

� Report theoretical vs. actual
15NO3

- enrichment using a pool

mixing model

[46��,63�]

Subsoil diffusion of N2 and N2O in

field studies

Increased Reduction of N2O to N2

Experimental quantification of N2

and N2O emitted from soil cores

enclosed at the bottom

Correction of surface fluxes via

soil gas diffusivity modelling

� Minimise chamber closure time

(� 3 hours) according to

expected flux rates.

Establish N2O linearity

[49�]

Linearity of N2 and N2O fluxes Several gas samples in even

intervals over time to evaluate the

linear increase of both N2 and N2O

over time

� Report test for linearity, and the

coefficient of determination

[21��,46��]

Discarding N2 measurements vs.

zero fluxes

Set of rules how N2measurements

are handled if 29R and/or 30R are

negative and/or below DL.

� Report handling of N2

measurements below DL and

the number of discarded N2

measurements

[35,63�]

� denotes minimum quality criteria to be reported for the respective method.
include alternating evacuation cycles to speed up the

exchange process [13��]. For quantification of N2, systems

are either run in a static [10,13��], or dynamic chamber

mode [9�,14], with no or continuous He/O2 flow through

the chamber, respectively. The size of soil cores can range

from small cores (5.6 cm diameter and 4 cm height),

incubated in sets in the same incubation vessel to cover

spatial variability [15] to relatively large soil columns

(12.5 cm diameter and 15 cm height) [10,16]. The key

strengths of the method are direct and simultaneous

measurements of N2 and N2O without chemical pertur-

bation of the soil caused by 15N labelled fertiliser or an

inhibitor, without the need for stable isotope analyses of

headspace gas.

Major drawbacks and challenges of this method are: (i)

the extreme technical effort required to make the experi-

mental system gas-tight against intrusion of atmospheric

N2and (ii) the period needed (up to 48 hours) to establish

an N2-free atmosphere, during which quantification of N2

emissions is not possible. These challenges require spe-

cific solutions and adaption of the incubation setup as

outlined in Table 2. Further method limitations arising

from setup requirements and gas detection include (iii)

the inability to operate in the field and therefore distur-

bance of soil (iv) limited replication and (v) limitation to

distinguish between processes generating N2 and/or N2O

such as nitrification, denitrification or anammox

[10,12�,13��]. Notwithstanding this, for studies focusing

on ecosystem N balances and total gaseous N losses, the
www.sciencedirect.com 
ability of the He/O2 method to facilitate integrative N2

flux determination over time, regardless of source, can be

regarded as an advantage. To obtain seasonal or annual

estimates of soil N2 emissions at the field scale, field cores

can be brought to the laboratory for short measurement

periods and immediately reburied in the field [17,18].

Field N2 emissions can then be constrained by N2O/

(N2 + N2O) product ratios obtained from He/O2 labora-

tory incubations i) used in combination with high-fre-

quency N2O measurements and soil data relating to

environmental variables [19�,20] or ii) using field mea-

surements of soil O2 as a proxy for denitrification [21��].

Flushing the soil core with a gas mixture containing 20%

O2 can alter the O2 concentration profile and may destroy

anaerobic micropores (Figure 1). The O2 molecule reg-

ulates denitrification rates and activity of the N2O reduc-

tase enzyme thus varying the soil exposure to O2 can

affect both denitrification rate and the N2O/(N2 + N2O)

product ratio [6,21��,22]. Although soil respiration may

quickly restore anaerobic soil pores after purging the soil

core with a He/O2 mixture, the effect of flushing on

anaerobic micropores and the time required to re-estab-

lish original conditions is not known. Some studies have

tried to adjust the He/O2mixtures used to purge the cores

based on soil O2 levels measured in the field, developing

relationships between precipitation and soil O2 concen-

trations to extrapolate point measurements of denitrifica-

tion to seasonal scales [21��,22,23]. Most O2 probes are

however only able to measure O2 in soil-macropores, but
Current Opinion in Environmental Sustainability 2020, 47:61–71



66 Climate change, reactive nitrogen, food security and sustainable agriculture
not at the micropore-scale where denitrification prefer-

entially takes place [22]. Owing to the inherent spatial

variation of soil O2 and analytical constraints, the appro-

priate scale and method to determine O2 dynamics in the

soil profile and adjust O2 levels in the He/O2 purge gas

remain open research questions.

