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Abstract: For the production of sugars and biobased platform chemicals from lignocellulosic biomass,
the hydrolysis of cellulose and hemicelluloses to water-soluble sugars is a crucial step. As the complex
structure of lignocellulosic biomass hinders an efficient hydrolysis via acid hydrolysis, a suitable
pretreatment strategy is of special importance. The pretreatment steam explosion was intended to
increase the accessibility of the cellulose fibers so that the subsequent acid hydrolysis of the cellulose
to glucose would take place in a shorter time. Steam explosion pretreatment was performed with
beech wood chips at varying severities with different reaction times (25–34 min) and maximum
temperatures (186–223 ◦C). However, the subsequent acid hydrolysis step of steam-exploded residue
was performed at constant settings at 180 ◦C with diluted sulfuric acid. The concentration profiles
of the main water-soluble hydrolysis products were recorded. We showed in this study that the
defibration of the macrofibrils in the lignocellulose structure during steam explosion does not lead to
an increased rate of cellulose hydrolysis. So, steam explosion is not a suitable pretreatment for acid
hydrolysis of hardwood lignocellulosic biomass.

Keywords: glucose; xylose; 2nd generation sugars; lignocellulose; hydrolyzate; biorefinery; furfural;
hydroxymethylfurfural; bioeconomy

1. Introduction

In view of a bioeconomy, promising products from lignocellulosic biomass can be value-added
platform chemicals produced in a biorefinery [1,2]. As lignocellulosic biomass consists mainly of the
polymeric constituents cellulose, hemicelluloses and lignin, the fractionation of feedstock is the first
step for maximizing the value of these materials. Cellulose is composed of glucose building blocks
linked together by glycosidic bonds forming a linear polymer. Between adjacent cellulose chains,
intermolecular hydrogen bonds are formed, which result in a water-insoluble and highly ordered
configuration that makes cellulose partly crystalline [3]. Hemicelluloses hydrolyze faster than cellulose,
because they are group of amorphous heteropolymers which are considerably shorter than cellulose.
Hemicelluloses provide a linkage between cellulose and lignin in the lignocellulosic fiber structure.
Lignin is constructed of phenylpropane units which form a complex three-dimensional macromolecule.

One method for the fractionation of lignocellulosic biomass is acid hydrolysis whereby cellulose
and hemicelluloses are hydrolyzed to water-soluble sugars which are partly dehydrated to furfurals.
In particular, furfural and hydroxymethylfurfural can be produced in a lignocellulose biorefinery.
These furfurals were named as one of the top 10 value-added biobased chemicals [4].
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However, the complex structure of lignocellulosic biomass generally causes a low hydrolysis
rate, especially of cellulose during acid hydrolysis [5]. Hemicelluloses and lignin surrounding the
cellulose form a physical barrier against the permeation for the hydrolysis catalyst [6]. Additionally,
different hydrolysis rates for crystalline and amorphous cellulose regions exist. This, combined with
the shielding matrix of lignin and hemicelluloses, results in a gradual sugar release [5].

A pretreatment is necessary to increase the accessibility of cellulose for the subsequent hydrolysis
step [5]. As a general estimation, the pretreatment step accounts for about 40% of the processing cost
in a lignocellulose biorefinery [7]. Therefore, it is important to choose pretreatment methods and
conditions carefully. A relatively inexpensive pretreatment is steam explosion because no addition
of an external catalyst is needed [8]. However, the energy consumption for steam explosion was
estimated as 1.8 MJ/kgwood and is therefore considerable [9]. Steam explosion converts biomass in a
steam atmosphere at elevated temperatures ranging from 140–240 ◦C. The steam pressure is rapidly
reduced to atmospheric pressure, whereby a mechanical disruption of the biomass occurs.

Acetic acid is formed during steam explosion via the cleavage of thermally labile acetyl groups
in hemicelluloses [5]. The liberated acetic acid catalyzes the hydrolysis reactions of hemicelluloses.
The solid residue after steam explosion pretreatment consists of cellulose, a chemically modified
lignin and residual hemicelluloses. The sum of hemicelluloses in the residue and dissolved
hemicellulose-derived sugars decreases with the pretreatment severity due to (1) condensation
reactions leading to solid pseudolignin and (2) furfural formation by the dehydration of pentoses [10].

