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TANGENTIAL CONE CONDITION AND LIPSCHITZ STABILITY
FOR THE FULL WAVEFORM FORWARD OPERATOR

IN THE ACOUSTIC REGIME

MATTHIAS ELLER AND ANDREAS RIEDER

Abstract. Time-domain full waveform inversion (FWI) in the acoustic regime com-
prises a parameter identification problem for the acoustic wave equation: Pressure waves
are initiated by sources, get scattered by the earth’s inner structure, and their reflected
parts are picked up by receivers located on the surface. From these reflected wave fields
the two parameters, density and sound speed, have to be reconstructed. Mathematically,
FWI reduces to the solution of a nonlinear and ill-posed operator equation involving the
parameter-to-solution map of the wave equation. Newton-like iterative regularization
schemes are well suited and well analyzed to tackle this inverse problem. Their con-
vergence results are often based on an assumption about the nonlinear map known as
tangential cone condition. In this paper we verify this assumption for a semi-discrete
version of FWI where the searched-for parameters are restricted to a finite dimensional
space. As a byproduct we establish that the semi-discrete seismic inverse problem is
Lipschitz stable, in particular, it is conditionally well-posed.

1. Introduction

The analysis of Newton-like methods for regularizing nonlinear ill-posed problems in
Hilbert or Banach spaces often relies on a structural assumption which is known under
the name tangential cone condition (TCC), see, e.g., [9, 11, 14, 16, 19]. It can be traced
back to [17] and reads: Let F : D(F ) ⊂ V → W be the underlying nonlinear operator
between Banach spaces which we assume to be Fréchet-differentiable (F-differentiable)
with F-derivative F ′. Then, F satisfies the TCC at x+ ∈ int(D(F )) if

‖F (v)− F (w)− F ′(w)(v − w)‖W ≤ η ‖F (v)− F (w)‖W for all v, w ∈ Bρ(x
+)

for an η < 1 (sufficiently small) where Bρ(x
+) is the open ball in V of radius ρ > 0

about x+ (sometimes the TCC is formulated in a ball with respect to a Bregman distance).
In the fully continuous (infinite dimensional) setting only a few academic examples are

known where the TCC holds. However, in a semi-discrete setting the situation is more
relaxed. For instance, a semi-discrete TCC has been derived for the inverse problem of
the complete electrode model in 2D-electrical impedance tomography [13]. It turns out
that injectivity of F ′(x+) is essentially sufficient not only to yield a semi-discrete TCC
but also a Lipschitz stability like

‖v − w‖W ≤ c‖F (v)− F (w)‖W for all v, w ∈ Bρ(x
+)

Date: March 1, 2021.
2010 Mathematics Subject Classification. 35R30, 35L05, 65J20.
Key words and phrases. Tangential cone condition, Lipschitz stability, full waveform seismic inversion,

acoustic wave equation.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID

258734477 - SFB 1173.
1
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where c > 0 is a constant. We will demonstrate this implication under rather general
assumptions. Semi-discrete Lipschitz estimates and conditional well-posedness for various
inverse problems have already been derived, e.g., in [1, 2, 3, 4, 5] and we add a variant
of the seismic inverse problem to this list, namely time-domain full waveform inversion
(FWI) in the acoustic regime. FWI entails the seismic inverse problem of recovering
subsurface material parameters from partial measurements of reflected wave fields which
are initiated by external sources. The searched-for parameters in the acoustic regime are
pressure wave speed and bulk density. If we confine these parameters to suitable finite
dimensional spaces, the F-derivative of the resulting parameter-to-solution map is in fact
one-to-one.

The presentation of our findings is organized as follows. In the next section we set the
stage by introducing the acoustic wave equation as a first order system and by recalling
existence and uniqueness results. Then, in Section 3 we define our semi-discrete model
where sources are fired in one part Σ of the propagation medium D and the resulting
wave fields are recorded at a possibly different part Ω of D. Here, sound speed and bulk
density are expressed as linear combinations of smooth basis functions which are locally
independent in D: if a linear combination vanishes on an open subset of D it vanishes
globally in D. For this model we formulate the seismic inverse problem and characterize
the F-derivative of the forward map by a different but akin acoustic wave equation. For
this wave equation we show a fundamental property in Proposition 3.1: there is a source
supported in Σ such that the wave field of the F-derivative does not vanish identically
on Ω. The proof is based on Holmgren’s uniqeness theorem and the propagation of
singularities along bicharacteristics of the wave operator. Finally, Section 4 presents the
main result (Theorem 4.4) with all its preparatory work and with a remarkable uniqueness
statement for semi-discrete FWI: the partial measurements of the reflected wave field
determine uniquely both, density and sound speed, where only one single source has to
be fired (Remark 4.5).