The importance of plant–soil–microbe interactions and

their corresponding effects on denitrification poses

another challenge, as available systems usually do not

contain active plants. This is expected to result in major

bias, as N gases can be directly emitted from plants [24],

and plant activities such as root exudation of labile C and

competition for NO3
� are assumed to be a major driver of

rhizosphere denitrification [25,26], an effect that has not

yet been quantified based on direct N2 measurements

because of the methodological limitations outlined here.

Currently, several groups are constructing and testing He/

O2 systems with translucent chambers to include plant

effects [9�,27]. Such a setup, however, further increases

engineering challenges, due to the need to (i) install light

sources to enable realistic levels of photosynthetic active

radiation in the incubation vessels(ii) control CO2 mixing

ratios in the headspace and (iii) introduce irrigation-water

free of dissolved N2 to the plants. Furthermore, growing

crops of realistic size involves a significant increase in the

volume of soil used and a suitable headspace height,

which results in trade-offs: these systems require a longer

period of He flushing to replace the soil atmosphere

resulting in higher He consumption, as well as an

increased DL. Nonetheless, such plant–soil incubation

systems using the He/O2 method are expected to provide

more realistic measurements of denitrification and N2:

N2O emission ratios from terrestrial soils.

The He/O2 atmosphere method is one of the two main

approaches considered suitable for the direct quantifica-

tion of N2 and N2O emissions from soils and is especially

well suited to laboratory incubations with controlled

environmental settings and parameterization studies.

Method-inherent limitations and drawbacks demand

careful operation to avoid flaws and erroneous N2 emis-

sion measurements. Quality control is challenging, as only

customised systems are available, with no universal qual-

ity indicators available or in use. Table 2 summarises the

discussed challenges of the method, approaches for

improving the method, and quality indicators that should

be reported.

The 15N gas flux method
The 15NGF is the only method that can be applied under

laboratory and field conditions. Highly enriched 15N ferti-

liser is applied to the soil, and gas samples are taken using a

static chamber approach (Figure 1). Gas samples are then

analysed for their different isotopologues (i.e. molecules

differing in their isotopic composition) of N2 and N2O via

isotope ratio mass spectrometry (IRMS). As the 15N
Current Opinion in Environmental Sustainability 2020, 47:61–71 
enriched NO3
� pool undergoes denitrification, emitted

N2 contains three different isotopologues: 28N2

(14N14N), 29N2 (14N15N) and 30N2 (15N15N), following a

binomial, i.e. random distribution [28��]. The mixture of

background N2and the N2produced from the 15NO3
�pool

will, however, have a non-random distribution of isotopo-

logues. This deviation from the random distribution

permits the 15N abundance in the NO3
� pool, and subse-

quently, the N2 fluxes to be calculated [29�,30�,31]. Based

on the isotopologues of N2O (14N14N16O, 14N15N16O and
15N15N16O), N2O production can be attributed to nitrifica-

tion (N2On) or denitrification (N2Od) [32], and allows, in

contrast to the He/O2 method, quantification of the deni-

trification product ratio (N2Od/(N2 + N2Od)).

Challenges faced when using the 15NGF include: a) Gas

analysis - — accurate measurements of 29N2 (
14N15N) and

30N2 (
15N15N) for estimating the soil 15NO3

� pool enrich-

ment, (b) the uniform distribution of 15N in the soil (c)

achieving the target 15N enrichment, and (d) subsoil

diffusion of N2 and N2O in field experiments.

