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Abstract

Mapping vegetation as hard classes based on remote sensing data is a frequently

applied approach, even though this crisp, categorical representation is not in

line with nature’s fuzziness. Gradual transitions in plant species composition in

ecotones and faint compositional differences across different patches are thus

poorly described in the resulting maps. Several concepts promise to provide

better vegetation maps. These include (1) fuzzy classification (a.k.a. soft classifi-

cation) that takes the probability of an image pixel’s class membership into

account and (2) gradient mapping based on ordination, which describes plant

species composition as a floristic continuum and avoids a categorical descrip-

tion of vegetation patterns. A systematic and comprehensive comparison of

these approaches is missing to date. This paper hence gives an overview of the

state of the art in fuzzy classification and gradient mapping and compares the

approaches in a case study. The advantages and disadvantages of the approaches

are discussed and their performance is compared to hard classification (a.k.a.

crisp or boolean classification). Gradient mapping best conserves the informa-

tion in the original data and does not require an a priori categorization. Fuzzy

classification comes close in terms of information loss and likewise preserves

the continuous nature of vegetation, however, still relying on a priori classifica-

tion. The need for a priori classification may be a disadvantage or, in other

cases, an advantage because it allows using categorical input data instead of the

detailed vegetation records required for ordination. Both approaches support

spatially explicit accuracy analyses, which further improves the usefulness of the

output maps. Gradient mapping and fuzzy classification offer various advan-

tages over hard classification, can always be transformed into a crisp map and

are generally applicable to various data structures. We thus recommend the use

of these approaches over hard classification for applications in ecological

research.
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Introduction

Remote-sensing-based vegetation mapping has boosted

both ecological science and conservation practice. The

generated maps aim to provide detailed information on

the distribution of patterns in plant species composition,

similar to maps produced through field surveys. These

maps thus contain more information on vegetation than

conventional remotely sensed maps that often consider

coarse land cover classes only. Frequently, the workflow

of respective mapping approaches requires a system of

pre-defined, discrete vegetation classes and assigns each

image pixel unambiguously to one (and only one) of

these classes. The resulting map displays hard, crisp

boundaries delineating categorical mapped units with an

assumed species composition. This approach generates

maps that are easy to read for human beings since they

meet the human tendency to think in categories. On the

other hand, this categorization of vegetation with gradual

transitions in plant species composition is not always in

line with reality (as already pointed out by Gleason,

1926); hard boundaries are sometimes found in reality,

but ecotones or soft transitions are also widespread (Fig-

ure 1). Even if hard boundaries prevail, like in some cul-

tural landscapes, patches of the same categorical unit still

differ slightly in their species composition. It is important

to note that while the concept of ecotones describes a

transition in geographical space, transitions in species

composition in the feature space are likewise inappropri-

ately dissected by hard classifications. By forcefully apply-

ing data structures designed for discriminating objects of

homogeneous (bio-)physical characteristics to land surface

elements exhibiting a mixture of different objects, hard

classification causes problems regarding class definitions,

mapping accuracy, and applicability for many real-world

vegetation types: crisp categorization systems often do not

describe fuzzy vegetation patterns well and do not serve

the application needs sufficiently (de Klerk, Burgess, &

Visser, 2018). The attempt to describe these patterns in a

more realistic manner is referred to as fuzzy mapping.

Fuzzy mapping in a strict sense is based on fuzzy set

theory (Zadeh, 1965), an alternative to the commonly

used classical set theory in hard classification. According

to classical set theory, the definition of a set (group, class,

category) is adequate when it allows to decide unambigu-

ously whether an observation is an element of the set or

not. Hard classification is therefore typically designed to

be non-overlapping. In contrast, the fuzzy set theory

allows partial membership of an entity in one or more

sets at the same time. The level of membership is

described by a scalar value between zero and one. Each

entity has a class membership vector with as many ele-

ments as classes defined, each element representing the

level of membership in that specific class. Typically, the

class membership vector is expected to add up to 1. In

vegetation mapping, main sources of fuzziness are fre-

quently considered in classification (Figure 2): (1) the

uncertainty of class membership per mapping unit,

Figure 1. (a) & (b) Species distributions along an environmental

gradient. Species occurrence probabilities are changing according to

the ecological demands of the species and processes in the

community. This forms spatial patterns in plant composition

determined by the prevailing environmental conditions at the

respective sites. Note that this continuum does not need to be

spatially continuous; it can also be found in scattered patches. (c)