So as not to distract the reader from the overall picture we kept the main part of
the paper rather short by moving technical and auxiliary material to three appendices:
Appendix A contains the proof of Proposition 3.1. In Appendix B we prove Lipschitz
continuity of the F-derivative of the forward map within an abstract setting. Therefore,
Theorem B.2 covers other first order systems as well. The final Appendix C includes
likewise an auxiliary statement which is nevertheless interesting in its own right: a semi-
discrete mapping whose F-derivative is injective and continuous, satisfies the TCC and
is Lipschitz stable (Lemma C.1).

2. The setting

We consider the acoustic wave equation as a first order system. Let p : [0,∞) ×D → R
and v : [0,∞) ×D → Rd, d ∈ {2, 3}, be the pressure and the velocity field, respectively,
where D ⊂ Rd is a bounded, connected domain with a piecewise C1-boundary. Then,

c(x) ∂tp(t, x) = div v(t, x) + f(t, x) in [0,∞)×D,(2.1)

%(x)∂tv(t, x) = ∇p(t, x) in [0,∞)×D,(2.2)

with initial values p(0, ·) = p0 and v(0, ·) = v0. Here, c, % : D → (0,∞), f : [0,∞)×D →
R. Note that 1/

√
c% is the wave speed and % denotes the bulk density. Further, (2.1)-(2.2)
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can be written as initial value problem

(2.3) B∂tu = −Au+ f̃(t), u(0) =

(
p0

v0

)
=: u0,

where u(t) =
(
p(t, ·),v(t, ·)

)
, f̃(t) =

(
f(t, ·), 0

)
,

(2.4) B =

(
c 0
0 % I3

)
, and A = −

(
0 div
∇ 0

)
.

Let us define the space X = L2(D)× L2(D,Rd) and its subset

(2.5) D(A) :=
{

(p,v) ∈ H1(D)×H1(div, D) : n · v|∂DN
= 0, p|∂DD

= 0
}

with ∂D = ∂DD ∪̇ ∂DN . The operator A : D(A) ⊂ X → X is maximal monotone, see [6,
Chap. 7] for a definition.

If (p0,v0) ∈ D(A), f ∈ W 1,1
(
[0,∞), L2(D)

)
, and

(2.6) c, % ∈ P := {λ ∈ L∞(D) : 0 < λ− < λ(·) < λ+ <∞ a.e.}
then (2.1)-(2.2) admit a unique classical solution (p,v) ∈ C

(
[0,∞),D(A)

)
∩C1

(
[0,∞), X

)
,

see, e.g., [12].
If (p0,v0) ∈ X, f ∈ L1

loc

(
[0,∞), L2(D)

)
then (2.1)-(2.2) admit a unique mild/weak

solution u ∈ C
(
[0,∞), X

)
which – in the notation of (2.3) – satisfies

(2.7) Bu(t) = Bu0 + A

∫ t

0

u(s)ds+

∫ t

0

f̃(s)ds,

see, e.g., [18, Prop. 2.15].

3. The semi-discrete full waveform forward map

Let (p0,v0) ∈ D(A) and f ∈ W 1,1
(
[0, T ], L2(Σ)

)
where Σ ⊂ D is an open set where

the sources can be initiated. As we can recover only finitely many degrees of freedom we
restrict the parameters of (2.1)-(2.2) to a finite dimensional space. To this end we set

V := span{ϕj : j = 1, . . . ,M} ⊂ C1(D)

where the functions {ϕj : j = 1, . . .M} are locally independent over D, that is, if a linear
combination vanishes on a nonempty open subset Ω of D then the linear combination
must be trivial:

(3.1)
M∑
j=1

ajϕj|Ω = 0 =⇒ aj = 0, j = 1, . . . ,M.

Concrete examples for V include:

(1) Polynomials: V = ΠN(Rd), the space of d-variate polynomials of total degree N .
Here, the dimension of V is M =

(
N+d
d

)
.

(2) Real-analytic radial basis functions: Let ϕ : Rd → R be a positive definite and
radially symmetric function, see, e.g., [23, Chap. 6]. For pairwise different knots
ξj ∈ D, j = 1, . . . ,M , the translates {ϕ(· − ξj) : j = 1, . . .M} are linear inde-
pendent over D. If ϕ is additionally real-analytic then these translates are also
locally independent. In fact, any linear combination of these translates is itself an
analytic function and as such zero everywhere in D if it vanishes on a nonempty
open subset.
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For instance, the Gaussian ϕ(x) = exp(−γ|x|2), γ > 0, and the multiquadrics
ϕ(x) = 1/(1 + |x|2)β, β > 0, have the required properties and are, moreover,
positive.