High precision of the IRMS enables the detection of

small changes in 29N2 and
30N2. The detection of 29N2 is

quite robust, but the formation of NO (N14O16) in the ion

source of the IRMS [33] can mask changes in mass
30N2. The standard deviation of 29R (29N2/

28N2) and
30R (30N2/

28N2) of ambient air samples, ideally included

in each analysis, determines the precision of the IRMS.

Despite efforts [34��], this precision has not significantly

improved over the last four decades [2,35,36��,37]. This

defines the relatively high method DL (MDL) of the
15NGF, which is typically in the range of 10–

60 g ha�1 day�1, assuming a 15NO3
� pool enrichment

of 50%, a headspace closure time of 2 hours, and a

headspace-volume to soil area ratio of 10 (see supplemen-

tary material). Consequently, the 15NGF is primarily used

in fertilised agroecosystems, where denitrification is

expected to be a major pathway of N loss.

Estimates of the 15NO3
� pool enrichment are critical for

accurate determination of N2 fluxes. Assuming that N2 and

N2O are produced from the same NO3
� pool undergoing

denitrification, the isotopologues of N2O can be used to

estimate the 15NO3
� pool enrichment [38]. The fraction of

N2O derived fromdenitrification in the chamberheadspace

is usually higher than that of N2, makingthis approach more

reliable if source pool uniformity can be ensured [39].

Direct measurement of the 15NO3
� following soil extrac-

tion [40] is not recommended since this is likely to under-

estimate the 15NO3
� pool enrichment undergoing

denitrification leading to a severe overestimation of N2

emissions. Estimates of the 15NO3
�pool enrichment based

on the isotopologues of N2 and N2O can be compared over

the time of denitrification studies. This comparison pro-

vides an indication of uniform 15N labelling and should be

therefore included in denitrification studies.
www.sciencedirect.com



Measuring denitrification from terrestrial soils Friedl et al. 67
Uniform 15N labelling of the soil is a basic assumption

of the 15NGF. If denitrification occurs in multiple

NO3
� pools with differing 15N enrichments, N2 produc-

tion may be underestimated [41]. To address this prob-

lem, 15N fertiliser is usually applied in solution: either

sprayed on to the soil and/or mixed in [42], injected into

the soil with a needle at different depths [37], using a

capillary applicator, or simply watered into the soil [35].

Sieving and mixing is a popular practice in incubation

studies, usually reducing the variation between repli-

cates. The disturbance of the soil structure through

sieving and mixing, and its effect on N turnover recom-

mend this approach for process studies only, precluding

the upscaling of results to the field scale. The quantity of

applied 15N is also critical, as accurate estimates of

gaseous N losses can be made without uniform distribu-

tion of 15N in the soil when large amounts of highly

enriched N fertiliser are applied [43,44]. Thus, the result-

ing unnaturally elevated soil N concentration, together

with the application of water, may limit the applicability

of the 15NGF in natural ecosystems but not in fertilised

and irrigated agroecosystems. Over time, differences in

O2 availability determine nitrifier activity at the micro-

scale, causing lower dilution of 15NO3
� in anoxic, and

stronger dilution of 15NO3
� in oxic microsites [45,46��].

Such heterogeneity can be reflected in differences

between the 15NO3
� pool enrichment derived from

N2O versus the one from N2, showing the production

of N2O and N2 in different microsites according to their

different O2 status. Leaching and lateral flow in the field,

or preferential flow and pooling of 15NO3
� in incubation

studies can further skew the distribution of 15NO3
� in the

soil. Even if uniform 15N labelling is achieved in the

beginning of an experiment, this is likely to change over

time, demanding close evaluation to reveal potential bias

of flux estimates.