Steam explosion is a well-known effective pretreatment to increase the rate of enzymatic hydrolysis
of lignocellulosic biomass [11–14]. For example, the enzymatic hydrolysis rate showed a 10-fold
increase for steam-exploded hardwoods [15]. In addition, the glucose yields after enzymatic hydrolysis
are higher, when a steam explosion pretreatment was applied. This increase in glucose yield is due
to the removal of biomass components like hemicelluloses and lignin during the steam explosion
pretreatment [16].

However, much less attention has been paid to the effect of steam explosion pretreatment on
a hydrolysis step with diluted acids. Carrasco et al. [17] performed steam explosion pretreatments
of different lignocellulosic biomasses followed by acid hydrolysis at 180 ◦C using diluted sulfuric
acid. The steam explosion pretreatment lead to a decrease in the subsequent hydrolysis rate [17].
Schultz et al. [15,18,19] investigated the influence of steam explosion on concentrated acid hydrolysis.
Among the lignocelluloses used, only steam-exploded rice husks showed a higher glucose yield after
hydrolysis with concentrated sulfuric acid [15]. However, the concentration profiles of glucose were,
in contrast to the present work, not recorded by Schultz et al. [15,18,19] and Carrasco et al. [17].

In this work, we evaluate the influence of a previous steam explosion on the acid hydrolysis
of lignocellulosic biomass. Therefore, the steam explosion of beech wood as a representative of
hardwood is performed in a batch system at different severities. The steam-exploded residues are
characterized and, thereafter, subjected to acid hydrolysis. The acid hydrolysis step is done in a
semi-continuous reactor at constant settings with diluted sulfuric acid. The concentration profiles of
the main water-soluble hydrolysis products are recorded which also comprise glucose.

2. Materials and Methods

2.1. Pretreatment via Steam Explosion

As feedstock for pretreatment, pre-dried and bark-free beech wood is used. Beech trees are
categorized as hardwoods and are one of the major forest trees in Europe. The dominant sugar in
beech wood hemicelluloses is xylose [20]. The beech wood is used in chip size, has a moisture content
of 8.0 wt.% and is obtained from Joh. Sinnerbrink GmbH & Co. (Verl, Germany). The chip dimensions
are about 15 mm in width, 30 mm in length and 1–2 mm thick.

The steam explosion is performed in a self-constructed test rig, described in our previous work [21].
The stainless-steel reactor of the steam explosion has a volume of 1 L and is constantly agitated with a
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cross-arm stirrer at 8 min−1. The reactor is filled completely with beech wood chips, referring to 82–94 g
dry mass, before each experiment. Then the reactor is electrically preheated by a surrounding electrical
heating jacket. Steam is introduced into the reactor with a flow of up to 5 g/min. The explosion step is
performed by pneumatically opening a ball valve. Solid products and steam are discharged by the
explosion step into a flash tank. The pretreated solid is manually collected from the flash tank and
dried at 105 ◦C for 16 h.

The reaction temperature is measured by two thermocouples in the top and the bottom of the
reactor. The severity parameter S0 is calculated, combining temperature T and time t of the steam
pretreatment in a single factor [10]. Equation (1) shows the time integral of S0, which considers the
non-isothermal character of the heating process [22].

S0 = log

t∫
0

exp
(

T (◦C) − 100 ◦C
14.75

)
dt (1)

Pretreatment conditions with different reaction time (25–34 min), steam input mass (60–150 g) and
maximum temperature (186–223 ◦C) are investigated. Figure 1 shows the temperature profile during
heat up and Table 1 provides an overview of the experimental conditions.

Processes 2020, 8, x FOR PEER REVIEW 3 of 12 

 

agitated with a cross-arm stirrer at 8 min−1. The reactor is filled completely with beech wood chips, 
referring to 82–94 g dry mass, before each experiment. Then the reactor is electrically preheated by a 
surrounding electrical heating jacket. Steam is introduced into the reactor with a flow of up to 
5 g/min. The explosion step is performed by pneumatically opening a ball valve. Solid products and 
steam are discharged by the explosion step into a flash tank. The pretreated solid is manually 
collected from the flash tank and dried at 105 °C for 16 h. 

