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Abstract: Information about the chlorophyll a concentration of inland water bodies is essential
for water monitoring. This study focuses on estimating chlorophyll a with remote sensing data,
and machine learning (ML) approaches on the real-world SpecWa dataset. We adapt and apply
a one-dimensional convolutional neural network (1D CNN) as a deep learning architecture for
the first time to address this estimation. Since such a DL approach requires a large amount of
data for its training, we rely on simulation data generated by the Water Color Simulator (WASI).
This simulation is prepared accordingly and includes a knowledge-based water composition with
two origins of the chlorophyll a concentration. Therefore, the training data is independent of the
real-world SpecWa dataset, which is challenging for any ML approach. We define two spectral
downsampling approaches as a pre-processing step, representing the hyperspectral EnMAP satellite
mission (SR-EnMAP) and the multispectral Sentinel-2 mission (SR-Sentinel). Subsequently, we train
a Random Forest, an artificial neural network, a band-ratio approach, and the 1D CNN on the
WASI-generated simulation training dataset. Finally, all ML models are evaluated on the real SpecWa
dataset. For both downsampled data, the 1D CNN outperforms the other ML models. On the finer
resolved SR-EnMAP data it achieves an R2 = 81.9 %, RMSE = 12.4 µg L−1, and MAE = 6.7 µg L−1.
Besides, the 1D CNN’s performance decreases on the SR-Sentinel data to R2 = 62.4 %. When
focusing on the individual water bodies of the SpecWa dataset, the most significant differences
exist between natural and artificial water bodies. We discover that the applied models estimate the
chlorophyll a concentration of most natural water bodies satisfyingly. In sum, the newly DL approach
can estimate the chlorophyll a values of unknown inland water bodies successfully, although it is
trained on an entire simulation dataset.

Keywords: machine learning; regression; CNN; artificial neural network; radiative transfer model;
WASI; hyperspectral data; algae; chlorophyll a; downsampling

1. Introduction
1.1. Focus of This Study and Background

Remote sensing (RS) techniques have vast potential for monitoring the water quality
of inland water bodies (see, for example, [1,2]). These techniques provide three main
advantages over point-based in-situ water quality measurements due to the applicability
of satellite data [1–3]. First, RS satellite data are recorded automatically, regularly, and
frequently. Second, because of these frequent recordings, they are cost-efficient in the
long-term. Third, satellite data cover a large spatial area with a single image, allowing
exhaustive monitoring of inland water bodies. However, spectral RS techniques cannot
measure water quality directly. The information in the spectra has to be extracted and
transformed into water parameter values. These corresponding transfer approaches rely
on statistical or data-driven models or physical models.

In the last decades, many studies have analyzed RS applicability with a particular focus
on inland waters. Parameters retrieved from spectral RS data are chlorophyll a [4–8], col-
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ored dissolved organic matter (CDOM) [9], turbidity [10,11], total suspended solids [12,13],
Secchi depth [14], and a distinction between different algae species, primarily cyanobacte-
ria [15,16]. Regular recording of these parameters with low effort would benefit the work
of the authorities in environmental concerns. In this context, satellite systems such as the
Sentinel-2 and Sentinel-3 mission, launched in 2015 and 2016, provide data for a more fre-
quent monitoring solution. Among the mentioned water parameters, chlorophyll a belongs
to the most prominent ones [17]. Several studies focus on chlorophyll a retrieval based
on the mentioned satellite data (see, for example, [18–21]). Chlorophyll a originates from
phytoplankton and is a measure for the primary production and the biomass of a water
ecosystem. Based on the chlorophyll a concentration, information about algae abundance,
water quality, or nutrition supply of a water body can be concluded [22,23]. For example,
this information is crucial for understanding and evaluating changes in ecosystems [24].

When estimating chlorophyll a values with RS data, approaches have to bridge the
gaps between the spectral signature of chlorophyll a and the actual value of its concentra-
tion in inland waters. In general, two distinct approaches exist to retrieve water parameter
values from the spectral RS data: analytical and empirical approaches [1]. As a kind of
physical modeling approach, the former relates RS data with the underwater light field
and the water quality properties. Analytical approaches are based on the inherent optical
properties (IOPs) of the water constituents [25]. For a particular wavelength, the IOPs
describe the underwater light field. Absorption coefficients, combined with scattering and
backscattering coefficients of the water constituents, reveal the IOPs of a water column. The
IOPs are physically related to the subsurface irradiance reflectance, the sun, as well as at-
mospheric conditions, which are linked to RS data via radiative transfer models [12,26–28].
Hence, the IOPs are quasi-independent of changing illumination conditions [29]. For
example, the Water Color Simulator (WASI) [30] is a freely available tool providing and
combining several analytical models to simulate different RS measurement quantities
such as radiance reflectance. After selecting several models and parameter values, WASI
provides a spectrum for the selected configuration.

Empirical approaches link the spectral RS data and the water parameters statistically.
These approaches comprise feature engineering approaches (see, for example, [5–8,31])
such as band ratios (BR) and solely data-driven machine learning (ML) approaches. BR
approaches commonly include a selection of spectral bands that are physically related
to the target parameter, combined with linear regression to estimate water parameters.
They achieve robust estimation results and are often applied but are limited, for example,
concerning the generalization from one known water body to another unknown water body.
Neil et al. [32] propose different BR approaches to overcome the generalization limitations
of commonly applied BR approaches. They adapt and apply selected BR approaches on the
13 optical water types according to Spyrakos et al. [33], which perform better in estimating
the chlorophyll a concentrations compared to approaches with the original parametrization.

ML approaches can learn the linkage between spectral input data and desired chloro-
phyll a values during a training process in existing datasets [34]. Learning this linkage is
challenging since the water body’s spectral signature is defined by overlapping informa-
tion of distinct water compositions. The applied data-driven approaches include shallow
learners such as tree-based models, artificial neural networks (ANN) [35–39] and, recently,
deep learning (DL) approaches. Convolutional neural networks (CNNs) are one type of
DL models. For example, they have been applied by Syariz et al. [40], Pu et al. [41] to either
estimate chlorophyll a concentrations based on RS satellite data or to predict the water
quality of different discrete classes. However, current studies only focus on the estimation
and classification task for one single water body. Therefore, these studies do not cover tem-
poral changes over a season of the water composition and the chlorophyll a concentration
and the variation of this concentration between individual inland water bodies.

To provide a first step towards more generalized ML approaches, Maier and Keller [42]
rely on measured data of several water bodies instead of one water body’s data. During
the training phase, the ML models learn on a data subset containing a selected subset of
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spectral data and chlorophyll a values of the underlying water bodies. Pahlevan et al. [21]
also focus on in-situ spectrometer data of several lakes. They propose and implement
a mixture density network, as a kind of shallow ANN, which is scaled to the respective
satellite mission’s spectral resolution. This approach can estimate water parameters with
real RS satellite data.

No DL approach to estimate chlorophyll a, which is trained on a data selection of
inland waters and evaluated on a distinct, real-world dataset of entirely different water
bodies, has been conducted to the best of our knowledge.

1.2. Motivation, Objectives, and Contributions

Our study is motivated by this generalization challenge concerning the chlorophyll a
estimation. Therefore, we aim at estimating chlorophyll a values of several inland water
bodies by applying purely data-driven ML approaches on RS data. In this context, we
further investigate the potential of deep learning approaches, which have not yet been
applied to estimate the chlorophyll a values. This intention naturally leads to the following
but intriguing questions: Can ML approaches be trained on a simulated dataset to estimate
the chlorophyll a concentration of water bodies not included in the training process? To
address this overall question, we rely on the freely available SpecWa dataset [43]. It contains
remotely recorded spectrometer data and point-based measured chlorophyll a values of
eleven different inland water bodies in Germany covering small areas. We downsample
the spectrometer data to hyperspectral and multispectral satellite resolution to evaluate the
study’s contribution concerning inland water monitoring.