The target enrichment of the soil NO3
� aims to maximise

the signal for both 29N2 and
30N2 and is also critical for the

MDL. The relative abundance of the 29N2 as a function of
15NO3

� enrichment over the range 0–100%, plots in a

quadratic fashion with the maximum relative abundance

of 29N2 occurring at a 15NO3
� enrichment of 50 atom%,

while 30N2 increases exponentially over the same range of
15NO3

� enrichment. Thus, the target 15NO3
� enrich-

ment within the uniform soil pool is between 40 and

60 atom% in order to optimise the relative abundance of

all isotopologues at detectable levels. This also allows the

calculation of N2 fluxes purely based on 29N2 as a fall-back

strategy should detection of 30N2 fail [29�,30�]. The MDL

decreases with decreasing ratio of headspace volume to

the area of soil enclosed [47], increasing closure time of

the chamber [48], and increasing 15N enrichment of the

NO3
� pool undergoing denitrification. The first two

parameters need to be optimised to provide enough

headspace atmosphere for sampling, while avoiding

increased reduction of N2O to N2 due to extended
www.sciencedirect.com 
chamber closure times, and limiting subsoil diffusion of

N2 and N2O. The last parameter, is however, the

most difficult one to manage, since the 15N label in the

NO3
� pool is subject to dilution via nitrification and

consumption via denitrification and DNRA leading to a

gradual decrease of the 15N label in the soil NO3
� pool

over time. In agroecosystems, where N fertiliser is usually

applied at the beginning of the cropping season, the use of

the 15NGF is limited to a certain time, during which the
15NO3

� label ensures detection of N2 fluxes above the

MDL. In turn, the 15NGF works well in systems with

repeated N fertiliser application such as intensively man-

aged pastures [35]. Applying a high 15N label at a low N

rate, also termed ‘spiking’, enables N2 measurements

while assuming no interference with the soil N dynamics

of the native soil N pool [37]. Uniform 15N labelling is,

however, challenging, as the antecedent soil N pool may

not mix uniformly with a small amount of 15N fertiliser.

The comparison of theoretical versus actual 15N enrich-

ment of the NO3
� pool undergoing denitrification can

demonstrate whether the observed N2 and N2O emis-

sions are representative or show only the so-termed

‘fertiliser denitrification’ [6].

The accumulation of N2 and N2O in the chamber head-

space also changes the gas diffusion gradients of N2 and

N2O and can therefore reduce surface emissions. This

may produce an underestimation of denitrification rates in

field studies of >30% [49�], as the soil volume undergoing

denitrification is not enclosed and N2 and N2O may move

out of the respective soil volume via subsoil diffusion.

This is not the case in incubation studies, but denitrifica-

tion products can remain entrapped in soil pores [50], in

particular at high soil water content. Gas entrapment in

soil pores is not necessarily caused but may be increased

due to the use of static chambers. While it is relatively

straightforward to measure entrapped N2 and N2O in

incubation studies [51], accounting for diffusive 15N loss

via N2 and N2O in the field requires gas flux measure-

ments from enclosed soil cores and correction via gas

diffusion modelling [49�]. This correction via modelling

approaches is however one of the key challenges for

future denitrification research to improve denitrification

estimates from terrestrial soils.

The 15NGF is a powerful method to quantify both N2 and

N2O from terrestrial soils, splitting N2O production into

nitrification or denitrification. As such, this method covers

some of the key uncertainties of biogeochemical models,

recommending its use for model parameterization and

validation. Other than classical denitrification, the forma-

tion of N2 and N2O via hybrid pathways (co-denitrifica-

tion [52], chemo-denitrification and anammox) can be

investigated if 15NO3
� pool uniformity can be ensured.

Combining the 15NGF with 15N tracing models [53]

enables N transformations to be ‘captured’ in terrestrial

soils, while 15N recoveries in the soil-plant-atmosphere
Current Opinion in Environmental Sustainability 2020, 47:61–71
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system can reveal the fate of applied 15N fertiliser, and

the contribution of denitrification to overall 15N loss from

the system. Recent advances regarding temporal resolu-

tion [46��] and sensitivity [36��] further extend the capa-

bility of the method to measure denitrification from

agroecosystems. This shows the ample scope of the

method for both basic process research and applied agro-

nomic questions, yet the challenges of the 15NGF

demand constant method evaluation to ensure accuracy

of denitrification data. To this end, detailed suggestions

for quality criteria are given in Table 2.