With V+ := V ∩ P we define the parameter-to-solution (parameter-to-state) map by

F : V 2
+ ⊂ V 2 → C

(
[0, T ], X

)
, (c, %) 7→ (p,v),

where (p,v) solves (2.1)-(2.2). Note that F is well defined and F-differentiable. Its
F-derivative F ′ : V 2

+ ⊂ V 2 → L
(
V 2,C

(
[0, T ], X

))
is given by

F ′(c, %)[h1, h2] = (p,v)

where (p,v) ∈ C
(
[0, T ], X

)
is the mild solution of

c(x) ∂tp(t, x) = div v(t, x)− h1(x) ∂tp(t, x) in [0, T ]×D,(3.2)

%(x) ∂tv(t, x) = ∇p(t, x)− h2(x) ∂tv(t, x) in [0, T ]×D,(3.3)

with p(0, ·) = 0, v(0, ·) = 0 and (p,v) = F (c, %), see, e.g., [12].

In seismic exploration only part of the wave field can be measured. To model this fact, we
introduce the observation (restriction) operator Ψ: C

(
[0, T ], X

)
→ C

(
[0, T ], XΩ

)
, XΩ :=

L2(Ω)×L2(Ω,Rd), Ψ(p,v) = (p|Ω,v|Ω), where Ω ⊂ D is open, nonempty and connected.
The following property of the wave system (3.2)-(3.3) is fundamental for our main

result in Theorem 4.4 below. Its technical and somewhat lengthy proof is content of
Appendix A. For its formulation we introduce the space

W 2,1
0 :=

{
f ∈ W 2,1

(
[0, T ], L2(Σ)

)
: f(0) = f ′(0) = 0

}
.

Proposition 3.1. Suppose that h ∈ V 2\{0}. If T > 0 is sufficiently large then there
exists an f ∈ W 2,1

0 with supp f ⊂ (0, T ) × Σ such that the mild solution (p|Ω,v|Ω) of
(3.2)-(3.3) is not identically zero in (0, T ). This f may depend on (c, %) but not on h.

We set Φ = Ψ ◦ F . Then, the semi-discrete inverse seismic problem in the acoustic
regime consists in finding (c, %) ∈ V 2

+ such that

Φ(c, %) ≈ (p̃, ṽ)

for the measured wave field (p̃, ṽ) ∈ XΩ. Note that

Φ′(c, %)[h1, h2] = ΨF ′(c, %)[h1, h2] = (p|Ω,v|Ω).

Remark 3.2. From a numerical point of view, our choice of global basis functions for
discretizing c and % seems a bit far-fetched. The straightforward approach would be, for
instance, to take indicator functions subordinate to the mesh of the used finite element
discretization of (2.1)-(2.2). In Remark A.3 of Appendix A we will address this issue in
greater detail.

4. Injectivity, Lipschitz stability, and tangential cone condition

In a first step towards the tangential cone condition for Φ we verify injectivity of
Φ′(c, %). We cast the injectivity problem into an operator framework by setting

(4.1) p0 = 0 and v0 = 0
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(the environment is at rest before we fire the source). Then the map f 7→ (p,v) is linear
and we redefine Φ by

Φ̃ : V 2
+ ⊂ V 2 → L

(
W 2,1

0 ,C
(
[0, T ], XΩ

))︸ ︷︷ ︸
=: W

, (c, %) 7→
(
f 7→ Ψ(p,v)

)
,

that is, Φ̃(c, %)f = (p|Ω,v|Ω) where (p,v) solves (2.1)-(2.2). The F-derivative Φ̃′(c, %) ∈
L(V 2,W) is still given via (3.2)-(3.3). Indeed,

(4.2) Φ̃′(c, %)[h]f = (p|Ω,v|Ω)

where h = (h1, h2) ∈ V 2.

The injectivity of Φ̃′ is a direct consequence of Proposition 3.1.

Corollary 4.1. The F-derivative Φ̃′(c, %) ∈ L(V 2,W) is an injective mapping and we
have that

(4.3) min
{
‖Φ̃′(c, %)[h]‖W : h ∈ V 2, ‖h‖V 2 = 1

}
> 0.

Proof. Assume the minimum to be zero. As V 2 is finite dimensional and Φ̃′(c, %) is

continuous, there is a normalized h ∈ V 2 such that Φ̃′(c, %)[h]f = 0 for all f ∈ W 2,1
0 . But

then h = 0 by Proposition 3.1 contradicting ‖h‖V 2 = 1. �

Theorem 4.2. We have Lipschitz continuity of the F-derivative V 2
+ 3 (c, %) 7→ Φ̃′(c, %) ∈

L(V 2,W), that is,

(4.4) ‖Φ̃′(c1, %1)− Φ̃′(c2, %2)‖L(V 2,W) . ‖(c1, %1)− (c2, %2)‖V 2 .1

The involved constant only depends on T , λ−, and λ+.

Proof. See Appendix B. �

Corollary 4.3. For (c+, %+) ∈ V 2
+ there exist an open ball Br(c

+, %+) ⊂ V 2
+ with radius

r > 0 and a positive constant m = m(c+, %+, r, T, λ−, λ+) such that

‖Φ̃′(c, %)[h]‖W ≥ m ‖h‖V 2 for all h ∈ V 2 and all (c, %) ∈ Br(c
+, %+).