Description of patterns in species composition as discrete plant

assemblages. Gradual transitions are described as ecotones, where

one class is gradually replaced by another. (d) Description of patterns

in species composition as a floristic gradient. The gradient scores

change gradually with changing species composition. Both concepts

can be used to map vegetation with remote sensing.
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thereby assuming that the mapping unit belongs with a

certain probability to one or more classes (Rocchini,

2010) and (2) the description of a fine-scale, heteroge-

neous mixture of classes within a mapping unit as cover

fractions (Foody, 2002). A discussion of these approaches

for mapping discrete classes is provided by, for example,

Wang (1990) and Foody (1996). An alternate approach

(3) is to map the vegetation patterns without classifica-

tion, describing gradual changes in the species composi-

tion as continuum (Schmidtlein & Sassin, 2004; Trodd,

1996).

These three approaches thus link to two alternate con-

cepts in the field of vegetation science: Clements’ (Cle-

ments, 1916, Figure 1c) and similar approaches like the

Braun-Blanquet phytosociological approach describe typi-

cal plant communities or vegetation types through char-

acteristic species occurrences along environmental

gradients. Each resulting unit is defined by a distinct set

of species, resulting in a hard classification. Ecotones are

addressed through the definition of transition classes. In

contrast, Gleason’s continuum concept (Gleason, 1926)

considers overlapping the ecological demands of the indi-

vidual species and challenges the idea of regularly co-oc-

curring species. The sum of species-specific occurrence

probabilities along environmental gradients translates into

gradual transitions in plant species composition (Fig-

ure 1d). These gradients can be extracted from vegetation

data using ordination techniques that enable a class-less

(i.e., continuous) pattern description.

Both concepts can provide a fuzzy and more realistic

description of the actual patterns in species composition

(Figure 2) compared to hard classification. The whole

process of remote-sensing-based hard vegetation classifi-

cation is based on finding ‘pure’ pixels for training and

evaluation, therefore requiring unambiguous information.

When this is applied to vegetation data involving uncer-

tain class memberships, problems arise. Fuzzy mapping

approaches hence further promise an increase in classifi-

cation performance and accuracy (Shanmugam et al.,

2006).

With the onset of quantity disagreement and allocation

disagreement (Pontius, 2002), the accuracy assessment of

crisp maps may have reached its technical limit: Scalar

quantities accurately define the two kinds of classification

error, but are still based on the assumption that the vali-

dation data are a perfect representation of the map prop-

erties and that classification accuracy is homogeneous at

least for every class throughout the mapped area. Fuzzy

classification likewise enables confusion matrix-based

indices (Binaghi, Brivio, Ghezzi, & Rampini, 1999; Kumar

& Dadhwal, 2010; Silv�an-C�ardenas & Wang, 2008) but

also a spatially explicit accuracy assessment (Foody,

Campbell, Trodd & Wood, 1992; Zlinszky & Kania,

2016), which is out of the reach of hard boundary data.

Despite the various alternatives, recent applications of

remote sensing in vegetation mapping are still dominated

by hard classification and thus possibly affected by vari-

ous drawbacks. We observe that non-crisp vegetation clas-

sification has not become mainstream over the last

decades for several reasons. These include the lack of

standard procedures especially for accuracy assessment,

the scarcity of appropriate reference data, the need for

computing power and difficulties with the visualization of

the results. Many of these limitations have recently been

Figure 2. Ways to consider the fuzziness of vegetation in remote-sensing derived maps. The fuzziness can be expressed by mapping the

uncertainty of class membership, by mapping cover fractions of classes within a pixel based on spectral similarities to reference data (note that

the grid indicates fractions, not a finer spatial resolution), or by describing the species composition as class-less continuous metric.
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overcome: new standards of accuracy assessment for fuzzy

maps have been suggested (Binaghi et al., 1999), high-

throughput biodiversity quantification methods allow

rapid collection of reference samples without the need for

a priori classification (Bush et al., 2017), visualization

methods have been developed and computing capacity is

rapidly increasing. Additionally, soft classification allows

calculating pixel uncertainty in a spatially explicit way

(Khatami, Mountrakis, & Stehmann, 2017) adding infor-

mation beyond the spatially unresolved accuracy indices

classically used for Boolean categorizations. In the opera-

tional case, a detailed understanding of the error distribu-

tion in space leads to better reference sampling strategies

and more critical use of the output information (Zlinszky

& Kania, 2016).