The simulated dataset is generated by applying the analytical WASI tool [29] with
varying water parameters to map different water bodies and configurations. Note that we
rely on the freely available WASI as an alternative to the commercial HydroLight [44]. As a
result, we gain a large simulated dataset that we use to train different ML models. After the
training process, these ML models are applied to the SpecWa dataset. The SpecWa dataset
is so far unknown to the ML models. Using these two different datasets for training and
test, the development of ML models handling the underlying estimation tasks is challenging.
However, it ensures the procedure necessary for the generalization abilities of the ML models.

To solve this advanced estimation task, we rely on a one-dimensional convolutional
neural network (1D CNN) as a new DL approach in this field of application. Such a
1D CNN has shown promising results in analyzing spectral data in the environmental
classification task [45], which is one reason to rely on it in our estimation task. A random
forest (RF) model [46] provides the baseline since it has already achieved good performance
in estimating chlorophyll a concentrations of inland waters [47]. Besides, we also apply a
common BR approach combined with linear regression.

Concerning the mentioned aspects and challenges, our main contributions linked to
the study’s objective are:

• the development of a DL approach for estimating chlorophyll a concentrations of
different inland water bodies inspired by a 1D CNN architecture;

• a detailed investigation and evaluation of the potential of this approach concerning the
generalization aspects on unknown datasets;

• a generation of a big simulated dataset containing spectral input data and chloro-
phyll a values in two downsampled spectral resolutions inspired by the Environmental
Mapping and Analysis Program (EnMAP) hyperspectral satellite data [48] and the
multispectral Sentinel-2 satellite data [49];

• the comparison of the estimation performance of 1D CNN with a commonly applied
ANN, RF and BR approach.

In Section 2, we briefly describe the SpecWa dataset and the simulated dataset based on
the WASI tool. The preprocessing and splitting of the datasets is summarized in Section 2.4.
We describe the applied ML approaches and the architecture of the 1D CNN in Section 2.5.
The estimation results are presented in Section 3. Subsequently, we assess and evaluate
the performance of applied ML models concerning the distinct spectral resolutions and
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the approaches’ generalization abilities (Section 4). In Section 5, the presented study is
concluded, combined with an outlook of future studies.

2. Data and Methods

Before developing the methodology, it is essential to outline the prerequisites (see
Section 2.1) relevant to the approach. It will then become apparent why we design the
databases and the methodology, as presented in Sections 2.2–2.5.

2.1. Requirements for DL Approaches

Since chlorophyll a is a continuous parameter, the task is to estimate its concentration.
To solve this task, we have applied different ML approaches in recent studies (see, for exam-
ple, [47,50,51]). In general, the selected approaches are defined by the available reference
data, their quality, and the amount of available data. Concerning the estimation task, we
rely on the SpecWa dataset as a real-world dataset. In contrast to Maier and Keller [37,42],
we aim to estimate the chlorophyll a values of the SpecWa dataset without using these
real-world data for the training process of the selected ML approaches. Therefore, further
data are needed for the training, which we simulate with the WASI tool. This simulation
offers the opportunity to generate a large dataset that enables us to apply a DL approach.
Such an approach has not yet been used in the context of inland water monitoring with
spectral data.

The DL approach is supposed to be applied to (a) a wide variety of inland water bodies
resulting in heterogeneous input and reference data, (b) different spectral resolutions, and
(c) for monitoring purposes of distinct inland water bodies. Since we aim at fulfilling these
prerequisites, the data and their preparation need to meet the following four conditions:

1. Number of datapoints: Many datapoints are needed to apply and train the DL
models.

2. Variety of water parameters: a combination of different water parameters is necessary
since the ML models need to link different spectra (spectral input data) with different
chlorophyll a values while these spectra are also characterized by signatures of other
water parameters (“unmixing”). These occurring water parameters are, for example,
CDOM, suspended materials, the consistency of the water bodies’ benthic substrate,
and different algae species with different pigments. Besides, atmospherical effects
and different radiation conditions during a day or a year are also considered.

3. Value range of the target variable: To avoid dataset shift, the value range of the
chlorophyll a values as desired target variable should be similar to the value ranges
of many inland water bodies, and especially of the SpecWa dataset’s chlorophyll a
values.

4. Spectral distribution of the input data: The WASI-simulated spectral input data
need to be in a similar distribution as the spectral data of the SpecWa dataset. Besides,
as a pre-processing step, the WASI-simulated spectral data have to be scaled to the
same spectral resolution as the SpecWa dataset to ensure compatibility.

2.2. Data Characteristics of the SpecWa Dataset

The SpecWa dataset consists of spectrometer measurements and in-situ water quality
measurements on eleven different small-scale inland water bodies in the region around
Karlsruhe, Germany, during the years 2018 and 2019. The spectral data have been measured
with the RoX spectrometer (JB Hyperspectral). This sensor records the upwelling radiance
from the water body and the downwelling irradiance of the atmosphere simultaneously.
Its integration time is regulated by the upwards looking end with a cosine receptor at its
top, leading to relatively stable measurements. Details of the measurement setup, such
as the geographic position of the selected water bodies, are given in [43]. Eventually,
the measured spectral data contain radiance reflectance values as a sum of water-leaving
radiance and the surface reflectance. The chlorophyll a concentrations and the values of the
other water parameters have been recorded in-situ by either the Algae Torch or the Algae
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Lab Analyzer (both manufactured by bbe moldaenke) in a depth of 20 cm below the water
surface. The SpecWa dataset consists of 3685 datapoints with the spectral data in the range
of 389 nm to 910 nm and the respective chlorophyll a value as a reference.

Table 1 shows the essential information of the SpecWa dataset, including the ID
designation of the water bodies. For this study, we rely on datapoints with the following
two characteristics concerning specific water parameters:

• datapoints with a chlorophyll a concentration lower than 100 µg L−1 are included;
• datapoints with a cyanobacteria concentration lower than 5 µg L−1 are included.

We must constrain the dataset to ensure the compatibility of the WASI-generated
simulation data and avoid possible dataset shifts and resulting suffering of the estimation
performance [52,53]. Note that the WASI tool can only generate reliable data for the
mentioned chlorophyll a concentrations, whereas cyanobacteria are not implemented.
In sum, we receive a reduced SpecWa dataset with 2617 datapoints and 801 spectral
bands (spectral features). We use this dataset later as the eventual test dataset for the ML
approaches. Figure 1 and Table 1 provide an overview of the chlorophyll a distribution in
the final SpecWa dataset. Besides, Figure 2 shows the spectral data of two selected water
bodies concerning the means and the standard deviations.

Table 1. Summary of the SpecWa dataset [43]. The term ap refers to artificial pond while qp means quarry pont.