Proof. The assertion follows immediately from the previous corollary and theorem. In-
deed, let L = L(T, λ−, λ+) be the constant in (4.4) and let m̃ > 0 be the minimum from
(4.3). Choose 0 < r < m̃/(2L). Then, for all (c, %) ∈ Br(c

+, %+) we have – using the
reverse triangle inequality – that

‖Φ̃′(c, %)[h]‖W ≥
∣∣‖Φ̃′(c+, %+)[h]‖W − ‖Φ̃′(c+, %+)[h]− Φ̃′(c, %)[h]‖W

∣∣
≥ m̃‖h‖V 2 − L r‖h‖V 2 ≥ (m̃/2)‖h‖V 2

and m = m̃/2 does the job. �

Lipschitz stability and the tangential cone condition for Φ̃ follow now immediately from
Lemma C.1 of Appendix C.

Theorem 4.4. For (c+, %+) ∈ V 2
+ there exist an open ball Br(c

+, %+) ⊂ V 2
+ such that

‖(c1, %1)− (c2, %2)‖V 2 .
∥∥Φ̃(c1, %1)− Φ̃(c2, %2)

∥∥
W

and

1The notation A . B indicates the existence of a generic constant c > 0 such that A ≤ cB.



6 M. ELLER AND A. RIEDER∥∥Φ̃(c1, %1)− Φ̃(c2, %2)− Φ̃′(c2, %2)[(c1, %1)− (c2, %2)]
∥∥
W

. ‖(c1, %1)− (c2, %2)‖V 2

∥∥Φ̃(c1, %1)− Φ̃(c2, %2)
∥∥
W

for all (ci, %i) ∈ Br(c
+, %+), i = 1, 2.

Proof. Apply Lemma C.1 with Θ = Φ̃, D(Θ) = V 2
+, X = V 2, and Y = W. The necessary

assumptions are satisfied according to Theorem B.2 and Corollary 4.3. Further, α = 1
due to (4.4). �

Remark 4.5. At the end of Section 3 we have introduced the parameter-to-solution map

Φ: V 2
+ ⊂ V 2 → C

(
[0, T ], X

)
, (c, %) 7→ (p|Ω,v|Ω),

for one fixed source f in (2.1)-(2.2). In the language of the geophysical community, Φ

models a one-shot experiment whereas Φ̃ describes a multi-shot experiment.
Theorem 4.4 holds accordingly for Φ provided the fired single source f coincides with

one of those whose existence for (c+, %+) is guaranteed by Proposition 3.1. To put it
differently: for any dimension of V , the pair (c+, %+) ∈ V 2

+ is in principle uniquely
determined from a single shot experiment (when the ’right’ source is fired).

Appendix A. Proof of Proposition 3.1

The following result will be crucial. It is a global version of Holmgren’s uniqueness
theorem for a hyperbolic equation with C1-coefficients.

Lemma A.1. Suppose that (p,v) ∈ L2((0, T )×D) is a weak solution to the homogeneous
system

c(x) ∂tp(t, x) = div v(t, x)

%(x) ∂tv(t, x) = ∇p(t, x)
in [0, T ]×D,

with coefficients c, % ∈ V 2
+. Let E ⊂ D be open and nonempty. If (p,v) ≡ 0 in (0, T )×E

for sufficiently large T , then there exists T1 ∈ (0, T ) such that

(p,v) ≡ 0 in

(
T − T1

2
,
T + T1

2

)
×D.

This lemma is essentially the Holmgren-John-Tataru theorem. Note that the time T1

can be made precise, see, e.g., [8, 15].
Even though, Holmgren’s theorem applies also to systems, it will be advantageous to

reduce the system (2.1)-(2.2) to two decoupled wave equations of second order:

c ∂2
t p = div

(1

%
∇p
)

+ ∂tf,

% ∂2
t v = ∇

(1

c
div v

)
+∇f

c
.

(A.1)

By (2.2) with zero initial data (4.1) we have that ∇× (%v) = 0. Hence,

∇
(1

c
div v

)
= ∇

(1

c
div v

)
− 1

c%
∇× (∇× (%v))

=
1

c
∆v +

(
∇1

c

)
div v − 1

c%

[
∇%× (∇× v) +∇× (∇%× v)

]
,

which shows that the second-order system for v has a second-order hyperbolic operator
as its principal part. This has the advantage that we can use also Tataru’s uniqueness
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theorem which works only for scalar operators [20, 21]. Even though (A.1) is a second-
order system, its principal part is a scalar second-order hyperbolic operator. With a small
adjustment, Tataru’s approach can be applied [7].

Remark A.2. The classical Holmgren-John theorem applies only to operators with an-
alytic coefficients. In the case of the wave equation Tataru proved that the conclusion of
Holmgren-John is true for coefficients which are analytic in time and C1 in space or vice
versa.