It is thus from our point of view not clear why hard

classification should be further preferred over any

approach that allows to map the fuzziness in species com-

position illustrated in Figure 2. Is it traditionalism, the

compulsion to discrete and simplified output from the

users, or the sheer variety of available approaches, each

with their own advantages and disadvantages? These range

from ensemble or probabilistic classifiers applied to crisp

data structures through generating a fuzzy output map

based on a set of samples that are pure class instances, to

using fuzzy data structures from the start to the end of

the workflow (Foody, 1999). The ultimate level of non-

crisp vegetation mapping is to eliminate categories com-

pletely and to map species occurrence data directly via

floristic gradients, as in ordination. Deciding which one

to use is a non-trivial task, which, as we suspect, is often

evaded by the shortcut of defaulting to classical hard-

boundary mapping. We hence aim in the present paper

to describe and compare non-crisp approaches within

remote sensing-based vegetation mapping. We use a com-

parative study to illustrate the principles and differences,

including opportunities for accuracy assessment, between

the two main fuzzy alternatives, using hard classification

as a benchmark. Since each general approach has its

advantages, the main intention of this comparison is to

provide a guideline when and how to use fuzzy

approaches to avoid hard classification.

Data and methods

Study area and data

The comparative case study was conducted in an exten-

sively used mosaic of raised bogs, transition mires, poor

fens and grasslands in the Bavarian alpine foothills in

Southern Germany (47.74° N, 11.08° E). The study area

and its vegetation are described in detail in Feilhauer

et al. (2014) and Feilhauer, Doktor, Schmidtlein and

Skidmore (2016). In this area, 100 randomly arranged

vegetation plots covering 4 m2 each were sampled. In

each plot, cover fractions of all occurring vascular plant

species as well as the cover fractions of Sphagnum mosses

and other bryophytes were estimated. The resulting plot

by species matrix was used to characterize the plots’ spe-

cies composition. This matrix was subjected to a cluster

analysis for classification and ordination for gradient

mapping, in both cases aiming to extract the predominant

patterns in species composition.

Hyperspectral imagery of the study area with a ground

resolution of 2 m x 2 m was acquired on 16 Jul 2013

with the airborne AISA Dual sensor in four overlapping

flight lines. The data cover the spectral range from

407 nm to 2499 nm in 366 spectral bands. Reflectance

spectra of the plots were extracted from the radiometri-

cally, geometrically and atmospherically corrected raw

imagery using the GPS coordinates of the plot centers.

For more information on the image data acquisition and

processing, please refer to Feilhauer et al. (2014, 2016).

Gradient and cluster analysis of the
vegetation data

Figure 3 shows the schematic workflows for hard and

fuzzy classification as well as for gradient mapping. To

describe the gradual transitions in species composition as

floristic gradients, the vegetation plot data were subjected

to an ordination, specifically isometric feature mapping

(Isomap, Tenenbaum et al., 2000). We chose this particu-

lar technique because it compared favorably to other

ordination techniques in a previous study (Feilhauer

et al., 2011) and shares a common methodological basis

with the cluster analysis technique described below. Iso-

map, as other ordination techniques, determines the

mutual inter-plot Bray-Curtis dissimilarities regarding

species composition and projects these relations to a low-

dimensional floristic feature space. Plots that show a simi-

lar species composition are located nearby in the resulting

multidimensional ordination space; plots with a very dis-

similar species composition are located far from each

other. The axes of the ordination space have a hierarchi-

cally decreasing information load and correspond to

floristic gradients that are treated as measures of gradual

changes in species composition. Numerical plot positions

on these gradients (i.e., axis scores) are thus an indicator

of plant species composition and can be interpreted

accordingly.

For hard and fuzzy classification, the data were sub-

jected to a cluster analysis (isopam; Schmidtlein, Tich�y,

Feilhauer, & Faude, 2010). The isopam approach was

chosen because it is based on a partitioning of isomap

ordination spaces and offers an advantage over other
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clustering techniques: The clusters are identified in a

data-driven way as groups of plots with a similar species

composition that is characterized by a set of indicative

species. The list of species is provided as part of the out-

put.

Hard and fuzzy classification of the imagery

For fuzzy classification, we chose the mapping of class

membership probabilities over sub-pixel class cover frac-

tions. Many classification approaches commonly used in

the field of remote sensing such as, for example, maxi-

mum likelihood or random forest (RF, Breiman, 2001)

are actually based on calculating class probabilities and

discretize the membership in the last step, therefore in

these cases, a fuzzy output is a by-product at no extra

processing cost. Mapping cover fraction requires more

customized approaches such as, for example, spectral

unmixing. For this reason, we considered probability-

based fuzzy mapping the more straight-forward approach.