Water Body Water ID Number of Datapoints Water Depth Chlorophyll a Range

in m in µg L−1

ap castle garden A1 1048 1.0 to 2.0 16.3 to 99.6
ap KIT A2 116 0.5 to 1.0 22.2 to 93.0
ap TMB A3 57 2.0 to 3.0 61.0 to 96.5
old rhine au W1 21 2.0 to 3.0 4.7 to 9.1
old rhine leopoldshafen W2 8 0.5 to 1.0 9.8 to 11.0
qp blankenloch W3 494 0.5 to 3.0 2.4 to 21.0
qp epple W4 42 1.0 to 3.0 1.6 to 13.0
qp ferma W5 20 1.0 to 3.0 3.3 to 6.4
qp heide W6 221 1.0 to 3.0 1.7 to 16.5
qp leopoldshafen W7 105 1.5 to 3.0 0.0 to 8.7
qp waldstadt W8 485 1.5 to 3.0 0.0 to 17.0
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Figure 1. Boxplots of the chlorophyll a concentration range for each inland water body individually,
and for all water bodies of the SpecWa dataset. The water ID is given in Table 1. The diamonds in the
boxes symbolize the respective mean, the lines the respective median value. The lower limit of each
box is the 25th percentile (Q1), the upper limit the 75th percentile (Q3) so that the difference builds
the interquartile range (IQR). Whiskers extend to Q1 − 1.5 ∗ IQR and Q3 + 1.5 ∗ IQR. Any points
beyond the whiskers are outliers and are plotted as points.
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Figure 2. Visualization of the spectral data of the two SpecWa water bodies [43]. The solid lines refer to the mean of the
waterbodies A1 (blue) and W8 (orange). The brighter area represents the respective standard deviations. In the SpecWa
dataset, the radiance reflectance is the normalized ratio between the water leaving radiance combined with the surface
reflectance and the incoming irradiance. The corresponding chlorophyll a concentrations and information are given in
Figure 1 and Table 1.
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2.3. Fundamentals of the WASI Tool and Simulation of the WASI data

The WASI tool is a sensor independent water spectra generator and analyzer. We can
use WASI to calculate radiance reflectance or other spectral data based on a number and
combination of possible input parameters as modifiable variables [29]. We can either calcu-
late a spectrum for the given input parameters or use WASI to estimate water parameters
based on, for example, a least-square fit with multiple iterations and parameters [54]. We
can also select different physical or analytical models to simulate the optical path from
the sun through the water to the sensor. The spectral signatures can be read in from files
for different parameters such as algae species, or bottom reflectance spectra with different
constituents. In this study, we apply the WASI tool to generate simulated spectra with a
specific combination of variables and chlorophyll a values.

Therefore, the input data structure of the WASI-generated simulation data needs
to be similar to the SpecWa data structure. In our case, the spectral data of the SpecWa
dataset is given in radiance reflectance (see [43]). The radiance reflectance is the sum of
the water leaving radiance and the reflectance on the water surface on a radiance sensor in
proportion to the incoming irradiance [55,56]. Consequently, we simulate data with the
WASI tool as radiance reflectance data by varying the input parameters. For our setup, the
WASI tool provides 33 parameters that can be adapted for radiance reflectance, but only
three parameters can be varied simultaneously. Besides, we select 12 out of the possible 33
WASI parameters which affect the water-leaving radiance and the surface reflectance. The
remaining WASI parameters are set to default. Table 2 summarizes the 12 selected WASI
parameters.

We define a sampling schema to handle the parameter combination, which is visual-
ized in Figure 3. We include the chlorophyll a concentration as a parameter in every run
and select two additional out of the remaining 11 parameters (see Table 2) in an iterative
process as variable settings. Since we aim to cover every combination of the parameters
and the chlorophyll a concentration, we receive 55 WASI-parameter combinations in 10
runs, as shown in Figure 3.

In each run, we consider the selected three parameters’ value range and their frequen-
cies’ distribution (see Table 2, range and steps column). Both, the range and the frequency,
are selected according to the following two criteria: (i) We use the range of the respective
parameter so that a wide variety of possible inland water bodies is represented. (ii) In
addition, we simulate the respective parameter value’s frequency so that it is nearly equally
or logarithmically equally distributed. This distribution is crucial to ensure that the DL
approaches are provided with the full range of the data and not only the majority.

The remaining WASI parameters, which are not among the selected three parameters,
are set to a constant value according to Table A1. These constant values are also given in
Table 2 at column Standard. The WASI-generated chlorophyll a data covers the range from
0.1 µg L−1 to 100 µg L−1 in 30 steps with a logarithmic step width in each run.

Since the chlorophyll a concentration depends on the green algae species and the
diatom species, we simulate the sampling schema twice. The first time, green algae
represent the varying chlorophyll a concentration and the diatom concentration is excluded;
while the second time, it is vice versa.

Finally, we receive a number of 528 000 WASI-generated datapoints containing the
radiance reflectance values in the range of 400 nm to 900 nm with a spectral resolution of
1 nm and varying values of the selected 12 parameters. For the chlorophyll a estimation,
we consider only the spectral input data with a number of 501 bands (features) and the
respective values of the chlorophyll a concentration. Figure 4 shows one example of the
WASI-generated spectral data.



Remote Sens. 2021, 13, 718 8 of 27

Table 2. Summary of the relevant Water Color Simulator (WASI) simulation parameters with their respective range. The
sampling schema is described in Figure 3. The range and the respective steps define the possible occurring parameter
values. For chlorophyll a and the concentration of non-algal particles, a logarithmic scale is chosen.

WASI Parameter Range Standard Steps Log Scale Description

Chlorophyll a 1 µg L−1 to 100 µg L−1 - 30 yes concentration of
chlorophyll a

CX 0.1 mg L−1 to 100 mg L−1 1 20 yes
concentration of
non-algal particles type I

CMie 1 mg L−1 to 20 mg L−1 0 20 no
concentration of
non-algal particles type II

CY 0.1 m−1 to 5 m−1 0.1 20 no CDOM concentration

zB 1 m to 5 m 2 10 no water depth

Sun 35° to 65° 50 10 no sun position

FA1 0.1 to 5 0 10 no background type sand

FA2 0.1 to 5 0 10 no background type silt

FA5 0.1 to 3 0 10 no background type
macrophyte

gdd 0 Sr−1 to 0.5 Sr−1 0.02 10 no
fraction of sky radiance
due to direct solar radiation

gdsr 0 Sr−1 to 1 Sr−1 0.318 10 no
fraction of sky radiance
due to molecule scattering

gdsa 0 Sr−1 to 1 Sr−1 0.318 10 no fraction of sky radiance
due to aerosol scattering

Sampling Without Replacement

Run i 

 Run 1 Chl a P 1 P 2 Chl a P 1 P 3, , Chl a P 1 P 11,

P i+1 P i+2 P n

 Run 2 Chl a P 2 P 3 , Chl a P 2 P 11,

 Run 10 Chl a P 10 P 11

Chl a P i P i+1 P i+2 P n

10

9

1

55

Number of
Combinations

∑ n-i
i=1

i=n-1

∑

Figure 3. Sampling schema of the selected WASI parameters. Chl a refers to the Chlorophyll a, while P I are the remaining
n = 11 parameters given in Table 2. I describes the control variable and I = 1 ... n − 1.

2.4. Data Pre-Processing

We apply two pre-processing steps. First, a standard spectral resolution of the SpecWa
and the WASI-generated simulation data is needed (see Section 2.4.1). Second, the full
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WASI-generated simulation dataset needs to be split into smaller datasets to evaluate
the applied ML models’ generalization abilities. This dataset splitting is described in
Section 2.4.2, while the entire pre-processing workflow for all datasets is shown in Figure 5.
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Figure 4. Visualization of the two different downsampled spectral resolutions. The spectral resolution of the Sentinel-2
mission (orange) is referred to as SR-Sentinel, and the spectral resolution of the EnMAP mission (blue) as SR-EnMAP. The
grey line represents a selected WASI-generated simulation spectrum with a chlorophyll a value of 51 µg L−1, a concentration
of suspended materials type I of 7.8 mg L−1, and a sandy bottom substrate. The additonal WASI parameters are set to the
(default) values according to Tables 2 and A1.