The principal symbol of each equation in (A.1) is q(x; τ, ξ) = τ 2− |ξ|2/(c%)(x). Hence,
we introduce a distance function (metric) in D by setting

(A.2) dist(x, y) = inf
γ

∫ β

α

√
%(γ(t))c(γ(t)) |γ′(t)| dt

where the infimum is taken over all smooth curves γ in D satisfying γ(α) = x and
γ(β) = y. Let

dist(x,E) = inf
y∈E

dist(x, y) and dist(D,E) = sup
x∈D

dist(x,E).

If T > 2 dist(D,E), then the function (p,v) vanishes at ‘half time’, that is,

(p,v)(T/2, x) = 0 for all x ∈ D,
see [8, Theorem 1.1]. In order to obtain a time interval where (p,v) vanishes one needs
to increase T . Let T1 ∈ (0, T ). If T > T1 + 2 dist(D,E), then

(p,v)(t, x) = 0 for all (t, x) ∈
(
T − T1

2
,
T + T1

2

)
×D.

Now we turn to the actual proof of Proposition 3.1 which is devided into two steps.
First, we will show that there exists a forcing term f such that for sufficiently large

T > 0, the wave field u = (p,v) does not vanish in (0, T )×Ω. We argue by contradiction.
Suppose that u ≡ 0 in (0, T )×Ω. Then, by Lemma A.1 there exists T1 ∈ (0, T ) such that

(A.3) u ≡ 0 in

(
T − T1

2
,
T + T1

2

)
× (D\Σ).

Replacing the t variable by t− (T −T1)/2, we work in the space time cylinder (0, T1)×D
instead of

(
T−T1

2
, T+T1

2

)
×D.

Let f(t, x) = λ(t)g(x) where λ ∈ C∞0 (0, T1) and g ∈ H1(D) with support in Σ, and
consider the initial-boundary value problem

(A.4) c ∂2
t p̃ = div

(1

%
∇p̃
)

in (0, T1)×D,

with initial data p̃(0, x) = g(x)/c(x), ∂tp̃(0, x) = 0, and boundary data

p̃ = 0 on (0, T1)× ∂DD and ∂ν p̃ = 0 on (0, T1)× ∂DN .

The boundary data are inferred from (2.1)-(2.2). This problem has a unique solution
p̃ ∈ C([0, T ], H1(D)). Furthermore, we define

(A.5) ṽ(t, x) :=
1

%

∫ t

0

∇p̃(s, x) ds.

Then ũ = (p̃, ṽ) satisfies system (2.1)-(2.2) with f = 0.
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We will use propagation of singularities to establish that ũ is not zero in (0, T )×(D\Σ).
Indeed, the singularities of the initial data g will travel along the null bicharacteristics of
the hyperbolic operator %c ∂2

t − ∆ which is the principal part of (A.4), see, e.g., [22] or
[10, Chap. 23].

The null bicharacteristics γ : R → ((0, T1) ×D) × (R × Rd) are integral curves of the
vector field (∇τ,ξq,−∇t,xq) satisfying q ◦γ = 0. Setting γ(s) = (t(s), x(s); τ(s), ξ(s)), this
gives

dt

ds
= 2τ,

dx

ds
= −2ξ

c%
,

dτ

ds
= 0,

dξ

ds
= −∇x

1

c%
|ξ|2 =

∇x(c%)

(c%)2
|ξ|2,

so that q(x, τ, ξ) = τ 2 − |ξ|2/[(c%)(x)] = 0. Let

t(0) = 0, x(0) = x, τ(0) = τ , ξ(0) = ξ.

From q(x; τ , ξ) = 0 we infer that τ = ±|ξ|/
√

(%c)(x). Hence, over each point (x, ξ) at
t = 0 there are two bicharacteristics. Furthermore, from the ODE we infer that τ(s) = τ
for all s and thus, t = 2τs = ±2|ξ|s/√c%. So, in both bicharacteristics one can introduce

t as a parameter, that is, γ±(t) = (t, x±(t),±|ξ|/
√

(%c)(x), ξ±(t)). By the chain rule

dx

dt
= ∓ ξ

|ξ|√c%
and

dξ

dt
= ±∇x(c%)

(c%)3/2

|ξ|2

|ξ|
.

If (x, ξ) is in the wave front set of g, then the segments of the two null bicharacteristics
γ± in (0, T1) × D, with initial (x, ξ) at t = 0, will be in the wave front set of ũ. The x
component of the bicharacteristic is a geodesic of the metric (A.2).

There exist points (x, ξ) ∈ Σ × Rd such that at least one of the two bicharacteristics
with the initial data (x, ξ) will satisfy x+(t) ∈ D\Σ or x−(t) ∈ D\Σ for some t > 0.
Suppose now that g is supported in Σ and that its wave front set contains such a point.
Then the wave front set of the solution ũ = (p̃, ṽ) must contain the points x±(t) and
thus, the solution cannot vanish in (0, T )× (D\Σ).