Here, we used RF classification to map the plot-based

isopam clusters. Based on the pixel’s spectral characteris-

tics, RF predicts the most likely vegetation class as well as

the class probability or certainty of assignment, making

RF suitable for both hard and fuzzy classification. While a

validation of the models against an independent dataset

in general considered more reliable, we opted for the use

of an out-of-bag error assessment due to the limited

number of vegetation plots. We applied the RF model in

both prediction modes on the image data. This returned

on the one hand a pixel-wise prediction of the spatial iso-

pam cluster distribution as a hard classification result and

on the other hand a separate map for each cluster dis-

playing the pixels’ membership probabilities. The latter

was used as a fuzzy classification result in our compari-

son. Additionally, for visualization purposes, a ‘blended’

map was produced by assigning specific colors to each of

the isopam classes and generating a color mixture from a

weighted probability average of the individual class colors.

In both predictions, pixels covering forest, agricultural

areas and artificial surfaces were masked using a pre-exist-

ing land-cover map.

Gradient mapping

Following Schmidtlein et al. (2007), the ordination axes

scores of the plots were regressed against the reflectance

spectra using Partial Least Squares regression models

(Wold, Sj€ostr€om, & Eriksson, 2001). A separate model

was built for each axis. Model fits were assessed with ten-

(A) (B) (C)

Figure 3. Workflows for (A) hard classification, (B) fuzzy classification and (C) gradient mapping. The three concepts differ in the description of

the vegetation patterns (classes vs. gradients), in the modeling approach and in the map representation of the patterns.

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5

H. Feilhauer et al. Let Your Maps be Fuzzy!



fold cross-validation. Again, a validation against indepen-

dent data may be more desirable, but was not used due

to the limited number of vegetation plots. Subsequently,

the models were applied to the image data to predict each

pixel’s position on the ordination axes. The resulting

maps were merged into a color composite. Likewise, all

areas that were not represented by the vegetation sample

were masked.

As a graphical legend for this gradient map, the Isomap

ordination space was translated into RGB color gradients.

The rescaling factor of the numerical axis scores to RGB

triplets corresponded to the color stretch of the compos-

ite map. The position of a plot and likewise the predicted

pixel position on the gradients is thus expressed in a

unique color value. Plots and pixels with a similar color

hence feature a similar species composition.

Assessing the information loss and mapping
uncertainty

For an objective comparison of the three methods, we

assessed for each approach the loss of information from

the original vegetation data to the final map. For this

purpose, we extracted the predicted hard class member-

ship, fuzzy probabilities and gradient scores for each plot

from the maps. The categorical class membership predic-

tions were converted into dummy variables, that is, a

four-column matrix with one column per class and binary

values indicating the predicted class membership of each

vegetation plot. We then calculated the Euclidean dis-

tances between the plots from these prediction results and

performed a correlation analysis against the Bray-Curtis

distances of the plots calculated for the original vegetation

data. The squared Pearson R of these correlations was

used as a measure of the original information that was

preserved through generalization and modeling. A R2=0
indicates a full information loss, a R2=1 indicates full

preservation of the original variation. Obviously, the

results of this comparison are highly dependent on input

data and model performance and cannot be taken as

being globally valid. However, they allowed for a better

understanding of how much detail is preserved in the

final maps.

Additionally, we aimed to quantify the mapping accu-

racy by comparing the similarity of the predicted species

composition to the species composition observed in the

field. For hard classification, the standard way to quantify

this is through a confusion matrix, which summarizes the

correctly identified and misclassified reference pixels for

each class. This approach does not deal with transitions

between classes or uncertainty of categorization. For eval-

uating the accuracy of the fuzzy classification approach,

we thus used the ‘fuzzy confusion matrix’ (Zlinszky &

Kania, 2016). This matrix takes the output of the individ-

ual base clasifiers (here decision trees in the random for-

est) into consideration and quantifies for each reference

pixel the percentage of base classifiers that voted for a

particular class. The resulting matrix produces class-wise

or overall accuracy metrics that are inherently lower than

or equal to their equivalents in the hard matrix. This is

because the fuzzy confusion matrix takes the uncertainties

of assigning each pixel to a class into account: more cer-

tain assignments (whether right or wrong) produce higher

numbers, less certain assignments give lower numbers in

each cell of the confusion matrix. If all base classifiers for

all the pixels in a confusion matrix cell output the same

class, the value in that cell will be identical to the same

cell value of a hard confusion matrix. If this is not the

case, the fuzzy confusion metrics are lower. However, the

fuzzy confusion matrix provides a more sensitive way of

judging the quality of a classification output (Zlinszky &

Kania, 2016).