2.4.1. Downsampling

As demonstrated in Maier and Keller [42], the estimation performance of supervised
ML models in terms of chlorophyll a is satisfying concerning different downsampled spec-
tral resolutions (4 nm, 8 nm, 12 nm, 20 nm) of the input data. This study’s main finding
is that finer resolved spectral features such as a 4 nm resolution do not improve the ML
estimation performance since the spectral features are highly correlated. Additional down-
sampling is also conducted for the spectral resolution of satellite missions [57] in terms of
BR-feature engineering approaches. Motivated by these studies and the goal to prepare
an up-scaling approach on available spectral satellite data, we aggregate all spectral input
features of the SpecWa dataset and the WASI-generated simulation dataset. This aggre-
gation is conducted with the spectral resolution of the commonly applied multispectral
Sentinel-2 mission (ESA) [49] and the upcoming hyperspectral EnMAP mission (DLR) [48].
The former results in 9 spectral features, while the latter generates 77 spectral features.
Figure 4 visualizes the resulting spectral downsampling of the two applied resolutions.
We refer to the spectral resolution of the Sentinel-2 mission as SR-Sentinel and of the
EnMAP mission as SR-EnMAP. The spectral scaling is implemented in the R package hsdar
provided by Lehnert et al. [58]. As for the simulated Sentinel-2 scaling, we apply the MSI
instrument’s real spectral response function on Sentinel-2, while for the EnMAP down-
sampling, no spectral response function is available yet. Therefore, we use a Gaussian
distribution around the central wavelength of each EnMAP-band as the weight for the
input of the respective spectral channel, which is provided in the hsdar package. Note
that the proposed downsampling data cannot be directly compared to atmospherically
corrected multi- and hyperspectral data. The latter is characterized by additional noise
due to atmospheric condition which is absent in the SpecWa data. Therefore, the ML
approaches’ estimation performances on the downsampled, satellite-alike spectral features
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would certainly outperform an ML-based estimation based on satellite data concerning an
area-wide upscaling monitoring approach.

Spectral Value1

Spectral Value2
⠇

Spectral Value801

801

Chlorophyll a Value

1

SpecWa Dataset
Chlorophyll a Values < 100 µg L-1

 & 

Cyanobacteria Values < 5  µg L-1 

Spectral Value1

Spectral Value2
⠇

Spectral Value501

501

Chlorophyll a Value

1

WASI-generated 
Simulation Dataset

Pre-Processing in 
Two Spectral Resolutions
SR-Sentinel 

N = 9
SR-EnMAP 

N=77

Spectral Value1

Spectral Value2
⠇

Spectral ValueN

N

Full WASI-generated Simulation Dataset 
Pre-processed

WASI 
Test Dataset

WASI 
Validation Dataset

WASI 
Training Dataset

Dataset Splitting

Full SpecWa Dataset 
Pre-processed

15 % 70 %15 %

Spectral Value1

Spectral Value2
⠇

Spectral ValueN

N

Chlorophyll a Value

1 Spectral Value1

Spectral Value2
⠇

Spectral ValueN

N

Chlorophyll a Value

1

SpecWa 
Test Dataset

Figure 5. Pre-processing schema for SpecWa dataset (orange) and the WASI-generated simulation dataset (blue). N refers to
either 9 spectral input features in the case of the SR-Sentinel resolution or 77 in the case of the SR-EnMAP resolution.

2.4.2. Dataset Splitting in Subsets

To evaluate the ML models’ performance, an independent splitting of the training
dataset and test dataset is necessary. Therefore, we randomly split the WASI-generated
simulation dataset into three sets (see Figure 5). The training dataset is used to train the ML
model. The test dataset is solely used to evaluate the respective final ML model. Eventually,
the validation dataset is used during the optimization process of the ML model to evaluate
the generalization ability of the respective model. The ratio of the split into the three
different datasets is presented in Table 3. We also consider the SpecWa dataset with a
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number of 2617 datapoints as a second test dataset since we aim to evaluate the estimation
performance of the ML model on several unknown inland water bodies. Figure 6 shows the
distribution of the chlorophyll a values between the WASI training subset and the SpecWa
dataset as the final test dataset.

Table 3. Number of datapoints of the WASI-generated simulation dataset for each of the three subsets.

Dataset % Number of Datapoints

Training 70 369,600
Validation 15 79,200

Test 15 79,200
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Figure 6. Distributions of of the chlorophyll a values between the WASI training subset and the SpecWA dataset. The WASI
training set refers to the left y-axis and has about 100 times more datapoints than the SpecWa dataset which is referred to
the right y-axis.

2.5. Machine Learning Models

Several supervised learning approaches exist using spectral input data to estimate
environmental parameters, for example, chlorophyll a values. Among others, Keller et al.
[47] rely on ten shallow learning techniques to estimate of distinct water parameters. Be-
sides, Maier and Keller [37] investigate the effect of different spectral input data resolutions
for the estimation task. Artificial neural networks are a powerful tool to predict variables
with nonlinear relations (see, e.g., Hafeez et al. [39]). This finding is also met by Maier and
Keller [37] on simulated Sentinel-2 resolution data. Other neural networks were applied by,
e.g., Pahlevan et al. [21], González Vilas et al. [36], Chebud et al. [38], whereas Syariz et al.
[40], Pu et al. [41] applied CNNs on Landsat 8 and Sentinel-3 images to classify or estimate
water quality.

In this study, we evaluate several ML approaches for the challenging task of estimating
chlorophyll a values based on two different spectral resolved input data and for water bod-
ies excluded in the training process of the applied ML models. We select a Random Forest
(RF) [37,39] as a shallow learning approach, an artificial neural network (ANN) [36–39],
and an innovative one-dimensional convolutional neural network (1D CNN) [45,59] as a
DL approach. Furthermore, we apply a feature-engineering approach combined with a lin-
ear regression called a band-ratio (BR) approach [31]. RF and the selected BR represent two
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commonly applied approaches when estimating the chlorophyll a concentration of inland
water bodies. Thus, we compare the more sophisticated ANN and 1D CNN estimation
performances against the results of the RF and the BR approach as baselines.

Since the RF has achieved sophisticated estimation performance in previous studies
conducted on a subset of the SpecWa dataset (see[37,42]), we rely on it as a baseline. One
particularity of the mentioned studies is that the RF shows better performance when it is
applied on the first derivative of the spectral input data. Therefore, we also use the first
derivative, calculated with the prospectr package in R [60], as input for the RF.

We rely on a feature engineering band-ratio (BR) approach in addition to the shallow
RF model. This kind of approach is established in remote sensing applications for inland
water bodies (see [31]). A three-band selection combined with a linear regression enables
this BR approach to estimate the chlorophyll a concentration. The proposed bands, accord-
ing to Moses et al. [31], are slightly adapted, since they are related to the MODIS and the
MERIS sensor. In the case of the SR-EnMAP resolution, we select bands at 664.7 nm, 711.9 nm,
and 755 nm, while in the case of SR-Sentinel resolution bands at 665 nm, 705 nm, and
740 nm are chosen. We parametrize the BR approach on the WASI-generated simulation
training dataset with linear regression. Subsequently, we apply it to the WASI test dataset
and the SpecWa test dataset, to ensure comparability.

Although CNNs are mainly popular in image understanding, they are recently used in
remote sensing classification tasks based on spectral image data Liu et al. [59], Hu et al. [61],
and spectral input data [45]. One strength of a 1D CNN architecture is that several features
are generated from the spectral input data in the network’s deep layers. These features are
kind of similar to the derivatives used as input for the RF. Besides, 1D CNN is more resistant
to the noise of the input data. Noise can occur, for example, due to changing weather
conditions during the measurements or variation in the calibration techniques. Figure 7
illustrates the 1D CNN architecture for the SR-EnMAP data. As for the smaller dimensioned
SR-Sentinel input data, the 1D CNN architecture differs. The main differences between
the 1D CNN hyperparameters of the two spectral simulated input data are given in Table
A2. All hyperparameters are determined with an optimization process.