The solution of (2.1)-(2.2) can now be expressed by Duhamel’s principle via

u(t, x) = (p,v)(t, x) =

∫ t

0

λ(t− s)ũ(s, x) ds.

Indeed, one computes

∂tu(t, x) = λ(0)ũ(t, x) +

∫ t

0

λ′(t− s)ũ(s, x) ds

=

∫ t

0

λ(t− s)∂sũ(s, x) ds+ λ(t)ũ(0, x)

where we used that λ(0) = 0. Moreover, in view of (A.4) and (A.5) we have that

c ∂tp̃ =

∫ t

0

div

(
1

%
∇p̃(s, ·)

)
ds =

∫ t

0

div ∂sṽ(s, ·) ds = div ṽ and % ∂tṽ = ∇p̃,

which yield

∂tp =
1

c
div v +

1

c
f and ∂tv =

1

%
∇p.

Since ũ(t, x) is not identically zero for all x ∈ D\Σ and t ∈ (0, T1), there exists a function
λ ∈ C∞0 (0, T1) such that u will not vanish in (0, T1)× (D\Σ). This contradicts (A.3) and
we have proved that u does not vanish in (0, T )× Ω.
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In the final step of the proof we validate that the solution (p,v) of (3.2)-(3.3) does not
vanish identically on (0, T ) × Ω. Assume the contrary. Then, it follows from (3.2)-(3.3)
(or, more precisely, from its integrated version (2.7)) that

0 = h1(x)∂tp(t, x) and 0 = h2(x)∂tv(t, x) in [0, T ]× Ω.

Thus, we must have that

∂tp(t, x) = 0 and ∂tv(t, x) = 0 in [0, T ]× Ω

since h1 and h2 cannot be identically zero restricted to Ω (otherwise they would vanish
on D as well by our assumption (3.1) on the ansatz functions). Recalling the zero initial
conditions (4.1) we must have (p,v) = 0 in [0, T ]×Ω which contradicts our first finding.

Remark A.3. We come back to the issue raised in Remark 3.2 of local vs. global basis
functions for discretizing c and %.

Suppose we split D into open, connected subsets {Dj}j with piecewise C1-boundaries:

D =
M⋃
j=1

Dj, Dj ∩Dk = ∅, j 6= k.

Let Vloc := span{pjχDj
: j = 1, . . .M} where χDj

denotes the indicator function of Dj

and pj is a polynomial.
If we now represent c and % in Vloc, we can prove, by a slight modification of our

arguments from above, that for any h ∈ V 2
loc there is a forcing term f and a time T > 0

such that the solution (p,v) of (2.1)-(2.2) does not vanish in (0, T )× (supph1∪ supph2).
Thus, for each h we can guarantee that at least one of the forcing terms in (3.2)-(3.3) is
active. This result is, however, not sufficient to carry over Proposition 3.1 (and hence
Theorem 4.4) to Vloc. It remains to show that for each h there is one forcing term f
for (2.1)-(2.2) such that the induced forcing terms in (3.2)-(3.3) guarantee (p,v) not to
vanish in (0, T )×Ω. We strongly conjecture this to be a fact, unfortunately, we are unable
to give rigorous arguments at present.

Even if we succeed, Theorem 4.4 might hold only for the multi-shot operator Φ̃ since
the applied source f depends on h and one source might not serve all h ∈ V 2

loc. This is
then in contrast to the global ansatz functions where we could verify the TCC also for the
one-shot operator Φ, see Remark 4.5.

Appendix B. A continuity result

In this appendix we verify that Φ̃′ : V 2
+ ⊂ V 2 → L(V 2,W) defined in (4.2) is a Hölder-

continuous mapping. We first provide a result for the abstract evolution equation

(B.1) Bu′(t) + Au(t) = f(t), t ∈ [0, T ], u(0) = u0,

in the spirit of [12]. The assumptions are T > 0, X Hilbert space,

B ∈ L∗(X) = {J ∈ L(X) : J∗ = J} satisfying

〈Bx, x〉X = 〈x,Bx〉X ≥ β‖x‖2
X

for some β > 0 and for all x ∈ X,

A : D(A) ⊂ X → X is maximal monotone: 〈Ax, x〉X ≥ 0 for all x ∈ D(A) and
I + A : D(A)→ X is onto (I is the identity),

f ∈ L1
(
[0, T ], X

)
, u0 ∈ X.
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Using standard techniques one sees that (B.1) admits a unique mild solution u ∈ C([0, T ], X)
satisfying

(B.2) ‖u‖C([0,T ],X) . ‖u0‖X + ‖f‖L1([0,T ],X)

where the constant depends on T , ‖B‖ and ‖B−1‖.
The following regularity result has been obtained in [12, Theorem 2.6] under more

general assumptions on f and u0.

