

Pushing the Frontier in Measuring the Mass of the Lightest Lepton Results from the Karlsruhe Tritium Neutrino Experiment

Magnus Schlösser for the KATRIN collaboration 9th International Conference on New Frontiers in Physics 2020

INSTITUTE FOR NUCLEAR PHYSICS, TRITIUM LABORATORY KARLSRUHE

Short motivation

~300 neutrinos per cm³

08. September 2020 | ICNFP 2020 | Magnus Schlösser

Hubble Ultra Deep field, NASA and the European Space Agency, http://hubblesite.org/newscenter/archive/releases/2004/07/image/a/warn/

Ways to access the neutrino mass

		e e e e e e e e e e e e e e e e e e e	np 3H 3He ⁺
	Cosmology	Search for 0vββ	β-decay & electron capture
Observable	$M_{ u} = \sum_{i} m_{i}$	$m_{etaeta}^2 = \left \sum_i U_{ei}^2 m_i ight ^2$	$m_eta^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	0.12 – 1 eV	0.2-0.4 eV	2 eV
Model dependence	Multi-parameter cosmological model	 Majorana v contributions other than m(v)? nuclear matrix elements, g_A 	Direct, only kinematics; no cancellations in incoherent sum
		KA	$TRIN \rightarrow 200$ ma

Moore's Law of direct neutrino mass searches

Tritium β-decay

KATRIN's aim: Measurement of m_v with a sensitivity of 200 meV/c²

The Karlsruhe Tritium Neutrino Experiment

The Karlsruhe Tritium Neutrino Experiment

ultra-stable high-luminosity windowless gaseous tritium source (10¹¹ Bq)

high-resolution MAC-E filter with < 1 eV energy resolution

TEK

Tritium Laboratory Karlsruhe

katrin.kit.edu

The Tritium Laboratory Karlsruhe

Tritium Laboratory Karlsruhe (TLK)

1993

- Licensed for
 - 40 g Tritium
- Two missions:
 - Fuel cycle for fusion reactors
 - **KATRIN** Experiment

08. September 2020 | ICNFP 2020 | Magnus Schlösser 8

Karlsruhe Institute of Technology

Campus North

First tritium "engineering" run with KATRIN 2018

Successful operation of source and spectrometer sections at 10⁻³ stability

- 2 week run at full column density
- Reduced activity and tritium purity: 1% DT, 99% D₂

First neutrino mass campaign with KATRIN 2019

First KATRIN measurement campaign

- 4-week long campaign with high-purity tritium
- April 10 May, 13 2019
- 274 spectra (each 2 h)
- **521.7** h for analysis interval $[E_0 40 \text{ eV}, E_0 + 50 \text{ eV}]$
- Source activity 2.45 10¹⁰ Bq
- Tritium purity ($\epsilon_T = 97.5$ %)

Tritium throughput 4.9 g / day

Tritium source parameters

 $\pm 2.4\%$

25

Entries

0

Composition via Raman spectroscopy Column density Systematic uncertainty illustration 1.14 ± 10^{17} Systematic uncertainty illustration od (molecules/cm²) $\binom{96.00}{L}$ 96.00 96.00 1.121.10 $\mu(T_2) = 95.25 \%$ $\sigma(T_2) = 0.75 \%$ 1.08 1.50 $\mu(\rho d) = 1.110 \times 10^{17} \text{ cm}^{-2}$ $\sigma(\rho d) = 0.009 \times 10^{17} \text{ cm}^{-2}$ 1.06DT (%) 1.00 11 April 18 April 25 April 02 May 09 May 0.50 Date $\sigma(DT) = 0.22 \%$ $\mu(DT) = 1.08 \%$ **Reduced column density** 4.00HT (%) (22%) 3.00 **Radiochemical methane** 2.00 $\mu(HT) = 3.54 \%$ $\sigma(HT) = 0.52$ % generation 50 11 April 18 April 25 April 02 May 09 May 0 Date Entries **Throughput limited** Very high tritium (initial burn-in effect) purity achieved KATRIN Collab, Sensors 2020, 20(17), 4827

0o. September 2020 | ICNFP 2020 | Magnus Schlösser

14

Ingredients for integral spectrum

Tritium Laboratory

Karlsruhe

15

Generation of final spectrum

No spatial effects in single pixel fits

Strategy for first neutrino mass analysis

- Add up all runs (average slow control parameters, excellent HV stability!)
- Add up all pixel (average transmission function)

Additional systematics by "simplification" (<< statistical uncertainty in this run!)

Uncertainty breakdown

Analysis strategy

Analysis on Monte Carlo data

- Generated from actual sensor data
- Neutrino mass = 0 eV
- Freezing before unblinding

Model blinding

- Add unknown scaling to final-state distribution calculation → would result in shifted neutrino mass
- Independent fitting strategy and teams
 - Systematics via 1) Covariance matrix and 2) MC propagation

Final spectral fit

Final fit results

Independent analysis methods systematics propagation and parameter fit

Neutrino mass

$$m^{2}(\nu_{e}) = (-1.0^{+0.9}_{-1.1}) \text{ eV}^{2}$$
(90% C. L.)

Endpoint

agreement

 $E_0 = 18573.7 \pm 0.1 \text{ eV}$

Q-value (KATRIN) (18575.72 ± 0.07) eV

Phys. Rev. Lett. 114, 013003 (2015)

Q-value ($\Delta M(T, {}^{3}He) = (18575.2 \pm 0.5) eV$

Understanding of final result

Karlsruhe

08. September 2020 | ICNFP 2020 | Magnus Schlösser 21

Neutrino mass measurements

Next neutrino mass campaigns

31 days 84%

- 97.5% tritium
- 9.8 · 10¹⁰ Bq

 $4 \cdot 10^{6} \, e's$

2020

- Spring/Summer: Third neutrino mass run
 - Study of source plasma systematics
 - Implementation of background reduction techniques

Fall/Winter: Fourth neutrino mass run

Starting this week

A view to the future

Tritium Laboratory

Karlsruhe

Summary & Conclusion

KATRIN achieved world-best direct neutrino mass limit

$m_{ m v}$ < 1.1 eV (90% CL)

KATRIN Collab, Phys. Rev. Lett. 123, 221802

KATRIN is in operation for next "1000 days"

m_{ν} < 200 meV (90%CL) & search for "new physics"

First data on eV and keV sterile neutrinos will be published soon

The KATRIN collaboration

FRKELE

Funding and support from: Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, and 05A17WO3), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (VH-NG-1055) in Germany; Ministry of Education, Youth and Sport (CANAM-LM2011019), cooperation with the JINR Dubna (3+3 grants) 2017–2019 in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the US.

Tritium Laboratory Karlsruhe

11 91117