Further, we aimed to visualize the uncertainty of the

pixel-wise predictions. For hard classification, we mapped

for each pixel the F1-score related to the predicted class

membership. The F1-score or F measure (Hand, 2012)

provides a class-wise summary of the precision (i.e., the

proportion of true positives in all data points assigned to

a class) and recall (i.e., the percentage of true positives in

the correct predictions) of the predicted class member-

ships. A high F1-score indicates that the class prediction

is unambiguous. However, besides the issue that this mea-

sure is not spatially explicit but only related to the pre-

dicted class, a second problem emerges: if two classes

achieve similar probabilities, the prediction is likewise

ambiguous, even for high probability values. For fuzzy

classifications, several possible metrics of pixel-wise cer-

tainty have been proposed based on the class membership

probabilities, addressing the question ‘did the final class

get only a marginal majority of the votes or was the deci-

sion unambiguous’? Here, we used the probability-surplus

index (Zlinszky & Kania, 2016) for this purpose. This

index quantifies in a spatially explicit way for each pre-

dicted pixel the difference in probability between the

most likely and the second-most likely class, illustrating

the unambiguity of the prediction. For the gradient map,

we used an approach described in Feilhauer, Faude, and

Schmidtlein (2011) based on the ideas of Janet Ohmann

(Ohmann & Gregory, 2002; Ohmann, Gregory, Hender-

son, & Roberts, 2011). For each pixel, we calculated the

minimum distance to the nearest-neighbor plot in the

gradient space. This distance indicates whether a plot with

a similar position in the gradient space and hence a simi-

lar species composition has been sampled in the field. A

relatively large mapped gradient-space distance indicates

that the respective pixel is rather dissimilar to all field
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plots. The prediction for this pixel has thus a rather high

uncertainty. Likewise, a pixel that is spectrally dissimilar

to all field observations will have a predicted position on

one of the far ends of the gradients and thus feature a

large minimum distance in the index map.

Results

Clustering and ordination of the vegetation
data

Isopam cluster analysis resulted in a hierarchical classifica-

tion of the plots. At the first, coarsest level, fen and grass-

land plots were separated from plots in transition mires

and raised bogs. At the second level, both clusters were

further divided, resulting in a total of four classes. Cluster

1.1 includes 30 plots from calcareous, nutrient-poor fens

and Molinia grasslands, cluster 1.2 consists of 31 plots

from extensively used, calcareous and fresh meadows,

cluster 2.1 contains 15 plots from transition mires and

cluster 2.2 includes 24 plots from the raised bogs.

For the Isomap ordination, we opted for a two-dimen-

sional solution resulting from k = 15 that explained 68%

of the original variation. The first axis describes the grad-

ual transition in species composition from calcareous

grasslands and poor fens via transition mires to the acidic

raised bogs. The second axis quantifies compositional

changes from calcareous sites into poor fens and Molinia

grasslands.

Model fits

The RF classification model gained an overall accuracy

of 57% as quantified by the out-of-bag error. Errors are

mostly due to confusion between the grassland and poor

fen clusters 1.1 and 1.2. In particular, the raised bog

cluster 2.2 was modeled with a rather high user’s and

producer’s accuracy of 79%. Table 1 shows the confu-

sion matrix and the resulting user’s and producer’s

accuracies. Considering the model fit at the coarser level

of the cluster analysis, separating only cluster 1 and

cluster 2, the overall accuracy increases to 89%. Like-

wise, when clusters 1.1 and 1.2 are merged, the resulting

overall accuracy is still 81%. Based on the fuzzy confu-

sion matrix, the overall accuracy for the four classes was

52% (Table 2). The decrease in accuracy compared to

the Boolean confusion matrix is due to the substantial

probabilities assigned to incorrect classes: in most cases,

the prediction of even the correct class had probabilities

well below 100%.

The cross-validated PLS regression models for Isomap

gradient 1 resulted in a R2
cal =0.86 and R2

val=0.79 as

well as RMSEcal =0.28 and RMSEval =0.34. The model for

gradient 2 had a weaker fit and resulted in R2
cal =0.58

and R2
val =0.471 with RMSEcal =0.24 and RMSEval =0.27.