In the following, we describe the architecture of the 1D CNN for the SR-EnMAP sim-
ulated spectral data since this 1D CNN is more complicated than the 1D CNN for the
SR-Sentinel simulated spectral data. This architecture is inspired by the LeNet5 net-
work [62] and the LucasCNN [45] but is adapted to our specific estimation task, especially
concerning the last layers. The final adaption is a result of the performance on the valida-
tion dataset. Our 1D CNN consists of four convolutional layers (CONV) with different
filters and filter sizes (see Table A2). Each CONV layer is followed by a max-pooling layer
(MaxPooling). After the final CONV layer, we place a flatten layer and a dropout layer
(Dropout) with a dropout rate of 0.2 to counter overfitting. Before the end of the network,
two fully-connected (FC) layers are implemented. We include a layer with Gaussian noise
(Noise) to ensure a more stable DL model between these FC layers and again to avoid
overfitting. The second and last FC layer is combined with a linear activation function to
enable this 1D CNN to solve the underlying estimation task. Except for this last activation
function, we rely on the commonly applied ReLU function [63]. The fitting of the network is
conducted with the Adam optimizer [64]. Adam optimization is an extension of a stochastic
gradient descent, which updates the CNN’s weights more efficiently by using momentum
and adaptive learning rates to converge faster. We use the mean squared error as a loss
function, a batch size of 256, and 100 epochs. Note that the dropout and noise layers exist
only during the training of the 1D CNN.

In addition to the 1D CNN, we study a flatter ANN architecture (see Table A2). The
ANN consists of an input layer, two hidden layers with 100 neurons each, and an output
with one neuron. ReLu is used as an activation function in-between all these layers, except
for the last single neuron. This neuron is activated with a linear function. Besides, we also
apply a dropout layer and a noise layer similar to the 1D CNN.
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All ML models are trained and evaluated ten times on different seeds to evaluate
the stability of the models. The estimation performances of the different ML models are
compared based on the coefficient of determination (R2), the mean absolute error (MAE),
and the root mean square error (RMSE). As for the 1D CNN the best model of the training
and validation process is selected to perform on the test and SpecWa test dataset.

77 ⨉ 1

CONV1
& MaxPooling

c1 ⨉ (36 ⨉ 1)

c2 ⨉ (16 ⨉ 1)

c3 ⨉ (7 ⨉ 1)

CONV2
& MaxPooling

CONV3
& MaxPooling

c4 ⨉ (3 ⨉ 1)

Dropout 
& FC1

f1 ⨉ 1

Chlorophyll a 
value

CONV4
& MaxPooling

Noise 
& FC2

f2 ⨉ 1

Linear

Figure 7. Flowchart of the 1D CNN for the SR-EnMAP spectral input features during the training process. The network
includes convolutional (CONV), fully-connected (FC), and max-pooling (MaxPooling) layers. Besides, a layer with Gaussian
noise (Noise) and a dropout layer (dropout) exist. The I-th CONV layer contains ci filters and the j-th FC layer contains f j

units. At the end of the network, a linear activation function is applied. Adopted from [45].

3. Results

In the following, we present the chlorophyll a estimation results of the different ML
approaches combined with the two downsampled resolutions, SR-EnMAP and SR-Sentinel.
The 1D CNN, the ANN, and the RF performances on the WASI test dataset are greater than
R2 = 99 % for the SR-EnMAP-data and R2 = 98 % for the SR-Sentinel-data, as expected
since the WASI-generated simulation data is relatively homogeneous. Therefore, we
focus on the estimation performance with the independent, real-world SpecWa dataset,
representing the study’s primary objective. The results are structured in three parts: (1) We
describe the applied models’ overall estimation results on the complete SpecWa dataset. (2)
Subsequently, the best ML model is selected to investigate the estimation performance on
the respective dataset in detail. (3) The specific estimations for the eleven water bodies of
the SpecWa dataset are described.

Table 4 shows the overall estimation performance of the 1D CNN, the ANN, and the
two baseline models, RF and BR, in terms of the three metrics R2, RMSE, and MAE, for the
SpecWa (test) dataset. Concerning the two spectral resolutions, the 1D CNN and the ANN
achieve better estimation results on the finely resolved SR-EnMAP data. At the same time, RF
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and BR perform better on the SR-Sentinel data for all performance metrics. Overall, the
1D CNN represents the best estimation model with R2 = 81.9 %, RMSE = 12.4 µg L−1, and
MAE = 6.7 µg L−1 on the SR-EnMAP data. The ANN performs as the second-best model on
the SR-EnMAP data, but it is significantly worse than the 1D CNN. On the SR-Sentinel data,
the 1D CNN is also the best model. However, in this case, the 1D CNN underperforms
with an R2 = 62.4 %, RMSE = 19.3 µg L−1, and MAE = 14.6 µg L−1 compared to its
performance on the finely resolved SR-EnMAP data. Regarding the three estimation metrics
and the SR-Sentinel, the 1D CNN’s performance is only better in the case of the R2-score
compared to the RF. Otherwise, the range of the models’ performance metrics is smaller on
the SR-Sentinel data. For example, the R2-score of all models ranges from 37.9 % to 81.9 %
on the SR-EnMAP data, while R2-score varies from 51.5 % to 62.4 % on the SR-Sentinel. In
order to compare the estimation results with the measured chlorophyll a values in the
subsequent Section 4, we provide additional information about the SpecWa chlorophyll a
values (see also Figure 1). The chlorophyll a ranges from 0 µg L−1 to 99.6 µg L−1 for all
SpecWa inland water bodies with a mean value of 23.85 µg L−1 and a median value of
10.1 µg L−1. Based on this information, in sum, the results on the SR-Sentinel data remain
unconvincing (see Table 4, right part) for all selected models.

Since the 1D CNN represents the best model on the complete SpecWa dataset, espe-
cially for the SR-EnMAP data, we focus on its estimation performance in detail. Figure 8
(left) shows the results generated by the 1D CNN model compared to the measured chloro-
phyll a values on the SpecWa dataset. On the right of Figure 8, we provide the estimation
results generated by the RF baseline compared to the measured chlorophyll a values on the
SpecWa dataset. As for the visualized 1D CNN-generated distribution of the estimated and
measured chlorophyll a values, we notice that most of the low values of the natural water
bodies W1 to W8 are estimated correctly (low bias). The 1D CNN over- and underestimates
a limited amount of datapoints. This finding is primarily related to higher chlorophyll a
values. The chlorophyll a values of the water body A2 are consequently overestimated
whereas the water body A3 values are underestimated. In contrast, the RF (Figure 8, right)
shows a significantly worse distribution of the estimated and measured chlorophyll a
values (high bias). The RF overestimates most of the SpecWa chlorophyll a values; solely
the values of the water body A3 are underestimated. In addition, Figure A1 visualizes the
estimation results generated by the ANN and the baseline BR.

With respect to a detailed analysis of the individual water bodies, we summarize the
estimation performance of all selected ML models on each SpecWa water body in Figure 9
in terms of the RMSE, accompanied by the specific values for the MAE and RMSE in Table 5.
Note that the R2-score is not provided. In the case of the individual inland water bodies,
the number of datapoints is too low and the range of the chlorophyll a concentration is
partly too small, resulting in inconclusive R2-values. The estimation results for the different
water bodies can be sorted into three parts. The first part includes water bodies whose
chlorophyll a values are generally well-estimated by several models independently of the
two spectral resolutions. Secondly, water bodies exist whose chlorophyll a values are only
well-estimated by a few models or only on one of the downsampled spectral resolutions.
Furthermore, water bodies whose chlorophyll a values are generally hard to estimate by all
ML models.