The reaction temperature is measured by two thermocouples in the top and the bottom of the 
reactor. The severity parameter S0 is calculated, combining temperature T and time t of the steam 
pretreatment in a single factor [10]. Equation (1) shows the time integral of S0, which considers the 
non-isothermal character of the heating process [22]. 𝑆଴ = 𝑙𝑜𝑔 න 𝑒𝑥𝑝 ቆ𝑇 ሺ°Cሻ െ 100 °C14.75 ቇ 𝑑𝑡௧

଴  (1) 

Pretreatment conditions with different reaction time (25–34 min), steam input mass (60–150 g) 
and maximum temperature (186–223 °C) are investigated. Figure 1 shows the temperature profile 
during heat up and Table 1 provides an overview of the experimental conditions. 

 
Figure 1. Temperature profile inside the steam explosion reactor, t = 0 min marks the beginning of 
steam input. 

Table 1. Experimental setup for steam explosion of beech wood chips. 

severity parameter S0 (min) 3.56 3.85 4.12 4.56 
beech wood mass (gdry) 91.6 81.8 83.4 93.8 
steam input time (min) 25 33.5 25 29 
steam input mass (g) 50 80 100 110 

maximum reactor temperature (°C) 1 186 193 206 223 
maximum excess pressure (bar) 1 11 13 19 26 

1 before explosion step. 

2.2. Acid Hydrolysis of Steam-Exploded Residues 

An acid-catalyzed hydrolysis of lignocellulose is performed to obtain a monosaccharide-
containing product liquid, also called hydrolyzate. The solid residues after steam explosion as well 
as untreated beech wood chips are used as educts. Diluted sulfuric acid is used as a catalyst to 
hydrolyze hemicelluloses and cellulose polymers in the lignocellulose structure to water-soluble 
sugar monomers. 

A semi-continuous test rig, described in our previous work [23], is used for acid hydrolysis, 
where the liquid phase is continuously exchanged. This has the advantage that liberated water-

Figure 1. Temperature profile inside the steam explosion reactor, t = 0 min marks the beginning of
steam input.

Table 1. Experimental setup for steam explosion of beech wood chips.

severity parameter S0 (min) 3.56 3.85 4.12 4.56
beech wood mass (gdry) 91.6 81.8 83.4 93.8
steam input time (min) 25 33.5 25 29
steam input mass (g) 50 80 100 110

maximum reactor temperature (◦C) 1 186 193 206 223
maximum excess pressure (bar) 1 11 13 19 26

1 before explosion step.
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2.2. Acid Hydrolysis of Steam-Exploded Residues

An acid-catalyzed hydrolysis of lignocellulose is performed to obtain a monosaccharide-containing
product liquid, also called hydrolyzate. The solid residues after steam explosion as well as untreated
beech wood chips are used as educts. Diluted sulfuric acid is used as a catalyst to hydrolyze
hemicelluloses and cellulose polymers in the lignocellulose structure to water-soluble sugar monomers.

A semi-continuous test rig, described in our previous work [23], is used for acid hydrolysis,
where the liquid phase is continuously exchanged. This has the advantage that liberated water-soluble
molecules like sugar monomers are removed from the hot reactor and thus protected to a large extent
from secondary reactions. The stainless-steel reactor has an internal volume of 100 mL and is loaded
with 15.0 g of either untreated beech wood chips or steam-exploded residue as a fixed bed before
the experiment. Demineralized water or dilute acid solution is continuously fed into the reactor at a
volume flow of 15 mL/min. Demineralized water is pumped through the reactor during the heating
phase. When the target temperature of 180 ◦C inside the reactor is reached, the feed stream is switched
to a sulfuric acid solution of 0.05 mol/L. The hydrolyzate leaves the reactor continuously and is collected
in interval samples of 5–8 min before storage at 4 ◦C.

2.3. Analytical Methods

After steam explosion, a wet solid residue is obtained, which is dried at 105 ◦C for 16 h to avoid
microbiological degradation. After drying, the mass of the solid residue is measured. Then a sample of
the solid residue is subjected to a two-hour Soxhlet extraction with water. In this way, a water-soluble
and a water-insoluble fractions are obtained, which are examined for their composition. The mass
of the water-insoluble fraction is determined gravimetrically, whereas the mass of the water-soluble
fraction is calculated by difference.