Both models were based on six latent vectors that sum-

marize the spectral information.

Maps of plant species composition

The resulting maps of fuzzy class probabilities and ordi-

nation scores are displayed in Figure 4. Fuzzy classifica-

tion provides a separate map for each cluster (Figure 4a),

illustrating the pixel-wise probability of class member-

ships. Gradual transitions in plant species composition

emerge as gradual probability changes, showing the spatial

transition from one class to another. The gradient map

(Figure 4b) shows for each pixel the predicted position

on the Isomap axes. In these maps, the pixel values corre-

spond to the numerical gradient scores that indicate the

respective species composition along the respective gradi-

ent.

The blended map color composites of the individual

maps are displayed in Figure 5. This figure also presents

the hard classification map (Figure 5a). In the blended

fuzzy map (Figure 5b), the mixtures of the four primary

color hues indicate the predicted transitions between the

four clusters. The RGB gradient map (Figure 5c) illus-

trates for each pixel the color-coded position on the Iso-

map gradients. This allows to estimate the pixel’s

predicted species composition.

Information loss and maps of uncertainty

The Pearson correlations between dissimilarities of the

original vegetation data and modeled and predicted Iso-

map axis scores resulted in R2=0.42, indicating that 42%

of the original information content is preserved in the

gradient map. The fuzzy and hard classifications resulted

in R2=0.40 and R2=0.31, respectively.
Mapped uncertainties for the classification approaches

are shown in Figure 6a and b, the uncertainties for gradi-

ent mapping in Figure 6c. Map 6c indicates that only

small parts of the mapped area are not represented by the

field sampling.

Discussion

Ability to represent fuzzy patterns

Hard classification further preserved a considerably lower

percentage of information as compared to fuzzy classifica-

tion and gradient analysis, which showed a similar ability

to describe the variation in the plot vegetation data. The

order of magnitude of differences in information loss

depends on many factors such as the data used, the set of

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7

H. Feilhauer et al. Let Your Maps be Fuzzy!



classes defined and their ability to describe differences in

vegetation, and methodological details. We believe, how-

ever, that the pronounced differences between fuzzy and

hard classification, being based on the same data general-

ization and the same model, can be reliably taken as typi-

cal for the information loss that results from hard

classification.

As expected, both fuzzy classification and gradient

mapping are suitable to depict fuzzy vegetation patterns.

The map representations in Figure 5b and c meets the

distribution observed in the field. Hard classification is

unable to describe gradual transitions and introduces arti-

ficial boundaries that are not in line with our field obser-

vations. The only viable solution to map gradual

transitions with hard classification is the definition of

transitional classes. However, this workaround requires a

large number of transitional classes for an accurate

description and thus interferes with the ease of interpreta-

tion, which is otherwise the main advantage of hard clas-

sification.

Hard classification as well as fuzzy classification of the

image data have in common that a priori class definitions

need to be taken. Here we used isopam cluster analysis, but

numerous alternatives including the global classification

approaches proposed in phytosociology or habitat classifi-

cation schemes exist. In vegetation science, classification

per se is not always seen as appropriate to describe vegeta-

tion patterns. Considering this uncertainty, the need for a

priori classification may be a drawback in comparison to

gradient mapping. Nevertheless, fuzzy classification is still

versatile in mapping gradual transitions (de Klerk et al.,

2018). The class distribution patterns in Figures 4a and 5b

illustrate this ability. We frequently observe transitions

from a high to a low probability of one class and corre-

sponding, inverse patterns for the other classes that allow

to estimate the fuzzy transitions. A drawback of fuzzy clas-

sification is the presentation of the patterns across multiple

maps. Three of these maps can be combined to an RGB

composite, assigning one color component to the map of a

class. Alternatively, as done here, a color can be assigned to

each class and blended to represent the level of membership

for each pixel. For the four maps resulting from our case

study, this presentation is still manageable. However, if a

larger number of vegetation classes is considered, the colors

representing the individual classes may not be distinguish-

able.

Gradient mapping is highly capable of displaying fuzzy

transitions. In our case study, all transitions in plant spe-

cies composition become apparent at the first glance.

Since the approach treats every vegetation stand as an

individual mixture of species—in line with Gleason’s

individualistic concept of the plant assemblage—its abili-

ties to deal with fuzzy patterns may be considered supe-

rior. Likewise, the resulting maps can be displayed

individually or as a color composite of up to three gradi-

ent maps. This is almost always sufficient as ordination

results only in rare cases in more than three meaningful

axes. Statistically speaking, the output is provided as an

interval-scaled variable, which supports further analyses

and modeling.