Theorem B.1. For some k ∈ N, let f ∈ W k,1([0, T ], X) with f (`)(0) = 0, ` = 0, . . . , k−1
(note that f (`) is continuous). Let u be the unique mild solution of (B.1) with u0 = 0.
Then u ∈ Ck([0, T ], X) ∩ Ck−1([0, T ],D(A)) and

(B.3) ‖u‖Ck([0,T ],X) . ‖f‖Wk,1([0,T ],X)

where the constant depends on T , ‖B‖, and ‖B−1‖.

From now on let u0 = 0. We define the following parameter-to-source-to-solution map
related to (B.1):

(B.4) F̃ : D(F̃ ) ⊂ L∗(X)→ S, B 7→ (f 7→ u),

where

S := L
(
W 2,1

0 ([0, T ], X),C([0, T ], X)
)
,

W 2,1
0 ([0, T ], X) := {f ∈ W 2,1([0, T ], X) : f(0) = f ′(0) = 0},

and
D(F̃ ) := {B ∈ L∗(X) : β−‖x‖2

X ≤ 〈Bx, x〉X ≤ β+‖x‖2
X}

for given 0 < β− < β+ <∞.

Theorem B.2. The map F̃ is F-differentiable at B ∈ int(D(F̃ )) where

F̃ ′(B)[H]f = u for H ∈ L∗(X)

with u ∈ C
(
[0, T ], X

)
being the mild (in fact the classical) solution of

(B.5) Bu′(t) + Au(t) = −Hu′(t), t ∈ [0, T ], u(0) = 0,

where u is the classical solution of (B.1) with respect to f .

Moreover, F̃ ′ is Lipschitz-continuous, that is,

‖F̃ ′(B1)− F̃ ′(B2)‖L(L∗(X),S) . ‖B1 −B2‖L(X).

The involved constant only depends on T , β−, and β+.

Proof. We can be brief in proving F-differentiability as we will rely on results from [12].
A close inspection of the proofs of Lemma 3.3 and Theorem 3.6 of [12] yields, for H
sufficiently small, that

1

‖H‖L(X)

‖F̃ (B +H)f − F̃ (B)f − F̃ ′(B)[H]f‖C([0,T ],X) . ‖H‖L(X) ‖f‖W 2,1([0,T ],X)

which is the claimed differentiability.

Now we check the Lipschitz-continuity of F̃ ′. To this end let u = F̃ ′(B)[H]f and

v = F̃ ′(B + δB)[H]f . By the regularity assumptions on f , v and u are the classical
solutions of

(B + δB)v′(t) + Av(t) = −Hv′(t), t ∈ (0, T ), v(0) = 0,
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Bu′(t) + Au(t) = −Hu′(t), t ∈ (0, T ), u(0) = 0,

where u solves (B.1) and v solves (B.1) with B replaced by B + δB. Hence, d = v − u
mildly solves

Bd′(t) + Ad(t) = −H(v′(t)− u′(t))− δBv′(t), t ∈ (0, T ), d(0) = 0.

By the continuous dependency of d on the right hand side, see (B.2), we get

(B.6) ‖d‖C([0,T ],X) . ‖H‖L(X) ‖v − u‖C1([0,T ],X) + ‖δB‖L(X) ‖v‖C1([0,T ],X).

Next we apply the regularity estimate (B.3) to v − u which solves

B(v′(t)− u′(t)) + A(v(t)− u(t)) = −δBv′(t) t ∈ (0, T ), v(0)− u(0) = 0.

Thus,

‖v − u‖C1([0,T ],X) . ‖δB‖L(X) ‖v‖C2([0,T ],X) . ‖δB‖L(X) ‖f‖W 2,1([0,T ],X)

where the right bound comes from the regularity of v. In a similar way we get

‖v‖C1([0,T ],X) . ‖H‖L(X) ‖v‖C2([0,T ],X) . ‖H‖L(X) ‖f‖W 2,1([0,T ],X).

Plugging these bounds into (B.6) we end up with

sup
H∈L∗(X)

sup
f∈W 2,1

0 ([0,T ],X)

‖v − u‖C([0,T ],X)

‖H‖L(X)‖f‖W 2,1([0,T ],X)

. ‖δB‖L(X)

which is the claimed Lipschitz-continuity. �

To establish the connection of Φ̃ to F̃ we return to the concrete settings of the previous
sections for (2.3) where X = L2(D) × L2(D,Rd) and B and A are given by (2.4) and

(2.5). Now Φ̃ = Ψ ◦ F̃ ◦ P with the mapping

P : V 2
+ ⊂ V 2 → L∗(X), (c, %) 7→

(
c 0
0 % I3

)
.

Note that the image of P is in D(F̃ ) by an appropriate choice of β− and β+ in terms of
λ− and λ+ from (2.6).