The surfaces of dried beech wood and dried steam-exploded residues are examined via scanning
electron microscopy (SEM) using a LEO 982 Gemini (Carl Zeiss, Jena, Germany) which is equipped with
a Schottky-type thermal field emission cathode, a backscattered electron detector and two secondary
electron detectors (inlens, Everhart-Thornley).

The Klason lignin content of steam-exploded residue and untreated beech wood is determined in
triplicate according to the ASTM method D1106-96 (2013) [24]. In brief, two extractions of the biomass
are performed with alcohol-benzene solution and with hot water. Then the residue is treated with
72 wt.% sulfuric acid which is afterwards diluted to 3 wt.% whereby the polysaccharides are completely
hydrolyzed. The remaining solid gives, after correction with ash content, the Klason lignin content.
The (polymeric) sugar content in water-insoluble steam-exploded residue and untreated beech wood is
determined via a complete hydrolysis of polysaccharides to water-soluble monosaccharides according
to Saeman [25].

Water-soluble sugar monomers are quantified via a gas chromatography method. As sugars cannot
be evaporated, they are converted into stable, evaporable alditol acetate derivatives using a procedure
described by Sawardeker et al. [26]. After extraction of the alditol acetates into chloroform, the sample is
isothermally separated in a gas chromatograph type GC 5890A (Hewlett Packard, Palo Alto, CA, USA)
at 240 ◦C and detection is performed via FID. The separation column RTX2330 (Restek, Bad Homburg,
Germany) is used with a 30 m length and 25 µm diameter. The sugars, arabinose, xylose, rhamnose,
mannose, galactose and glucose are calibrated. The accuracy of time-consuming derivatization and
GC analysis is ensured by (1) performing a derivatization of a sugar standard solution in parallel for
every analytical sequence and (2) the internal standard inositol, which is added in a known amount to
any sample during derivatization.

The characterization of other water-soluble constituents in the hydrolyzate is conducted with
two HPLC methods. To remove high-molecular-weight products, filtration is performed with syringe
filters of type 0.45 µm GHP (Pall, New York, NY, USA). Furfural and hydroxymethylfurfural (HMF) are
separated in a Lichrospher 100 RP-18 column (Merck, Darmstadt, Germany) at 20 ◦C and quantified by
a UV detector at 290 nm. Therefore, an eluent of water-acetonitrile (9:1 v/v) is used at a flow rate of
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1.4 mL/min. Formic acid, acetic acid, lactic acid and levulinic acid are separated with an Aminex HPX
87H column (Biorad, Hercules, CA, USA) at 25 ◦C. An eluent of 0.004 mol/L sulfuric acid is used at a
flow rate of 0.65 mL/min and detection is performed by RI and DAD.

The cumulative yields of glucose and xylose after the hydrolysis step are calculated according to
Equation (2). Thereby, the solid residue yield of the steam explosion step is considered. The volume
flow of acid hydrolysis of 15 mL/min is multiplied with the measured concentration of glucose or
xylose and integrated over reaction time.

cumulative yield =
yieldsolid residue

minput hydrolysis

t∫
.

V·c(t) dt (2)

3. Results

3.1. Steam Explosion

Beech wood chips are pretreated via steam explosion. An increased severity parameter leads to a
lower yield of solid residue (see Table 2). A Soxhlet extraction with water is performed whereby a
water-soluble and a water-insoluble fraction are obtained. The yield of the water-insoluble fraction
decreases with higher severity and fewer polymers of glucose are present (see Table 2). At the highest
severity parameter of S0 = 4.56 min, no polymeric bonded xylose can be detected in the solid residue.
In contrast, the Klason lignin yield rises with severity. After all steam explosion runs, the Klason lignin
yield is higher compared to untreated beech wood (0.229 g/gbeech wood).