Table 1. Confusion matrix of the random forest classification model and class-specific user’s and producer’s accuracies.

Predicted

Cluster 1.1 1.2 2.1 2.2 Producer’s accuracy / %

Observed 1.1 13 14 3 0 43

1.2 10 21 0 0 68

2.1 3 3 4 5 27

2.2 2 0 3 19 79

User’s accuracy / % 46 55 40 79 Overall accuracy = 57%

Table 2. Fuzzy confusion matrix of the random forest classification model and user’s and producer’s accuracies.

Predicted

Cluster 1.1 1.2 2.1 2.2 Producer’s accuracy / %

Observed 1.1 13.41 9.73 4.90 1.96 45

1.2 10.35 18.77 1.28 0.60 61

2.1 4.24 1.71 4.22 4.83 28

2.2 2.15 0.72 5.76 15.37 64

User’s accuracy / % 44 61 26 68 Overall accuracy = 52%
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Like local classification schemes, ordination axes are

not comparable across study sites unless extra measures

are taken. Such measures include a projection of new data

points based on primary ordination space loadings. How-

ever, the use of a ‘global’ gradient as equivalent to a pre-

defined classification key is practically hardly feasible.

Also, for vegetation data with very high variation, fine

differences are difficult to map (Unberath et al., 2019).

Common regression techniques, including machine

learning, frequently fail to model and map the resulting

gradients in such cases. A general drawback of gradient

maps is that area statistics are not available without fur-

ther classification of the continuous map. Gradients are

also not in line with the human tendency to think in cat-

egories. In consequence, potential users often find the

gradient concept less intuitive compared to a classification

and need some time to adjust themselves to the gradient

map and legend.

Figure 4. Fuzzy representations of the vegetation patterns resulting from (A) fuzzy classification and (B) gradient mapping. The four panels in a)

illustrate the isopam cluster membership probabilities. The two gradient maps in (B) display the predicted position of each pixel on the Isomap

axes 1 and 2 as indicator of plant species composition.
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Figure 5. Final vegetation maps for the northern part of the study area resulting from the three mapping approaches. (A) Class membership of

each pixel as predicted by hard classification. (B) Blended probability map for the four isopam clusters resulting from fuzzy classification. (C)

Gradient map resulting from Isomap ordination and regression modeling. Areas not represented by the vegetation sampling such as forests and

intensively used grasslands are masked.

(A) (B) (C)

Figure 6. Maps of mapping uncertainty. (A) F1 score per predicted class for hard classification. (B) Probability surplus index per pixel as a

measure of ambiguity of the prediction in fuzzy classification. (C) Minimum Euclidean distance per mapped pixel to the nearest neighbor plot in

the ordination space indicating how well the predicted species composition is represented by the field sampling.
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Hybrid approaches that take advantage of both worlds

exist. Several studies used gradient analyses to generalize

the vegetation data of their study area and mapped the

gradient scores with nearest neighbor estimation to avoid

extrapolation (Ohmann & Gregory, 2002; Ohmann et al.,

2011; Thessler, Ruokolainen, Tuomisto, & Tomppo,

2005), treating each plot as an individual class. Still, the

result is metrically scaled even though not presented in

continuous values. These hybrid approaches enable area

statistics in addition to the advantages of gradient map-

ping. They are, however, more affected than conventional

gradient mapping by an uneven representation of mixed

plant assemblages present in the study area.

Spatially explicit accuracy assessment

The accuracies obtained in our case study are fair but not

exceptionally high for all three approaches. For classifica-

tion, the outputs show that some clusters were more diffi-

cult to map than others: cluster 2.1 (transition mires) had

the lowest producer’s and user’s accuracies in the hard

confusion matrix. The even lower values in the fuzzy con-

fusion matrix show that the identification of this class

was often with higher ambiguity compared to the other

classes. However, it is important to note that the accuracy

metrics can not be directly compared. Fuzzy classification

is not 5% more inaccurate than hard classification: Since

both classification results are retrieved from the same

model (but taking into consideration different outputs),

the overall accuracy calculated for the class memberships

with the highest probability is likewise the same.

Meanwhile, hard boundary maps and their accuracy

metrics are based on the rarely fulfilled assumption that

classification accuracy is a class-specific attribute, that is

that it is homogeneous across the mapped area. In typical

workflows, this may refine the classification by, for exam-

ple, increasing the sample for the classes showing the

worst performance (Foody et al., 1992), or balancing

over- and underestimation by tweaking the algorithm.