As shown in Figure 9 and Table 5, all ML models can predict the chlorophyll a values
of nearly all natural water bodies W1 to W8 satisfyingly. Besides, Figure 10 exemplifies the
scaled deviation between the estimation results of the 1D CNN and the RF model and the
measured chlorophyll a values of the SpecWa dataset as violin plots. The deviation ∆scaled
emphaizes the comparison of the estimation performance concerning all water bodies since
we apply a min-max-scaling for each water body individually. This scaling is performed
for the measured and estimated chlorophyll a values individually. Eventually, the resulting
values are normalized in the range of 0–1 and are independent of the target variable’s unit.
Figure 10 provides information about the median of the deviations between the scaled
estimated and scaled measured chlorophyll a values (white dot) and the entire distribution
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of these deviations. The natural water body W2 is an exception concerning the satisfied
estimation since only the RF on the SR-Sentinel performs well on this waterbody’s dat-
apoints. However, W8 is an example that is estimated well by both neural networks but
only on the SR-EnMAP (see Figures 9 and 10). In addition to W2, the datapoints of A1 are
also estimated appropriate by one model, the 1D CNN. This finding refers especially to
the SR-EnMAP data (see, for example, Figure 10). A2 and A3 represent the third part of
inland water bodies since no ML model can estimate the measured chlorophyll a values
satisfyingly. This finding is revealed for the 1D CNN and the RF model when focusing on
Figure 10. To sum up, both neural networks and the RF perform well, but their performance
depends highly on the individual water bodies and their chlorophyll a concentrations.
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Figure 8. Visualization of the estimation results (y-axes) generated by the 1D CNN and the baseline RF model compared to
the measured chlorophyll a values (x-axes) on the SpecWa dataset. The natural water bodies W1 to W8 are colored in green
while the artificial water bodies are characterized by three different colors: A1 in yellow, A2 in orange, and A3 in blue.
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Figure 9. Visualization of the models’ estimation results based on the RMSE-scores on the different water bodies with the
two different downsampled resolutions.

Table 4. Results for the chlorophyll a estimation of all SpecWa inland water bodies.

Model SR-EnMAP SR-Sentinel

R2 in % RMSE in µg L−1 MAE in µg L−1 R2 in % RMSE in µg L−1 MAE in µg L−1

1D CNN 81.9 12.4 6.7 62.4 19.3 14.6
ANN 66.6 16.6 9.3 54.8 23.4 17.1

RF 51.1 22.7 17.0 51.1 20.2 14.7
BR 37.9 23.0 19.3 51.5 22.3 17.8
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Table 5. Results for the chlorophyll a estimation of the SpecWa inland water bodies.

Water ID Model SR-EnMAP SR-Sentinel

RMSE in µg L−1 MAE in µg L−1 RMSE in µg L−1 MAE in µg L−1

A1

1D CNN 15.4 9.1 24.0 20.9
ANN 20.4 13.8 21.8 14.1
RF 31.2 27.7 24.7 21.1
BR 27.8 22.0 27.3 19.7

A2

1D CNN 22.0 18.2 33.1 27.5
ANN 40.9 34.6 56.7 53.3
RF 37.6 33.4 37.0 32.6
BR 20.0 17.2 16.6 13.7

A3

1D CNN 37.9 36.8 43.9 42.5
ANN 35.9 34.5 33.2 32.0
RF 29.7 27.8 57.8 57.0
BR 38.1 37.6 18.6 16.3

W1

1D-CNN 2.6 2.4 4.5 3.2
ANN 3.1 3.0 3.9 3.6
RF 6.5 6.2 4.6 4.0
BR 17.0 16.8 16.9 16.8

W2

1D CNN 14.2 14.1 14.9 14.9
ANN 8.4 8.3 14.6 14.5
RF 17.5 17.4 3.6 3.3
BR 13.9 13.9 17.7 17.7

W3

1D CNN 3.9 3.0 7.8 6.4
ANN 4.0 3.0 4.5 3.4
RF 7.5 6.6 6.8 6.0
BR 17.8 16.8 17.8 16.9

W4

1D CNN 3.0 2.0 3.0 2.0
ANN 4.4 3.8 3.3 2.5
RF 2.8 1.7 2.8 1.8
BR 9.6 8.3 10.5 7.6

W5

1D CNN 2.0 1.4 5.5 4.0
ANN 2.3 2.1 2.3 2.0
RF 5.1 4.4 6.3 6.0
BR 13.8 12.3 13.8 12.5

W6

1D CNN 2.8 1.6 2.9 2.2
ANN 3.2 2.0 2.7 1.6
RF 3.3 2.7 6.0 5.6
BR 20.0 17.2 21.7 17.2

W7

1D CNN 2.8 1.8 2.5 2.1
ANN 5.7 4.8 3.3 2.9
RF 2.4 2.0 4.1 3.7
BR 21.7 21.2 20.1 19.5

W8

1D CNN 3.9 2.9 14.3 13.2
ANN 2.9 2.3 5.9 4.8
RF 12.3 11.2 9.8 9.1
BR 16.6 16.2 17.2 16.9
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Figure 10. Visualization of the estimation results on the SR-EnMAP resolved data generated by the 1D CNN (left) and the RF
model (right) as the min-max scaled deviation ∆scaled between the estimated and measured chlorophyll a values. The violin
plots reveal the median of the deviations between the scaled estimated and scaled measured chlorophyll a values (white
dot) and the entire distribution of these deviations.

4. Discussion

In this section, we discuss the results of Section 3 that we obtained with the applied ML
models on the real-world chlorophyll a concentrations of the SpecWa dataset. In Section 4.1,
we discuss the estimation performance and applicability of the applied ML models in detail
and the models’ estimation performance concerning the two downsampled spectral data.
Eventually, we present a comprehensive discussion of the estimation performance for the
individual water bodies included in the SpecWa dataset (see Section 4.2).

4.1. Estimation Performance Concerning the Two Downsampled Spectral Data and the Different
ML Models

As for the downsampled spectral data shown in Figure 4, the models’ estimation
performance on the total SpecWa dataset varies between the well-performing neural net-
works and the two baseline models on the SR-EnMAP data (see Table 4, Figures 8 and A1).
Most models perform similarly and worse on the SR-Sentinel data, as shown in Table 4.
Except, the BR performance increases on the SR-Sentinel data since the selected bands
are optimized for a multispectral resolution. These worse models’ performances on the
SR-Sentinel data can be explained by an information loss due to the coarser spectral
downsampling. In addition, the models vary highly in their ability to handle multiple, mul-
ticollinear input data and select important features from these data. The information loss
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is caused by the downsampling of the 1 nm resolution original data to the SR-Sentinel,
as shown in Figure 1. In contrast, the SR-EnMAP with 6.5 nm-bandwidth characterizes
approximately the spectrum’s original distribution, whereas the SR-Sentinel data no
longer presents this characteristic. The SR-EnMAP data includes, for example, the typical
chlorophyll a absorption at 685 nm [65] and the following scattering peak 705 nm, which
are covered by several bands (see Figure 4). This information is provided by only two
broad bands for the SR-Sentinel data. Besides, the chlorophyll a’s origin depending on
either green algae or diatoms is only recognizable in the finer resolved SR-EnMAP data.
Information about, for example, the water composition of different parameters is missing
in the SR-Sentinel. The loss of information impedes the estimation for any data-driven
ML model.