New developments
Over the recent years, there has been ongoing develop-

ment of new and improved methods for measuring

denitrification from soils. Table 1 summarises the most

important approaches, captures their key features and

compares them against the more classic methods. All

approaches are evaluated regarding their ability to mea-

sure actual denitrification rates in upland soils, which

excludes for example approaches that require the use

of slurries and/or anoxic pre-treatments.

The most important new developments include:

(i) The use of N2O isotopocule data (d15Nsp and d18O)

in combination with a numerical mapping approach

to indirectly quantify N2O reduction to N2 at field or

larger spatial scales [54�,55�]. This method has the

advantage that it can be applied field based, in real-

time using novel quantum cascade laser absorption

spectroscopy for the detection of N2O isotope sig-

natures. However, it still needs independent param-

eter calibration and at this stage cannot be treated as

a precise quantitative tool.

(ii) Determination of N2 production in soils based on the

proportions of naturally occurring 15N15N isotopes.

Recently developed methods to measure 15N15N in

N2 with high precision at natural abundances using a

ultra-high resolution mass spectrometer offer a new

approach to quantifying N2 production in situ with

DLs <1 N2 g ha�1 day�1 reported [56]. The analyt-

ical precision of the novel mass spectrometer also has

the potential to significantly improve the MDL of

the 15NGF, but currently this technique is not com-

mercially available and has not been tested with 15N

tracer approaches.

(iii) Direct measurements of N2 emissions via Raman

multi-gas sensing have been used to quantify N2

fluxes of 78 � 5 mmol hour�1 in a laboratory chamber

system based on N fixation [57]. It has been pro-

posed that the same method can also be used to

detect N2 fluxes by denitrification, but it remains to

be seen if the necessary precision can be achieved

with this analytical approach.
Current Opinion in Environmental Sustainability 2020, 47:61–71 
(iv) Quantification of N2 and N2O fluxes in real-time at a

subdaily resolution using the 15NGF coupled to a

fully automated chamber system [46��]. The highly

episodic nature of N2 and N2O gas emissions

severely compromises denitrification estimates if

not carried out with adequate frequency. Automated

chamber systems are needed to increase sampling

frequency and thus accuracy of denitrification

estimates.

(v) A combination of different methods can increase the

sensitivity of denitrification measurement, overcom-

ing the constraints of using a single method. Well

et al. [36��] showed that combining the 15NGF with a

N2-depleted He/O2 atmosphere can increase the

sensitivity 80-fold.

These methods are still in the development stage and

require expensive instrumentation and specialist knowl-

edge resulting in limited accessibility, and therefore

limited adoption by the scientific community. Further

development in instrumentation should make new tech-

niques more affordable, while improving and combining

these novel approaches will help to produce estimates of

denitrification from upland soils at high temporal resolu-

tion and better spatial coverage.

Conclusions
Revisiting the challenges of the He/O2 and the 15NGF

method demonstrates the need to meet experimental and

analytical requirements and stringent quality criteria to

obtain reliable denitrification datasets. Standardised

reporting of metadata and quality criteria is therefore

critical in enabling the evaluation of denitrification data-

sets and their further use for calibration and validation of

biogeochemical models. Direct, side by side comparisons

of the He/O2 and the 15NGF method are needed to test

both methods and enable data comparison across differ-

ent soils. These comparisons can also help to validate

attempts to upscale incubation data to the field scale,

improving seasonal estimates for denitrification.

Recent advances in isotopic approaches and analytical

methods have shown the potential to significantly

improve sensitivity, temporal resolution, and accuracy

of denitrification measurements. In particular, the com-

bination of methods (He/O2 with 15NGF) with soil-gas

diffusivity modelling is a promising approach, which

could pave the way for an improved quantitative under-

standing of N-cycling and denitrification in terrestrial

agroecosystems. Requirements for instrumentation and

experimental setups however highlight the need to

develop more mobile and easily accessible field methods

to constrain denitrification from terrestrial soils across

scales.
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