However, this does not allow to evaluate where classes are

confused. For low accuracies, model development often

has to resort to trial and error.

For fuzzy classification, the probability surplus map or

similar approaches suggested by Oldeland, Dorigo, Lieck-

feld, Lucieer and J€urgens (2010) and Duff, Bell and York

(2014) are helpful in assessing uncertain areas indepen-

dent from the respective pixel’s class membership. This

means that even in the case where most pixels of a class

are accurately mapped, an uncertain location can be iden-

tified. From the user perspective, such a spatially explicit

accuracy assessment allows to be cautious wherever cer-

tainty is inadequate, or to use alternatives for making

decisions in that specific location. Additionally, in an

active learning setup, sampling can be iterated until the

desired accuracy is reached.

Finally, for ordination, the map of gradient distance to

the most similar sampling plots aids the refining of sam-

pling to cover the gradient space. It also provides infor-

mation on species composition: species that were not

present in the plots will most likely occur in the areas

where the gradient distance is high, and any management

activities that are based on the map should be applied

with caution in these locations due to high local uncer-

tainty.

Data requirements

Fuzzy mapping approaches differ considerably in their

requirements regarding the vegetation input data. Gradi-

ent mapping is only feasible if a plot-by-species matrix

listing the species occurrences per plot is available. This

matrix is the basis for ordination and cannot be replaced

by any other means. To generate a gradient map, field-

work has to include the costly and time-consuming sam-

pling of full vegetation records, unless plot data are

available from databases. Various scales can be used to

record the plant species composition of the plots, includ-

ing measured or estimated cover fractions, dominance

and abundance scales. Gradient analysis is able to handle

all of these data; however, from a remote sensing point of

view, an estimation in quantitative cover fractions should

in theory be preferred over presence–absence data because

species with high cover in the upper canopy contribute

predominantly to the spectral signal.

Fuzzy classification approaches are more flexible in

terms of data requirements since they can be simply built

upon a categorization of the vegetation done in the field,

sampling of training points from pre-existing vegetation

maps in the GIS, spectral libraries that list the spectral

characteristics of vegetation classes in databases or spa-

tially explicit vegetation descriptions taken from literature.

This makes fuzzy classification very cost- and resource

efficient.

A fundamental prerequisite for classification is, how-

ever, the existence of ‘typical’ or ‘pure’ varieties of the

mapped classes. Such ‘purity’ does not necessarily exist

along a continuous gradient in species composition. But

even if such ideal stands exist, they may still be an excep-

tion. If the study area contains only mixtures of or transi-

tions between classes to be mapped, the training and

validation of classification models is challenging. This

need to delineate and describe the typical variety of a veg-

etation class is often difficult from the vegetation scien-

tific point of view; phytosociologists have spent a lot of

effort on this task. From the remote sensing point of

view, it is often hard to locate a sufficient number of
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training and validation samples in the field. However,

with the fuzzy classification approach, an initial set of

classes can be modified and adapted in an iterative way

to provide a better representation of the situation in the

field by evaluating sample representativity using domi-

nance profiles (Zlinszky & Kania, 2016). Meanwhile, gra-

dient mapping has the advantage of completely excluding

classes: if the world is treated as a gradient space, the def-

inition and identification of typical or pure varieties is

avoided in an elegant manner.

Conclusions

Both fuzzy classification and gradient mapping have sev-

eral advantages and disadvantages that are listed in

Table 3. Both approaches are well suited to map fuzzy

vegetation patterns and may outperform hard classifica-

tion approaches in theory and practical application. If a

hard classification is desired, a fuzzy classification or gra-

dient map can always be easily converted into a hard clas-

sification map. This procedure is clearly one-way as there

is no easy and convincing way from a hard classification

to one that takes account of fuzziness in species composi-

tion.

Our final recommendations are thus:

1 When vegetation records are available and a data-dri-

ven generalization is acceptable, use gradient mapping.

2 When no vegetation records are available or a pre-de-

fined generalization is required, or the desired output

has its own classification system, eventually including

variables other than species composition, use fuzzy

classification.

3 Still considering a hard classification? Use fuzzy classifi-

cation! The data requirements are the same, it offers

many advantages such as a better representation of

reality, spatially explicit accuracy assessment and often

better mapping performance, and can always be trans-

formed into a hard classification.
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