Now, the Hölder-continuity (4.4) follows immediately from Theorem B.2 by the chain
rule using P ′(c, %)[h] = P (h1, h2).

Appendix C. Lipschitz stability and tangential cone condition in a
semi-discrete setting

The following lemma is of interest independent of its use in this paper, since it provides
elementary criteria that imply TCC and Lipschitz stability for semi-discrete mappings.

Lemma C.1. Let Θ: D(Θ) ⊂ X → Y be an F-differentiable mapping between Banach
spaces where X is finite dimensional. Denote by x+ an interior point of D(Θ) and assume
that Θ′(x+) has a trivial null space.

a) If Θ′ is continuous in Br(x
+) up to the boundary then there is a ρ > 0 such that

Lipschitz stability holds, that is,

(C.1) ‖v − w‖X . ‖Θ(v)−Θ(w)‖Y for all v, w ∈ Bρ(x
+).

Moreover, the TCC holds as well

‖Θ(v)−Θ(w)−Θ′(w)(v − w)‖Y ≤ η(v, w) ‖Θ(v)−Θ(w)‖Y
for all v, w ∈ Bρ(x

+)
(C.2)
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where η : Br(x
+) × Br(x

+) → [0,∞) is a continuous function which vanishes on the
diagonal: η(w,w) = 0.

b) If Θ′ is even Hölder continuous of order α ∈ (0, 1], i.e.,

(C.3) ‖Θ′(x)−Θ′(y)‖L(X,Y) ≤ L‖x− y‖αX for all x, y ∈ Br(x
+),

for one L > 0, then a stronger TCC holds

‖Θ(v)−Θ(w)−Θ′(w)(v − w)‖Y . ‖v − w‖αX ‖Θ(v)−Θ(w)‖Y
for all v, w ∈ Bρ(x

+).
(C.4)

c) Conversely, if both, (C.1) and continuity of Θ′, or (C.2) hold and Θ(x+) is isolated,
that is, Θ(x+) 6∈ Θ

(
Bρ(x

+)\{x+}
)
, then Θ′(x+) has to have a trivial null space.

Part c) is essentially known in the literature [11, Prop. 2.1].

Proof. a) By injectivity of Θ′(x+), continuity of Θ′, and finite-dimensionality of X there
is an r1 ∈ (0, r] and an m > 0 such that

‖Θ′(x)v‖Y ≥ m‖v‖X for all x ∈ Br1(x
+) and all v ∈ X.

For E(v, w) := Θ(v)−Θ(w)−Θ′(w)(v − w) we have that, for all v, w ∈ Br(x
+),

‖E(v, w)‖Y =
∥∥∥∫ 1

0

(
Θ′(w + t(v − w))−Θ′(w)

)
(v − w) dt

∥∥∥
Y
≤ σ(v, w)‖v − w‖X

with
σ(v, w) = sup{‖Θ′(w + t(v − w))−Θ′(w)‖ : t ∈ [0, 1]}.

Choose ρ ∈ (0, r1] such that σ(v, w) ≤ m/2 for all v, w ∈ Bρ(x
+). We proceed – using

the reverse triangle inequality – with

‖Θ(v)−Θ(w)‖Y = ‖E(v, w)−Θ′(w)(w − v)‖Y
≥
∣∣‖E(v, w)‖Y − ‖Θ′(w)(w − v)‖Y

∣∣
≥ m ‖v − w‖X − σ(v, w) ‖v − w‖X.

Hence,

(C.5) ‖Θ(v)−Θ(w)‖Y ≥
m

2
‖v − w‖X for all v, w ∈ Bρ(x

+)

which is (C.1). Finally,

‖E(v, w)‖Y ≤ σ(v, w) ‖v − w‖X
(C.5)

≤ η(v, w) ‖Θ(v)−Θ(w)‖Y
and (C.2) is verified with η = 2σ/m.

b) Under (C.3) we estimate

η(v, w) ≤ 2L

m
‖v − w‖αX

so that (C.2) yields (C.4).

c) As continuity and (C.1) together imply (C.2), it suffices to assume the latter condition.
Suppose there is a z ∈ N(Θ′(x+))\{0}. Then, vλ := x+ +λz ∈ Bρ(x

+) for 0 < λ < %/‖z‖X
and

‖Θ(vλ)−Θ(x+)‖Y = ‖Θ(vλ)−Θ(x+)− λΘ′(x+)z‖Y
. η(x+ + λz, x+) ‖Θ(vλ)−Θ(x+)‖Y.
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Thus, Θ(vλ) = Θ(x+) for λ > 0 small enough which contradicts the isolation of Θ(x+). �

Finally, we want to emphasize that we can replace the injectivity assumption in the
above lemma by Lipschitz stability. Indeed, continuity and (C.1) imply (C.2). Note that
Lipschitz stability is known for a variety of semi-discrete inverse problems. We refer, e.g.,
to [1, 2, 3, 4, 5].
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