Regarding the different models’ performances on the finer resolved SR-EnMAP data,
the two baseline models cannot exploit the detailed spectral features (see Table 4, and
Figures 8 and A1, right). The RF model, for example, cannot use the high-dimensional
WASI-generated simulation data to transfer the linkages of the training process on the
unknown SpecWa test dataset as visualized, for example, in Figure 8. This finding is
sustained since the RF’s performance on the SR-EnMAP data is even slightly worse than on
the more downsampled SR-Sentinel data. In contrast, both neural networks, especially
the 1D CNN, benefit strongly from the finer resolution of the SR-EnMAP data, resulting in
more spectral input features. This finding is clearly revealed in Figure 8 (left). Therefore,
the 1D CNN can learn the linkage between the WASI-generated simulation data and the
chlorophyll a values. This DL approach can generalize its learnings on the WASI-generated
simulation test dataset, particularly on the entirely unknown SpecWa dataset.

When comparing the two best performing models, the ANN and the 1D CNN, the
estimation results reveal that the 1D CNN estimates the chlorophyll a concentrations
on the SpecWa dataset better than the ANN in terms of 15.3 p.p for the R2-score. This
outperforming can be explained by the characteristic ability of the 1D CNN to exploit
the information implicitly contained in the large number of spectral features of SR-EnMAP
better than a conventional ANN. As the 1D CNN architecture includes different filters and
kernels, the spectral features’ information is perfectly processed, which seems similar to
applying different spectral derivatives [42].

Besides, when focusing on the noise in the real-world dataset, such as the SpecWa
dataset, the sun’s spectral signal and the sky glint can be higher than the water-leaving
radiance [55]. This noisy part of the signal is reflected on the water surface and is included
in the SpecWa test dataset, which affects the estimation performances in Table 4. We have
varied the parameters influencing the surface reflection to cover a broad range of occurring
real-world conditions during the WASI simulation process. Generally, the ML models need
to handle these different illumination conditions as noise. Returning to the comparison
of both neural network approaches, the estimation results reveal that the 1D CNN can
minimize occurring noise, such as the effect of the absolute reflectance values in the input
data. Therefore, the generalization abilities of the 1D CNN ensure the transfer to further
spectral data provided by different sensors, illumination conditions, and eventually, distinct
water bodies that are prevailed by the underlying estimation task in our study (see, for
example, Figure 8, right). The weaker performance of the ANN (see Figure A1, right) can
be explained by strongly responding to the noise in the input data.

Finally, we analyze our estimation results and the estimation results provided by
a previously conducted study on one part of the SpecWa dataset by Maier and Keller
[37]. They have investigated the performance of several shallow ML models to estimate
the chlorophyll a concentration with different spectral resolutions. Note that a detailed
comparison of the estimation performances is infeasible since the training dataset are
entirely different. In the previous study, all ML models have been trained on datapoints
of the SpecWa dataset [37]. The SpecWa dataset has been known to the models, which
is not the case for our study. Therefore, the overall models’ estimation performance in
the previous study is better when regarding the absolute figures. A finding of Maier and
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Keller [37] is that the models’ performances are only slightly better on the finer resolved
SR-EnMAP data. For example, the ANN model performs slightly worse on the SR-Sentinel
data than on the SR-EnMAP data (see [37], Table 2). In our study, the ML models show larger
differences in their estimation performance between the SR-Sentinel and SR-EnMAP (see
Table 4). As for the arising questions addressing the generalization abilities of the models
in Maier and Keller [37], they have not been applied to unknown water bodies. Therefore,
we assume that these models would perform significantly worse than the models in the
underlying study due to the lack of noise and variability generated in our case by the
WASI tool.

4.2. Estimation Performance Concerning the Individual Water Bodies

Since the SpecWa dataset consists of chlorophyll a concentrations of eleven different
inland water bodies (see, for example, Figure 1), we discuss the applied ML models’
estimation performance concerning these water bodies. In contrast to the commonly
applied BR approaches (see, for example, [5,31]), and the more advanced BR approaches
for specific water types [19,32], the proposed data-driven ML approaches are not trained on
datapoints of the individual water bodies. Our objective is to provide a more generalized
approach trained and parametrized on a dataset not necessarily including chlorophyll a
values of the target water bodies. This approach differs also from the study of Pahlevan
et al. [21], relying on a mixture density model with in-situ data of several inland water
bodies. A large amount of training data is required concerning the applicability of a DL
approach, which motivates employing simulation data such as the used WASI-generated
simulation data. One advantage of data simulation is, for example, the possibility to
generate a broader range of chlorophyll a values than appearing in natural water bodies.

Our models’ performance results are given in Section 3, Table 5, Figures 9 and 10.
Similar to Section 3, the discussion is structured in three parts. Most of the natural water
bodies (W1 to W8) are well estimated by the majority of ML models (see Figure 9) and
even on the more downsampled SR-Sentinel data. When focusing on the CNN as the best
performing approach (see Table 4) on the En-MAP resolution, we retrieve this assessment
based on the deviation distributions of W1-W8 in Figure 10 (left). As shown, the median
of the deviations between the scaled estimated and measured chlorophyll a values are
allocated around 0. A good estimation of the natural water bodies’ chlorophyll a values
implies that the proposed approach to train the ML models on an entirely different and
simulated dataset and, subsequently, apply them to an unknown real-world dataset, works
well for the entire SpecWa dataset (see Section 4.1) and concerning most of the individual
water bodies (see Figure 9). The natural water body W2 is an exception as for the good
models’ estimation performance with 6.4 p.p. difference of the best individual RMSE-score.
This exception is also illustrated by the severe deviations and filling shapes of the CNN’s
and RF’s distributions in Figure 10. In addition to the lowest number of datapoints (8, see
Table 1), this exception seems understandable when investigating the water body’s compo-
sition. The water level ranges between 0.5 m to 1 m and is low (see Table 1). Therefore, the
benthic substrate strongly influences the spectral signature. Besides, small water plants
might float on the water surface during the spectral measurements. The latter might cause
an overestimation of the chlorophyll a concentration of this specific water body. We have
to consider that such effects of polluted water surfaces always appear when measuring
real-world water bodies with, for example, dust or pollen cover.

Regarding the artificial water bodies, it can be seen in Figure 9 as well as Table 5
that the ML models’ estimation performances are worse compared to the natural water
bodies. This finding can also be retrieved when focusing on the deviation distributions of
the artificial water bodies compared to the natural ones in Figure 10. One reason for the
worse estimation results can arise since the WASI tool has been originally developed for
water bodies with generally lower chlorophyll a concentrations, such as the lake Constance
in Germany [29].
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Therefore, the WASI-generated simulation training dataset contains only a few higher
chlorophyll a values resembling artificial water bodies. Another reason might be that
water bodies characterized by broader chlorophyll a concentration ranges are generally
more complex to estimate as they contain a variety of substances. These substances
overlap in the measured spectral signatures and cannot be deducted easily. Increasing
chlorophyll a concentrations evoke a diversity in the inland water body concerning the
horizontal distribution and vertical distribution of the water composition. From this
perspective, the estimation task is heavily ill-posed for such water bodies, since the in-situ
chlorophyll a measurement is taken at a rather specific depth range while the spectral data
capture reflectances over the whole water column. Especially for water bodies with higher
concentrations, this effect can lead to a higher estimation bias. Against the background of
the mentioned aspects, the 1D CNN’s performance on the water body A1 can be slightly
revised since most of the datapoints are estimated satisfactory for the chlorophyll a range
of 16.3 µg L−1 to 99.6 µg L−1 (see Table 5).

In sum, it is obvious that a stepwise simulation characterizes the WASI-generated data
(see Section 2.3) cannot directly correspond to a natural water body. This is the reason why
a particular estimation bias is expected (see, for example, Figure 10). Such a bias can be
originated due to make assumptions before the simulation process. For example, these
assumptions are:

• We simulated the WASI-generated dataset with three different benthic substrates:
sand, silt, and a macrophyte species. Natural water bodies have additional materials
such as gravel, leaves, or other organic materials that are not covered in the WASI
tool.