Table 2. Solid residues after steam explosion of beech wood at different severities, fractionation of solid
residues is performed via Soxhlet extraction with water, n.d.: not determined.

severity parameter S0 (min) 3.56 3.85 4.12 4.56
solid residue mass (g) 85.5 74.8 61.8 64.0
solid residue yield (g/gbeech wood) 0.933 0.915 0.741 0.682
water-insoluble fraction (g/gbeech wood) 0.789 0.724 0.612 0.533
• polymeric bonded glucose (g/gbeech wood) 0.260 n.d. 0.210 0.192
• polymeric bonded xylose (g/gbeech wood) 0.103 n.d. 0.021 0.000
• Klason lignin (g/gbeech wood) 0.297 n.d. 0.353 0.346

water-soluble fraction (g/gbeech wood) 0.144 0.191 0.128 0.149
• glucose (g/gbeech wood) 0.002 0.001 0.002 0.000
• xylose (g/gbeech wood) 0.002 0.010 0.016 0.000

Figure 2 shows the topographical changes in the biomass macrostructure after steam explosion.
Even in the photographs, a size reduction and defibration can be observed compared to the untreated
wood chips. As the severity increases, the fibers become finer and the solid residue becomes darker.
However, at the highest examined severity of S0 = 4.56 min, no exposed fibers are visible and the
biomass looks slightly carbonized. Additionally, the SEM images illustrate the defibration. Loosely
present macrofibrils can be seen after intermediate severities (e.g., SEM at 100x at S0 = 3.85 min). At the
highest examined severity of S0 = 4.56 min, the fiber structure can no longer be clearly recognized
(see SEM image at 100× in Figure 2).
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3.2. Acid Hydrolyisis

To investigate the influence of the steam explosion pretreatment on acid hydrolysis, all influencing
parameters during acid hydrolysis are kept constant and only the solid biomass input in the fixed
bed reactor is varied. Acid hydrolysis is carried out with 0.05 mol/L sulfuric acid at a 180 ◦C reaction
temperature. The volume flow of the diluted acid through the semi-continuous hydrolysis reactor
is also constant. The biomass input originates from steam explosion runs with different severities.
The solid residue after the highest examined severity of S0 = 4.56 min is not subjected to acid hydrolysis,
because the material appears to be already partly carbonized.

Figures 3 and 4 show the concentration profiles of the main water-soluble hydrolysis products
during acid hydrolysis for different severities of steam explosion. The main hydrolysis products
in our study using beech wood are the monosaccharides glucose, xylose and mannose, as well as
furfural hydroxymethylfurfural and acetic acid. The principal trends in the concentration profiles of
all main products are very similar regardless of the severity of pretreatment. However, there are big
differences in the maximum concentration values. The maximum xylose concentration drops largely
with increasing severity (from 4.5 g/L at S0 = 3.56 min to 1.2 g/L at S0 = 4.12 min). The maxima of acetic
acid and furfural also decrease sharply with increasing severity parameters (see Figure 4). However,
the influence of pretreatment severity on the glucose concentration is much less (see Figure 3). Figure 3
shows the concentration profiles of glucose and xylose during acid hydrolysis, where steam-exploded
residue is compared with untreated beech wood.

Figure 5 shows the cumulative yields of glucose and xylose during acid hydrolysis for different
steam explosion severities and a comparison to the untreated beech wood material is made. For
the calculation of the cumulative yields according to Equation (2), the solid residue yield of stream
explosion pretreatment from Table 2 is considered. For reaction times over 25 min, the yield of glucose
is higher for untreated beech wood compared to all pretreated materials. Additionally, the yield of
xylose is higher for untreated beech wood compared to stream-exploded residues.
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Figure 5. Cumulative yields of glucose (a) and xylose (b) during the hydrolysis of untreated beech
wood or steam-exploded residue at different severity parameters S0, hydrolysis with 0.05 mol/L sulfuric
acid at 15 mL/min flow at 180 ◦C, t = 0 min marks the beginning of acid hydrolysis.