• In different geogenic regions, a diversity of minerals occur, resulting in distinct reflec-
tive properties and colors for, e.g., suspended materials.

• Besides, several phytoplankton species exist, while the WASI-generated simulation
data consist only of two species.

Concerning these mentioned aspects and many more, the ML model’s performance, es-
pecially the 1D CNN’s, estimate the chlorophyll a of the entire SpecWa dataset successfully
and satisfactory for most individual water bodies.

5. Conclusions and Outlook

Continuous monitoring of inland water bodies with RS techniques is highly relevant
for many applications and research areas, such as water quality management. To address
the topic of monitoring inland water bodies, we focus on estimating the chlorophyll a
concentrations of real-world inland water bodies. Therefore, we use chlorophyll a concen-
trations and spectral data of several water bodies provided by the SpecWa dataset and
simulation data generated by the WASI tool. We rely on ML models such as ANN, RF,
a BR approach, and a 1D CNN as a DL approach. The innovative aspects of our study
can be summarized as follows: (1) a 1D CNN is applied for the first time to estimate
chlorophyll a values; (2) since such a DL approach needs a large amount of training data,
we train it on WASI-generated simulation data independent from the real-world SpecWa
dataset representing the target data. As a pre-processing step, we apply two downsampling
approaches resulting in input data’s spectral resolution of SR-Sentinel and the SR-EnMAP.
These downsampled data represent the respective satellite missions as a requirement for a
possible upscaling approach regarding area-wide monitoring.

First, we train the ML models on the WASI-generated simulation training dataset. This
simulation is prepared accordingly and includes a knowledge-based water composition
with two origins of the chlorophyll a concentration. Subsequently, all ML models are
evaluated on the SpecWa test dataset. The overall best estimation performance on the total
SpecWa dataset achieves the 1D CNN with the SR-EnMAP resolution and an R2 = 81.9 %,
RMSE = 12.4 µg L−1, and MAE = 6.7 µg L−1. Downsampling the spectral input data to
the SR-Sentinel resolution, decrease the two neural network approaches’ performance.
In the case of the 1D CNN, which is also the best estimator, the performance declines by
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about 19.5 p.p. to R2 = 62.4 %. As expected, the ML models benefit the most from the more
detailed information in the SR-EnMAP spectral data, including the typical chlorophyll a
absorption at 685 nm. When focusing on the individual water bodies of the SpecWa dataset,
the most significant differences exist between the natural and artificial water bodies. We
discover that the applied models estimate the chlorophyll a concentration of most natural
water bodies satisfyingly. However, the estimation performance on the artificial water
bodies is worse, mostly explained by the more complex characteristics of these water
bodies.

Returning to the initial question, Can ML approaches be trained on a simulated dataset
to estimate the chlorophyll a concentration of water bodies not included in the training
process?, posed at the beginning, we find the answer composed of the following three
parts:

1. Yes. ML approaches can be trained on a simulation dataset and can estimate the
chlorophyll a concentration of real-world water bodies not included in the training
process. The best model is the newly adapted and applied 1D CNN. It can handle
noise in the data and different illumination conditions caused by the sun- and sky
glint.

2. However, the ML models must be provided with appropriate information in the input
data. This is the main reason why the estimation performances on the finer resolved
SR-EnMAP data are significantly better than on the SR-Sentinal data.

3. As for the generalization aspect of the ML models, we demonstrate that it is possible,
under specific conditions, that models are trained on a distinct dataset as later applied.
Since the DL model performs the best estimation, we take a chance to assume it would
perform similarly on another dataset covering the same chlorophyll a values. Indeed,
we need to consider the water bodies’ composition.

Considering the last aspect, we point out that the WASI tool is a physical model
and always a simplification of the complex reality of a water body. Thus, the estimation
performances could be improved by a more complex simulation of the training data, includ-
ing different influence parameters such as additional algae species or benthic substrates.
Another challenge is provided in the SpecWa dataset, since two different devices have been
used to measure the reference chlorophyll a values. Combined with the WASI-generated
simulation data, the data contains in sum three distinct sensor data.

In total, we conclude that our study is encouraging, mainly as we applied a DL
approach that can estimate the chlorophyll a concentration of unknown and independent
water bodies. The WASI-generated simulation, in combination with the 1D CNN delivered
good results.

Such a choice increases the generalization of ML approaches in the context of inland
water monitoring. It provides the first basis for an upscaling approach on real hyperspec-
tral satellite data. Future studies can undertake the presented results and a 1D CNN’s
applicability to grip the surface reflectance issues in water quality monitoring. Another
possible approach could be to combine different models and prior knowledge to address
the chlorophyll a estimation of, for example, deep and shallow waters (depth) or different
trophic state (chlorophyll a concentration ranges).
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Appendix A

Table A1. Summary of the default WASI simulation parameters (see [56]).

Parameter Standard Value Unit Description

C[0] 0 µg L−1 Concentration of phytoplankton class 0

C[1] 0 µg L−1 Concentration of phytoplankton class 1

C[2] 0 µg L−1 Concentration of phytoplankton class 2

C[4] 0 µg L−1 Concentration of phytoplankton class 4

fluo 0 chlorophyll a fluorescence quantum yield

S 0.014 nm−1 Exponent of CDOM absorption

n -1 - Angström exponent of particle scattering

T_W 25 °C Water temperature

f 0.033 - f-factor of R

Q 5 Sr−1 Anisotropie factor of upwelling radiation

z 0 m Sensor depth

view 0 ° Viewing angle

bbs_phy 0.001 m2 mg−1 Specific backscattering coefficient of phytoplankton

f_nw 0 - Fraction of non-water area

fA[0] 0 - fraction of bottom type #0 (constant)

fA[3] 0 - fraction of bottom type #3 (seagrass)

fA[4] 0 - fraction of bottom type #4 (mussel)

f_dd 1 - Fraction of direct downwelling irradiance

f_ds 1 - Fraction of diffuse downwelling irradiance

H_oz 0.38 cm Scale height of ozone

alpha 1.3170 - Angström exponent of aerosols

beta 0.2606 - Turbidity coefficient

WV 2.500 cm Scale height of precipitable water in the atmosphere

rho_L 0.02006 - Fresnel reflecance of downwelling radiance

rho_dd 0.03325 - Reflection factor of Edd

rho_ds 0.0889 - Reflection factor of Eds
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Table A2. Hyperparameters of the one-dimensional convolutional neural network (1D CNN) (here: CNN) and the artificial
neural networks (ANN) with their respective simulated spectral resolutions. The number of filters in the I-th CONV layer is
defined as ci and the number of units in the I-th FC layer is defined as f j.

Hyperparameters CNN + SR-EnMAP ANN + SP-EnMAP CNN + SR-Sentinel ANN + SR-Sentinel

Number of epochs 50 50 100 100
Batch size 256 256 256 256

Kernel size 1 5 - 3 -
Kernel size 2 4 - 2 -
Kernel size 3 3 - - -
Kernel size 4 2 - - -
Pooling size 2 - 2 -
Activations ReLU ReLU ReLU ReLU

c1 128 - 128 -
c2 128 - 128 -
c3 256 - - -
c4 256 - - -
f1 200 100 100 100
f2 200 100 100 100

Dropout 0.2 0.2 0.2 0.2
Loss Mean squared error

Optimizer Adam
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● ● ● ●A1 A2 A3 W1 to W8

Figure A1. Visualization of the estimation results (y-axes) generated by the ANN and the baseline band ratios (BR) model
compared to the measured chlorophyll a values (x-axes) on the SpecWa dataset. The natural water bodies W1 to W8 are
colored in green while the artificial water bodies are characterized by three different colors: A1 in yellow, A2 in orange, and
A3 in blue.
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