4. Discussion

The steam explosion increases the lignin mass according to the Klason method, which agrees with
the results of other studies [18,27,28]. A lignin yield of 0.297–0.353 g/gbeech wood is obtained after the
steam explosion (see Table 2), while the Klason lignin content in beech wood is only 0.229 g/gbeech wood.
Condensation reactions between hemicellulose constituents and lignin lead to the formation of an
inert solid [29]. This solid is also measured in the gravimetric determination of Klason lignin and is
therefore no longer distinguishable from lignin which was originally contained in beech wood. This is
the reason why this newly formed solid is named pseudolignin. In principle, a reaction pathway
via the repolymerization of water-soluble hemicellulose degradation products would also possibly
form pseudolignin. This pathway could result in the formation of spherical structures on the solid
product after steam explosion. This is known from the process of hydrothermal carbonization, where
microspheres are formed by the polymerization of sugar degradation products [30,31]. However,
in this study, such spherical structures were not found in the steam-exploded residues even at up to
50,000×magnification of the SEM.

The pretreatment via steam explosion was intended to increase the accessibility of the cellulose
fibers so that the subsequent acid hydrolysis of the cellulose to glucose takes place in a shorter time.
Consequently, a high glucose concentration should be achieved after a short time of acid hydrolysis,
which then drops sharply after the cellulose has been completely converted. The intended effect of
pretreatment on glucose formation did not occur. During acid hydrolysis, the steam-exploded residues
begin to release glucose after roughly the same reaction time compared to untreated beech wood
(see Figure 3). When steam-exploded residues are used, the maximum concentration of glucose is
similar or even smaller (except for two measuring points at S0 = 4.12 min). Additionally, no obvious
drop in glucose concentration with longer reaction times can be observed. The comparison of glucose
and xylose yields shows that a previous steam explosion pretreatment reduces the sugar yields,
especially for xylose (see Figure 5).

Consequently, the defibration of the macrofibrils in the lignocellulose structure during steam
explosion does not lead to an increased rate of cellulose hydrolysis. It can therefore be assumed that the
rate-determining step in the hydrolysis is not the penetration of the acid to the individual macrofibrils.
Rather, the penetration of the hydronium ions into the crystalline structure of cellulose can be assumed
to determine the rate or hydrolysis might only occur at the exposed chain ends of the cellulose. This is
in accordance with other studies [32]; the crystallinity of cellulose stabilized by hydrogen bonds is very
strong and can only be broken by supercritical water, for example at 380 ◦C and 250 bar [33]. In the
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case of enzymatic hydrolysis reactions, the situation is different. An enzyme is a much larger molecule
than a hydronium ion with solvation shell, therefore the increase in surface area by steam explosion
has an impact.

Xylose, which is the main structural unit of the hemicelluloses in beech wood, is largely converted
by steam explosion at a higher severity into other compounds (see Table 2). Thereby, xylose could
be either decomposed to low-molecular-weight compounds or converted to pseudolignin. It is
generally known that the total mass of hemicelluloses in the steam-exploded residues decreases with
an increasing severity parameter [10]. Therefore, it is reasonable that in the product liquid of acid
hydrolysis, less xylose can be detected with increasing severity of the pretreatment (see Figure 3), as
less hemicelluloses are in the feedstock for hydrolysis, which could form xylose.

The concentrations of furfural and acetic acid during acid hydrolysis also decrease with the
severity of the pretreatment (see Figure 4). The reduction of furfural concentration is a consequence of
the lower xylose concentration, since furfural arises from the dehydration of pentoses [5]. The decline
in acetic acid concentration with the increasing severity of the steam explosion can be explained as
follows. The acetyl groups of the hemicelluloses are hydrolyzed to a greater extent during the steam
explosion at high severity and are therefore removed from the biomass before the acid hydrolysis
step begins.

5. Conclusions

In this study, beech wood lignocellulosic biomass was subjected to steam explosion pretreatment
before an acid hydrolysis step. The pretreatment via steam explosion was intended to increase
the accessibility of the cellulose fibers so that the subsequent acid hydrolysis of the cellulose to
glucose would take place in a shorter time. We showed that the defibration of the macrofibrils in
the lignocellulose structure during steam explosion does not lead to an increased rate of cellulose
hydrolysis. Additionally, steam explosion causes a mass loss of solid material and large losses of
the hemicellulose-derived sugar xylose, especially at a higher pretreatment severity. That is why
steam-exploded material resulted in lower sugar yields based on lignocellulose input. So, steam
explosion is not a suitable pretreatment for the acid hydrolysis of hardwood lignocellulosic biomass.
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